]> git.proxmox.com Git - mirror_qemu.git/blame - target/riscv/cpu_helper.c
target/riscv: Fix read and write accesses to vsip and vsie
[mirror_qemu.git] / target / riscv / cpu_helper.c
CommitLineData
0c3e702a 1/*
df354dd4 2 * RISC-V CPU helpers for qemu.
0c3e702a
MC
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
21#include "qemu/log.h"
7ec5d303 22#include "qemu/main-loop.h"
0c3e702a
MC
23#include "cpu.h"
24#include "exec/exec-all.h"
dcb32f1d 25#include "tcg/tcg-op.h"
929f0a7f 26#include "trace.h"
6b5fe137 27#include "semihosting/common-semi.h"
0c3e702a
MC
28
29int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
30{
31#ifdef CONFIG_USER_ONLY
32 return 0;
33#else
34 return env->priv;
35#endif
36}
37
38#ifndef CONFIG_USER_ONLY
efbdbc26 39static int riscv_cpu_local_irq_pending(CPURISCVState *env)
0c3e702a 40{
3ef10a09
AF
41 target_ulong irqs;
42
efbdbc26
MC
43 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
44 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
3ef10a09
AF
45 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
46
47 target_ulong pending = env->mip & env->mie &
48 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
49 target_ulong vspending = (env->mip & env->mie &
c5969a3a 50 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP));
3ef10a09
AF
51
52 target_ulong mie = env->priv < PRV_M ||
53 (env->priv == PRV_M && mstatus_mie);
54 target_ulong sie = env->priv < PRV_S ||
55 (env->priv == PRV_S && mstatus_sie);
56 target_ulong hs_sie = env->priv < PRV_S ||
57 (env->priv == PRV_S && hs_mstatus_sie);
58
59 if (riscv_cpu_virt_enabled(env)) {
60 target_ulong pending_hs_irq = pending & -hs_sie;
61
62 if (pending_hs_irq) {
63 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
64 return ctz64(pending_hs_irq);
65 }
66
67 pending = vspending;
68 }
69
70 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie);
0c3e702a 71
efbdbc26
MC
72 if (irqs) {
73 return ctz64(irqs); /* since non-zero */
0c3e702a
MC
74 } else {
75 return EXCP_NONE; /* indicates no pending interrupt */
76 }
77}
78#endif
79
80bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
81{
82#if !defined(CONFIG_USER_ONLY)
83 if (interrupt_request & CPU_INTERRUPT_HARD) {
84 RISCVCPU *cpu = RISCV_CPU(cs);
85 CPURISCVState *env = &cpu->env;
efbdbc26 86 int interruptno = riscv_cpu_local_irq_pending(env);
0c3e702a
MC
87 if (interruptno >= 0) {
88 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
89 riscv_cpu_do_interrupt(cs);
90 return true;
91 }
92 }
93#endif
94 return false;
95}
96
97#if !defined(CONFIG_USER_ONLY)
98
b345b480
AF
99/* Return true is floating point support is currently enabled */
100bool riscv_cpu_fp_enabled(CPURISCVState *env)
101{
102 if (env->mstatus & MSTATUS_FS) {
29409c1d
AF
103 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
104 return false;
105 }
b345b480
AF
106 return true;
107 }
108
109 return false;
110}
111
66e594f2
AF
112void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
113{
284d697c
YJ
114 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
115 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
116 MSTATUS64_UXL;
66e594f2
AF
117 bool current_virt = riscv_cpu_virt_enabled(env);
118
119 g_assert(riscv_has_ext(env, RVH));
120
66e594f2
AF
121 if (current_virt) {
122 /* Current V=1 and we are about to change to V=0 */
123 env->vsstatus = env->mstatus & mstatus_mask;
124 env->mstatus &= ~mstatus_mask;
125 env->mstatus |= env->mstatus_hs;
126
127 env->vstvec = env->stvec;
128 env->stvec = env->stvec_hs;
129
130 env->vsscratch = env->sscratch;
131 env->sscratch = env->sscratch_hs;
132
133 env->vsepc = env->sepc;
134 env->sepc = env->sepc_hs;
135
136 env->vscause = env->scause;
137 env->scause = env->scause_hs;
138
139 env->vstval = env->sbadaddr;
140 env->sbadaddr = env->stval_hs;
141
142 env->vsatp = env->satp;
143 env->satp = env->satp_hs;
144 } else {
145 /* Current V=0 and we are about to change to V=1 */
146 env->mstatus_hs = env->mstatus & mstatus_mask;
147 env->mstatus &= ~mstatus_mask;
148 env->mstatus |= env->vsstatus;
149
150 env->stvec_hs = env->stvec;
151 env->stvec = env->vstvec;
152
153 env->sscratch_hs = env->sscratch;
154 env->sscratch = env->vsscratch;
155
156 env->sepc_hs = env->sepc;
157 env->sepc = env->vsepc;
158
159 env->scause_hs = env->scause;
160 env->scause = env->vscause;
161
162 env->stval_hs = env->sbadaddr;
163 env->sbadaddr = env->vstval;
164
165 env->satp_hs = env->satp;
166 env->satp = env->vsatp;
167 }
168}
169
ef6bb7b6
AF
170bool riscv_cpu_virt_enabled(CPURISCVState *env)
171{
172 if (!riscv_has_ext(env, RVH)) {
173 return false;
174 }
175
176 return get_field(env->virt, VIRT_ONOFF);
177}
178
179void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
180{
181 if (!riscv_has_ext(env, RVH)) {
182 return;
183 }
184
eccc5a12
AF
185 /* Flush the TLB on all virt mode changes. */
186 if (get_field(env->virt, VIRT_ONOFF) != enable) {
187 tlb_flush(env_cpu(env));
188 }
189
ef6bb7b6
AF
190 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
191}
192
c7b1bbc8
AF
193bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
194{
195 if (!riscv_has_ext(env, RVH)) {
196 return false;
197 }
198
199 return get_field(env->virt, FORCE_HS_EXCEP);
200}
201
202void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
203{
204 if (!riscv_has_ext(env, RVH)) {
205 return;
206 }
207
208 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
209}
210
1c1c060a 211bool riscv_cpu_two_stage_lookup(int mmu_idx)
5a894dd7 212{
1c1c060a 213 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
5a894dd7
AF
214}
215
e3e7039c
MC
216int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
217{
218 CPURISCVState *env = &cpu->env;
219 if (env->miclaim & interrupts) {
220 return -1;
221 } else {
222 env->miclaim |= interrupts;
223 return 0;
224 }
225}
226
df354dd4
MC
227uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
228{
229 CPURISCVState *env = &cpu->env;
0a01f2ee 230 CPUState *cs = CPU(cpu);
7ec5d303
AF
231 uint32_t old = env->mip;
232 bool locked = false;
233
234 if (!qemu_mutex_iothread_locked()) {
235 locked = true;
236 qemu_mutex_lock_iothread();
237 }
df354dd4 238
7ec5d303 239 env->mip = (env->mip & ~mask) | (value & mask);
df354dd4 240
7ec5d303
AF
241 if (env->mip) {
242 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
243 } else {
244 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
245 }
0a01f2ee 246
7ec5d303
AF
247 if (locked) {
248 qemu_mutex_unlock_iothread();
249 }
df354dd4
MC
250
251 return old;
252}
253
a47ef6e9
BM
254void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
255 uint32_t arg)
c6957248
AP
256{
257 env->rdtime_fn = fn;
a47ef6e9 258 env->rdtime_fn_arg = arg;
c6957248
AP
259}
260
fb738839 261void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
df354dd4
MC
262{
263 if (newpriv > PRV_M) {
264 g_assert_not_reached();
265 }
266 if (newpriv == PRV_H) {
267 newpriv = PRV_U;
268 }
269 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
270 env->priv = newpriv;
c13b169f
JS
271
272 /*
273 * Clear the load reservation - otherwise a reservation placed in one
274 * context/process can be used by another, resulting in an SC succeeding
275 * incorrectly. Version 2.2 of the ISA specification explicitly requires
276 * this behaviour, while later revisions say that the kernel "should" use
277 * an SC instruction to force the yielding of a load reservation on a
278 * preemptive context switch. As a result, do both.
279 */
280 env->load_res = -1;
df354dd4
MC
281}
282
b297129a
JS
283/*
284 * get_physical_address_pmp - check PMP permission for this physical address
285 *
286 * Match the PMP region and check permission for this physical address and it's
287 * TLB page. Returns 0 if the permission checking was successful
288 *
289 * @env: CPURISCVState
290 * @prot: The returned protection attributes
291 * @tlb_size: TLB page size containing addr. It could be modified after PMP
292 * permission checking. NULL if not set TLB page for addr.
293 * @addr: The physical address to be checked permission
294 * @access_type: The type of MMU access
295 * @mode: Indicates current privilege level.
296 */
297static int get_physical_address_pmp(CPURISCVState *env, int *prot,
298 target_ulong *tlb_size, hwaddr addr,
299 int size, MMUAccessType access_type,
300 int mode)
301{
302 pmp_priv_t pmp_priv;
303 target_ulong tlb_size_pmp = 0;
304
305 if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
306 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
307 return TRANSLATE_SUCCESS;
308 }
309
310 if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
311 mode)) {
312 *prot = 0;
313 return TRANSLATE_PMP_FAIL;
314 }
315
316 *prot = pmp_priv_to_page_prot(pmp_priv);
317 if (tlb_size != NULL) {
318 if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
319 *tlb_size = tlb_size_pmp;
320 }
321 }
322
323 return TRANSLATE_SUCCESS;
324}
325
0c3e702a
MC
326/* get_physical_address - get the physical address for this virtual address
327 *
328 * Do a page table walk to obtain the physical address corresponding to a
329 * virtual address. Returns 0 if the translation was successful
330 *
331 * Adapted from Spike's mmu_t::translate and mmu_t::walk
332 *
1448689c
AF
333 * @env: CPURISCVState
334 * @physical: This will be set to the calculated physical address
335 * @prot: The returned protection attributes
336 * @addr: The virtual address to be translated
33a9a57d
YJ
337 * @fault_pte_addr: If not NULL, this will be set to fault pte address
338 * when a error occurs on pte address translation.
339 * This will already be shifted to match htval.
1448689c
AF
340 * @access_type: The type of MMU access
341 * @mmu_idx: Indicates current privilege level
342 * @first_stage: Are we in first stage translation?
343 * Second stage is used for hypervisor guest translation
36a18664 344 * @two_stage: Are we going to perform two stage translation
0c3e702a
MC
345 */
346static int get_physical_address(CPURISCVState *env, hwaddr *physical,
347 int *prot, target_ulong addr,
33a9a57d 348 target_ulong *fault_pte_addr,
1448689c 349 int access_type, int mmu_idx,
36a18664 350 bool first_stage, bool two_stage)
0c3e702a
MC
351{
352 /* NOTE: the env->pc value visible here will not be
353 * correct, but the value visible to the exception handler
354 * (riscv_cpu_do_interrupt) is correct */
aacb578f
PD
355 MemTxResult res;
356 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
c445593d 357 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
36a18664 358 bool use_background = false;
0c3e702a 359
36a18664
AF
360 /*
361 * Check if we should use the background registers for the two
362 * stage translation. We don't need to check if we actually need
363 * two stage translation as that happened before this function
364 * was called. Background registers will be used if the guest has
365 * forced a two stage translation to be on (in HS or M mode).
366 */
db9ab38b 367 if (!riscv_cpu_virt_enabled(env) && two_stage) {
29b3361b
AF
368 use_background = true;
369 }
370
90ec1cff
GK
371 /* MPRV does not affect the virtual-machine load/store
372 instructions, HLV, HLVX, and HSV. */
373 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
374 mode = get_field(env->hstatus, HSTATUS_SPVP);
375 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
0c3e702a
MC
376 if (get_field(env->mstatus, MSTATUS_MPRV)) {
377 mode = get_field(env->mstatus, MSTATUS_MPP);
378 }
379 }
380
36a18664
AF
381 if (first_stage == false) {
382 /* We are in stage 2 translation, this is similar to stage 1. */
383 /* Stage 2 is always taken as U-mode */
384 mode = PRV_U;
385 }
386
0c3e702a
MC
387 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
388 *physical = addr;
389 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
390 return TRANSLATE_SUCCESS;
391 }
392
393 *prot = 0;
394
ddf78132 395 hwaddr base;
36a18664
AF
396 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
397
398 if (first_stage == true) {
399 mxr = get_field(env->mstatus, MSTATUS_MXR);
400 } else {
401 mxr = get_field(env->vsstatus, MSTATUS_MXR);
402 }
0c3e702a 403
1a9540d1
AF
404 if (first_stage == true) {
405 if (use_background) {
406 base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT;
407 vm = get_field(env->vsatp, SATP_MODE);
36a18664 408 } else {
1a9540d1
AF
409 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
410 vm = get_field(env->satp, SATP_MODE);
0c3e702a 411 }
36a18664 412 widened = 0;
1a9540d1
AF
413 } else {
414 base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT;
415 vm = get_field(env->hgatp, HGATP_MODE);
416 widened = 2;
417 }
c63ca4ff
YJ
418 /* status.SUM will be ignored if execute on background */
419 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background;
1a9540d1
AF
420 switch (vm) {
421 case VM_1_10_SV32:
422 levels = 2; ptidxbits = 10; ptesize = 4; break;
423 case VM_1_10_SV39:
424 levels = 3; ptidxbits = 9; ptesize = 8; break;
425 case VM_1_10_SV48:
426 levels = 4; ptidxbits = 9; ptesize = 8; break;
427 case VM_1_10_SV57:
428 levels = 5; ptidxbits = 9; ptesize = 8; break;
429 case VM_1_10_MBARE:
430 *physical = addr;
431 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
432 return TRANSLATE_SUCCESS;
433 default:
434 g_assert_not_reached();
0c3e702a
MC
435 }
436
3109cd98 437 CPUState *cs = env_cpu(env);
36a18664
AF
438 int va_bits = PGSHIFT + levels * ptidxbits + widened;
439 target_ulong mask, masked_msbs;
440
441 if (TARGET_LONG_BITS > (va_bits - 1)) {
442 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
443 } else {
444 mask = 0;
445 }
446 masked_msbs = (addr >> (va_bits - 1)) & mask;
447
0c3e702a
MC
448 if (masked_msbs != 0 && masked_msbs != mask) {
449 return TRANSLATE_FAIL;
450 }
451
452 int ptshift = (levels - 1) * ptidxbits;
453 int i;
454
455#if !TCG_OVERSIZED_GUEST
456restart:
457#endif
458 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
36a18664
AF
459 target_ulong idx;
460 if (i == 0) {
461 idx = (addr >> (PGSHIFT + ptshift)) &
462 ((1 << (ptidxbits + widened)) - 1);
463 } else {
464 idx = (addr >> (PGSHIFT + ptshift)) &
0c3e702a 465 ((1 << ptidxbits) - 1);
36a18664 466 }
0c3e702a
MC
467
468 /* check that physical address of PTE is legal */
36a18664
AF
469 hwaddr pte_addr;
470
471 if (two_stage && first_stage) {
38472890 472 int vbase_prot;
36a18664
AF
473 hwaddr vbase;
474
475 /* Do the second stage translation on the base PTE address. */
88914473 476 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
33a9a57d 477 base, NULL, MMU_DATA_LOAD,
88914473
AF
478 mmu_idx, false, true);
479
480 if (vbase_ret != TRANSLATE_SUCCESS) {
33a9a57d
YJ
481 if (fault_pte_addr) {
482 *fault_pte_addr = (base + idx * ptesize) >> 2;
483 }
484 return TRANSLATE_G_STAGE_FAIL;
88914473 485 }
36a18664
AF
486
487 pte_addr = vbase + idx * ptesize;
488 } else {
489 pte_addr = base + idx * ptesize;
490 }
1f447aec 491
b297129a
JS
492 int pmp_prot;
493 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
494 sizeof(target_ulong),
495 MMU_DATA_LOAD, PRV_S);
496 if (pmp_ret != TRANSLATE_SUCCESS) {
1f447aec
HA
497 return TRANSLATE_PMP_FAIL;
498 }
aacb578f 499
f08c7ff3
AF
500 target_ulong pte;
501 if (riscv_cpu_is_32bit(env)) {
502 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
503 } else {
504 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
505 }
506
aacb578f
PD
507 if (res != MEMTX_OK) {
508 return TRANSLATE_FAIL;
509 }
510
ddf78132 511 hwaddr ppn = pte >> PTE_PPN_SHIFT;
0c3e702a 512
c3b03e58
MC
513 if (!(pte & PTE_V)) {
514 /* Invalid PTE */
515 return TRANSLATE_FAIL;
516 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
517 /* Inner PTE, continue walking */
0c3e702a 518 base = ppn << PGSHIFT;
c3b03e58
MC
519 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
520 /* Reserved leaf PTE flags: PTE_W */
521 return TRANSLATE_FAIL;
522 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
523 /* Reserved leaf PTE flags: PTE_W + PTE_X */
524 return TRANSLATE_FAIL;
525 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
526 (!sum || access_type == MMU_INST_FETCH))) {
527 /* User PTE flags when not U mode and mstatus.SUM is not set,
528 or the access type is an instruction fetch */
529 return TRANSLATE_FAIL;
530 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
531 /* Supervisor PTE flags when not S mode */
532 return TRANSLATE_FAIL;
533 } else if (ppn & ((1ULL << ptshift) - 1)) {
534 /* Misaligned PPN */
535 return TRANSLATE_FAIL;
536 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
537 ((pte & PTE_X) && mxr))) {
538 /* Read access check failed */
539 return TRANSLATE_FAIL;
540 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
541 /* Write access check failed */
542 return TRANSLATE_FAIL;
543 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
544 /* Fetch access check failed */
545 return TRANSLATE_FAIL;
0c3e702a
MC
546 } else {
547 /* if necessary, set accessed and dirty bits. */
548 target_ulong updated_pte = pte | PTE_A |
549 (access_type == MMU_DATA_STORE ? PTE_D : 0);
550
551 /* Page table updates need to be atomic with MTTCG enabled */
552 if (updated_pte != pte) {
c3b03e58
MC
553 /*
554 * - if accessed or dirty bits need updating, and the PTE is
555 * in RAM, then we do so atomically with a compare and swap.
556 * - if the PTE is in IO space or ROM, then it can't be updated
557 * and we return TRANSLATE_FAIL.
558 * - if the PTE changed by the time we went to update it, then
559 * it is no longer valid and we must re-walk the page table.
560 */
0c3e702a
MC
561 MemoryRegion *mr;
562 hwaddr l = sizeof(target_ulong), addr1;
563 mr = address_space_translate(cs->as, pte_addr,
bc6b1cec 564 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
c3b03e58 565 if (memory_region_is_ram(mr)) {
0c3e702a
MC
566 target_ulong *pte_pa =
567 qemu_map_ram_ptr(mr->ram_block, addr1);
568#if TCG_OVERSIZED_GUEST
569 /* MTTCG is not enabled on oversized TCG guests so
570 * page table updates do not need to be atomic */
571 *pte_pa = pte = updated_pte;
572#else
573 target_ulong old_pte =
d73415a3 574 qatomic_cmpxchg(pte_pa, pte, updated_pte);
0c3e702a
MC
575 if (old_pte != pte) {
576 goto restart;
577 } else {
578 pte = updated_pte;
579 }
580#endif
581 } else {
582 /* misconfigured PTE in ROM (AD bits are not preset) or
583 * PTE is in IO space and can't be updated atomically */
584 return TRANSLATE_FAIL;
585 }
586 }
587
588 /* for superpage mappings, make a fake leaf PTE for the TLB's
589 benefit. */
590 target_ulong vpn = addr >> PGSHIFT;
9ef82119
ZL
591 *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) |
592 (addr & ~TARGET_PAGE_MASK);
0c3e702a 593
c3b03e58
MC
594 /* set permissions on the TLB entry */
595 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
0c3e702a
MC
596 *prot |= PAGE_READ;
597 }
598 if ((pte & PTE_X)) {
599 *prot |= PAGE_EXEC;
600 }
c3b03e58
MC
601 /* add write permission on stores or if the page is already dirty,
602 so that we TLB miss on later writes to update the dirty bit */
0c3e702a
MC
603 if ((pte & PTE_W) &&
604 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
605 *prot |= PAGE_WRITE;
606 }
607 return TRANSLATE_SUCCESS;
608 }
609 }
610 return TRANSLATE_FAIL;
611}
612
613static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1448689c 614 MMUAccessType access_type, bool pmp_violation,
1c1c060a 615 bool first_stage, bool two_stage)
0c3e702a 616{
3109cd98 617 CPUState *cs = env_cpu(env);
1448689c
AF
618 int page_fault_exceptions;
619 if (first_stage) {
620 page_fault_exceptions =
1448689c
AF
621 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
622 !pmp_violation;
623 } else {
624 page_fault_exceptions =
625 get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE &&
626 !pmp_violation;
627 }
0c3e702a
MC
628 switch (access_type) {
629 case MMU_INST_FETCH:
b2ef6ab9
AF
630 if (riscv_cpu_virt_enabled(env) && !first_stage) {
631 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
632 } else {
633 cs->exception_index = page_fault_exceptions ?
634 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
635 }
0c3e702a
MC
636 break;
637 case MMU_DATA_LOAD:
1c1c060a 638 if (two_stage && !first_stage) {
b2ef6ab9
AF
639 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
640 } else {
641 cs->exception_index = page_fault_exceptions ?
642 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
643 }
0c3e702a
MC
644 break;
645 case MMU_DATA_STORE:
1c1c060a 646 if (two_stage && !first_stage) {
b2ef6ab9
AF
647 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
648 } else {
649 cs->exception_index = page_fault_exceptions ?
650 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
651 }
0c3e702a
MC
652 break;
653 default:
654 g_assert_not_reached();
655 }
656 env->badaddr = address;
657}
658
659hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
660{
661 RISCVCPU *cpu = RISCV_CPU(cs);
36a18664 662 CPURISCVState *env = &cpu->env;
0c3e702a
MC
663 hwaddr phys_addr;
664 int prot;
665 int mmu_idx = cpu_mmu_index(&cpu->env, false);
666
33a9a57d 667 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
36a18664 668 true, riscv_cpu_virt_enabled(env))) {
0c3e702a
MC
669 return -1;
670 }
36a18664
AF
671
672 if (riscv_cpu_virt_enabled(env)) {
33a9a57d 673 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
36a18664
AF
674 0, mmu_idx, false, true)) {
675 return -1;
676 }
677 }
678
9ef82119 679 return phys_addr & TARGET_PAGE_MASK;
0c3e702a
MC
680}
681
37207e12
PD
682void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
683 vaddr addr, unsigned size,
684 MMUAccessType access_type,
685 int mmu_idx, MemTxAttrs attrs,
686 MemTxResult response, uintptr_t retaddr)
cbf58276
MC
687{
688 RISCVCPU *cpu = RISCV_CPU(cs);
689 CPURISCVState *env = &cpu->env;
690
37207e12 691 if (access_type == MMU_DATA_STORE) {
cbf58276
MC
692 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
693 } else {
694 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
695 }
696
697 env->badaddr = addr;
37207e12 698 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
cbf58276
MC
699}
700
0c3e702a
MC
701void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
702 MMUAccessType access_type, int mmu_idx,
703 uintptr_t retaddr)
704{
705 RISCVCPU *cpu = RISCV_CPU(cs);
706 CPURISCVState *env = &cpu->env;
707 switch (access_type) {
708 case MMU_INST_FETCH:
709 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
710 break;
711 case MMU_DATA_LOAD:
712 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
713 break;
714 case MMU_DATA_STORE:
715 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
716 break;
717 default:
718 g_assert_not_reached();
719 }
720 env->badaddr = addr;
fb738839 721 riscv_raise_exception(env, cs->exception_index, retaddr);
0c3e702a 722}
cbc183d2 723#endif /* !CONFIG_USER_ONLY */
0c3e702a 724
8a4ca3c1
RH
725bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
726 MMUAccessType access_type, int mmu_idx,
727 bool probe, uintptr_t retaddr)
0c3e702a
MC
728{
729 RISCVCPU *cpu = RISCV_CPU(cs);
730 CPURISCVState *env = &cpu->env;
2921343b 731#ifndef CONFIG_USER_ONLY
36a18664 732 vaddr im_address;
0c3e702a 733 hwaddr pa = 0;
b297129a 734 int prot, prot2, prot_pmp;
635b0b0e 735 bool pmp_violation = false;
36a18664 736 bool first_stage_error = true;
1c1c060a 737 bool two_stage_lookup = false;
0c3e702a 738 int ret = TRANSLATE_FAIL;
cc0fdb29 739 int mode = mmu_idx;
b297129a
JS
740 /* default TLB page size */
741 target_ulong tlb_size = TARGET_PAGE_SIZE;
0c3e702a 742
36a18664
AF
743 env->guest_phys_fault_addr = 0;
744
8a4ca3c1
RH
745 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
746 __func__, address, access_type, mmu_idx);
747
90ec1cff
GK
748 /* MPRV does not affect the virtual-machine load/store
749 instructions, HLV, HLVX, and HSV. */
750 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
751 mode = get_field(env->hstatus, HSTATUS_SPVP);
752 } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
753 get_field(env->mstatus, MSTATUS_MPRV)) {
754 mode = get_field(env->mstatus, MSTATUS_MPP);
755 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
756 two_stage_lookup = true;
cc0fdb29
HA
757 }
758 }
759
29b3361b 760 if (riscv_cpu_virt_enabled(env) ||
1c1c060a
AF
761 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
762 access_type != MMU_INST_FETCH)) {
36a18664 763 /* Two stage lookup */
33a9a57d
YJ
764 ret = get_physical_address(env, &pa, &prot, address,
765 &env->guest_phys_fault_addr, access_type,
36a18664
AF
766 mmu_idx, true, true);
767
33a9a57d
YJ
768 /*
769 * A G-stage exception may be triggered during two state lookup.
770 * And the env->guest_phys_fault_addr has already been set in
771 * get_physical_address().
772 */
773 if (ret == TRANSLATE_G_STAGE_FAIL) {
774 first_stage_error = false;
775 access_type = MMU_DATA_LOAD;
776 }
777
36a18664
AF
778 qemu_log_mask(CPU_LOG_MMU,
779 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
780 TARGET_FMT_plx " prot %d\n",
781 __func__, address, ret, pa, prot);
782
33a9a57d 783 if (ret == TRANSLATE_SUCCESS) {
36a18664
AF
784 /* Second stage lookup */
785 im_address = pa;
786
33a9a57d 787 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
36a18664
AF
788 access_type, mmu_idx, false, true);
789
790 qemu_log_mask(CPU_LOG_MMU,
791 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
792 TARGET_FMT_plx " prot %d\n",
8f67cd6d
AF
793 __func__, im_address, ret, pa, prot2);
794
795 prot &= prot2;
36a18664 796
b297129a
JS
797 if (ret == TRANSLATE_SUCCESS) {
798 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
799 size, access_type, mode);
663e1193
JS
800
801 qemu_log_mask(CPU_LOG_MMU,
802 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
803 " %d tlb_size " TARGET_FMT_lu "\n",
804 __func__, pa, ret, prot_pmp, tlb_size);
805
b297129a 806 prot &= prot_pmp;
36a18664
AF
807 }
808
809 if (ret != TRANSLATE_SUCCESS) {
810 /*
811 * Guest physical address translation failed, this is a HS
812 * level exception
813 */
814 first_stage_error = false;
815 env->guest_phys_fault_addr = (im_address |
816 (address &
817 (TARGET_PAGE_SIZE - 1))) >> 2;
818 }
819 }
820 } else {
821 /* Single stage lookup */
33a9a57d
YJ
822 ret = get_physical_address(env, &pa, &prot, address, NULL,
823 access_type, mmu_idx, true, false);
36a18664
AF
824
825 qemu_log_mask(CPU_LOG_MMU,
826 "%s address=%" VADDR_PRIx " ret %d physical "
827 TARGET_FMT_plx " prot %d\n",
828 __func__, address, ret, pa, prot);
8a4ca3c1 829
b297129a
JS
830 if (ret == TRANSLATE_SUCCESS) {
831 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
832 size, access_type, mode);
663e1193
JS
833
834 qemu_log_mask(CPU_LOG_MMU,
835 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
836 " %d tlb_size " TARGET_FMT_lu "\n",
837 __func__, pa, ret, prot_pmp, tlb_size);
838
b297129a
JS
839 prot &= prot_pmp;
840 }
1f447aec 841 }
b297129a 842
1f447aec 843 if (ret == TRANSLATE_PMP_FAIL) {
635b0b0e 844 pmp_violation = true;
0c3e702a 845 }
36a18664 846
0c3e702a 847 if (ret == TRANSLATE_SUCCESS) {
b297129a
JS
848 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
849 prot, mmu_idx, tlb_size);
8a4ca3c1
RH
850 return true;
851 } else if (probe) {
852 return false;
853 } else {
1c1c060a
AF
854 raise_mmu_exception(env, address, access_type, pmp_violation,
855 first_stage_error,
856 riscv_cpu_virt_enabled(env) ||
857 riscv_cpu_two_stage_lookup(mmu_idx));
8a4ca3c1 858 riscv_raise_exception(env, cs->exception_index, retaddr);
0c3e702a 859 }
36a18664
AF
860
861 return true;
862
0c3e702a 863#else
8a4ca3c1 864 switch (access_type) {
0c3e702a
MC
865 case MMU_INST_FETCH:
866 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
867 break;
868 case MMU_DATA_LOAD:
869 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
870 break;
871 case MMU_DATA_STORE:
872 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
873 break;
2921343b
GM
874 default:
875 g_assert_not_reached();
0c3e702a 876 }
2921343b 877 env->badaddr = address;
8a4ca3c1 878 cpu_loop_exit_restore(cs, retaddr);
0c3e702a 879#endif
0c3e702a
MC
880}
881
882/*
883 * Handle Traps
884 *
885 * Adapted from Spike's processor_t::take_trap.
886 *
887 */
888void riscv_cpu_do_interrupt(CPUState *cs)
889{
890#if !defined(CONFIG_USER_ONLY)
891
892 RISCVCPU *cpu = RISCV_CPU(cs);
893 CPURISCVState *env = &cpu->env;
5eb9e782 894 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env);
284d697c 895 uint64_t s;
0c3e702a 896
acbbb94e
MC
897 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
898 * so we mask off the MSB and separate into trap type and cause.
899 */
900 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
901 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
902 target_ulong deleg = async ? env->mideleg : env->medeleg;
4aeb9e26 903 bool write_tval = false;
acbbb94e 904 target_ulong tval = 0;
30675539
AF
905 target_ulong htval = 0;
906 target_ulong mtval2 = 0;
acbbb94e 907
a10b9d93
KP
908 if (cause == RISCV_EXCP_SEMIHOST) {
909 if (env->priv >= PRV_S) {
910 env->gpr[xA0] = do_common_semihosting(cs);
911 env->pc += 4;
912 return;
913 }
914 cause = RISCV_EXCP_BREAKPOINT;
915 }
916
acbbb94e
MC
917 if (!async) {
918 /* set tval to badaddr for traps with address information */
919 switch (cause) {
ab67a1d0
AF
920 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
921 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
922 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
5eb9e782
AF
923 force_hs_execp = true;
924 /* fallthrough */
acbbb94e
MC
925 case RISCV_EXCP_INST_ADDR_MIS:
926 case RISCV_EXCP_INST_ACCESS_FAULT:
927 case RISCV_EXCP_LOAD_ADDR_MIS:
928 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
929 case RISCV_EXCP_LOAD_ACCESS_FAULT:
930 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
931 case RISCV_EXCP_INST_PAGE_FAULT:
932 case RISCV_EXCP_LOAD_PAGE_FAULT:
933 case RISCV_EXCP_STORE_PAGE_FAULT:
4aeb9e26 934 write_tval = true;
acbbb94e
MC
935 tval = env->badaddr;
936 break;
937 default:
938 break;
0c3e702a 939 }
acbbb94e
MC
940 /* ecall is dispatched as one cause so translate based on mode */
941 if (cause == RISCV_EXCP_U_ECALL) {
942 assert(env->priv <= 3);
5eb9e782
AF
943
944 if (env->priv == PRV_M) {
945 cause = RISCV_EXCP_M_ECALL;
946 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
947 cause = RISCV_EXCP_VS_ECALL;
948 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
949 cause = RISCV_EXCP_S_ECALL;
950 } else if (env->priv == PRV_U) {
951 cause = RISCV_EXCP_U_ECALL;
952 }
0c3e702a
MC
953 }
954 }
955
c51a3f5d 956 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
69430111
AF
957 riscv_cpu_get_trap_name(cause, async));
958
959 qemu_log_mask(CPU_LOG_INT,
960 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
961 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
962 __func__, env->mhartid, async, cause, env->pc, tval,
963 riscv_cpu_get_trap_name(cause, async));
0c3e702a 964
acbbb94e
MC
965 if (env->priv <= PRV_S &&
966 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
0c3e702a 967 /* handle the trap in S-mode */
5eb9e782
AF
968 if (riscv_has_ext(env, RVH)) {
969 target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
1c1c060a
AF
970 bool two_stage_lookup = false;
971
972 if (env->priv == PRV_M ||
973 (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
974 (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
975 get_field(env->hstatus, HSTATUS_HU))) {
976 two_stage_lookup = true;
977 }
5eb9e782 978
1c1c060a 979 if ((riscv_cpu_virt_enabled(env) || two_stage_lookup) && write_tval) {
9034e90a
AF
980 /*
981 * If we are writing a guest virtual address to stval, set
982 * this to 1. If we are trapping to VS we will set this to 0
983 * later.
984 */
985 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1);
986 } else {
987 /* For other HS-mode traps, we set this to 0. */
988 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
989 }
990
5eb9e782
AF
991 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) &&
992 !force_hs_execp) {
84b1c04b 993 /* Trap to VS mode */
c5969a3a
RK
994 /*
995 * See if we need to adjust cause. Yes if its VS mode interrupt
996 * no if hypervisor has delegated one of hs mode's interrupt
997 */
998 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
84b1c04b 999 cause == IRQ_VS_EXT) {
c5969a3a 1000 cause = cause - 1;
84b1c04b 1001 }
9034e90a 1002 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
5eb9e782
AF
1003 } else if (riscv_cpu_virt_enabled(env)) {
1004 /* Trap into HS mode, from virt */
1005 riscv_cpu_swap_hypervisor_regs(env);
f2d5850f 1006 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
ace54453 1007 env->priv);
5eb9e782
AF
1008 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1009 riscv_cpu_virt_enabled(env));
1010
30675539
AF
1011 htval = env->guest_phys_fault_addr;
1012
5eb9e782
AF
1013 riscv_cpu_set_virt_enabled(env, 0);
1014 riscv_cpu_set_force_hs_excep(env, 0);
1015 } else {
1016 /* Trap into HS mode */
1c1c060a 1017 if (!two_stage_lookup) {
f2d5850f
AF
1018 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1019 riscv_cpu_virt_enabled(env));
1020 }
30675539 1021 htval = env->guest_phys_fault_addr;
5eb9e782
AF
1022 }
1023 }
1024
1025 s = env->mstatus;
1a9540d1 1026 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
0c3e702a
MC
1027 s = set_field(s, MSTATUS_SPP, env->priv);
1028 s = set_field(s, MSTATUS_SIE, 0);
c7b95171 1029 env->mstatus = s;
16fdb8ff 1030 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
acbbb94e
MC
1031 env->sepc = env->pc;
1032 env->sbadaddr = tval;
30675539 1033 env->htval = htval;
acbbb94e
MC
1034 env->pc = (env->stvec >> 2 << 2) +
1035 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
fb738839 1036 riscv_cpu_set_mode(env, PRV_S);
0c3e702a 1037 } else {
acbbb94e 1038 /* handle the trap in M-mode */
5eb9e782
AF
1039 if (riscv_has_ext(env, RVH)) {
1040 if (riscv_cpu_virt_enabled(env)) {
1041 riscv_cpu_swap_hypervisor_regs(env);
1042 }
1043 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
284d697c 1044 riscv_cpu_virt_enabled(env));
9034e90a
AF
1045 if (riscv_cpu_virt_enabled(env) && tval) {
1046 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1047 }
5eb9e782 1048
30675539
AF
1049 mtval2 = env->guest_phys_fault_addr;
1050
5eb9e782
AF
1051 /* Trapping to M mode, virt is disabled */
1052 riscv_cpu_set_virt_enabled(env, 0);
1053 riscv_cpu_set_force_hs_excep(env, 0);
1054 }
1055
1056 s = env->mstatus;
1a9540d1 1057 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
0c3e702a
MC
1058 s = set_field(s, MSTATUS_MPP, env->priv);
1059 s = set_field(s, MSTATUS_MIE, 0);
c7b95171 1060 env->mstatus = s;
acbbb94e
MC
1061 env->mcause = cause | ~(((target_ulong)-1) >> async);
1062 env->mepc = env->pc;
1063 env->mbadaddr = tval;
30675539 1064 env->mtval2 = mtval2;
acbbb94e
MC
1065 env->pc = (env->mtvec >> 2 << 2) +
1066 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
fb738839 1067 riscv_cpu_set_mode(env, PRV_M);
0c3e702a 1068 }
d9360e96
MC
1069
1070 /* NOTE: it is not necessary to yield load reservations here. It is only
1071 * necessary for an SC from "another hart" to cause a load reservation
1072 * to be yielded. Refer to the memory consistency model section of the
1073 * RISC-V ISA Specification.
1074 */
1075
0c3e702a
MC
1076#endif
1077 cs->exception_index = EXCP_NONE; /* mark handled to qemu */
1078}