]> git.proxmox.com Git - mirror_qemu.git/blame - target/riscv/cpu_helper.c
hw/core/register.c: Don't use '#' flag of printf format
[mirror_qemu.git] / target / riscv / cpu_helper.c
CommitLineData
0c3e702a 1/*
df354dd4 2 * RISC-V CPU helpers for qemu.
0c3e702a
MC
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
21#include "qemu/log.h"
7ec5d303 22#include "qemu/main-loop.h"
0c3e702a
MC
23#include "cpu.h"
24#include "exec/exec-all.h"
dcb32f1d 25#include "tcg/tcg-op.h"
929f0a7f 26#include "trace.h"
0c3e702a
MC
27
28int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
29{
30#ifdef CONFIG_USER_ONLY
31 return 0;
32#else
33 return env->priv;
34#endif
35}
36
37#ifndef CONFIG_USER_ONLY
efbdbc26 38static int riscv_cpu_local_irq_pending(CPURISCVState *env)
0c3e702a 39{
3ef10a09
AF
40 target_ulong irqs;
41
efbdbc26
MC
42 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
43 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
3ef10a09
AF
44 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
45
46 target_ulong pending = env->mip & env->mie &
47 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
48 target_ulong vspending = (env->mip & env->mie &
c5969a3a 49 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP));
3ef10a09
AF
50
51 target_ulong mie = env->priv < PRV_M ||
52 (env->priv == PRV_M && mstatus_mie);
53 target_ulong sie = env->priv < PRV_S ||
54 (env->priv == PRV_S && mstatus_sie);
55 target_ulong hs_sie = env->priv < PRV_S ||
56 (env->priv == PRV_S && hs_mstatus_sie);
57
58 if (riscv_cpu_virt_enabled(env)) {
59 target_ulong pending_hs_irq = pending & -hs_sie;
60
61 if (pending_hs_irq) {
62 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
63 return ctz64(pending_hs_irq);
64 }
65
66 pending = vspending;
67 }
68
69 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie);
0c3e702a 70
efbdbc26
MC
71 if (irqs) {
72 return ctz64(irqs); /* since non-zero */
0c3e702a
MC
73 } else {
74 return EXCP_NONE; /* indicates no pending interrupt */
75 }
76}
77#endif
78
79bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
80{
81#if !defined(CONFIG_USER_ONLY)
82 if (interrupt_request & CPU_INTERRUPT_HARD) {
83 RISCVCPU *cpu = RISCV_CPU(cs);
84 CPURISCVState *env = &cpu->env;
efbdbc26 85 int interruptno = riscv_cpu_local_irq_pending(env);
0c3e702a
MC
86 if (interruptno >= 0) {
87 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
88 riscv_cpu_do_interrupt(cs);
89 return true;
90 }
91 }
92#endif
93 return false;
94}
95
96#if !defined(CONFIG_USER_ONLY)
97
b345b480
AF
98/* Return true is floating point support is currently enabled */
99bool riscv_cpu_fp_enabled(CPURISCVState *env)
100{
101 if (env->mstatus & MSTATUS_FS) {
29409c1d
AF
102 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
103 return false;
104 }
b345b480
AF
105 return true;
106 }
107
108 return false;
109}
110
66e594f2
AF
111void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
112{
284d697c
YJ
113 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
114 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
115 MSTATUS64_UXL;
66e594f2
AF
116 bool current_virt = riscv_cpu_virt_enabled(env);
117
118 g_assert(riscv_has_ext(env, RVH));
119
66e594f2
AF
120 if (current_virt) {
121 /* Current V=1 and we are about to change to V=0 */
122 env->vsstatus = env->mstatus & mstatus_mask;
123 env->mstatus &= ~mstatus_mask;
124 env->mstatus |= env->mstatus_hs;
125
126 env->vstvec = env->stvec;
127 env->stvec = env->stvec_hs;
128
129 env->vsscratch = env->sscratch;
130 env->sscratch = env->sscratch_hs;
131
132 env->vsepc = env->sepc;
133 env->sepc = env->sepc_hs;
134
135 env->vscause = env->scause;
136 env->scause = env->scause_hs;
137
138 env->vstval = env->sbadaddr;
139 env->sbadaddr = env->stval_hs;
140
141 env->vsatp = env->satp;
142 env->satp = env->satp_hs;
143 } else {
144 /* Current V=0 and we are about to change to V=1 */
145 env->mstatus_hs = env->mstatus & mstatus_mask;
146 env->mstatus &= ~mstatus_mask;
147 env->mstatus |= env->vsstatus;
148
149 env->stvec_hs = env->stvec;
150 env->stvec = env->vstvec;
151
152 env->sscratch_hs = env->sscratch;
153 env->sscratch = env->vsscratch;
154
155 env->sepc_hs = env->sepc;
156 env->sepc = env->vsepc;
157
158 env->scause_hs = env->scause;
159 env->scause = env->vscause;
160
161 env->stval_hs = env->sbadaddr;
162 env->sbadaddr = env->vstval;
163
164 env->satp_hs = env->satp;
165 env->satp = env->vsatp;
166 }
167}
168
ef6bb7b6
AF
169bool riscv_cpu_virt_enabled(CPURISCVState *env)
170{
171 if (!riscv_has_ext(env, RVH)) {
172 return false;
173 }
174
175 return get_field(env->virt, VIRT_ONOFF);
176}
177
178void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
179{
180 if (!riscv_has_ext(env, RVH)) {
181 return;
182 }
183
eccc5a12
AF
184 /* Flush the TLB on all virt mode changes. */
185 if (get_field(env->virt, VIRT_ONOFF) != enable) {
186 tlb_flush(env_cpu(env));
187 }
188
ef6bb7b6
AF
189 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
190}
191
c7b1bbc8
AF
192bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
193{
194 if (!riscv_has_ext(env, RVH)) {
195 return false;
196 }
197
198 return get_field(env->virt, FORCE_HS_EXCEP);
199}
200
201void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
202{
203 if (!riscv_has_ext(env, RVH)) {
204 return;
205 }
206
207 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
208}
209
1c1c060a 210bool riscv_cpu_two_stage_lookup(int mmu_idx)
5a894dd7 211{
1c1c060a 212 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
5a894dd7
AF
213}
214
e3e7039c
MC
215int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
216{
217 CPURISCVState *env = &cpu->env;
218 if (env->miclaim & interrupts) {
219 return -1;
220 } else {
221 env->miclaim |= interrupts;
222 return 0;
223 }
224}
225
df354dd4
MC
226uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
227{
228 CPURISCVState *env = &cpu->env;
0a01f2ee 229 CPUState *cs = CPU(cpu);
7ec5d303
AF
230 uint32_t old = env->mip;
231 bool locked = false;
232
233 if (!qemu_mutex_iothread_locked()) {
234 locked = true;
235 qemu_mutex_lock_iothread();
236 }
df354dd4 237
7ec5d303 238 env->mip = (env->mip & ~mask) | (value & mask);
df354dd4 239
7ec5d303
AF
240 if (env->mip) {
241 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
242 } else {
243 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
244 }
0a01f2ee 245
7ec5d303
AF
246 if (locked) {
247 qemu_mutex_unlock_iothread();
248 }
df354dd4
MC
249
250 return old;
251}
252
a47ef6e9
BM
253void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
254 uint32_t arg)
c6957248
AP
255{
256 env->rdtime_fn = fn;
a47ef6e9 257 env->rdtime_fn_arg = arg;
c6957248
AP
258}
259
fb738839 260void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
df354dd4
MC
261{
262 if (newpriv > PRV_M) {
263 g_assert_not_reached();
264 }
265 if (newpriv == PRV_H) {
266 newpriv = PRV_U;
267 }
268 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
269 env->priv = newpriv;
c13b169f
JS
270
271 /*
272 * Clear the load reservation - otherwise a reservation placed in one
273 * context/process can be used by another, resulting in an SC succeeding
274 * incorrectly. Version 2.2 of the ISA specification explicitly requires
275 * this behaviour, while later revisions say that the kernel "should" use
276 * an SC instruction to force the yielding of a load reservation on a
277 * preemptive context switch. As a result, do both.
278 */
279 env->load_res = -1;
df354dd4
MC
280}
281
0c3e702a
MC
282/* get_physical_address - get the physical address for this virtual address
283 *
284 * Do a page table walk to obtain the physical address corresponding to a
285 * virtual address. Returns 0 if the translation was successful
286 *
287 * Adapted from Spike's mmu_t::translate and mmu_t::walk
288 *
1448689c
AF
289 * @env: CPURISCVState
290 * @physical: This will be set to the calculated physical address
291 * @prot: The returned protection attributes
292 * @addr: The virtual address to be translated
33a9a57d
YJ
293 * @fault_pte_addr: If not NULL, this will be set to fault pte address
294 * when a error occurs on pte address translation.
295 * This will already be shifted to match htval.
1448689c
AF
296 * @access_type: The type of MMU access
297 * @mmu_idx: Indicates current privilege level
298 * @first_stage: Are we in first stage translation?
299 * Second stage is used for hypervisor guest translation
36a18664 300 * @two_stage: Are we going to perform two stage translation
0c3e702a
MC
301 */
302static int get_physical_address(CPURISCVState *env, hwaddr *physical,
303 int *prot, target_ulong addr,
33a9a57d 304 target_ulong *fault_pte_addr,
1448689c 305 int access_type, int mmu_idx,
36a18664 306 bool first_stage, bool two_stage)
0c3e702a
MC
307{
308 /* NOTE: the env->pc value visible here will not be
309 * correct, but the value visible to the exception handler
310 * (riscv_cpu_do_interrupt) is correct */
aacb578f
PD
311 MemTxResult res;
312 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
c445593d 313 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
36a18664 314 bool use_background = false;
0c3e702a 315
36a18664
AF
316 /*
317 * Check if we should use the background registers for the two
318 * stage translation. We don't need to check if we actually need
319 * two stage translation as that happened before this function
320 * was called. Background registers will be used if the guest has
321 * forced a two stage translation to be on (in HS or M mode).
322 */
1c1c060a 323 if (!riscv_cpu_virt_enabled(env) && riscv_cpu_two_stage_lookup(mmu_idx)) {
29b3361b
AF
324 use_background = true;
325 }
326
0c3e702a
MC
327 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
328 if (get_field(env->mstatus, MSTATUS_MPRV)) {
329 mode = get_field(env->mstatus, MSTATUS_MPP);
330 }
331 }
332
36a18664
AF
333 if (first_stage == false) {
334 /* We are in stage 2 translation, this is similar to stage 1. */
335 /* Stage 2 is always taken as U-mode */
336 mode = PRV_U;
337 }
338
0c3e702a
MC
339 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
340 *physical = addr;
341 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
342 return TRANSLATE_SUCCESS;
343 }
344
345 *prot = 0;
346
ddf78132 347 hwaddr base;
36a18664
AF
348 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
349
350 if (first_stage == true) {
351 mxr = get_field(env->mstatus, MSTATUS_MXR);
352 } else {
353 mxr = get_field(env->vsstatus, MSTATUS_MXR);
354 }
0c3e702a 355
1a9540d1
AF
356 if (first_stage == true) {
357 if (use_background) {
358 base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT;
359 vm = get_field(env->vsatp, SATP_MODE);
36a18664 360 } else {
1a9540d1
AF
361 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
362 vm = get_field(env->satp, SATP_MODE);
0c3e702a 363 }
36a18664 364 widened = 0;
1a9540d1
AF
365 } else {
366 base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT;
367 vm = get_field(env->hgatp, HGATP_MODE);
368 widened = 2;
369 }
370 sum = get_field(env->mstatus, MSTATUS_SUM);
371 switch (vm) {
372 case VM_1_10_SV32:
373 levels = 2; ptidxbits = 10; ptesize = 4; break;
374 case VM_1_10_SV39:
375 levels = 3; ptidxbits = 9; ptesize = 8; break;
376 case VM_1_10_SV48:
377 levels = 4; ptidxbits = 9; ptesize = 8; break;
378 case VM_1_10_SV57:
379 levels = 5; ptidxbits = 9; ptesize = 8; break;
380 case VM_1_10_MBARE:
381 *physical = addr;
382 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
383 return TRANSLATE_SUCCESS;
384 default:
385 g_assert_not_reached();
0c3e702a
MC
386 }
387
3109cd98 388 CPUState *cs = env_cpu(env);
36a18664
AF
389 int va_bits = PGSHIFT + levels * ptidxbits + widened;
390 target_ulong mask, masked_msbs;
391
392 if (TARGET_LONG_BITS > (va_bits - 1)) {
393 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
394 } else {
395 mask = 0;
396 }
397 masked_msbs = (addr >> (va_bits - 1)) & mask;
398
0c3e702a
MC
399 if (masked_msbs != 0 && masked_msbs != mask) {
400 return TRANSLATE_FAIL;
401 }
402
403 int ptshift = (levels - 1) * ptidxbits;
404 int i;
405
406#if !TCG_OVERSIZED_GUEST
407restart:
408#endif
409 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
36a18664
AF
410 target_ulong idx;
411 if (i == 0) {
412 idx = (addr >> (PGSHIFT + ptshift)) &
413 ((1 << (ptidxbits + widened)) - 1);
414 } else {
415 idx = (addr >> (PGSHIFT + ptshift)) &
0c3e702a 416 ((1 << ptidxbits) - 1);
36a18664 417 }
0c3e702a
MC
418
419 /* check that physical address of PTE is legal */
36a18664
AF
420 hwaddr pte_addr;
421
422 if (two_stage && first_stage) {
38472890 423 int vbase_prot;
36a18664
AF
424 hwaddr vbase;
425
426 /* Do the second stage translation on the base PTE address. */
88914473 427 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
33a9a57d 428 base, NULL, MMU_DATA_LOAD,
88914473
AF
429 mmu_idx, false, true);
430
431 if (vbase_ret != TRANSLATE_SUCCESS) {
33a9a57d
YJ
432 if (fault_pte_addr) {
433 *fault_pte_addr = (base + idx * ptesize) >> 2;
434 }
435 return TRANSLATE_G_STAGE_FAIL;
88914473 436 }
36a18664
AF
437
438 pte_addr = vbase + idx * ptesize;
439 } else {
440 pte_addr = base + idx * ptesize;
441 }
1f447aec
HA
442
443 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
444 !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
445 1 << MMU_DATA_LOAD, PRV_S)) {
446 return TRANSLATE_PMP_FAIL;
447 }
aacb578f 448
0c3e702a 449#if defined(TARGET_RISCV32)
aacb578f 450 target_ulong pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
0c3e702a 451#elif defined(TARGET_RISCV64)
aacb578f 452 target_ulong pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
0c3e702a 453#endif
aacb578f
PD
454 if (res != MEMTX_OK) {
455 return TRANSLATE_FAIL;
456 }
457
ddf78132 458 hwaddr ppn = pte >> PTE_PPN_SHIFT;
0c3e702a 459
c3b03e58
MC
460 if (!(pte & PTE_V)) {
461 /* Invalid PTE */
462 return TRANSLATE_FAIL;
463 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
464 /* Inner PTE, continue walking */
0c3e702a 465 base = ppn << PGSHIFT;
c3b03e58
MC
466 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
467 /* Reserved leaf PTE flags: PTE_W */
468 return TRANSLATE_FAIL;
469 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
470 /* Reserved leaf PTE flags: PTE_W + PTE_X */
471 return TRANSLATE_FAIL;
472 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
473 (!sum || access_type == MMU_INST_FETCH))) {
474 /* User PTE flags when not U mode and mstatus.SUM is not set,
475 or the access type is an instruction fetch */
476 return TRANSLATE_FAIL;
477 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
478 /* Supervisor PTE flags when not S mode */
479 return TRANSLATE_FAIL;
480 } else if (ppn & ((1ULL << ptshift) - 1)) {
481 /* Misaligned PPN */
482 return TRANSLATE_FAIL;
483 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
484 ((pte & PTE_X) && mxr))) {
485 /* Read access check failed */
486 return TRANSLATE_FAIL;
487 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
488 /* Write access check failed */
489 return TRANSLATE_FAIL;
490 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
491 /* Fetch access check failed */
492 return TRANSLATE_FAIL;
0c3e702a
MC
493 } else {
494 /* if necessary, set accessed and dirty bits. */
495 target_ulong updated_pte = pte | PTE_A |
496 (access_type == MMU_DATA_STORE ? PTE_D : 0);
497
498 /* Page table updates need to be atomic with MTTCG enabled */
499 if (updated_pte != pte) {
c3b03e58
MC
500 /*
501 * - if accessed or dirty bits need updating, and the PTE is
502 * in RAM, then we do so atomically with a compare and swap.
503 * - if the PTE is in IO space or ROM, then it can't be updated
504 * and we return TRANSLATE_FAIL.
505 * - if the PTE changed by the time we went to update it, then
506 * it is no longer valid and we must re-walk the page table.
507 */
0c3e702a
MC
508 MemoryRegion *mr;
509 hwaddr l = sizeof(target_ulong), addr1;
510 mr = address_space_translate(cs->as, pte_addr,
bc6b1cec 511 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
c3b03e58 512 if (memory_region_is_ram(mr)) {
0c3e702a
MC
513 target_ulong *pte_pa =
514 qemu_map_ram_ptr(mr->ram_block, addr1);
515#if TCG_OVERSIZED_GUEST
516 /* MTTCG is not enabled on oversized TCG guests so
517 * page table updates do not need to be atomic */
518 *pte_pa = pte = updated_pte;
519#else
520 target_ulong old_pte =
d73415a3 521 qatomic_cmpxchg(pte_pa, pte, updated_pte);
0c3e702a
MC
522 if (old_pte != pte) {
523 goto restart;
524 } else {
525 pte = updated_pte;
526 }
527#endif
528 } else {
529 /* misconfigured PTE in ROM (AD bits are not preset) or
530 * PTE is in IO space and can't be updated atomically */
531 return TRANSLATE_FAIL;
532 }
533 }
534
535 /* for superpage mappings, make a fake leaf PTE for the TLB's
536 benefit. */
537 target_ulong vpn = addr >> PGSHIFT;
9ef82119
ZL
538 *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) |
539 (addr & ~TARGET_PAGE_MASK);
0c3e702a 540
c3b03e58
MC
541 /* set permissions on the TLB entry */
542 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
0c3e702a
MC
543 *prot |= PAGE_READ;
544 }
545 if ((pte & PTE_X)) {
546 *prot |= PAGE_EXEC;
547 }
c3b03e58
MC
548 /* add write permission on stores or if the page is already dirty,
549 so that we TLB miss on later writes to update the dirty bit */
0c3e702a
MC
550 if ((pte & PTE_W) &&
551 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
552 *prot |= PAGE_WRITE;
553 }
554 return TRANSLATE_SUCCESS;
555 }
556 }
557 return TRANSLATE_FAIL;
558}
559
560static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1448689c 561 MMUAccessType access_type, bool pmp_violation,
1c1c060a 562 bool first_stage, bool two_stage)
0c3e702a 563{
3109cd98 564 CPUState *cs = env_cpu(env);
1448689c
AF
565 int page_fault_exceptions;
566 if (first_stage) {
567 page_fault_exceptions =
1448689c
AF
568 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
569 !pmp_violation;
570 } else {
571 page_fault_exceptions =
572 get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE &&
573 !pmp_violation;
574 }
0c3e702a
MC
575 switch (access_type) {
576 case MMU_INST_FETCH:
b2ef6ab9
AF
577 if (riscv_cpu_virt_enabled(env) && !first_stage) {
578 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
579 } else {
580 cs->exception_index = page_fault_exceptions ?
581 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
582 }
0c3e702a
MC
583 break;
584 case MMU_DATA_LOAD:
1c1c060a 585 if (two_stage && !first_stage) {
b2ef6ab9
AF
586 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
587 } else {
588 cs->exception_index = page_fault_exceptions ?
589 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
590 }
0c3e702a
MC
591 break;
592 case MMU_DATA_STORE:
1c1c060a 593 if (two_stage && !first_stage) {
b2ef6ab9
AF
594 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
595 } else {
596 cs->exception_index = page_fault_exceptions ?
597 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
598 }
0c3e702a
MC
599 break;
600 default:
601 g_assert_not_reached();
602 }
603 env->badaddr = address;
604}
605
606hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
607{
608 RISCVCPU *cpu = RISCV_CPU(cs);
36a18664 609 CPURISCVState *env = &cpu->env;
0c3e702a
MC
610 hwaddr phys_addr;
611 int prot;
612 int mmu_idx = cpu_mmu_index(&cpu->env, false);
613
33a9a57d 614 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
36a18664 615 true, riscv_cpu_virt_enabled(env))) {
0c3e702a
MC
616 return -1;
617 }
36a18664
AF
618
619 if (riscv_cpu_virt_enabled(env)) {
33a9a57d 620 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
36a18664
AF
621 0, mmu_idx, false, true)) {
622 return -1;
623 }
624 }
625
9ef82119 626 return phys_addr & TARGET_PAGE_MASK;
0c3e702a
MC
627}
628
37207e12
PD
629void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
630 vaddr addr, unsigned size,
631 MMUAccessType access_type,
632 int mmu_idx, MemTxAttrs attrs,
633 MemTxResult response, uintptr_t retaddr)
cbf58276
MC
634{
635 RISCVCPU *cpu = RISCV_CPU(cs);
636 CPURISCVState *env = &cpu->env;
637
37207e12 638 if (access_type == MMU_DATA_STORE) {
cbf58276
MC
639 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
640 } else {
641 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
642 }
643
644 env->badaddr = addr;
37207e12 645 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
cbf58276
MC
646}
647
0c3e702a
MC
648void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
649 MMUAccessType access_type, int mmu_idx,
650 uintptr_t retaddr)
651{
652 RISCVCPU *cpu = RISCV_CPU(cs);
653 CPURISCVState *env = &cpu->env;
654 switch (access_type) {
655 case MMU_INST_FETCH:
656 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
657 break;
658 case MMU_DATA_LOAD:
659 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
660 break;
661 case MMU_DATA_STORE:
662 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
663 break;
664 default:
665 g_assert_not_reached();
666 }
667 env->badaddr = addr;
fb738839 668 riscv_raise_exception(env, cs->exception_index, retaddr);
0c3e702a 669}
0c3e702a
MC
670#endif
671
8a4ca3c1
RH
672bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
673 MMUAccessType access_type, int mmu_idx,
674 bool probe, uintptr_t retaddr)
0c3e702a
MC
675{
676 RISCVCPU *cpu = RISCV_CPU(cs);
677 CPURISCVState *env = &cpu->env;
2921343b 678#ifndef CONFIG_USER_ONLY
36a18664 679 vaddr im_address;
0c3e702a 680 hwaddr pa = 0;
8f67cd6d 681 int prot, prot2;
635b0b0e 682 bool pmp_violation = false;
36a18664 683 bool first_stage_error = true;
1c1c060a 684 bool two_stage_lookup = false;
0c3e702a 685 int ret = TRANSLATE_FAIL;
cc0fdb29 686 int mode = mmu_idx;
af3fc195 687 target_ulong tlb_size = 0;
0c3e702a 688
36a18664
AF
689 env->guest_phys_fault_addr = 0;
690
8a4ca3c1
RH
691 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
692 __func__, address, access_type, mmu_idx);
693
cc0fdb29
HA
694 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
695 if (get_field(env->mstatus, MSTATUS_MPRV)) {
696 mode = get_field(env->mstatus, MSTATUS_MPP);
697 }
698 }
699
29b3361b
AF
700 if (riscv_has_ext(env, RVH) && env->priv == PRV_M &&
701 access_type != MMU_INST_FETCH &&
702 get_field(env->mstatus, MSTATUS_MPRV) &&
284d697c 703 get_field(env->mstatus, MSTATUS_MPV)) {
1c1c060a 704 two_stage_lookup = true;
29b3361b
AF
705 }
706
707 if (riscv_cpu_virt_enabled(env) ||
1c1c060a
AF
708 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
709 access_type != MMU_INST_FETCH)) {
36a18664 710 /* Two stage lookup */
33a9a57d
YJ
711 ret = get_physical_address(env, &pa, &prot, address,
712 &env->guest_phys_fault_addr, access_type,
36a18664
AF
713 mmu_idx, true, true);
714
33a9a57d
YJ
715 /*
716 * A G-stage exception may be triggered during two state lookup.
717 * And the env->guest_phys_fault_addr has already been set in
718 * get_physical_address().
719 */
720 if (ret == TRANSLATE_G_STAGE_FAIL) {
721 first_stage_error = false;
722 access_type = MMU_DATA_LOAD;
723 }
724
36a18664
AF
725 qemu_log_mask(CPU_LOG_MMU,
726 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
727 TARGET_FMT_plx " prot %d\n",
728 __func__, address, ret, pa, prot);
729
33a9a57d 730 if (ret == TRANSLATE_SUCCESS) {
36a18664
AF
731 /* Second stage lookup */
732 im_address = pa;
733
33a9a57d 734 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
36a18664
AF
735 access_type, mmu_idx, false, true);
736
737 qemu_log_mask(CPU_LOG_MMU,
738 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
739 TARGET_FMT_plx " prot %d\n",
8f67cd6d
AF
740 __func__, im_address, ret, pa, prot2);
741
742 prot &= prot2;
36a18664
AF
743
744 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
745 (ret == TRANSLATE_SUCCESS) &&
746 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
747 ret = TRANSLATE_PMP_FAIL;
748 }
749
750 if (ret != TRANSLATE_SUCCESS) {
751 /*
752 * Guest physical address translation failed, this is a HS
753 * level exception
754 */
755 first_stage_error = false;
756 env->guest_phys_fault_addr = (im_address |
757 (address &
758 (TARGET_PAGE_SIZE - 1))) >> 2;
759 }
760 }
761 } else {
762 /* Single stage lookup */
33a9a57d
YJ
763 ret = get_physical_address(env, &pa, &prot, address, NULL,
764 access_type, mmu_idx, true, false);
36a18664
AF
765
766 qemu_log_mask(CPU_LOG_MMU,
767 "%s address=%" VADDR_PRIx " ret %d physical "
768 TARGET_FMT_plx " prot %d\n",
769 __func__, address, ret, pa, prot);
770 }
8a4ca3c1 771
a88365c1 772 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
e0f8fa72 773 (ret == TRANSLATE_SUCCESS) &&
db21e6f7 774 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
1f447aec
HA
775 ret = TRANSLATE_PMP_FAIL;
776 }
777 if (ret == TRANSLATE_PMP_FAIL) {
635b0b0e 778 pmp_violation = true;
0c3e702a 779 }
36a18664 780
0c3e702a 781 if (ret == TRANSLATE_SUCCESS) {
af3fc195
ZL
782 if (pmp_is_range_in_tlb(env, pa & TARGET_PAGE_MASK, &tlb_size)) {
783 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
784 prot, mmu_idx, tlb_size);
785 } else {
786 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
787 prot, mmu_idx, TARGET_PAGE_SIZE);
788 }
8a4ca3c1
RH
789 return true;
790 } else if (probe) {
791 return false;
792 } else {
1c1c060a
AF
793 raise_mmu_exception(env, address, access_type, pmp_violation,
794 first_stage_error,
795 riscv_cpu_virt_enabled(env) ||
796 riscv_cpu_two_stage_lookup(mmu_idx));
8a4ca3c1 797 riscv_raise_exception(env, cs->exception_index, retaddr);
0c3e702a 798 }
36a18664
AF
799
800 return true;
801
0c3e702a 802#else
8a4ca3c1 803 switch (access_type) {
0c3e702a
MC
804 case MMU_INST_FETCH:
805 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
806 break;
807 case MMU_DATA_LOAD:
808 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
809 break;
810 case MMU_DATA_STORE:
811 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
812 break;
2921343b
GM
813 default:
814 g_assert_not_reached();
0c3e702a 815 }
2921343b 816 env->badaddr = address;
8a4ca3c1 817 cpu_loop_exit_restore(cs, retaddr);
0c3e702a 818#endif
0c3e702a
MC
819}
820
821/*
822 * Handle Traps
823 *
824 * Adapted from Spike's processor_t::take_trap.
825 *
826 */
827void riscv_cpu_do_interrupt(CPUState *cs)
828{
829#if !defined(CONFIG_USER_ONLY)
830
831 RISCVCPU *cpu = RISCV_CPU(cs);
832 CPURISCVState *env = &cpu->env;
5eb9e782 833 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env);
284d697c 834 uint64_t s;
0c3e702a 835
acbbb94e
MC
836 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
837 * so we mask off the MSB and separate into trap type and cause.
838 */
839 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
840 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
841 target_ulong deleg = async ? env->mideleg : env->medeleg;
4aeb9e26 842 bool write_tval = false;
acbbb94e 843 target_ulong tval = 0;
30675539
AF
844 target_ulong htval = 0;
845 target_ulong mtval2 = 0;
acbbb94e 846
acbbb94e
MC
847 if (!async) {
848 /* set tval to badaddr for traps with address information */
849 switch (cause) {
ab67a1d0
AF
850 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
851 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
852 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
5eb9e782
AF
853 force_hs_execp = true;
854 /* fallthrough */
acbbb94e
MC
855 case RISCV_EXCP_INST_ADDR_MIS:
856 case RISCV_EXCP_INST_ACCESS_FAULT:
857 case RISCV_EXCP_LOAD_ADDR_MIS:
858 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
859 case RISCV_EXCP_LOAD_ACCESS_FAULT:
860 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
861 case RISCV_EXCP_INST_PAGE_FAULT:
862 case RISCV_EXCP_LOAD_PAGE_FAULT:
863 case RISCV_EXCP_STORE_PAGE_FAULT:
4aeb9e26 864 write_tval = true;
acbbb94e
MC
865 tval = env->badaddr;
866 break;
867 default:
868 break;
0c3e702a 869 }
acbbb94e
MC
870 /* ecall is dispatched as one cause so translate based on mode */
871 if (cause == RISCV_EXCP_U_ECALL) {
872 assert(env->priv <= 3);
5eb9e782
AF
873
874 if (env->priv == PRV_M) {
875 cause = RISCV_EXCP_M_ECALL;
876 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
877 cause = RISCV_EXCP_VS_ECALL;
878 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
879 cause = RISCV_EXCP_S_ECALL;
880 } else if (env->priv == PRV_U) {
881 cause = RISCV_EXCP_U_ECALL;
882 }
0c3e702a
MC
883 }
884 }
885
c51a3f5d 886 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
69430111
AF
887 riscv_cpu_get_trap_name(cause, async));
888
889 qemu_log_mask(CPU_LOG_INT,
890 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
891 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
892 __func__, env->mhartid, async, cause, env->pc, tval,
893 riscv_cpu_get_trap_name(cause, async));
0c3e702a 894
acbbb94e
MC
895 if (env->priv <= PRV_S &&
896 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
0c3e702a 897 /* handle the trap in S-mode */
5eb9e782
AF
898 if (riscv_has_ext(env, RVH)) {
899 target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
1c1c060a
AF
900 bool two_stage_lookup = false;
901
902 if (env->priv == PRV_M ||
903 (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
904 (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
905 get_field(env->hstatus, HSTATUS_HU))) {
906 two_stage_lookup = true;
907 }
5eb9e782 908
1c1c060a 909 if ((riscv_cpu_virt_enabled(env) || two_stage_lookup) && write_tval) {
9034e90a
AF
910 /*
911 * If we are writing a guest virtual address to stval, set
912 * this to 1. If we are trapping to VS we will set this to 0
913 * later.
914 */
915 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1);
916 } else {
917 /* For other HS-mode traps, we set this to 0. */
918 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
919 }
920
5eb9e782
AF
921 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) &&
922 !force_hs_execp) {
84b1c04b 923 /* Trap to VS mode */
c5969a3a
RK
924 /*
925 * See if we need to adjust cause. Yes if its VS mode interrupt
926 * no if hypervisor has delegated one of hs mode's interrupt
927 */
928 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
84b1c04b 929 cause == IRQ_VS_EXT) {
c5969a3a 930 cause = cause - 1;
84b1c04b 931 }
9034e90a 932 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
5eb9e782
AF
933 } else if (riscv_cpu_virt_enabled(env)) {
934 /* Trap into HS mode, from virt */
935 riscv_cpu_swap_hypervisor_regs(env);
f2d5850f 936 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
ace54453 937 env->priv);
5eb9e782
AF
938 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
939 riscv_cpu_virt_enabled(env));
940
30675539
AF
941 htval = env->guest_phys_fault_addr;
942
5eb9e782
AF
943 riscv_cpu_set_virt_enabled(env, 0);
944 riscv_cpu_set_force_hs_excep(env, 0);
945 } else {
946 /* Trap into HS mode */
1c1c060a 947 if (!two_stage_lookup) {
f2d5850f
AF
948 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
949 riscv_cpu_virt_enabled(env));
950 }
30675539 951 htval = env->guest_phys_fault_addr;
5eb9e782
AF
952 }
953 }
954
955 s = env->mstatus;
1a9540d1 956 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
0c3e702a
MC
957 s = set_field(s, MSTATUS_SPP, env->priv);
958 s = set_field(s, MSTATUS_SIE, 0);
c7b95171 959 env->mstatus = s;
16fdb8ff 960 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
acbbb94e
MC
961 env->sepc = env->pc;
962 env->sbadaddr = tval;
30675539 963 env->htval = htval;
acbbb94e
MC
964 env->pc = (env->stvec >> 2 << 2) +
965 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
fb738839 966 riscv_cpu_set_mode(env, PRV_S);
0c3e702a 967 } else {
acbbb94e 968 /* handle the trap in M-mode */
5eb9e782
AF
969 if (riscv_has_ext(env, RVH)) {
970 if (riscv_cpu_virt_enabled(env)) {
971 riscv_cpu_swap_hypervisor_regs(env);
972 }
973 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
284d697c 974 riscv_cpu_virt_enabled(env));
9034e90a
AF
975 if (riscv_cpu_virt_enabled(env) && tval) {
976 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
977 }
5eb9e782 978
30675539
AF
979 mtval2 = env->guest_phys_fault_addr;
980
5eb9e782
AF
981 /* Trapping to M mode, virt is disabled */
982 riscv_cpu_set_virt_enabled(env, 0);
983 riscv_cpu_set_force_hs_excep(env, 0);
984 }
985
986 s = env->mstatus;
1a9540d1 987 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
0c3e702a
MC
988 s = set_field(s, MSTATUS_MPP, env->priv);
989 s = set_field(s, MSTATUS_MIE, 0);
c7b95171 990 env->mstatus = s;
acbbb94e
MC
991 env->mcause = cause | ~(((target_ulong)-1) >> async);
992 env->mepc = env->pc;
993 env->mbadaddr = tval;
30675539 994 env->mtval2 = mtval2;
acbbb94e
MC
995 env->pc = (env->mtvec >> 2 << 2) +
996 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
fb738839 997 riscv_cpu_set_mode(env, PRV_M);
0c3e702a 998 }
d9360e96
MC
999
1000 /* NOTE: it is not necessary to yield load reservations here. It is only
1001 * necessary for an SC from "another hart" to cause a load reservation
1002 * to be yielded. Refer to the memory consistency model section of the
1003 * RISC-V ISA Specification.
1004 */
1005
0c3e702a
MC
1006#endif
1007 cs->exception_index = EXCP_NONE; /* mark handled to qemu */
1008}