]> git.proxmox.com Git - mirror_qemu.git/blame - target/riscv/cpu_helper.c
target/riscv: Encode the FS and VS on a normal way for tb flags
[mirror_qemu.git] / target / riscv / cpu_helper.c
CommitLineData
0c3e702a 1/*
df354dd4 2 * RISC-V CPU helpers for qemu.
0c3e702a
MC
3 *
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
21#include "qemu/log.h"
7ec5d303 22#include "qemu/main-loop.h"
0c3e702a 23#include "cpu.h"
892320fa 24#include "pmu.h"
0c3e702a 25#include "exec/exec-all.h"
8e2aa21b 26#include "instmap.h"
dcb32f1d 27#include "tcg/tcg-op.h"
929f0a7f 28#include "trace.h"
6b5fe137 29#include "semihosting/common-semi.h"
2c9d7471 30#include "sysemu/cpu-timers.h"
892320fa 31#include "cpu_bits.h"
2c9d7471 32#include "debug.h"
0c3e702a
MC
33
34int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
35{
36#ifdef CONFIG_USER_ONLY
37 return 0;
38#else
39 return env->priv;
40#endif
41}
42
53677acf
RH
43void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
44 target_ulong *cs_base, uint32_t *pflags)
45{
b4a99d40
FC
46 CPUState *cs = env_cpu(env);
47 RISCVCPU *cpu = RISCV_CPU(cs);
48
53677acf
RH
49 uint32_t flags = 0;
50
8c796f1a 51 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
53677acf
RH
52 *cs_base = 0;
53
3f4a5a53 54 if (cpu->cfg.ext_zve32f) {
a689a82b
FC
55 /*
56 * If env->vl equals to VLMAX, we can use generic vector operation
57 * expanders (GVEC) to accerlate the vector operations.
58 * However, as LMUL could be a fractional number. The maximum
59 * vector size can be operated might be less than 8 bytes,
60 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
61 * only when maxsz >= 8 bytes.
62 */
718942ae 63 uint32_t vlmax = vext_get_vlmax(cpu, env->vtype);
a689a82b
FC
64 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
65 uint32_t maxsz = vlmax << sew;
66 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
67 (maxsz >= 8);
d96a271a 68 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
a689a82b 69 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
53677acf 70 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
c45eff30 71 FIELD_EX64(env->vtype, VTYPE, VLMUL));
53677acf 72 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
f1eed927 73 flags = FIELD_DP32(flags, TB_FLAGS, VTA,
c45eff30 74 FIELD_EX64(env->vtype, VTYPE, VTA));
355d5584 75 flags = FIELD_DP32(flags, TB_FLAGS, VMA,
c45eff30 76 FIELD_EX64(env->vtype, VTYPE, VMA));
53677acf
RH
77 } else {
78 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
79 }
80
81#ifdef CONFIG_USER_ONLY
ebd47648
LZ
82 flags = FIELD_DP32(flags, TB_FLAGS, FS, EXT_STATUS_DIRTY);
83 flags = FIELD_DP32(flags, TB_FLAGS, VS, EXT_STATUS_DIRTY);
53677acf
RH
84#else
85 flags |= cpu_mmu_index(env, 0);
86 if (riscv_cpu_fp_enabled(env)) {
ebd47648
LZ
87 flags = FIELD_DP32(flags, TB_FLAGS, FS,
88 get_field(env->mstatus, MSTATUS_FS));
53677acf 89 }
61b4b69d 90 if (riscv_cpu_vector_enabled(env)) {
ebd47648
LZ
91 flags = FIELD_DP32(flags, TB_FLAGS, VS,
92 get_field(env->mstatus, MSTATUS_VS));
61b4b69d
LZ
93 }
94
53677acf
RH
95 if (riscv_has_ext(env, RVH)) {
96 if (env->priv == PRV_M ||
38256529
WL
97 (env->priv == PRV_S && !env->virt_enabled) ||
98 (env->priv == PRV_U && !env->virt_enabled &&
c45eff30 99 get_field(env->hstatus, HSTATUS_HU))) {
53677acf
RH
100 flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
101 }
102
103 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
104 get_field(env->mstatus_hs, MSTATUS_FS));
8e1ee1fb
FC
105
106 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
107 get_field(env->mstatus_hs, MSTATUS_VS));
f1966390 108 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, env->virt_enabled);
53677acf 109 }
cdfb2905 110 if (cpu->cfg.debug && !icount_enabled()) {
577f0286 111 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
2c9d7471 112 }
53677acf
RH
113#endif
114
440544e1 115 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
4208dc7e
LZ
116 if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
117 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
118 }
119 if (env->cur_pmbase != 0) {
120 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
121 }
92371bd9 122
53677acf
RH
123 *pflags = flags;
124}
125
40bfa5f6
LZ
126void riscv_cpu_update_mask(CPURISCVState *env)
127{
128 target_ulong mask = -1, base = 0;
129 /*
130 * TODO: Current RVJ spec does not specify
131 * how the extension interacts with XLEN.
132 */
133#ifndef CONFIG_USER_ONLY
134 if (riscv_has_ext(env, RVJ)) {
135 switch (env->priv) {
136 case PRV_M:
137 if (env->mmte & M_PM_ENABLE) {
138 mask = env->mpmmask;
139 base = env->mpmbase;
140 }
141 break;
142 case PRV_S:
143 if (env->mmte & S_PM_ENABLE) {
144 mask = env->spmmask;
145 base = env->spmbase;
146 }
147 break;
148 case PRV_U:
149 if (env->mmte & U_PM_ENABLE) {
150 mask = env->upmmask;
151 base = env->upmbase;
152 }
153 break;
154 default:
155 g_assert_not_reached();
156 }
157 }
158#endif
159 if (env->xl == MXL_RV32) {
160 env->cur_pmmask = mask & UINT32_MAX;
161 env->cur_pmbase = base & UINT32_MAX;
162 } else {
163 env->cur_pmmask = mask;
164 env->cur_pmbase = base;
165 }
166}
167
0c3e702a 168#ifndef CONFIG_USER_ONLY
43dc93af
AP
169
170/*
171 * The HS-mode is allowed to configure priority only for the
172 * following VS-mode local interrupts:
173 *
174 * 0 (Reserved interrupt, reads as zero)
175 * 1 Supervisor software interrupt
176 * 4 (Reserved interrupt, reads as zero)
177 * 5 Supervisor timer interrupt
178 * 8 (Reserved interrupt, reads as zero)
179 * 13 (Reserved interrupt)
180 * 14 "
181 * 15 "
182 * 16 "
43577499
AP
183 * 17 "
184 * 18 "
185 * 19 "
186 * 20 "
187 * 21 "
43dc93af 188 * 22 "
43577499 189 * 23 "
43dc93af
AP
190 */
191
192static const int hviprio_index2irq[] = {
43577499 193 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
43dc93af
AP
194static const int hviprio_index2rdzero[] = {
195 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
196
197int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
0c3e702a 198{
43dc93af
AP
199 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
200 return -EINVAL;
201 }
3ef10a09 202
43dc93af
AP
203 if (out_irq) {
204 *out_irq = hviprio_index2irq[index];
205 }
3ef10a09 206
43dc93af
AP
207 if (out_rdzero) {
208 *out_rdzero = hviprio_index2rdzero[index];
209 }
cd032fe7 210
43dc93af
AP
211 return 0;
212}
3ef10a09 213
43dc93af
AP
214/*
215 * Default priorities of local interrupts are defined in the
216 * RISC-V Advanced Interrupt Architecture specification.
217 *
218 * ----------------------------------------------------------------
219 * Default |
220 * Priority | Major Interrupt Numbers
221 * ----------------------------------------------------------------
43577499
AP
222 * Highest | 47, 23, 46, 45, 22, 44,
223 * | 43, 21, 42, 41, 20, 40
43dc93af
AP
224 * |
225 * | 11 (0b), 3 (03), 7 (07)
226 * | 9 (09), 1 (01), 5 (05)
227 * | 12 (0c)
228 * | 10 (0a), 2 (02), 6 (06)
229 * |
43577499
AP
230 * | 39, 19, 38, 37, 18, 36,
231 * Lowest | 35, 17, 34, 33, 16, 32
43dc93af
AP
232 * ----------------------------------------------------------------
233 */
234static const uint8_t default_iprio[64] = {
c45eff30
WL
235 /* Custom interrupts 48 to 63 */
236 [63] = IPRIO_MMAXIPRIO,
237 [62] = IPRIO_MMAXIPRIO,
238 [61] = IPRIO_MMAXIPRIO,
239 [60] = IPRIO_MMAXIPRIO,
240 [59] = IPRIO_MMAXIPRIO,
241 [58] = IPRIO_MMAXIPRIO,
242 [57] = IPRIO_MMAXIPRIO,
243 [56] = IPRIO_MMAXIPRIO,
244 [55] = IPRIO_MMAXIPRIO,
245 [54] = IPRIO_MMAXIPRIO,
246 [53] = IPRIO_MMAXIPRIO,
247 [52] = IPRIO_MMAXIPRIO,
248 [51] = IPRIO_MMAXIPRIO,
249 [50] = IPRIO_MMAXIPRIO,
250 [49] = IPRIO_MMAXIPRIO,
251 [48] = IPRIO_MMAXIPRIO,
252
253 /* Custom interrupts 24 to 31 */
254 [31] = IPRIO_MMAXIPRIO,
255 [30] = IPRIO_MMAXIPRIO,
256 [29] = IPRIO_MMAXIPRIO,
257 [28] = IPRIO_MMAXIPRIO,
258 [27] = IPRIO_MMAXIPRIO,
259 [26] = IPRIO_MMAXIPRIO,
260 [25] = IPRIO_MMAXIPRIO,
261 [24] = IPRIO_MMAXIPRIO,
262
263 [47] = IPRIO_DEFAULT_UPPER,
264 [23] = IPRIO_DEFAULT_UPPER + 1,
265 [46] = IPRIO_DEFAULT_UPPER + 2,
266 [45] = IPRIO_DEFAULT_UPPER + 3,
267 [22] = IPRIO_DEFAULT_UPPER + 4,
268 [44] = IPRIO_DEFAULT_UPPER + 5,
269
270 [43] = IPRIO_DEFAULT_UPPER + 6,
271 [21] = IPRIO_DEFAULT_UPPER + 7,
272 [42] = IPRIO_DEFAULT_UPPER + 8,
273 [41] = IPRIO_DEFAULT_UPPER + 9,
274 [20] = IPRIO_DEFAULT_UPPER + 10,
275 [40] = IPRIO_DEFAULT_UPPER + 11,
276
277 [11] = IPRIO_DEFAULT_M,
278 [3] = IPRIO_DEFAULT_M + 1,
279 [7] = IPRIO_DEFAULT_M + 2,
280
281 [9] = IPRIO_DEFAULT_S,
282 [1] = IPRIO_DEFAULT_S + 1,
283 [5] = IPRIO_DEFAULT_S + 2,
284
285 [12] = IPRIO_DEFAULT_SGEXT,
286
287 [10] = IPRIO_DEFAULT_VS,
288 [2] = IPRIO_DEFAULT_VS + 1,
289 [6] = IPRIO_DEFAULT_VS + 2,
290
291 [39] = IPRIO_DEFAULT_LOWER,
292 [19] = IPRIO_DEFAULT_LOWER + 1,
293 [38] = IPRIO_DEFAULT_LOWER + 2,
294 [37] = IPRIO_DEFAULT_LOWER + 3,
295 [18] = IPRIO_DEFAULT_LOWER + 4,
296 [36] = IPRIO_DEFAULT_LOWER + 5,
297
298 [35] = IPRIO_DEFAULT_LOWER + 6,
299 [17] = IPRIO_DEFAULT_LOWER + 7,
300 [34] = IPRIO_DEFAULT_LOWER + 8,
301 [33] = IPRIO_DEFAULT_LOWER + 9,
302 [16] = IPRIO_DEFAULT_LOWER + 10,
303 [32] = IPRIO_DEFAULT_LOWER + 11,
43dc93af
AP
304};
305
306uint8_t riscv_cpu_default_priority(int irq)
307{
308 if (irq < 0 || irq > 63) {
309 return IPRIO_MMAXIPRIO;
310 }
311
312 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
313};
314
315static int riscv_cpu_pending_to_irq(CPURISCVState *env,
316 int extirq, unsigned int extirq_def_prio,
317 uint64_t pending, uint8_t *iprio)
318{
319 int irq, best_irq = RISCV_EXCP_NONE;
320 unsigned int prio, best_prio = UINT_MAX;
321
322 if (!pending) {
323 return RISCV_EXCP_NONE;
324 }
325
326 irq = ctz64(pending);
9c33e08b
WL
327 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
328 riscv_cpu_cfg(env)->ext_ssaia)) {
43dc93af
AP
329 return irq;
330 }
331
332 pending = pending >> irq;
333 while (pending) {
334 prio = iprio[irq];
335 if (!prio) {
336 if (irq == extirq) {
337 prio = extirq_def_prio;
338 } else {
339 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
340 1 : IPRIO_MMAXIPRIO;
341 }
342 }
343 if ((pending & 0x1) && (prio <= best_prio)) {
344 best_irq = irq;
345 best_prio = prio;
346 }
347 irq++;
348 pending = pending >> 1;
349 }
350
351 return best_irq;
352}
353
8f42415f 354uint64_t riscv_cpu_all_pending(CPURISCVState *env)
43dc93af
AP
355{
356 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
357 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
3ec0fe18 358 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
43dc93af 359
3ec0fe18 360 return (env->mip | vsgein | vstip) & env->mie;
43dc93af
AP
361}
362
363int riscv_cpu_mirq_pending(CPURISCVState *env)
364{
365 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
366 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
367
368 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
369 irqs, env->miprio);
370}
371
372int riscv_cpu_sirq_pending(CPURISCVState *env)
373{
374 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
375 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
376
377 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
378 irqs, env->siprio);
379}
380
381int riscv_cpu_vsirq_pending(CPURISCVState *env)
382{
383 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
384 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
385
386 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
387 irqs >> 1, env->hviprio);
388}
389
390static int riscv_cpu_local_irq_pending(CPURISCVState *env)
391{
392 int virq;
393 uint64_t irqs, pending, mie, hsie, vsie;
394
395 /* Determine interrupt enable state of all privilege modes */
38256529 396 if (env->virt_enabled) {
43dc93af
AP
397 mie = 1;
398 hsie = 1;
399 vsie = (env->priv < PRV_S) ||
400 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
0c3e702a 401 } else {
43dc93af
AP
402 mie = (env->priv < PRV_M) ||
403 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
404 hsie = (env->priv < PRV_S) ||
405 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
406 vsie = 0;
407 }
408
409 /* Determine all pending interrupts */
410 pending = riscv_cpu_all_pending(env);
411
412 /* Check M-mode interrupts */
413 irqs = pending & ~env->mideleg & -mie;
414 if (irqs) {
415 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
416 irqs, env->miprio);
417 }
418
419 /* Check HS-mode interrupts */
420 irqs = pending & env->mideleg & ~env->hideleg & -hsie;
421 if (irqs) {
422 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
423 irqs, env->siprio);
0c3e702a 424 }
43dc93af
AP
425
426 /* Check VS-mode interrupts */
427 irqs = pending & env->mideleg & env->hideleg & -vsie;
428 if (irqs) {
429 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
430 irqs >> 1, env->hviprio);
431 return (virq <= 0) ? virq : virq + 1;
432 }
433
434 /* Indicate no pending interrupt */
435 return RISCV_EXCP_NONE;
0c3e702a 436}
0c3e702a
MC
437
438bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
439{
0c3e702a
MC
440 if (interrupt_request & CPU_INTERRUPT_HARD) {
441 RISCVCPU *cpu = RISCV_CPU(cs);
442 CPURISCVState *env = &cpu->env;
efbdbc26 443 int interruptno = riscv_cpu_local_irq_pending(env);
0c3e702a
MC
444 if (interruptno >= 0) {
445 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
446 riscv_cpu_do_interrupt(cs);
447 return true;
448 }
449 }
0c3e702a
MC
450 return false;
451}
452
b345b480
AF
453/* Return true is floating point support is currently enabled */
454bool riscv_cpu_fp_enabled(CPURISCVState *env)
455{
456 if (env->mstatus & MSTATUS_FS) {
38256529 457 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
29409c1d
AF
458 return false;
459 }
b345b480
AF
460 return true;
461 }
462
463 return false;
464}
465
61b4b69d
LZ
466/* Return true is vector support is currently enabled */
467bool riscv_cpu_vector_enabled(CPURISCVState *env)
468{
469 if (env->mstatus & MSTATUS_VS) {
38256529 470 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
61b4b69d
LZ
471 return false;
472 }
473 return true;
474 }
475
476 return false;
477}
478
66e594f2
AF
479void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
480{
c163b3ba 481 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
284d697c 482 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
61b4b69d 483 MSTATUS64_UXL | MSTATUS_VS;
c163b3ba
WL
484
485 if (riscv_has_ext(env, RVF)) {
486 mstatus_mask |= MSTATUS_FS;
487 }
38256529 488 bool current_virt = env->virt_enabled;
66e594f2
AF
489
490 g_assert(riscv_has_ext(env, RVH));
491
66e594f2
AF
492 if (current_virt) {
493 /* Current V=1 and we are about to change to V=0 */
494 env->vsstatus = env->mstatus & mstatus_mask;
495 env->mstatus &= ~mstatus_mask;
496 env->mstatus |= env->mstatus_hs;
497
498 env->vstvec = env->stvec;
499 env->stvec = env->stvec_hs;
500
501 env->vsscratch = env->sscratch;
502 env->sscratch = env->sscratch_hs;
503
504 env->vsepc = env->sepc;
505 env->sepc = env->sepc_hs;
506
507 env->vscause = env->scause;
508 env->scause = env->scause_hs;
509
ac12b601
AP
510 env->vstval = env->stval;
511 env->stval = env->stval_hs;
66e594f2
AF
512
513 env->vsatp = env->satp;
514 env->satp = env->satp_hs;
515 } else {
516 /* Current V=0 and we are about to change to V=1 */
517 env->mstatus_hs = env->mstatus & mstatus_mask;
518 env->mstatus &= ~mstatus_mask;
519 env->mstatus |= env->vsstatus;
520
521 env->stvec_hs = env->stvec;
522 env->stvec = env->vstvec;
523
524 env->sscratch_hs = env->sscratch;
525 env->sscratch = env->vsscratch;
526
527 env->sepc_hs = env->sepc;
528 env->sepc = env->vsepc;
529
530 env->scause_hs = env->scause;
531 env->scause = env->vscause;
532
ac12b601
AP
533 env->stval_hs = env->stval;
534 env->stval = env->vstval;
66e594f2
AF
535
536 env->satp_hs = env->satp;
537 env->satp = env->vsatp;
538 }
539}
540
cd032fe7
AP
541target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
542{
543 if (!riscv_has_ext(env, RVH)) {
544 return 0;
545 }
546
547 return env->geilen;
548}
549
550void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
551{
552 if (!riscv_has_ext(env, RVH)) {
553 return;
554 }
555
556 if (geilen > (TARGET_LONG_BITS - 1)) {
557 return;
558 }
559
560 env->geilen = geilen;
561}
562
c43732f5 563/* This function can only be called to set virt when RVH is enabled */
ef6bb7b6
AF
564void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
565{
eccc5a12 566 /* Flush the TLB on all virt mode changes. */
b3c5077b 567 if (env->virt_enabled != enable) {
eccc5a12
AF
568 tlb_flush(env_cpu(env));
569 }
570
b3c5077b 571 env->virt_enabled = enable;
02d9565b
AP
572
573 if (enable) {
574 /*
575 * The guest external interrupts from an interrupt controller are
576 * delivered only when the Guest/VM is running (i.e. V=1). This means
577 * any guest external interrupt which is triggered while the Guest/VM
578 * is not running (i.e. V=0) will be missed on QEMU resulting in guest
579 * with sluggish response to serial console input and other I/O events.
580 *
581 * To solve this, we check and inject interrupt after setting V=1.
582 */
bbb9fc25 583 riscv_cpu_update_mip(env, 0, 0);
02d9565b 584 }
ef6bb7b6
AF
585}
586
1c1c060a 587bool riscv_cpu_two_stage_lookup(int mmu_idx)
5a894dd7 588{
1c1c060a 589 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
5a894dd7
AF
590}
591
d028ac75 592int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
e3e7039c
MC
593{
594 CPURISCVState *env = &cpu->env;
595 if (env->miclaim & interrupts) {
596 return -1;
597 } else {
598 env->miclaim |= interrupts;
599 return 0;
600 }
601}
602
bbb9fc25
WL
603uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask,
604 uint64_t value)
df354dd4 605{
bbb9fc25 606 CPUState *cs = env_cpu(env);
3ec0fe18 607 uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
7ec5d303 608
38256529 609 if (env->virt_enabled) {
cd032fe7
AP
610 gein = get_field(env->hstatus, HSTATUS_VGEIN);
611 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
612 }
613
3ec0fe18
AP
614 vstip = env->vstime_irq ? MIP_VSTIP : 0;
615
b3eb5b86 616 QEMU_IOTHREAD_LOCK_GUARD();
df354dd4 617
7ec5d303 618 env->mip = (env->mip & ~mask) | (value & mask);
df354dd4 619
3ec0fe18 620 if (env->mip | vsgein | vstip) {
7ec5d303
AF
621 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
622 } else {
623 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
624 }
0a01f2ee 625
df354dd4
MC
626 return old;
627}
628
e2f01f3c
FC
629void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
630 void *arg)
c6957248
AP
631{
632 env->rdtime_fn = fn;
a47ef6e9 633 env->rdtime_fn_arg = arg;
c6957248
AP
634}
635
69077dd6
AP
636void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
637 int (*rmw_fn)(void *arg,
638 target_ulong reg,
639 target_ulong *val,
640 target_ulong new_val,
641 target_ulong write_mask),
642 void *rmw_fn_arg)
643{
644 if (priv <= PRV_M) {
645 env->aia_ireg_rmw_fn[priv] = rmw_fn;
646 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
647 }
648}
649
fb738839 650void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
df354dd4 651{
0c98ccef
WL
652 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
653
5a4ae64c
LZ
654 if (icount_enabled() && newpriv != env->priv) {
655 riscv_itrigger_update_priv(env);
656 }
df354dd4
MC
657 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
658 env->priv = newpriv;
440544e1 659 env->xl = cpu_recompute_xl(env);
40bfa5f6 660 riscv_cpu_update_mask(env);
c13b169f
JS
661
662 /*
663 * Clear the load reservation - otherwise a reservation placed in one
664 * context/process can be used by another, resulting in an SC succeeding
665 * incorrectly. Version 2.2 of the ISA specification explicitly requires
666 * this behaviour, while later revisions say that the kernel "should" use
667 * an SC instruction to force the yielding of a load reservation on a
668 * preemptive context switch. As a result, do both.
669 */
670 env->load_res = -1;
df354dd4
MC
671}
672
b297129a
JS
673/*
674 * get_physical_address_pmp - check PMP permission for this physical address
675 *
676 * Match the PMP region and check permission for this physical address and it's
677 * TLB page. Returns 0 if the permission checking was successful
678 *
679 * @env: CPURISCVState
680 * @prot: The returned protection attributes
681 * @tlb_size: TLB page size containing addr. It could be modified after PMP
682 * permission checking. NULL if not set TLB page for addr.
683 * @addr: The physical address to be checked permission
684 * @access_type: The type of MMU access
685 * @mode: Indicates current privilege level.
686 */
687static int get_physical_address_pmp(CPURISCVState *env, int *prot,
688 target_ulong *tlb_size, hwaddr addr,
689 int size, MMUAccessType access_type,
690 int mode)
691{
692 pmp_priv_t pmp_priv;
824cac68 693 int pmp_index = -1;
b297129a 694
3fe40ef5 695 if (!riscv_cpu_cfg(env)->pmp) {
b297129a
JS
696 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
697 return TRANSLATE_SUCCESS;
698 }
699
824cac68
LZ
700 pmp_index = pmp_hart_has_privs(env, addr, size, 1 << access_type,
701 &pmp_priv, mode);
702 if (pmp_index < 0) {
b297129a
JS
703 *prot = 0;
704 return TRANSLATE_PMP_FAIL;
705 }
706
707 *prot = pmp_priv_to_page_prot(pmp_priv);
824cac68
LZ
708 if ((tlb_size != NULL) && pmp_index != MAX_RISCV_PMPS) {
709 target_ulong tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
710 target_ulong tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
711
712 *tlb_size = pmp_get_tlb_size(env, pmp_index, tlb_sa, tlb_ea);
b297129a
JS
713 }
714
715 return TRANSLATE_SUCCESS;
716}
717
3b57254d
WL
718/*
719 * get_physical_address - get the physical address for this virtual address
0c3e702a
MC
720 *
721 * Do a page table walk to obtain the physical address corresponding to a
722 * virtual address. Returns 0 if the translation was successful
723 *
724 * Adapted from Spike's mmu_t::translate and mmu_t::walk
725 *
1448689c
AF
726 * @env: CPURISCVState
727 * @physical: This will be set to the calculated physical address
728 * @prot: The returned protection attributes
77dff650 729 * @addr: The virtual address or guest physical address to be translated
33a9a57d
YJ
730 * @fault_pte_addr: If not NULL, this will be set to fault pte address
731 * when a error occurs on pte address translation.
732 * This will already be shifted to match htval.
1448689c
AF
733 * @access_type: The type of MMU access
734 * @mmu_idx: Indicates current privilege level
735 * @first_stage: Are we in first stage translation?
736 * Second stage is used for hypervisor guest translation
36a18664 737 * @two_stage: Are we going to perform two stage translation
11c27c6d 738 * @is_debug: Is this access from a debugger or the monitor?
0c3e702a
MC
739 */
740static int get_physical_address(CPURISCVState *env, hwaddr *physical,
77dff650 741 int *prot, vaddr addr,
33a9a57d 742 target_ulong *fault_pte_addr,
1448689c 743 int access_type, int mmu_idx,
11c27c6d
JF
744 bool first_stage, bool two_stage,
745 bool is_debug)
0c3e702a 746{
3b57254d
WL
747 /*
748 * NOTE: the env->pc value visible here will not be
0c3e702a 749 * correct, but the value visible to the exception handler
3b57254d
WL
750 * (riscv_cpu_do_interrupt) is correct
751 */
aacb578f
PD
752 MemTxResult res;
753 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
c445593d 754 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
36a18664 755 bool use_background = false;
05e6ca5e 756 hwaddr ppn;
2bacb224
WL
757 int napot_bits = 0;
758 target_ulong napot_mask;
0c3e702a 759
36a18664
AF
760 /*
761 * Check if we should use the background registers for the two
762 * stage translation. We don't need to check if we actually need
763 * two stage translation as that happened before this function
764 * was called. Background registers will be used if the guest has
765 * forced a two stage translation to be on (in HS or M mode).
766 */
38256529 767 if (!env->virt_enabled && two_stage) {
29b3361b
AF
768 use_background = true;
769 }
770
3b57254d
WL
771 /*
772 * MPRV does not affect the virtual-machine load/store
773 * instructions, HLV, HLVX, and HSV.
774 */
90ec1cff
GK
775 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
776 mode = get_field(env->hstatus, HSTATUS_SPVP);
777 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
0c3e702a
MC
778 if (get_field(env->mstatus, MSTATUS_MPRV)) {
779 mode = get_field(env->mstatus, MSTATUS_MPP);
780 }
781 }
782
36a18664 783 if (first_stage == false) {
3b57254d
WL
784 /*
785 * We are in stage 2 translation, this is similar to stage 1.
786 * Stage 2 is always taken as U-mode
787 */
36a18664
AF
788 mode = PRV_U;
789 }
790
dcf654a3 791 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
0c3e702a
MC
792 *physical = addr;
793 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
794 return TRANSLATE_SUCCESS;
795 }
796
797 *prot = 0;
798
ddf78132 799 hwaddr base;
36a18664
AF
800 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
801
802 if (first_stage == true) {
803 mxr = get_field(env->mstatus, MSTATUS_MXR);
804 } else {
805 mxr = get_field(env->vsstatus, MSTATUS_MXR);
806 }
0c3e702a 807
1a9540d1
AF
808 if (first_stage == true) {
809 if (use_background) {
db23e5d9 810 if (riscv_cpu_mxl(env) == MXL_RV32) {
419ddf00
AF
811 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
812 vm = get_field(env->vsatp, SATP32_MODE);
813 } else {
814 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
815 vm = get_field(env->vsatp, SATP64_MODE);
816 }
36a18664 817 } else {
db23e5d9 818 if (riscv_cpu_mxl(env) == MXL_RV32) {
419ddf00
AF
819 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
820 vm = get_field(env->satp, SATP32_MODE);
821 } else {
822 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
823 vm = get_field(env->satp, SATP64_MODE);
824 }
0c3e702a 825 }
36a18664 826 widened = 0;
1a9540d1 827 } else {
db23e5d9 828 if (riscv_cpu_mxl(env) == MXL_RV32) {
994b6bb2
AF
829 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
830 vm = get_field(env->hgatp, SATP32_MODE);
831 } else {
832 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
833 vm = get_field(env->hgatp, SATP64_MODE);
834 }
1a9540d1
AF
835 widened = 2;
836 }
c63ca4ff 837 /* status.SUM will be ignored if execute on background */
11c27c6d 838 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
1a9540d1
AF
839 switch (vm) {
840 case VM_1_10_SV32:
841 levels = 2; ptidxbits = 10; ptesize = 4; break;
842 case VM_1_10_SV39:
843 levels = 3; ptidxbits = 9; ptesize = 8; break;
844 case VM_1_10_SV48:
845 levels = 4; ptidxbits = 9; ptesize = 8; break;
846 case VM_1_10_SV57:
847 levels = 5; ptidxbits = 9; ptesize = 8; break;
848 case VM_1_10_MBARE:
849 *physical = addr;
850 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
851 return TRANSLATE_SUCCESS;
852 default:
853 g_assert_not_reached();
0c3e702a
MC
854 }
855
3109cd98 856 CPUState *cs = env_cpu(env);
36a18664
AF
857 int va_bits = PGSHIFT + levels * ptidxbits + widened;
858 target_ulong mask, masked_msbs;
859
860 if (TARGET_LONG_BITS > (va_bits - 1)) {
861 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
862 } else {
863 mask = 0;
864 }
865 masked_msbs = (addr >> (va_bits - 1)) & mask;
866
0c3e702a
MC
867 if (masked_msbs != 0 && masked_msbs != mask) {
868 return TRANSLATE_FAIL;
869 }
870
871 int ptshift = (levels - 1) * ptidxbits;
872 int i;
873
874#if !TCG_OVERSIZED_GUEST
875restart:
876#endif
877 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
36a18664
AF
878 target_ulong idx;
879 if (i == 0) {
880 idx = (addr >> (PGSHIFT + ptshift)) &
881 ((1 << (ptidxbits + widened)) - 1);
882 } else {
883 idx = (addr >> (PGSHIFT + ptshift)) &
0c3e702a 884 ((1 << ptidxbits) - 1);
36a18664 885 }
0c3e702a
MC
886
887 /* check that physical address of PTE is legal */
36a18664
AF
888 hwaddr pte_addr;
889
890 if (two_stage && first_stage) {
38472890 891 int vbase_prot;
36a18664
AF
892 hwaddr vbase;
893
894 /* Do the second stage translation on the base PTE address. */
88914473 895 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
33a9a57d 896 base, NULL, MMU_DATA_LOAD,
11c27c6d
JF
897 mmu_idx, false, true,
898 is_debug);
88914473
AF
899
900 if (vbase_ret != TRANSLATE_SUCCESS) {
33a9a57d
YJ
901 if (fault_pte_addr) {
902 *fault_pte_addr = (base + idx * ptesize) >> 2;
903 }
904 return TRANSLATE_G_STAGE_FAIL;
88914473 905 }
36a18664
AF
906
907 pte_addr = vbase + idx * ptesize;
908 } else {
909 pte_addr = base + idx * ptesize;
910 }
1f447aec 911
b297129a
JS
912 int pmp_prot;
913 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
914 sizeof(target_ulong),
915 MMU_DATA_LOAD, PRV_S);
916 if (pmp_ret != TRANSLATE_SUCCESS) {
1f447aec
HA
917 return TRANSLATE_PMP_FAIL;
918 }
aacb578f 919
f08c7ff3 920 target_ulong pte;
db23e5d9 921 if (riscv_cpu_mxl(env) == MXL_RV32) {
f08c7ff3
AF
922 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
923 } else {
924 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
925 }
926
aacb578f
PD
927 if (res != MEMTX_OK) {
928 return TRANSLATE_FAIL;
929 }
930
7a6613da 931 bool pbmte = env->menvcfg & MENVCFG_PBMTE;
0af3f115 932 bool hade = env->menvcfg & MENVCFG_HADE;
7a6613da 933
38256529 934 if (first_stage && two_stage && env->virt_enabled) {
7a6613da 935 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
0af3f115 936 hade = hade && (env->henvcfg & HENVCFG_HADE);
7a6613da
WL
937 }
938
05e6ca5e
GR
939 if (riscv_cpu_sxl(env) == MXL_RV32) {
940 ppn = pte >> PTE_PPN_SHIFT;
9c33e08b 941 } else if (pbmte || riscv_cpu_cfg(env)->ext_svnapot) {
05e6ca5e
GR
942 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
943 } else {
944 ppn = pte >> PTE_PPN_SHIFT;
945 if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
946 return TRANSLATE_FAIL;
947 }
948 }
0c3e702a 949
c3b03e58
MC
950 if (!(pte & PTE_V)) {
951 /* Invalid PTE */
952 return TRANSLATE_FAIL;
7a6613da 953 } else if (!pbmte && (pte & PTE_PBMT)) {
bbce8ba8 954 return TRANSLATE_FAIL;
c3b03e58
MC
955 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
956 /* Inner PTE, continue walking */
bbce8ba8 957 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
b6ecc63c
WL
958 return TRANSLATE_FAIL;
959 }
0c3e702a 960 base = ppn << PGSHIFT;
c3b03e58
MC
961 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
962 /* Reserved leaf PTE flags: PTE_W */
963 return TRANSLATE_FAIL;
964 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
965 /* Reserved leaf PTE flags: PTE_W + PTE_X */
966 return TRANSLATE_FAIL;
967 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
968 (!sum || access_type == MMU_INST_FETCH))) {
969 /* User PTE flags when not U mode and mstatus.SUM is not set,
970 or the access type is an instruction fetch */
971 return TRANSLATE_FAIL;
972 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
973 /* Supervisor PTE flags when not S mode */
974 return TRANSLATE_FAIL;
975 } else if (ppn & ((1ULL << ptshift) - 1)) {
976 /* Misaligned PPN */
977 return TRANSLATE_FAIL;
978 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
979 ((pte & PTE_X) && mxr))) {
980 /* Read access check failed */
981 return TRANSLATE_FAIL;
982 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
983 /* Write access check failed */
984 return TRANSLATE_FAIL;
985 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
986 /* Fetch access check failed */
987 return TRANSLATE_FAIL;
0c3e702a
MC
988 } else {
989 /* if necessary, set accessed and dirty bits. */
990 target_ulong updated_pte = pte | PTE_A |
991 (access_type == MMU_DATA_STORE ? PTE_D : 0);
992
993 /* Page table updates need to be atomic with MTTCG enabled */
994 if (updated_pte != pte) {
0af3f115
WL
995 if (!hade) {
996 return TRANSLATE_FAIL;
997 }
998
c3b03e58
MC
999 /*
1000 * - if accessed or dirty bits need updating, and the PTE is
1001 * in RAM, then we do so atomically with a compare and swap.
1002 * - if the PTE is in IO space or ROM, then it can't be updated
1003 * and we return TRANSLATE_FAIL.
1004 * - if the PTE changed by the time we went to update it, then
1005 * it is no longer valid and we must re-walk the page table.
1006 */
0c3e702a
MC
1007 MemoryRegion *mr;
1008 hwaddr l = sizeof(target_ulong), addr1;
c45eff30
WL
1009 mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1010 false, MEMTXATTRS_UNSPECIFIED);
c3b03e58 1011 if (memory_region_is_ram(mr)) {
0c3e702a
MC
1012 target_ulong *pte_pa =
1013 qemu_map_ram_ptr(mr->ram_block, addr1);
1014#if TCG_OVERSIZED_GUEST
3b57254d
WL
1015 /*
1016 * MTTCG is not enabled on oversized TCG guests so
1017 * page table updates do not need to be atomic
1018 */
0c3e702a
MC
1019 *pte_pa = pte = updated_pte;
1020#else
1021 target_ulong old_pte =
d73415a3 1022 qatomic_cmpxchg(pte_pa, pte, updated_pte);
0c3e702a
MC
1023 if (old_pte != pte) {
1024 goto restart;
1025 } else {
1026 pte = updated_pte;
1027 }
1028#endif
1029 } else {
3b57254d
WL
1030 /*
1031 * misconfigured PTE in ROM (AD bits are not preset) or
1032 * PTE is in IO space and can't be updated atomically
1033 */
0c3e702a
MC
1034 return TRANSLATE_FAIL;
1035 }
1036 }
1037
3b57254d
WL
1038 /*
1039 * for superpage mappings, make a fake leaf PTE for the TLB's
1040 * benefit.
1041 */
0c3e702a 1042 target_ulong vpn = addr >> PGSHIFT;
2bacb224 1043
9c33e08b 1044 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
2bacb224
WL
1045 napot_bits = ctzl(ppn) + 1;
1046 if ((i != (levels - 1)) || (napot_bits != 4)) {
1047 return TRANSLATE_FAIL;
1048 }
1049 }
1050
1051 napot_mask = (1 << napot_bits) - 1;
1052 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1053 (vpn & (((target_ulong)1 << ptshift) - 1))
1054 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
0c3e702a 1055
c3b03e58
MC
1056 /* set permissions on the TLB entry */
1057 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
0c3e702a
MC
1058 *prot |= PAGE_READ;
1059 }
628f0ec1 1060 if (pte & PTE_X) {
0c3e702a
MC
1061 *prot |= PAGE_EXEC;
1062 }
3b57254d
WL
1063 /*
1064 * add write permission on stores or if the page is already dirty,
1065 * so that we TLB miss on later writes to update the dirty bit
1066 */
0c3e702a 1067 if ((pte & PTE_W) &&
c45eff30 1068 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
0c3e702a
MC
1069 *prot |= PAGE_WRITE;
1070 }
1071 return TRANSLATE_SUCCESS;
1072 }
1073 }
1074 return TRANSLATE_FAIL;
1075}
1076
1077static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1448689c 1078 MMUAccessType access_type, bool pmp_violation,
8e2aa21b
AP
1079 bool first_stage, bool two_stage,
1080 bool two_stage_indirect)
0c3e702a 1081{
3109cd98 1082 CPUState *cs = env_cpu(env);
994b6bb2 1083 int page_fault_exceptions, vm;
419ddf00
AF
1084 uint64_t stap_mode;
1085
db23e5d9 1086 if (riscv_cpu_mxl(env) == MXL_RV32) {
419ddf00
AF
1087 stap_mode = SATP32_MODE;
1088 } else {
1089 stap_mode = SATP64_MODE;
1090 }
994b6bb2 1091
1448689c 1092 if (first_stage) {
419ddf00 1093 vm = get_field(env->satp, stap_mode);
1448689c 1094 } else {
419ddf00 1095 vm = get_field(env->hgatp, stap_mode);
1448689c 1096 }
419ddf00 1097
994b6bb2
AF
1098 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1099
0c3e702a
MC
1100 switch (access_type) {
1101 case MMU_INST_FETCH:
38256529 1102 if (env->virt_enabled && !first_stage) {
b2ef6ab9
AF
1103 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1104 } else {
1105 cs->exception_index = page_fault_exceptions ?
1106 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1107 }
0c3e702a
MC
1108 break;
1109 case MMU_DATA_LOAD:
1c1c060a 1110 if (two_stage && !first_stage) {
b2ef6ab9
AF
1111 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1112 } else {
1113 cs->exception_index = page_fault_exceptions ?
1114 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1115 }
0c3e702a
MC
1116 break;
1117 case MMU_DATA_STORE:
1c1c060a 1118 if (two_stage && !first_stage) {
b2ef6ab9
AF
1119 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1120 } else {
1121 cs->exception_index = page_fault_exceptions ?
246f8796
WL
1122 RISCV_EXCP_STORE_PAGE_FAULT :
1123 RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
b2ef6ab9 1124 }
0c3e702a
MC
1125 break;
1126 default:
1127 g_assert_not_reached();
1128 }
1129 env->badaddr = address;
ec352d0c 1130 env->two_stage_lookup = two_stage;
8e2aa21b 1131 env->two_stage_indirect_lookup = two_stage_indirect;
0c3e702a
MC
1132}
1133
1134hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1135{
1136 RISCVCPU *cpu = RISCV_CPU(cs);
36a18664 1137 CPURISCVState *env = &cpu->env;
0c3e702a
MC
1138 hwaddr phys_addr;
1139 int prot;
1140 int mmu_idx = cpu_mmu_index(&cpu->env, false);
1141
33a9a57d 1142 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
38256529 1143 true, env->virt_enabled, true)) {
0c3e702a
MC
1144 return -1;
1145 }
36a18664 1146
38256529 1147 if (env->virt_enabled) {
33a9a57d 1148 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
11c27c6d 1149 0, mmu_idx, false, true, true)) {
36a18664
AF
1150 return -1;
1151 }
1152 }
1153
9ef82119 1154 return phys_addr & TARGET_PAGE_MASK;
0c3e702a
MC
1155}
1156
37207e12
PD
1157void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1158 vaddr addr, unsigned size,
1159 MMUAccessType access_type,
1160 int mmu_idx, MemTxAttrs attrs,
1161 MemTxResult response, uintptr_t retaddr)
cbf58276
MC
1162{
1163 RISCVCPU *cpu = RISCV_CPU(cs);
1164 CPURISCVState *env = &cpu->env;
1165
37207e12 1166 if (access_type == MMU_DATA_STORE) {
cbf58276 1167 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
f9e580c1 1168 } else if (access_type == MMU_DATA_LOAD) {
cbf58276 1169 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
f9e580c1
EB
1170 } else {
1171 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
cbf58276
MC
1172 }
1173
1174 env->badaddr = addr;
38256529 1175 env->two_stage_lookup = env->virt_enabled ||
ec352d0c 1176 riscv_cpu_two_stage_lookup(mmu_idx);
8e2aa21b 1177 env->two_stage_indirect_lookup = false;
ac684717 1178 cpu_loop_exit_restore(cs, retaddr);
cbf58276
MC
1179}
1180
0c3e702a
MC
1181void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1182 MMUAccessType access_type, int mmu_idx,
1183 uintptr_t retaddr)
1184{
1185 RISCVCPU *cpu = RISCV_CPU(cs);
1186 CPURISCVState *env = &cpu->env;
1187 switch (access_type) {
1188 case MMU_INST_FETCH:
1189 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1190 break;
1191 case MMU_DATA_LOAD:
1192 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1193 break;
1194 case MMU_DATA_STORE:
1195 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1196 break;
1197 default:
1198 g_assert_not_reached();
1199 }
1200 env->badaddr = addr;
38256529 1201 env->two_stage_lookup = env->virt_enabled ||
ec352d0c 1202 riscv_cpu_two_stage_lookup(mmu_idx);
8e2aa21b 1203 env->two_stage_indirect_lookup = false;
ac684717 1204 cpu_loop_exit_restore(cs, retaddr);
0c3e702a 1205}
0c3e702a 1206
892320fa
AP
1207
1208static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1209{
1210 enum riscv_pmu_event_idx pmu_event_type;
1211
1212 switch (access_type) {
1213 case MMU_INST_FETCH:
1214 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1215 break;
1216 case MMU_DATA_LOAD:
1217 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1218 break;
1219 case MMU_DATA_STORE:
1220 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1221 break;
1222 default:
1223 return;
1224 }
1225
1226 riscv_pmu_incr_ctr(cpu, pmu_event_type);
1227}
1228
8a4ca3c1
RH
1229bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1230 MMUAccessType access_type, int mmu_idx,
1231 bool probe, uintptr_t retaddr)
0c3e702a
MC
1232{
1233 RISCVCPU *cpu = RISCV_CPU(cs);
1234 CPURISCVState *env = &cpu->env;
36a18664 1235 vaddr im_address;
0c3e702a 1236 hwaddr pa = 0;
b297129a 1237 int prot, prot2, prot_pmp;
635b0b0e 1238 bool pmp_violation = false;
36a18664 1239 bool first_stage_error = true;
1c1c060a 1240 bool two_stage_lookup = false;
8e2aa21b 1241 bool two_stage_indirect_error = false;
0c3e702a 1242 int ret = TRANSLATE_FAIL;
cc0fdb29 1243 int mode = mmu_idx;
b297129a
JS
1244 /* default TLB page size */
1245 target_ulong tlb_size = TARGET_PAGE_SIZE;
0c3e702a 1246
36a18664
AF
1247 env->guest_phys_fault_addr = 0;
1248
8a4ca3c1
RH
1249 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1250 __func__, address, access_type, mmu_idx);
1251
3b57254d
WL
1252 /*
1253 * MPRV does not affect the virtual-machine load/store
1254 * instructions, HLV, HLVX, and HSV.
1255 */
90ec1cff
GK
1256 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1257 mode = get_field(env->hstatus, HSTATUS_SPVP);
1258 } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1259 get_field(env->mstatus, MSTATUS_MPRV)) {
1260 mode = get_field(env->mstatus, MSTATUS_MPP);
1261 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1262 two_stage_lookup = true;
cc0fdb29
HA
1263 }
1264 }
1265
eacd03cb 1266 pmu_tlb_fill_incr_ctr(cpu, access_type);
38256529 1267 if (env->virt_enabled ||
1c1c060a
AF
1268 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1269 access_type != MMU_INST_FETCH)) {
36a18664 1270 /* Two stage lookup */
33a9a57d
YJ
1271 ret = get_physical_address(env, &pa, &prot, address,
1272 &env->guest_phys_fault_addr, access_type,
11c27c6d 1273 mmu_idx, true, true, false);
36a18664 1274
33a9a57d
YJ
1275 /*
1276 * A G-stage exception may be triggered during two state lookup.
1277 * And the env->guest_phys_fault_addr has already been set in
1278 * get_physical_address().
1279 */
1280 if (ret == TRANSLATE_G_STAGE_FAIL) {
1281 first_stage_error = false;
8e2aa21b 1282 two_stage_indirect_error = true;
33a9a57d
YJ
1283 access_type = MMU_DATA_LOAD;
1284 }
1285
36a18664
AF
1286 qemu_log_mask(CPU_LOG_MMU,
1287 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
883f2c59 1288 HWADDR_FMT_plx " prot %d\n",
36a18664
AF
1289 __func__, address, ret, pa, prot);
1290
33a9a57d 1291 if (ret == TRANSLATE_SUCCESS) {
36a18664
AF
1292 /* Second stage lookup */
1293 im_address = pa;
1294
33a9a57d 1295 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
11c27c6d
JF
1296 access_type, mmu_idx, false, true,
1297 false);
36a18664
AF
1298
1299 qemu_log_mask(CPU_LOG_MMU,
c45eff30
WL
1300 "%s 2nd-stage address=%" VADDR_PRIx
1301 " ret %d physical "
1302 HWADDR_FMT_plx " prot %d\n",
1303 __func__, im_address, ret, pa, prot2);
8f67cd6d
AF
1304
1305 prot &= prot2;
36a18664 1306
b297129a
JS
1307 if (ret == TRANSLATE_SUCCESS) {
1308 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1309 size, access_type, mode);
663e1193
JS
1310
1311 qemu_log_mask(CPU_LOG_MMU,
883f2c59 1312 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
663e1193
JS
1313 " %d tlb_size " TARGET_FMT_lu "\n",
1314 __func__, pa, ret, prot_pmp, tlb_size);
1315
b297129a 1316 prot &= prot_pmp;
36a18664
AF
1317 }
1318
1319 if (ret != TRANSLATE_SUCCESS) {
1320 /*
1321 * Guest physical address translation failed, this is a HS
1322 * level exception
1323 */
1324 first_stage_error = false;
1325 env->guest_phys_fault_addr = (im_address |
1326 (address &
1327 (TARGET_PAGE_SIZE - 1))) >> 2;
1328 }
1329 }
1330 } else {
1331 /* Single stage lookup */
33a9a57d 1332 ret = get_physical_address(env, &pa, &prot, address, NULL,
11c27c6d 1333 access_type, mmu_idx, true, false, false);
36a18664
AF
1334
1335 qemu_log_mask(CPU_LOG_MMU,
1336 "%s address=%" VADDR_PRIx " ret %d physical "
883f2c59 1337 HWADDR_FMT_plx " prot %d\n",
36a18664 1338 __func__, address, ret, pa, prot);
8a4ca3c1 1339
b297129a
JS
1340 if (ret == TRANSLATE_SUCCESS) {
1341 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1342 size, access_type, mode);
663e1193
JS
1343
1344 qemu_log_mask(CPU_LOG_MMU,
883f2c59 1345 "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
663e1193
JS
1346 " %d tlb_size " TARGET_FMT_lu "\n",
1347 __func__, pa, ret, prot_pmp, tlb_size);
1348
b297129a
JS
1349 prot &= prot_pmp;
1350 }
1f447aec 1351 }
b297129a 1352
1f447aec 1353 if (ret == TRANSLATE_PMP_FAIL) {
635b0b0e 1354 pmp_violation = true;
0c3e702a 1355 }
36a18664 1356
0c3e702a 1357 if (ret == TRANSLATE_SUCCESS) {
b297129a
JS
1358 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1359 prot, mmu_idx, tlb_size);
8a4ca3c1
RH
1360 return true;
1361 } else if (probe) {
1362 return false;
1363 } else {
1c1c060a
AF
1364 raise_mmu_exception(env, address, access_type, pmp_violation,
1365 first_stage_error,
38256529 1366 env->virt_enabled ||
8e2aa21b
AP
1367 riscv_cpu_two_stage_lookup(mmu_idx),
1368 two_stage_indirect_error);
ac684717 1369 cpu_loop_exit_restore(cs, retaddr);
0c3e702a 1370 }
36a18664
AF
1371
1372 return true;
0c3e702a 1373}
8e2aa21b
AP
1374
1375static target_ulong riscv_transformed_insn(CPURISCVState *env,
1376 target_ulong insn,
1377 target_ulong taddr)
1378{
1379 target_ulong xinsn = 0;
1380 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1381
1382 /*
1383 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1384 * be uncompressed. The Quadrant 1 of RVC instruction space need
1385 * not be transformed because these instructions won't generate
1386 * any load/store trap.
1387 */
1388
1389 if ((insn & 0x3) != 0x3) {
1390 /* Transform 16bit instruction into 32bit instruction */
1391 switch (GET_C_OP(insn)) {
1392 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1393 switch (GET_C_FUNC(insn)) {
1394 case OPC_RISC_C_FUNC_FLD_LQ:
1395 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1396 xinsn = OPC_RISC_FLD;
1397 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1398 access_rs1 = GET_C_RS1S(insn);
1399 access_imm = GET_C_LD_IMM(insn);
1400 access_size = 8;
1401 }
1402 break;
1403 case OPC_RISC_C_FUNC_LW: /* C.LW */
1404 xinsn = OPC_RISC_LW;
1405 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1406 access_rs1 = GET_C_RS1S(insn);
1407 access_imm = GET_C_LW_IMM(insn);
1408 access_size = 4;
1409 break;
1410 case OPC_RISC_C_FUNC_FLW_LD:
1411 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1412 xinsn = OPC_RISC_FLW;
1413 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1414 access_rs1 = GET_C_RS1S(insn);
1415 access_imm = GET_C_LW_IMM(insn);
1416 access_size = 4;
1417 } else { /* C.LD (RV64/RV128) */
1418 xinsn = OPC_RISC_LD;
1419 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1420 access_rs1 = GET_C_RS1S(insn);
1421 access_imm = GET_C_LD_IMM(insn);
1422 access_size = 8;
1423 }
1424 break;
1425 case OPC_RISC_C_FUNC_FSD_SQ:
1426 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1427 xinsn = OPC_RISC_FSD;
1428 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1429 access_rs1 = GET_C_RS1S(insn);
1430 access_imm = GET_C_SD_IMM(insn);
1431 access_size = 8;
1432 }
1433 break;
1434 case OPC_RISC_C_FUNC_SW: /* C.SW */
1435 xinsn = OPC_RISC_SW;
1436 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1437 access_rs1 = GET_C_RS1S(insn);
1438 access_imm = GET_C_SW_IMM(insn);
1439 access_size = 4;
1440 break;
1441 case OPC_RISC_C_FUNC_FSW_SD:
1442 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1443 xinsn = OPC_RISC_FSW;
1444 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1445 access_rs1 = GET_C_RS1S(insn);
1446 access_imm = GET_C_SW_IMM(insn);
1447 access_size = 4;
1448 } else { /* C.SD (RV64/RV128) */
1449 xinsn = OPC_RISC_SD;
1450 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1451 access_rs1 = GET_C_RS1S(insn);
1452 access_imm = GET_C_SD_IMM(insn);
1453 access_size = 8;
1454 }
1455 break;
1456 default:
1457 break;
1458 }
1459 break;
1460 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1461 switch (GET_C_FUNC(insn)) {
1462 case OPC_RISC_C_FUNC_FLDSP_LQSP:
1463 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1464 xinsn = OPC_RISC_FLD;
1465 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1466 access_rs1 = 2;
1467 access_imm = GET_C_LDSP_IMM(insn);
1468 access_size = 8;
1469 }
1470 break;
1471 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1472 xinsn = OPC_RISC_LW;
1473 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1474 access_rs1 = 2;
1475 access_imm = GET_C_LWSP_IMM(insn);
1476 access_size = 4;
1477 break;
1478 case OPC_RISC_C_FUNC_FLWSP_LDSP:
1479 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1480 xinsn = OPC_RISC_FLW;
1481 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1482 access_rs1 = 2;
1483 access_imm = GET_C_LWSP_IMM(insn);
1484 access_size = 4;
1485 } else { /* C.LDSP (RV64/RV128) */
1486 xinsn = OPC_RISC_LD;
1487 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1488 access_rs1 = 2;
1489 access_imm = GET_C_LDSP_IMM(insn);
1490 access_size = 8;
1491 }
1492 break;
1493 case OPC_RISC_C_FUNC_FSDSP_SQSP:
1494 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1495 xinsn = OPC_RISC_FSD;
1496 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1497 access_rs1 = 2;
1498 access_imm = GET_C_SDSP_IMM(insn);
1499 access_size = 8;
1500 }
1501 break;
1502 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1503 xinsn = OPC_RISC_SW;
1504 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1505 access_rs1 = 2;
1506 access_imm = GET_C_SWSP_IMM(insn);
1507 access_size = 4;
1508 break;
1509 case 7:
1510 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1511 xinsn = OPC_RISC_FSW;
1512 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1513 access_rs1 = 2;
1514 access_imm = GET_C_SWSP_IMM(insn);
1515 access_size = 4;
1516 } else { /* C.SDSP (RV64/RV128) */
1517 xinsn = OPC_RISC_SD;
1518 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1519 access_rs1 = 2;
1520 access_imm = GET_C_SDSP_IMM(insn);
1521 access_size = 8;
1522 }
1523 break;
1524 default:
1525 break;
1526 }
1527 break;
1528 default:
1529 break;
1530 }
1531
1532 /*
1533 * Clear Bit1 of transformed instruction to indicate that
1534 * original insruction was a 16bit instruction
1535 */
1536 xinsn &= ~((target_ulong)0x2);
1537 } else {
1538 /* Transform 32bit (or wider) instructions */
1539 switch (MASK_OP_MAJOR(insn)) {
1540 case OPC_RISC_ATOMIC:
1541 xinsn = insn;
1542 access_rs1 = GET_RS1(insn);
1543 access_size = 1 << GET_FUNCT3(insn);
1544 break;
1545 case OPC_RISC_LOAD:
1546 case OPC_RISC_FP_LOAD:
1547 xinsn = SET_I_IMM(insn, 0);
1548 access_rs1 = GET_RS1(insn);
1549 access_imm = GET_IMM(insn);
1550 access_size = 1 << GET_FUNCT3(insn);
1551 break;
1552 case OPC_RISC_STORE:
1553 case OPC_RISC_FP_STORE:
1554 xinsn = SET_S_IMM(insn, 0);
1555 access_rs1 = GET_RS1(insn);
1556 access_imm = GET_STORE_IMM(insn);
1557 access_size = 1 << GET_FUNCT3(insn);
1558 break;
1559 case OPC_RISC_SYSTEM:
1560 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1561 xinsn = insn;
1562 access_rs1 = GET_RS1(insn);
1563 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1564 access_size = 1 << access_size;
1565 }
1566 break;
1567 default:
1568 break;
1569 }
1570 }
1571
1572 if (access_size) {
1573 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1574 (access_size - 1));
1575 }
1576
1577 return xinsn;
1578}
263e2ab2 1579#endif /* !CONFIG_USER_ONLY */
0c3e702a
MC
1580
1581/*
1582 * Handle Traps
1583 *
1584 * Adapted from Spike's processor_t::take_trap.
1585 *
1586 */
1587void riscv_cpu_do_interrupt(CPUState *cs)
1588{
1589#if !defined(CONFIG_USER_ONLY)
1590
1591 RISCVCPU *cpu = RISCV_CPU(cs);
1592 CPURISCVState *env = &cpu->env;
86d0c457 1593 bool write_gva = false;
284d697c 1594 uint64_t s;
0c3e702a 1595
3b57254d
WL
1596 /*
1597 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
acbbb94e
MC
1598 * so we mask off the MSB and separate into trap type and cause.
1599 */
1600 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1601 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
d028ac75 1602 uint64_t deleg = async ? env->mideleg : env->medeleg;
acbbb94e 1603 target_ulong tval = 0;
8e2aa21b 1604 target_ulong tinst = 0;
30675539
AF
1605 target_ulong htval = 0;
1606 target_ulong mtval2 = 0;
acbbb94e 1607
a10b9d93 1608 if (cause == RISCV_EXCP_SEMIHOST) {
7d7fb116
PM
1609 do_common_semihosting(cs);
1610 env->pc += 4;
1611 return;
a10b9d93
KP
1612 }
1613
acbbb94e
MC
1614 if (!async) {
1615 /* set tval to badaddr for traps with address information */
1616 switch (cause) {
ab67a1d0
AF
1617 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1618 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
acbbb94e
MC
1619 case RISCV_EXCP_LOAD_ADDR_MIS:
1620 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1621 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1622 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
acbbb94e
MC
1623 case RISCV_EXCP_LOAD_PAGE_FAULT:
1624 case RISCV_EXCP_STORE_PAGE_FAULT:
24826da0 1625 write_gva = env->two_stage_lookup;
acbbb94e 1626 tval = env->badaddr;
8e2aa21b
AP
1627 if (env->two_stage_indirect_lookup) {
1628 /*
1629 * special pseudoinstruction for G-stage fault taken while
1630 * doing VS-stage page table walk.
1631 */
1632 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1633 } else {
1634 /*
1635 * The "Addr. Offset" field in transformed instruction is
1636 * non-zero only for misaligned access.
1637 */
1638 tinst = riscv_transformed_insn(env, env->bins, tval);
1639 }
1640 break;
1641 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1642 case RISCV_EXCP_INST_ADDR_MIS:
1643 case RISCV_EXCP_INST_ACCESS_FAULT:
1644 case RISCV_EXCP_INST_PAGE_FAULT:
1645 write_gva = env->two_stage_lookup;
1646 tval = env->badaddr;
1647 if (env->two_stage_indirect_lookup) {
1648 /*
1649 * special pseudoinstruction for G-stage fault taken while
1650 * doing VS-stage page table walk.
1651 */
1652 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1653 }
acbbb94e 1654 break;
48eaeb56 1655 case RISCV_EXCP_ILLEGAL_INST:
62cf0245 1656 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
48eaeb56
AF
1657 tval = env->bins;
1658 break;
26934f9a
SM
1659 case RISCV_EXCP_BREAKPOINT:
1660 if (cs->watchpoint_hit) {
1661 tval = cs->watchpoint_hit->hitaddr;
1662 cs->watchpoint_hit = NULL;
1663 }
1664 break;
acbbb94e
MC
1665 default:
1666 break;
0c3e702a 1667 }
acbbb94e
MC
1668 /* ecall is dispatched as one cause so translate based on mode */
1669 if (cause == RISCV_EXCP_U_ECALL) {
1670 assert(env->priv <= 3);
5eb9e782
AF
1671
1672 if (env->priv == PRV_M) {
1673 cause = RISCV_EXCP_M_ECALL;
38256529 1674 } else if (env->priv == PRV_S && env->virt_enabled) {
5eb9e782 1675 cause = RISCV_EXCP_VS_ECALL;
38256529 1676 } else if (env->priv == PRV_S && !env->virt_enabled) {
5eb9e782
AF
1677 cause = RISCV_EXCP_S_ECALL;
1678 } else if (env->priv == PRV_U) {
1679 cause = RISCV_EXCP_U_ECALL;
1680 }
0c3e702a
MC
1681 }
1682 }
1683
c51a3f5d 1684 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
69430111
AF
1685 riscv_cpu_get_trap_name(cause, async));
1686
1687 qemu_log_mask(CPU_LOG_INT,
1688 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1689 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1690 __func__, env->mhartid, async, cause, env->pc, tval,
1691 riscv_cpu_get_trap_name(cause, async));
0c3e702a 1692
acbbb94e
MC
1693 if (env->priv <= PRV_S &&
1694 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
0c3e702a 1695 /* handle the trap in S-mode */
5eb9e782 1696 if (riscv_has_ext(env, RVH)) {
d028ac75 1697 uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1c1c060a 1698
38256529 1699 if (env->virt_enabled && ((hdeleg >> cause) & 1)) {
84b1c04b 1700 /* Trap to VS mode */
c5969a3a
RK
1701 /*
1702 * See if we need to adjust cause. Yes if its VS mode interrupt
1703 * no if hypervisor has delegated one of hs mode's interrupt
1704 */
1705 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
84b1c04b 1706 cause == IRQ_VS_EXT) {
c5969a3a 1707 cause = cause - 1;
84b1c04b 1708 }
86d0c457 1709 write_gva = false;
38256529 1710 } else if (env->virt_enabled) {
5eb9e782
AF
1711 /* Trap into HS mode, from virt */
1712 riscv_cpu_swap_hypervisor_regs(env);
f2d5850f 1713 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
ace54453 1714 env->priv);
2136b6c3 1715 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
86d0c457 1716
30675539
AF
1717 htval = env->guest_phys_fault_addr;
1718
5eb9e782 1719 riscv_cpu_set_virt_enabled(env, 0);
5eb9e782
AF
1720 } else {
1721 /* Trap into HS mode */
ec352d0c 1722 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
30675539 1723 htval = env->guest_phys_fault_addr;
5eb9e782 1724 }
86d0c457 1725 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
5eb9e782
AF
1726 }
1727
1728 s = env->mstatus;
1a9540d1 1729 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
0c3e702a
MC
1730 s = set_field(s, MSTATUS_SPP, env->priv);
1731 s = set_field(s, MSTATUS_SIE, 0);
c7b95171 1732 env->mstatus = s;
16fdb8ff 1733 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
acbbb94e 1734 env->sepc = env->pc;
ac12b601 1735 env->stval = tval;
30675539 1736 env->htval = htval;
8e2aa21b 1737 env->htinst = tinst;
acbbb94e 1738 env->pc = (env->stvec >> 2 << 2) +
c45eff30 1739 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
fb738839 1740 riscv_cpu_set_mode(env, PRV_S);
0c3e702a 1741 } else {
acbbb94e 1742 /* handle the trap in M-mode */
5eb9e782 1743 if (riscv_has_ext(env, RVH)) {
38256529 1744 if (env->virt_enabled) {
5eb9e782
AF
1745 riscv_cpu_swap_hypervisor_regs(env);
1746 }
1747 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
38256529
WL
1748 env->virt_enabled);
1749 if (env->virt_enabled && tval) {
9034e90a
AF
1750 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1751 }
5eb9e782 1752
30675539
AF
1753 mtval2 = env->guest_phys_fault_addr;
1754
5eb9e782
AF
1755 /* Trapping to M mode, virt is disabled */
1756 riscv_cpu_set_virt_enabled(env, 0);
5eb9e782
AF
1757 }
1758
1759 s = env->mstatus;
1a9540d1 1760 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
0c3e702a
MC
1761 s = set_field(s, MSTATUS_MPP, env->priv);
1762 s = set_field(s, MSTATUS_MIE, 0);
c7b95171 1763 env->mstatus = s;
acbbb94e
MC
1764 env->mcause = cause | ~(((target_ulong)-1) >> async);
1765 env->mepc = env->pc;
ac12b601 1766 env->mtval = tval;
30675539 1767 env->mtval2 = mtval2;
8e2aa21b 1768 env->mtinst = tinst;
acbbb94e 1769 env->pc = (env->mtvec >> 2 << 2) +
c45eff30 1770 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
fb738839 1771 riscv_cpu_set_mode(env, PRV_M);
0c3e702a 1772 }
d9360e96 1773
3b57254d
WL
1774 /*
1775 * NOTE: it is not necessary to yield load reservations here. It is only
d9360e96
MC
1776 * necessary for an SC from "another hart" to cause a load reservation
1777 * to be yielded. Refer to the memory consistency model section of the
1778 * RISC-V ISA Specification.
1779 */
1780
ec352d0c 1781 env->two_stage_lookup = false;
8e2aa21b 1782 env->two_stage_indirect_lookup = false;
0c3e702a 1783#endif
330d2ae3 1784 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */
0c3e702a 1785}