]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/cpu.h
Merge remote-tracking branch 'remotes/mcayland/tags/qemu-openbios-signed' into staging
[mirror_qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3926cc84 22#include "config.h"
3cf1e035 23
72b0cd35
PM
24#include "kvm-consts.h"
25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
3926cc84
AG
29#else
30# define TARGET_LONG_BITS 32
3926cc84 31#endif
9042c0e2 32
84f2bed3
PS
33#define TARGET_IS_BIENDIAN 1
34
9349b4f9 35#define CPUArchState struct CPUARMState
c2764719 36
9a78eead 37#include "qemu-common.h"
022c62cb 38#include "exec/cpu-defs.h"
2c0262af 39
6b4c305c 40#include "fpu/softfloat.h"
53cd6637 41
b8a9e8f1
FB
42#define EXCP_UDEF 1 /* undefined instruction */
43#define EXCP_SWI 2 /* software interrupt */
44#define EXCP_PREFETCH_ABORT 3
45#define EXCP_DATA_ABORT 4
b5ff1b31
FB
46#define EXCP_IRQ 5
47#define EXCP_FIQ 6
06c949e6 48#define EXCP_BKPT 7
9ee6e8bb 49#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 50#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 51#define EXCP_STREX 10
35979d71 52#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 53#define EXCP_HYP_TRAP 12
e0d6e6a5 54#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
55#define EXCP_VIRQ 14
56#define EXCP_VFIQ 15
8012c84f 57#define EXCP_SEMIHOST 16 /* semihosting call (A64 only) */
9ee6e8bb
PB
58
59#define ARMV7M_EXCP_RESET 1
60#define ARMV7M_EXCP_NMI 2
61#define ARMV7M_EXCP_HARD 3
62#define ARMV7M_EXCP_MEM 4
63#define ARMV7M_EXCP_BUS 5
64#define ARMV7M_EXCP_USAGE 6
65#define ARMV7M_EXCP_SVC 11
66#define ARMV7M_EXCP_DEBUG 12
67#define ARMV7M_EXCP_PENDSV 14
68#define ARMV7M_EXCP_SYSTICK 15
2c0262af 69
403946c0
RH
70/* ARM-specific interrupt pending bits. */
71#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
72#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
73#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 74
e4fe830b
PM
75/* The usual mapping for an AArch64 system register to its AArch32
76 * counterpart is for the 32 bit world to have access to the lower
77 * half only (with writes leaving the upper half untouched). It's
78 * therefore useful to be able to pass TCG the offset of the least
79 * significant half of a uint64_t struct member.
80 */
81#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 82#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 83#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
84#else
85#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 86#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
87#endif
88
136e67e9 89/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
90#define ARM_CPU_IRQ 0
91#define ARM_CPU_FIQ 1
136e67e9
EI
92#define ARM_CPU_VIRQ 2
93#define ARM_CPU_VFIQ 3
403946c0 94
f93eb9ff
AZ
95struct arm_boot_info;
96
c1e37810 97#define NB_MMU_MODES 7
52e971d9 98#define TARGET_INSN_START_EXTRA_WORDS 1
6ebbf390 99
b7bcbe95
FB
100/* We currently assume float and double are IEEE single and double
101 precision respectively.
102 Doing runtime conversions is tricky because VFP registers may contain
103 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
104 s<2n> maps to the least significant half of d<n>
105 s<2n+1> maps to the most significant half of d<n>
106 */
b7bcbe95 107
55d284af
PM
108/* CPU state for each instance of a generic timer (in cp15 c14) */
109typedef struct ARMGenericTimer {
110 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 111 uint64_t ctl; /* Timer Control register */
55d284af
PM
112} ARMGenericTimer;
113
114#define GTIMER_PHYS 0
115#define GTIMER_VIRT 1
b0e66d95 116#define GTIMER_HYP 2
b4d3978c
PM
117#define GTIMER_SEC 3
118#define NUM_GTIMERS 4
55d284af 119
11f136ee
FA
120typedef struct {
121 uint64_t raw_tcr;
122 uint32_t mask;
123 uint32_t base_mask;
124} TCR;
125
2c0262af 126typedef struct CPUARMState {
b5ff1b31 127 /* Regs for current mode. */
2c0262af 128 uint32_t regs[16];
3926cc84
AG
129
130 /* 32/64 switch only happens when taking and returning from
131 * exceptions so the overlap semantics are taken care of then
132 * instead of having a complicated union.
133 */
134 /* Regs for A64 mode. */
135 uint64_t xregs[32];
136 uint64_t pc;
d356312f
PM
137 /* PSTATE isn't an architectural register for ARMv8. However, it is
138 * convenient for us to assemble the underlying state into a 32 bit format
139 * identical to the architectural format used for the SPSR. (This is also
140 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
141 * 'pstate' register are.) Of the PSTATE bits:
142 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
143 * semantics as for AArch32, as described in the comments on each field)
144 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 145 * DAIF (exception masks) are kept in env->daif
d356312f 146 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
147 */
148 uint32_t pstate;
149 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
150
b90372ad 151 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 152 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
153 the whole CPSR. */
154 uint32_t uncached_cpsr;
155 uint32_t spsr;
156
157 /* Banked registers. */
28c9457d 158 uint64_t banked_spsr[8];
0b7d409d
FA
159 uint32_t banked_r13[8];
160 uint32_t banked_r14[8];
3b46e624 161
b5ff1b31
FB
162 /* These hold r8-r12. */
163 uint32_t usr_regs[5];
164 uint32_t fiq_regs[5];
3b46e624 165
2c0262af
FB
166 /* cpsr flag cache for faster execution */
167 uint32_t CF; /* 0 or 1 */
168 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
169 uint32_t NF; /* N is bit 31. All other bits are undefined. */
170 uint32_t ZF; /* Z set if zero. */
99c475ab 171 uint32_t QF; /* 0 or 1 */
9ee6e8bb 172 uint32_t GE; /* cpsr[19:16] */
b26eefb6 173 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 174 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
b6af0975 175 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 176
1b174238 177 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 178 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 179
b5ff1b31
FB
180 /* System control coprocessor (cp15) */
181 struct {
40f137e1 182 uint32_t c0_cpuid;
b85a1fd6
FA
183 union { /* Cache size selection */
184 struct {
185 uint64_t _unused_csselr0;
186 uint64_t csselr_ns;
187 uint64_t _unused_csselr1;
188 uint64_t csselr_s;
189 };
190 uint64_t csselr_el[4];
191 };
137feaa9
FA
192 union { /* System control register. */
193 struct {
194 uint64_t _unused_sctlr;
195 uint64_t sctlr_ns;
196 uint64_t hsctlr;
197 uint64_t sctlr_s;
198 };
199 uint64_t sctlr_el[4];
200 };
7ebd5f2e 201 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 202 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 203 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 204 uint64_t sder; /* Secure debug enable register. */
77022576 205 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
206 union { /* MMU translation table base 0. */
207 struct {
208 uint64_t _unused_ttbr0_0;
209 uint64_t ttbr0_ns;
210 uint64_t _unused_ttbr0_1;
211 uint64_t ttbr0_s;
212 };
213 uint64_t ttbr0_el[4];
214 };
215 union { /* MMU translation table base 1. */
216 struct {
217 uint64_t _unused_ttbr1_0;
218 uint64_t ttbr1_ns;
219 uint64_t _unused_ttbr1_1;
220 uint64_t ttbr1_s;
221 };
222 uint64_t ttbr1_el[4];
223 };
b698e9cf 224 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
11f136ee
FA
225 /* MMU translation table base control. */
226 TCR tcr_el[4];
68e9c2fe 227 TCR vtcr_el2; /* Virtualization Translation Control. */
67cc32eb
VL
228 uint32_t c2_data; /* MPU data cacheable bits. */
229 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
230 union { /* MMU domain access control register
231 * MPU write buffer control.
232 */
233 struct {
234 uint64_t dacr_ns;
235 uint64_t dacr_s;
236 };
237 struct {
238 uint64_t dacr32_el2;
239 };
240 };
7e09797c
PM
241 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
242 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 243 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 244 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
245 union { /* Fault status registers. */
246 struct {
247 uint64_t ifsr_ns;
248 uint64_t ifsr_s;
249 };
250 struct {
251 uint64_t ifsr32_el2;
252 };
253 };
4a7e2d73
FA
254 union {
255 struct {
256 uint64_t _unused_dfsr;
257 uint64_t dfsr_ns;
258 uint64_t hsr;
259 uint64_t dfsr_s;
260 };
261 uint64_t esr_el[4];
262 };
ce819861 263 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
264 union { /* Fault address registers. */
265 struct {
266 uint64_t _unused_far0;
267#ifdef HOST_WORDS_BIGENDIAN
268 uint32_t ifar_ns;
269 uint32_t dfar_ns;
270 uint32_t ifar_s;
271 uint32_t dfar_s;
272#else
273 uint32_t dfar_ns;
274 uint32_t ifar_ns;
275 uint32_t dfar_s;
276 uint32_t ifar_s;
277#endif
278 uint64_t _unused_far3;
279 };
280 uint64_t far_el[4];
281 };
59e05530 282 uint64_t hpfar_el2;
01c097f7
FA
283 union { /* Translation result. */
284 struct {
285 uint64_t _unused_par_0;
286 uint64_t par_ns;
287 uint64_t _unused_par_1;
288 uint64_t par_s;
289 };
290 uint64_t par_el[4];
291 };
6cb0b013
PC
292
293 uint32_t c6_rgnr;
294
b5ff1b31
FB
295 uint32_t c9_insn; /* Cache lockdown registers. */
296 uint32_t c9_data;
8521466b
AF
297 uint64_t c9_pmcr; /* performance monitor control register */
298 uint64_t c9_pmcnten; /* perf monitor counter enables */
74594c9d
PM
299 uint32_t c9_pmovsr; /* perf monitor overflow status */
300 uint32_t c9_pmxevtyper; /* perf monitor event type */
301 uint32_t c9_pmuserenr; /* perf monitor user enable */
302 uint32_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
303 union { /* Memory attribute redirection */
304 struct {
305#ifdef HOST_WORDS_BIGENDIAN
306 uint64_t _unused_mair_0;
307 uint32_t mair1_ns;
308 uint32_t mair0_ns;
309 uint64_t _unused_mair_1;
310 uint32_t mair1_s;
311 uint32_t mair0_s;
312#else
313 uint64_t _unused_mair_0;
314 uint32_t mair0_ns;
315 uint32_t mair1_ns;
316 uint64_t _unused_mair_1;
317 uint32_t mair0_s;
318 uint32_t mair1_s;
319#endif
320 };
321 uint64_t mair_el[4];
322 };
fb6c91ba
GB
323 union { /* vector base address register */
324 struct {
325 uint64_t _unused_vbar;
326 uint64_t vbar_ns;
327 uint64_t hvbar;
328 uint64_t vbar_s;
329 };
330 uint64_t vbar_el[4];
331 };
e89e51a1 332 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
333 struct { /* FCSE PID. */
334 uint32_t fcseidr_ns;
335 uint32_t fcseidr_s;
336 };
337 union { /* Context ID. */
338 struct {
339 uint64_t _unused_contextidr_0;
340 uint64_t contextidr_ns;
341 uint64_t _unused_contextidr_1;
342 uint64_t contextidr_s;
343 };
344 uint64_t contextidr_el[4];
345 };
346 union { /* User RW Thread register. */
347 struct {
348 uint64_t tpidrurw_ns;
349 uint64_t tpidrprw_ns;
350 uint64_t htpidr;
351 uint64_t _tpidr_el3;
352 };
353 uint64_t tpidr_el[4];
354 };
355 /* The secure banks of these registers don't map anywhere */
356 uint64_t tpidrurw_s;
357 uint64_t tpidrprw_s;
358 uint64_t tpidruro_s;
359
360 union { /* User RO Thread register. */
361 uint64_t tpidruro_ns;
362 uint64_t tpidrro_el[1];
363 };
a7adc4b7
PM
364 uint64_t c14_cntfrq; /* Counter Frequency register */
365 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 366 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 367 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 368 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 369 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
370 uint32_t c15_ticonfig; /* TI925T configuration byte. */
371 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
372 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
373 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
374 uint32_t c15_config_base_address; /* SCU base address. */
375 uint32_t c15_diagnostic; /* diagnostic register */
376 uint32_t c15_power_diagnostic;
377 uint32_t c15_power_control; /* power control */
0b45451e
PM
378 uint64_t dbgbvr[16]; /* breakpoint value registers */
379 uint64_t dbgbcr[16]; /* breakpoint control registers */
380 uint64_t dbgwvr[16]; /* watchpoint value registers */
381 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 382 uint64_t mdscr_el1;
1424ca8d 383 uint64_t oslsr_el1; /* OS Lock Status */
14cc7b54 384 uint64_t mdcr_el2;
7c2cb42b
AF
385 /* If the counter is enabled, this stores the last time the counter
386 * was reset. Otherwise it stores the counter value
387 */
c92c0687 388 uint64_t c15_ccnt;
8521466b 389 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
731de9e6 390 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
f0d574d6 391 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
b5ff1b31 392 } cp15;
40f137e1 393
9ee6e8bb
PB
394 struct {
395 uint32_t other_sp;
396 uint32_t vecbase;
397 uint32_t basepri;
398 uint32_t control;
399 int current_sp;
400 int exception;
9ee6e8bb
PB
401 } v7m;
402
abf1172f
PM
403 /* Information associated with an exception about to be taken:
404 * code which raises an exception must set cs->exception_index and
405 * the relevant parts of this structure; the cpu_do_interrupt function
406 * will then set the guest-visible registers as part of the exception
407 * entry process.
408 */
409 struct {
410 uint32_t syndrome; /* AArch64 format syndrome register */
411 uint32_t fsr; /* AArch32 format fault status register info */
412 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 413 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
414 /* If we implement EL2 we will also need to store information
415 * about the intermediate physical address for stage 2 faults.
416 */
417 } exception;
418
fe1479c3
PB
419 /* Thumb-2 EE state. */
420 uint32_t teecr;
421 uint32_t teehbr;
422
b7bcbe95
FB
423 /* VFP coprocessor state. */
424 struct {
3926cc84
AG
425 /* VFP/Neon register state. Note that the mapping between S, D and Q
426 * views of the register bank differs between AArch64 and AArch32:
427 * In AArch32:
428 * Qn = regs[2n+1]:regs[2n]
429 * Dn = regs[n]
430 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
431 * (and regs[32] to regs[63] are inaccessible)
432 * In AArch64:
433 * Qn = regs[2n+1]:regs[2n]
434 * Dn = regs[2n]
435 * Sn = regs[2n] bits 31..0
436 * This corresponds to the architecturally defined mapping between
437 * the two execution states, and means we do not need to explicitly
438 * map these registers when changing states.
439 */
440 float64 regs[64];
b7bcbe95 441
40f137e1 442 uint32_t xregs[16];
b7bcbe95
FB
443 /* We store these fpcsr fields separately for convenience. */
444 int vec_len;
445 int vec_stride;
446
9ee6e8bb
PB
447 /* scratch space when Tn are not sufficient. */
448 uint32_t scratch[8];
3b46e624 449
3a492f3a
PM
450 /* fp_status is the "normal" fp status. standard_fp_status retains
451 * values corresponding to the ARM "Standard FPSCR Value", ie
452 * default-NaN, flush-to-zero, round-to-nearest and is used by
453 * any operations (generally Neon) which the architecture defines
454 * as controlled by the standard FPSCR value rather than the FPSCR.
455 *
456 * To avoid having to transfer exception bits around, we simply
457 * say that the FPSCR cumulative exception flags are the logical
458 * OR of the flags in the two fp statuses. This relies on the
459 * only thing which needs to read the exception flags being
460 * an explicit FPSCR read.
461 */
53cd6637 462 float_status fp_status;
3a492f3a 463 float_status standard_fp_status;
b7bcbe95 464 } vfp;
03d05e2d
PM
465 uint64_t exclusive_addr;
466 uint64_t exclusive_val;
467 uint64_t exclusive_high;
9ee6e8bb 468#if defined(CONFIG_USER_ONLY)
03d05e2d 469 uint64_t exclusive_test;
426f5abc 470 uint32_t exclusive_info;
9ee6e8bb 471#endif
b7bcbe95 472
18c9b560
AZ
473 /* iwMMXt coprocessor state. */
474 struct {
475 uint64_t regs[16];
476 uint64_t val;
477
478 uint32_t cregs[16];
479 } iwmmxt;
480
d8fd2954
PB
481 /* For mixed endian mode. */
482 bool bswap_code;
483
ce4defa0
PB
484#if defined(CONFIG_USER_ONLY)
485 /* For usermode syscall translation. */
486 int eabi;
487#endif
488
46747d15 489 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
490 struct CPUWatchpoint *cpu_watchpoint[16];
491
a316d335
FB
492 CPU_COMMON
493
9d551997 494 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 495
581be094 496 /* Internal CPU feature flags. */
918f5dca 497 uint64_t features;
581be094 498
6cb0b013
PC
499 /* PMSAv7 MPU */
500 struct {
501 uint32_t *drbar;
502 uint32_t *drsr;
503 uint32_t *dracr;
504 } pmsav7;
505
983fe826 506 void *nvic;
462a8bc6 507 const struct arm_boot_info *boot_info;
2c0262af
FB
508} CPUARMState;
509
778c3a06
AF
510#include "cpu-qom.h"
511
512ARMCPU *cpu_arm_init(const char *cpu_model);
ea3e9847 513int cpu_arm_exec(CPUState *cpu);
faacc041 514target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
515void aarch64_sync_32_to_64(CPUARMState *env);
516void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 517
3926cc84
AG
518static inline bool is_a64(CPUARMState *env)
519{
520 return env->aarch64;
521}
522
2c0262af
FB
523/* you can call this signal handler from your SIGBUS and SIGSEGV
524 signal handlers to inform the virtual CPU of exceptions. non zero
525 is returned if the signal was handled by the virtual CPU. */
5fafdf24 526int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
527 void *puc);
528
ec7b4ce4
AF
529/**
530 * pmccntr_sync
531 * @env: CPUARMState
532 *
533 * Synchronises the counter in the PMCCNTR. This must always be called twice,
534 * once before any action that might affect the timer and again afterwards.
535 * The function is used to swap the state of the register if required.
536 * This only happens when not in user mode (!CONFIG_USER_ONLY)
537 */
538void pmccntr_sync(CPUARMState *env);
539
76e3e1bc
PM
540/* SCTLR bit meanings. Several bits have been reused in newer
541 * versions of the architecture; in that case we define constants
542 * for both old and new bit meanings. Code which tests against those
543 * bits should probably check or otherwise arrange that the CPU
544 * is the architectural version it expects.
545 */
546#define SCTLR_M (1U << 0)
547#define SCTLR_A (1U << 1)
548#define SCTLR_C (1U << 2)
549#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
550#define SCTLR_SA (1U << 3)
551#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
552#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
553#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
554#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
555#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
556#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
557#define SCTLR_ITD (1U << 7) /* v8 onward */
558#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
559#define SCTLR_SED (1U << 8) /* v8 onward */
560#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
561#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
562#define SCTLR_F (1U << 10) /* up to v6 */
563#define SCTLR_SW (1U << 10) /* v7 onward */
564#define SCTLR_Z (1U << 11)
565#define SCTLR_I (1U << 12)
566#define SCTLR_V (1U << 13)
567#define SCTLR_RR (1U << 14) /* up to v7 */
568#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
569#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
570#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
571#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
572#define SCTLR_nTWI (1U << 16) /* v8 onward */
573#define SCTLR_HA (1U << 17)
f6bda88f 574#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
575#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
576#define SCTLR_nTWE (1U << 18) /* v8 onward */
577#define SCTLR_WXN (1U << 19)
578#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
579#define SCTLR_UWXN (1U << 20) /* v7 onward */
580#define SCTLR_FI (1U << 21)
581#define SCTLR_U (1U << 22)
582#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
583#define SCTLR_VE (1U << 24) /* up to v7 */
584#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
585#define SCTLR_EE (1U << 25)
586#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
587#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
588#define SCTLR_NMFI (1U << 27)
589#define SCTLR_TRE (1U << 28)
590#define SCTLR_AFE (1U << 29)
591#define SCTLR_TE (1U << 30)
592
c6f19164
GB
593#define CPTR_TCPAC (1U << 31)
594#define CPTR_TTA (1U << 20)
595#define CPTR_TFP (1U << 10)
596
78dbbbe4
PM
597#define CPSR_M (0x1fU)
598#define CPSR_T (1U << 5)
599#define CPSR_F (1U << 6)
600#define CPSR_I (1U << 7)
601#define CPSR_A (1U << 8)
602#define CPSR_E (1U << 9)
603#define CPSR_IT_2_7 (0xfc00U)
604#define CPSR_GE (0xfU << 16)
4051e12c
PM
605#define CPSR_IL (1U << 20)
606/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
607 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
608 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
609 * where it is live state but not accessible to the AArch32 code.
610 */
611#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
612#define CPSR_J (1U << 24)
613#define CPSR_IT_0_1 (3U << 25)
614#define CPSR_Q (1U << 27)
615#define CPSR_V (1U << 28)
616#define CPSR_C (1U << 29)
617#define CPSR_Z (1U << 30)
618#define CPSR_N (1U << 31)
9ee6e8bb 619#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 620#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
621
622#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
623#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
624 | CPSR_NZCV)
9ee6e8bb
PB
625/* Bits writable in user mode. */
626#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
627/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
628#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
629/* Mask of bits which may be set by exception return copying them from SPSR */
630#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 631
e389be16
FA
632#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
633#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
634#define TTBCR_PD0 (1U << 4)
635#define TTBCR_PD1 (1U << 5)
636#define TTBCR_EPD0 (1U << 7)
637#define TTBCR_IRGN0 (3U << 8)
638#define TTBCR_ORGN0 (3U << 10)
639#define TTBCR_SH0 (3U << 12)
640#define TTBCR_T1SZ (3U << 16)
641#define TTBCR_A1 (1U << 22)
642#define TTBCR_EPD1 (1U << 23)
643#define TTBCR_IRGN1 (3U << 24)
644#define TTBCR_ORGN1 (3U << 26)
645#define TTBCR_SH1 (1U << 28)
646#define TTBCR_EAE (1U << 31)
647
d356312f
PM
648/* Bit definitions for ARMv8 SPSR (PSTATE) format.
649 * Only these are valid when in AArch64 mode; in
650 * AArch32 mode SPSRs are basically CPSR-format.
651 */
f502cfc2 652#define PSTATE_SP (1U)
d356312f
PM
653#define PSTATE_M (0xFU)
654#define PSTATE_nRW (1U << 4)
655#define PSTATE_F (1U << 6)
656#define PSTATE_I (1U << 7)
657#define PSTATE_A (1U << 8)
658#define PSTATE_D (1U << 9)
659#define PSTATE_IL (1U << 20)
660#define PSTATE_SS (1U << 21)
661#define PSTATE_V (1U << 28)
662#define PSTATE_C (1U << 29)
663#define PSTATE_Z (1U << 30)
664#define PSTATE_N (1U << 31)
665#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
666#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
667#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
668/* Mode values for AArch64 */
669#define PSTATE_MODE_EL3h 13
670#define PSTATE_MODE_EL3t 12
671#define PSTATE_MODE_EL2h 9
672#define PSTATE_MODE_EL2t 8
673#define PSTATE_MODE_EL1h 5
674#define PSTATE_MODE_EL1t 4
675#define PSTATE_MODE_EL0t 0
676
9e729b57
EI
677/* Map EL and handler into a PSTATE_MODE. */
678static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
679{
680 return (el << 2) | handler;
681}
682
d356312f
PM
683/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
684 * interprocessing, so we don't attempt to sync with the cpsr state used by
685 * the 32 bit decoder.
686 */
687static inline uint32_t pstate_read(CPUARMState *env)
688{
689 int ZF;
690
691 ZF = (env->ZF == 0);
692 return (env->NF & 0x80000000) | (ZF << 30)
693 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 694 | env->pstate | env->daif;
d356312f
PM
695}
696
697static inline void pstate_write(CPUARMState *env, uint32_t val)
698{
699 env->ZF = (~val) & PSTATE_Z;
700 env->NF = val;
701 env->CF = (val >> 29) & 1;
702 env->VF = (val << 3) & 0x80000000;
4cc35614 703 env->daif = val & PSTATE_DAIF;
d356312f
PM
704 env->pstate = val & ~CACHED_PSTATE_BITS;
705}
706
b5ff1b31 707/* Return the current CPSR value. */
2f4a40e5
AZ
708uint32_t cpsr_read(CPUARMState *env);
709/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
710void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
711
712/* Return the current xPSR value. */
713static inline uint32_t xpsr_read(CPUARMState *env)
714{
715 int ZF;
6fbe23d5
PB
716 ZF = (env->ZF == 0);
717 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
718 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
719 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
720 | ((env->condexec_bits & 0xfc) << 8)
721 | env->v7m.exception;
b5ff1b31
FB
722}
723
9ee6e8bb
PB
724/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
725static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
726{
9ee6e8bb 727 if (mask & CPSR_NZCV) {
6fbe23d5
PB
728 env->ZF = (~val) & CPSR_Z;
729 env->NF = val;
9ee6e8bb
PB
730 env->CF = (val >> 29) & 1;
731 env->VF = (val << 3) & 0x80000000;
732 }
733 if (mask & CPSR_Q)
734 env->QF = ((val & CPSR_Q) != 0);
735 if (mask & (1 << 24))
736 env->thumb = ((val & (1 << 24)) != 0);
737 if (mask & CPSR_IT_0_1) {
738 env->condexec_bits &= ~3;
739 env->condexec_bits |= (val >> 25) & 3;
740 }
741 if (mask & CPSR_IT_2_7) {
742 env->condexec_bits &= 3;
743 env->condexec_bits |= (val >> 8) & 0xfc;
744 }
745 if (mask & 0x1ff) {
746 env->v7m.exception = val & 0x1ff;
747 }
748}
749
f149e3e8
EI
750#define HCR_VM (1ULL << 0)
751#define HCR_SWIO (1ULL << 1)
752#define HCR_PTW (1ULL << 2)
753#define HCR_FMO (1ULL << 3)
754#define HCR_IMO (1ULL << 4)
755#define HCR_AMO (1ULL << 5)
756#define HCR_VF (1ULL << 6)
757#define HCR_VI (1ULL << 7)
758#define HCR_VSE (1ULL << 8)
759#define HCR_FB (1ULL << 9)
760#define HCR_BSU_MASK (3ULL << 10)
761#define HCR_DC (1ULL << 12)
762#define HCR_TWI (1ULL << 13)
763#define HCR_TWE (1ULL << 14)
764#define HCR_TID0 (1ULL << 15)
765#define HCR_TID1 (1ULL << 16)
766#define HCR_TID2 (1ULL << 17)
767#define HCR_TID3 (1ULL << 18)
768#define HCR_TSC (1ULL << 19)
769#define HCR_TIDCP (1ULL << 20)
770#define HCR_TACR (1ULL << 21)
771#define HCR_TSW (1ULL << 22)
772#define HCR_TPC (1ULL << 23)
773#define HCR_TPU (1ULL << 24)
774#define HCR_TTLB (1ULL << 25)
775#define HCR_TVM (1ULL << 26)
776#define HCR_TGE (1ULL << 27)
777#define HCR_TDZ (1ULL << 28)
778#define HCR_HCD (1ULL << 29)
779#define HCR_TRVM (1ULL << 30)
780#define HCR_RW (1ULL << 31)
781#define HCR_CD (1ULL << 32)
782#define HCR_ID (1ULL << 33)
783#define HCR_MASK ((1ULL << 34) - 1)
784
64e0e2de
EI
785#define SCR_NS (1U << 0)
786#define SCR_IRQ (1U << 1)
787#define SCR_FIQ (1U << 2)
788#define SCR_EA (1U << 3)
789#define SCR_FW (1U << 4)
790#define SCR_AW (1U << 5)
791#define SCR_NET (1U << 6)
792#define SCR_SMD (1U << 7)
793#define SCR_HCE (1U << 8)
794#define SCR_SIF (1U << 9)
795#define SCR_RW (1U << 10)
796#define SCR_ST (1U << 11)
797#define SCR_TWI (1U << 12)
798#define SCR_TWE (1U << 13)
799#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
800#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
801
01653295
PM
802/* Return the current FPSCR value. */
803uint32_t vfp_get_fpscr(CPUARMState *env);
804void vfp_set_fpscr(CPUARMState *env, uint32_t val);
805
f903fa22
PM
806/* For A64 the FPSCR is split into two logically distinct registers,
807 * FPCR and FPSR. However since they still use non-overlapping bits
808 * we store the underlying state in fpscr and just mask on read/write.
809 */
810#define FPSR_MASK 0xf800009f
811#define FPCR_MASK 0x07f79f00
812static inline uint32_t vfp_get_fpsr(CPUARMState *env)
813{
814 return vfp_get_fpscr(env) & FPSR_MASK;
815}
816
817static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
818{
819 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
820 vfp_set_fpscr(env, new_fpscr);
821}
822
823static inline uint32_t vfp_get_fpcr(CPUARMState *env)
824{
825 return vfp_get_fpscr(env) & FPCR_MASK;
826}
827
828static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
829{
830 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
831 vfp_set_fpscr(env, new_fpscr);
832}
833
b5ff1b31
FB
834enum arm_cpu_mode {
835 ARM_CPU_MODE_USR = 0x10,
836 ARM_CPU_MODE_FIQ = 0x11,
837 ARM_CPU_MODE_IRQ = 0x12,
838 ARM_CPU_MODE_SVC = 0x13,
28c9457d 839 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 840 ARM_CPU_MODE_ABT = 0x17,
28c9457d 841 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
842 ARM_CPU_MODE_UND = 0x1b,
843 ARM_CPU_MODE_SYS = 0x1f
844};
845
40f137e1
PB
846/* VFP system registers. */
847#define ARM_VFP_FPSID 0
848#define ARM_VFP_FPSCR 1
a50c0f51 849#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
850#define ARM_VFP_MVFR1 6
851#define ARM_VFP_MVFR0 7
40f137e1
PB
852#define ARM_VFP_FPEXC 8
853#define ARM_VFP_FPINST 9
854#define ARM_VFP_FPINST2 10
855
18c9b560
AZ
856/* iwMMXt coprocessor control registers. */
857#define ARM_IWMMXT_wCID 0
858#define ARM_IWMMXT_wCon 1
859#define ARM_IWMMXT_wCSSF 2
860#define ARM_IWMMXT_wCASF 3
861#define ARM_IWMMXT_wCGR0 8
862#define ARM_IWMMXT_wCGR1 9
863#define ARM_IWMMXT_wCGR2 10
864#define ARM_IWMMXT_wCGR3 11
865
ce854d7c
BC
866/* If adding a feature bit which corresponds to a Linux ELF
867 * HWCAP bit, remember to update the feature-bit-to-hwcap
868 * mapping in linux-user/elfload.c:get_elf_hwcap().
869 */
40f137e1
PB
870enum arm_features {
871 ARM_FEATURE_VFP,
c1713132
AZ
872 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
873 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 874 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
875 ARM_FEATURE_V6,
876 ARM_FEATURE_V6K,
877 ARM_FEATURE_V7,
878 ARM_FEATURE_THUMB2,
c3d2689d 879 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 880 ARM_FEATURE_VFP3,
60011498 881 ARM_FEATURE_VFP_FP16,
9ee6e8bb 882 ARM_FEATURE_NEON,
47789990 883 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 884 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 885 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 886 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
887 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
888 ARM_FEATURE_V4T,
889 ARM_FEATURE_V5,
5bc95aa2 890 ARM_FEATURE_STRONGARM,
906879a9 891 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 892 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 893 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 894 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 895 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 896 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
897 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
898 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
899 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 900 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
901 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
902 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 903 ARM_FEATURE_V8,
3926cc84 904 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 905 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 906 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 907 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 908 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 909 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 910 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
f1ecb913
AB
911 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
912 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
4e624eda 913 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
62b44f05 914 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
40f137e1
PB
915};
916
917static inline int arm_feature(CPUARMState *env, int feature)
918{
918f5dca 919 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
920}
921
19e0fefa
FA
922#if !defined(CONFIG_USER_ONLY)
923/* Return true if exception levels below EL3 are in secure state,
924 * or would be following an exception return to that level.
925 * Unlike arm_is_secure() (which is always a question about the
926 * _current_ state of the CPU) this doesn't care about the current
927 * EL or mode.
928 */
929static inline bool arm_is_secure_below_el3(CPUARMState *env)
930{
931 if (arm_feature(env, ARM_FEATURE_EL3)) {
932 return !(env->cp15.scr_el3 & SCR_NS);
933 } else {
934 /* If EL2 is not supported then the secure state is implementation
935 * defined, in which case QEMU defaults to non-secure.
936 */
937 return false;
938 }
939}
940
941/* Return true if the processor is in secure state */
942static inline bool arm_is_secure(CPUARMState *env)
943{
944 if (arm_feature(env, ARM_FEATURE_EL3)) {
945 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
946 /* CPU currently in AArch64 state and EL3 */
947 return true;
948 } else if (!is_a64(env) &&
949 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
950 /* CPU currently in AArch32 state and monitor mode */
951 return true;
952 }
953 }
954 return arm_is_secure_below_el3(env);
955}
956
957#else
958static inline bool arm_is_secure_below_el3(CPUARMState *env)
959{
960 return false;
961}
962
963static inline bool arm_is_secure(CPUARMState *env)
964{
965 return false;
966}
967#endif
968
1f79ee32
PM
969/* Return true if the specified exception level is running in AArch64 state. */
970static inline bool arm_el_is_aa64(CPUARMState *env, int el)
971{
446c81ab
PM
972 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
973 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1f79ee32 974 */
446c81ab
PM
975 assert(el >= 1 && el <= 3);
976 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
592125f8 977
446c81ab
PM
978 /* The highest exception level is always at the maximum supported
979 * register width, and then lower levels have a register width controlled
980 * by bits in the SCR or HCR registers.
1f79ee32 981 */
446c81ab
PM
982 if (el == 3) {
983 return aa64;
984 }
985
986 if (arm_feature(env, ARM_FEATURE_EL3)) {
987 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
988 }
989
990 if (el == 2) {
991 return aa64;
992 }
993
994 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
995 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
996 }
997
998 return aa64;
1f79ee32
PM
999}
1000
3f342b9e
SF
1001/* Function for determing whether guest cp register reads and writes should
1002 * access the secure or non-secure bank of a cp register. When EL3 is
1003 * operating in AArch32 state, the NS-bit determines whether the secure
1004 * instance of a cp register should be used. When EL3 is AArch64 (or if
1005 * it doesn't exist at all) then there is no register banking, and all
1006 * accesses are to the non-secure version.
1007 */
1008static inline bool access_secure_reg(CPUARMState *env)
1009{
1010 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1011 !arm_el_is_aa64(env, 3) &&
1012 !(env->cp15.scr_el3 & SCR_NS));
1013
1014 return ret;
1015}
1016
ea30a4b8
FA
1017/* Macros for accessing a specified CP register bank */
1018#define A32_BANKED_REG_GET(_env, _regname, _secure) \
1019 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1020
1021#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1022 do { \
1023 if (_secure) { \
1024 (_env)->cp15._regname##_s = (_val); \
1025 } else { \
1026 (_env)->cp15._regname##_ns = (_val); \
1027 } \
1028 } while (0)
1029
1030/* Macros for automatically accessing a specific CP register bank depending on
1031 * the current secure state of the system. These macros are not intended for
1032 * supporting instruction translation reads/writes as these are dependent
1033 * solely on the SCR.NS bit and not the mode.
1034 */
1035#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1036 A32_BANKED_REG_GET((_env), _regname, \
2cde031f 1037 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
ea30a4b8
FA
1038
1039#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1040 A32_BANKED_REG_SET((_env), _regname, \
2cde031f 1041 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
ea30a4b8
FA
1042 (_val))
1043
9a78eead 1044void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
012a906b
GB
1045uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1046 uint32_t cur_el, bool secure);
40f137e1 1047
9ee6e8bb
PB
1048/* Interface between CPU and Interrupt controller. */
1049void armv7m_nvic_set_pending(void *opaque, int irq);
1050int armv7m_nvic_acknowledge_irq(void *opaque);
1051void armv7m_nvic_complete_irq(void *opaque, int irq);
1052
4b6a83fb
PM
1053/* Interface for defining coprocessor registers.
1054 * Registers are defined in tables of arm_cp_reginfo structs
1055 * which are passed to define_arm_cp_regs().
1056 */
1057
1058/* When looking up a coprocessor register we look for it
1059 * via an integer which encodes all of:
1060 * coprocessor number
1061 * Crn, Crm, opc1, opc2 fields
1062 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1063 * or via MRRC/MCRR?)
51a79b03 1064 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
1065 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1066 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
1067 * For AArch64, there is no 32/64 bit size distinction;
1068 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1069 * and 4 bit CRn and CRm. The encoding patterns are chosen
1070 * to be easy to convert to and from the KVM encodings, and also
1071 * so that the hashtable can contain both AArch32 and AArch64
1072 * registers (to allow for interprocessing where we might run
1073 * 32 bit code on a 64 bit core).
4b6a83fb 1074 */
f5a0a5a5
PM
1075/* This bit is private to our hashtable cpreg; in KVM register
1076 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1077 * in the upper bits of the 64 bit ID.
1078 */
1079#define CP_REG_AA64_SHIFT 28
1080#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1081
51a79b03
PM
1082/* To enable banking of coprocessor registers depending on ns-bit we
1083 * add a bit to distinguish between secure and non-secure cpregs in the
1084 * hashtable.
1085 */
1086#define CP_REG_NS_SHIFT 29
1087#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1088
1089#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1090 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1091 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 1092
f5a0a5a5
PM
1093#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1094 (CP_REG_AA64_MASK | \
1095 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1096 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1097 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1098 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1099 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1100 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1101
721fae12
PM
1102/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1103 * version used as a key for the coprocessor register hashtable
1104 */
1105static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1106{
1107 uint32_t cpregid = kvmid;
f5a0a5a5
PM
1108 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1109 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
1110 } else {
1111 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1112 cpregid |= (1 << 15);
1113 }
1114
1115 /* KVM is always non-secure so add the NS flag on AArch32 register
1116 * entries.
1117 */
1118 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
1119 }
1120 return cpregid;
1121}
1122
1123/* Convert a truncated 32 bit hashtable key into the full
1124 * 64 bit KVM register ID.
1125 */
1126static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1127{
f5a0a5a5
PM
1128 uint64_t kvmid;
1129
1130 if (cpregid & CP_REG_AA64_MASK) {
1131 kvmid = cpregid & ~CP_REG_AA64_MASK;
1132 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 1133 } else {
f5a0a5a5
PM
1134 kvmid = cpregid & ~(1 << 15);
1135 if (cpregid & (1 << 15)) {
1136 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1137 } else {
1138 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1139 }
721fae12
PM
1140 }
1141 return kvmid;
1142}
1143
4b6a83fb
PM
1144/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1145 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1146 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1147 * TCG can assume the value to be constant (ie load at translate time)
1148 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1149 * indicates that the TB should not be ended after a write to this register
1150 * (the default is that the TB ends after cp writes). OVERRIDE permits
1151 * a register definition to override a previous definition for the
1152 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1153 * old must have the OVERRIDE bit set.
7a0e58fa
PM
1154 * ALIAS indicates that this register is an alias view of some underlying
1155 * state which is also visible via another register, and that the other
b061a82b
SF
1156 * register is handling migration and reset; registers marked ALIAS will not be
1157 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
1158 * NO_RAW indicates that this register has no underlying state and does not
1159 * support raw access for state saving/loading; it will not be used for either
1160 * migration or KVM state synchronization. (Typically this is for "registers"
1161 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
1162 * IO indicates that this register does I/O and therefore its accesses
1163 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1164 * registers which implement clocks or timers require this.
4b6a83fb
PM
1165 */
1166#define ARM_CP_SPECIAL 1
1167#define ARM_CP_CONST 2
1168#define ARM_CP_64BIT 4
1169#define ARM_CP_SUPPRESS_TB_END 8
1170#define ARM_CP_OVERRIDE 16
7a0e58fa 1171#define ARM_CP_ALIAS 32
2452731c 1172#define ARM_CP_IO 64
7a0e58fa 1173#define ARM_CP_NO_RAW 128
4b6a83fb
PM
1174#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1175#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
b0d2b7d0 1176#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
0eef9d98 1177#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
aca3f40b
PM
1178#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1179#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
4b6a83fb
PM
1180/* Used only as a terminator for ARMCPRegInfo lists */
1181#define ARM_CP_SENTINEL 0xffff
1182/* Mask of only the flag bits in a type field */
7a0e58fa 1183#define ARM_CP_FLAG_MASK 0xff
4b6a83fb 1184
f5a0a5a5
PM
1185/* Valid values for ARMCPRegInfo state field, indicating which of
1186 * the AArch32 and AArch64 execution states this register is visible in.
1187 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1188 * If the reginfo is declared to be visible in both states then a second
1189 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1190 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1191 * Note that we rely on the values of these enums as we iterate through
1192 * the various states in some places.
1193 */
1194enum {
1195 ARM_CP_STATE_AA32 = 0,
1196 ARM_CP_STATE_AA64 = 1,
1197 ARM_CP_STATE_BOTH = 2,
1198};
1199
c3e30260
FA
1200/* ARM CP register secure state flags. These flags identify security state
1201 * attributes for a given CP register entry.
1202 * The existence of both or neither secure and non-secure flags indicates that
1203 * the register has both a secure and non-secure hash entry. A single one of
1204 * these flags causes the register to only be hashed for the specified
1205 * security state.
1206 * Although definitions may have any combination of the S/NS bits, each
1207 * registered entry will only have one to identify whether the entry is secure
1208 * or non-secure.
1209 */
1210enum {
1211 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1212 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1213};
1214
4b6a83fb
PM
1215/* Return true if cptype is a valid type field. This is used to try to
1216 * catch errors where the sentinel has been accidentally left off the end
1217 * of a list of registers.
1218 */
1219static inline bool cptype_valid(int cptype)
1220{
1221 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1222 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 1223 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
1224}
1225
1226/* Access rights:
1227 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1228 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1229 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1230 * (ie any of the privileged modes in Secure state, or Monitor mode).
1231 * If a register is accessible in one privilege level it's always accessible
1232 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1233 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1234 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1235 * terminology a little and call this PL3.
f5a0a5a5
PM
1236 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1237 * with the ELx exception levels.
4b6a83fb
PM
1238 *
1239 * If access permissions for a register are more complex than can be
1240 * described with these bits, then use a laxer set of restrictions, and
1241 * do the more restrictive/complex check inside a helper function.
1242 */
1243#define PL3_R 0x80
1244#define PL3_W 0x40
1245#define PL2_R (0x20 | PL3_R)
1246#define PL2_W (0x10 | PL3_W)
1247#define PL1_R (0x08 | PL2_R)
1248#define PL1_W (0x04 | PL2_W)
1249#define PL0_R (0x02 | PL1_R)
1250#define PL0_W (0x01 | PL1_W)
1251
1252#define PL3_RW (PL3_R | PL3_W)
1253#define PL2_RW (PL2_R | PL2_W)
1254#define PL1_RW (PL1_R | PL1_W)
1255#define PL0_RW (PL0_R | PL0_W)
1256
dcbff19b
GB
1257/* Return the current Exception Level (as per ARMv8; note that this differs
1258 * from the ARMv7 Privilege Level).
1259 */
1260static inline int arm_current_el(CPUARMState *env)
4b6a83fb 1261{
6d54ed3c
PM
1262 if (arm_feature(env, ARM_FEATURE_M)) {
1263 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1264 }
1265
592125f8 1266 if (is_a64(env)) {
f5a0a5a5
PM
1267 return extract32(env->pstate, 2, 2);
1268 }
1269
592125f8
FA
1270 switch (env->uncached_cpsr & 0x1f) {
1271 case ARM_CPU_MODE_USR:
4b6a83fb 1272 return 0;
592125f8
FA
1273 case ARM_CPU_MODE_HYP:
1274 return 2;
1275 case ARM_CPU_MODE_MON:
1276 return 3;
1277 default:
1278 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1279 /* If EL3 is 32-bit then all secure privileged modes run in
1280 * EL3
1281 */
1282 return 3;
1283 }
1284
1285 return 1;
4b6a83fb 1286 }
4b6a83fb
PM
1287}
1288
1289typedef struct ARMCPRegInfo ARMCPRegInfo;
1290
f59df3f2
PM
1291typedef enum CPAccessResult {
1292 /* Access is permitted */
1293 CP_ACCESS_OK = 0,
1294 /* Access fails due to a configurable trap or enable which would
1295 * result in a categorized exception syndrome giving information about
1296 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
1297 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1298 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
1299 */
1300 CP_ACCESS_TRAP = 1,
1301 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1302 * Note that this is not a catch-all case -- the set of cases which may
1303 * result in this failure is specifically defined by the architecture.
1304 */
1305 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
1306 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1307 CP_ACCESS_TRAP_EL2 = 3,
1308 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
1309 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1310 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1311 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f59df3f2
PM
1312} CPAccessResult;
1313
c4241c7d
PM
1314/* Access functions for coprocessor registers. These cannot fail and
1315 * may not raise exceptions.
1316 */
1317typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1318typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1319 uint64_t value);
f59df3f2
PM
1320/* Access permission check functions for coprocessor registers. */
1321typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
4b6a83fb
PM
1322/* Hook function for register reset */
1323typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1324
1325#define CP_ANY 0xff
1326
1327/* Definition of an ARM coprocessor register */
1328struct ARMCPRegInfo {
1329 /* Name of register (useful mainly for debugging, need not be unique) */
1330 const char *name;
1331 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1332 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1333 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1334 * will be decoded to this register. The register read and write
1335 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1336 * used by the program, so it is possible to register a wildcard and
1337 * then behave differently on read/write if necessary.
1338 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1339 * must both be zero.
f5a0a5a5
PM
1340 * For AArch64-visible registers, opc0 is also used.
1341 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1342 * way to distinguish (for KVM's benefit) guest-visible system registers
1343 * from demuxed ones provided to preserve the "no side effects on
1344 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1345 * visible (to match KVM's encoding); cp==0 will be converted to
1346 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
1347 */
1348 uint8_t cp;
1349 uint8_t crn;
1350 uint8_t crm;
f5a0a5a5 1351 uint8_t opc0;
4b6a83fb
PM
1352 uint8_t opc1;
1353 uint8_t opc2;
f5a0a5a5
PM
1354 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1355 int state;
4b6a83fb
PM
1356 /* Register type: ARM_CP_* bits/values */
1357 int type;
1358 /* Access rights: PL*_[RW] */
1359 int access;
c3e30260
FA
1360 /* Security state: ARM_CP_SECSTATE_* bits/values */
1361 int secure;
4b6a83fb
PM
1362 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1363 * this register was defined: can be used to hand data through to the
1364 * register read/write functions, since they are passed the ARMCPRegInfo*.
1365 */
1366 void *opaque;
1367 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1368 * fieldoffset is non-zero, the reset value of the register.
1369 */
1370 uint64_t resetvalue;
c3e30260
FA
1371 /* Offset of the field in CPUARMState for this register.
1372 *
1373 * This is not needed if either:
4b6a83fb
PM
1374 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1375 * 2. both readfn and writefn are specified
1376 */
1377 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
1378
1379 /* Offsets of the secure and non-secure fields in CPUARMState for the
1380 * register if it is banked. These fields are only used during the static
1381 * registration of a register. During hashing the bank associated
1382 * with a given security state is copied to fieldoffset which is used from
1383 * there on out.
1384 *
1385 * It is expected that register definitions use either fieldoffset or
1386 * bank_fieldoffsets in the definition but not both. It is also expected
1387 * that both bank offsets are set when defining a banked register. This
1388 * use indicates that a register is banked.
1389 */
1390 ptrdiff_t bank_fieldoffsets[2];
1391
f59df3f2
PM
1392 /* Function for making any access checks for this register in addition to
1393 * those specified by the 'access' permissions bits. If NULL, no extra
1394 * checks required. The access check is performed at runtime, not at
1395 * translate time.
1396 */
1397 CPAccessFn *accessfn;
4b6a83fb
PM
1398 /* Function for handling reads of this register. If NULL, then reads
1399 * will be done by loading from the offset into CPUARMState specified
1400 * by fieldoffset.
1401 */
1402 CPReadFn *readfn;
1403 /* Function for handling writes of this register. If NULL, then writes
1404 * will be done by writing to the offset into CPUARMState specified
1405 * by fieldoffset.
1406 */
1407 CPWriteFn *writefn;
7023ec7e
PM
1408 /* Function for doing a "raw" read; used when we need to copy
1409 * coprocessor state to the kernel for KVM or out for
1410 * migration. This only needs to be provided if there is also a
c4241c7d 1411 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
1412 */
1413 CPReadFn *raw_readfn;
1414 /* Function for doing a "raw" write; used when we need to copy KVM
1415 * kernel coprocessor state into userspace, or for inbound
1416 * migration. This only needs to be provided if there is also a
c4241c7d
PM
1417 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1418 * or similar behaviour.
7023ec7e
PM
1419 */
1420 CPWriteFn *raw_writefn;
4b6a83fb
PM
1421 /* Function for resetting the register. If NULL, then reset will be done
1422 * by writing resetvalue to the field specified in fieldoffset. If
1423 * fieldoffset is 0 then no reset will be done.
1424 */
1425 CPResetFn *resetfn;
1426};
1427
1428/* Macros which are lvalues for the field in CPUARMState for the
1429 * ARMCPRegInfo *ri.
1430 */
1431#define CPREG_FIELD32(env, ri) \
1432 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1433#define CPREG_FIELD64(env, ri) \
1434 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1435
1436#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1437
1438void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1439 const ARMCPRegInfo *regs, void *opaque);
1440void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1441 const ARMCPRegInfo *regs, void *opaque);
1442static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1443{
1444 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1445}
1446static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1447{
1448 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1449}
60322b39 1450const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
1451
1452/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
1453void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1454 uint64_t value);
4b6a83fb 1455/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 1456uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 1457
f5a0a5a5
PM
1458/* CPResetFn that does nothing, for use if no reset is required even
1459 * if fieldoffset is non zero.
1460 */
1461void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1462
67ed771d
PM
1463/* Return true if this reginfo struct's field in the cpu state struct
1464 * is 64 bits wide.
1465 */
1466static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1467{
1468 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1469}
1470
dcbff19b 1471static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
1472 const ARMCPRegInfo *ri, int isread)
1473{
dcbff19b 1474 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
1475}
1476
49a66191
PM
1477/* Raw read of a coprocessor register (as needed for migration, etc) */
1478uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1479
721fae12
PM
1480/**
1481 * write_list_to_cpustate
1482 * @cpu: ARMCPU
1483 *
1484 * For each register listed in the ARMCPU cpreg_indexes list, write
1485 * its value from the cpreg_values list into the ARMCPUState structure.
1486 * This updates TCG's working data structures from KVM data or
1487 * from incoming migration state.
1488 *
1489 * Returns: true if all register values were updated correctly,
1490 * false if some register was unknown or could not be written.
1491 * Note that we do not stop early on failure -- we will attempt
1492 * writing all registers in the list.
1493 */
1494bool write_list_to_cpustate(ARMCPU *cpu);
1495
1496/**
1497 * write_cpustate_to_list:
1498 * @cpu: ARMCPU
1499 *
1500 * For each register listed in the ARMCPU cpreg_indexes list, write
1501 * its value from the ARMCPUState structure into the cpreg_values list.
1502 * This is used to copy info from TCG's working data structures into
1503 * KVM or for outbound migration.
1504 *
1505 * Returns: true if all register values were read correctly,
1506 * false if some register was unknown or could not be read.
1507 * Note that we do not stop early on failure -- we will attempt
1508 * reading all registers in the list.
1509 */
1510bool write_cpustate_to_list(ARMCPU *cpu);
1511
b6af0975 1512/* Does the core conform to the "MicroController" profile. e.g. Cortex-M3.
9ee6e8bb
PB
1513 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1514 conventional cores (ie. Application or Realtime profile). */
1515
1516#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 1517
9ee6e8bb
PB
1518#define ARM_CPUID_TI915T 0x54029152
1519#define ARM_CPUID_TI925T 0x54029252
40f137e1 1520
b5ff1b31 1521#if defined(CONFIG_USER_ONLY)
2c0262af 1522#define TARGET_PAGE_BITS 12
b5ff1b31
FB
1523#else
1524/* The ARM MMU allows 1k pages. */
1525/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 1526 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
1527#define TARGET_PAGE_BITS 10
1528#endif
9467d44c 1529
3926cc84
AG
1530#if defined(TARGET_AARCH64)
1531# define TARGET_PHYS_ADDR_SPACE_BITS 48
1532# define TARGET_VIRT_ADDR_SPACE_BITS 64
1533#else
1534# define TARGET_PHYS_ADDR_SPACE_BITS 40
1535# define TARGET_VIRT_ADDR_SPACE_BITS 32
1536#endif
52705890 1537
012a906b
GB
1538static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1539 unsigned int target_el)
043b7f8d
EI
1540{
1541 CPUARMState *env = cs->env_ptr;
dcbff19b 1542 unsigned int cur_el = arm_current_el(env);
57e3a0c7 1543 bool secure = arm_is_secure(env);
57e3a0c7
GB
1544 bool pstate_unmasked;
1545 int8_t unmasked = 0;
1546
1547 /* Don't take exceptions if they target a lower EL.
1548 * This check should catch any exceptions that would not be taken but left
1549 * pending.
1550 */
dfafd090
EI
1551 if (cur_el > target_el) {
1552 return false;
1553 }
043b7f8d
EI
1554
1555 switch (excp_idx) {
1556 case EXCP_FIQ:
57e3a0c7
GB
1557 pstate_unmasked = !(env->daif & PSTATE_F);
1558 break;
1559
043b7f8d 1560 case EXCP_IRQ:
57e3a0c7
GB
1561 pstate_unmasked = !(env->daif & PSTATE_I);
1562 break;
1563
136e67e9 1564 case EXCP_VFIQ:
9fae24f5 1565 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
136e67e9
EI
1566 /* VFIQs are only taken when hypervized and non-secure. */
1567 return false;
1568 }
1569 return !(env->daif & PSTATE_F);
1570 case EXCP_VIRQ:
9fae24f5 1571 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
136e67e9
EI
1572 /* VIRQs are only taken when hypervized and non-secure. */
1573 return false;
1574 }
b5c633c5 1575 return !(env->daif & PSTATE_I);
043b7f8d
EI
1576 default:
1577 g_assert_not_reached();
1578 }
57e3a0c7
GB
1579
1580 /* Use the target EL, current execution state and SCR/HCR settings to
1581 * determine whether the corresponding CPSR bit is used to mask the
1582 * interrupt.
1583 */
1584 if ((target_el > cur_el) && (target_el != 1)) {
7cd6de3b
PM
1585 /* Exceptions targeting a higher EL may not be maskable */
1586 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1587 /* 64-bit masking rules are simple: exceptions to EL3
1588 * can't be masked, and exceptions to EL2 can only be
1589 * masked from Secure state. The HCR and SCR settings
1590 * don't affect the masking logic, only the interrupt routing.
1591 */
1592 if (target_el == 3 || !secure) {
1593 unmasked = 1;
1594 }
1595 } else {
1596 /* The old 32-bit-only environment has a more complicated
1597 * masking setup. HCR and SCR bits not only affect interrupt
1598 * routing but also change the behaviour of masking.
1599 */
1600 bool hcr, scr;
1601
1602 switch (excp_idx) {
1603 case EXCP_FIQ:
1604 /* If FIQs are routed to EL3 or EL2 then there are cases where
1605 * we override the CPSR.F in determining if the exception is
1606 * masked or not. If neither of these are set then we fall back
1607 * to the CPSR.F setting otherwise we further assess the state
1608 * below.
1609 */
1610 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1611 scr = (env->cp15.scr_el3 & SCR_FIQ);
1612
1613 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1614 * CPSR.F bit masks FIQ interrupts when taken in non-secure
1615 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1616 * when non-secure but only when FIQs are only routed to EL3.
1617 */
1618 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1619 break;
1620 case EXCP_IRQ:
1621 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1622 * we may override the CPSR.I masking when in non-secure state.
1623 * The SCR.IRQ setting has already been taken into consideration
1624 * when setting the target EL, so it does not have a further
1625 * affect here.
1626 */
1627 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1628 scr = false;
1629 break;
1630 default:
1631 g_assert_not_reached();
1632 }
1633
1634 if ((scr || hcr) && !secure) {
1635 unmasked = 1;
1636 }
57e3a0c7
GB
1637 }
1638 }
1639
1640 /* The PSTATE bits only mask the interrupt if we have not overriden the
1641 * ability above.
1642 */
1643 return unmasked || pstate_unmasked;
043b7f8d
EI
1644}
1645
2994fd96 1646#define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
ad37ad5b 1647
9467d44c 1648#define cpu_exec cpu_arm_exec
9467d44c 1649#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 1650#define cpu_list arm_cpu_list
9467d44c 1651
c1e37810
PM
1652/* ARM has the following "translation regimes" (as the ARM ARM calls them):
1653 *
1654 * If EL3 is 64-bit:
1655 * + NonSecure EL1 & 0 stage 1
1656 * + NonSecure EL1 & 0 stage 2
1657 * + NonSecure EL2
1658 * + Secure EL1 & EL0
1659 * + Secure EL3
1660 * If EL3 is 32-bit:
1661 * + NonSecure PL1 & 0 stage 1
1662 * + NonSecure PL1 & 0 stage 2
1663 * + NonSecure PL2
1664 * + Secure PL0 & PL1
1665 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1666 *
1667 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1668 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1669 * may differ in access permissions even if the VA->PA map is the same
1670 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1671 * translation, which means that we have one mmu_idx that deals with two
1672 * concatenated translation regimes [this sort of combined s1+2 TLB is
1673 * architecturally permitted]
1674 * 3. we don't need to allocate an mmu_idx to translations that we won't be
1675 * handling via the TLB. The only way to do a stage 1 translation without
1676 * the immediate stage 2 translation is via the ATS or AT system insns,
1677 * which can be slow-pathed and always do a page table walk.
1678 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1679 * translation regimes, because they map reasonably well to each other
1680 * and they can't both be active at the same time.
1681 * This gives us the following list of mmu_idx values:
1682 *
1683 * NS EL0 (aka NS PL0) stage 1+2
1684 * NS EL1 (aka NS PL1) stage 1+2
1685 * NS EL2 (aka NS PL2)
1686 * S EL3 (aka S PL1)
1687 * S EL0 (aka S PL0)
1688 * S EL1 (not used if EL3 is 32 bit)
1689 * NS EL0+1 stage 2
1690 *
1691 * (The last of these is an mmu_idx because we want to be able to use the TLB
1692 * for the accesses done as part of a stage 1 page table walk, rather than
1693 * having to walk the stage 2 page table over and over.)
1694 *
1695 * Our enumeration includes at the end some entries which are not "true"
1696 * mmu_idx values in that they don't have corresponding TLBs and are only
1697 * valid for doing slow path page table walks.
1698 *
1699 * The constant names here are patterned after the general style of the names
1700 * of the AT/ATS operations.
1701 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
1702 */
1703typedef enum ARMMMUIdx {
1704 ARMMMUIdx_S12NSE0 = 0,
1705 ARMMMUIdx_S12NSE1 = 1,
1706 ARMMMUIdx_S1E2 = 2,
1707 ARMMMUIdx_S1E3 = 3,
1708 ARMMMUIdx_S1SE0 = 4,
1709 ARMMMUIdx_S1SE1 = 5,
1710 ARMMMUIdx_S2NS = 6,
1711 /* Indexes below here don't have TLBs and are used only for AT system
1712 * instructions or for the first stage of an S12 page table walk.
1713 */
1714 ARMMMUIdx_S1NSE0 = 7,
1715 ARMMMUIdx_S1NSE1 = 8,
1716} ARMMMUIdx;
1717
f79fbf39 1718#define MMU_USER_IDX 0
c1e37810
PM
1719
1720/* Return the exception level we're running at if this is our mmu_idx */
1721static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 1722{
c1e37810
PM
1723 assert(mmu_idx < ARMMMUIdx_S2NS);
1724 return mmu_idx & 3;
1725}
1726
1727/* Determine the current mmu_idx to use for normal loads/stores */
97ed5ccd 1728static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
c1e37810
PM
1729{
1730 int el = arm_current_el(env);
1731
1732 if (el < 2 && arm_is_secure_below_el3(env)) {
1733 return ARMMMUIdx_S1SE0 + el;
1734 }
1735 return el;
6ebbf390
JM
1736}
1737
9e273ef2
PM
1738/* Indexes used when registering address spaces with cpu_address_space_init */
1739typedef enum ARMASIdx {
1740 ARMASIdx_NS = 0,
1741 ARMASIdx_S = 1,
1742} ARMASIdx;
1743
3a298203
PM
1744/* Return the Exception Level targeted by debug exceptions;
1745 * currently always EL1 since we don't implement EL2 or EL3.
1746 */
1747static inline int arm_debug_target_el(CPUARMState *env)
1748{
81669b8b
SF
1749 bool secure = arm_is_secure(env);
1750 bool route_to_el2 = false;
1751
1752 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
1753 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
1754 env->cp15.mdcr_el2 & (1 << 8);
1755 }
1756
1757 if (route_to_el2) {
1758 return 2;
1759 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
1760 !arm_el_is_aa64(env, 3) && secure) {
1761 return 3;
1762 } else {
1763 return 1;
1764 }
3a298203
PM
1765}
1766
1767static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1768{
dcbff19b 1769 if (arm_current_el(env) == arm_debug_target_el(env)) {
3a298203
PM
1770 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1771 || (env->daif & PSTATE_D)) {
1772 return false;
1773 }
1774 }
1775 return true;
1776}
1777
1778static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1779{
dcbff19b 1780 if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
1781 return aa64_generate_debug_exceptions(env);
1782 }
dcbff19b 1783 return arm_current_el(env) != 2;
3a298203
PM
1784}
1785
1786/* Return true if debugging exceptions are currently enabled.
1787 * This corresponds to what in ARM ARM pseudocode would be
1788 * if UsingAArch32() then
1789 * return AArch32.GenerateDebugExceptions()
1790 * else
1791 * return AArch64.GenerateDebugExceptions()
1792 * We choose to push the if() down into this function for clarity,
1793 * since the pseudocode has it at all callsites except for the one in
1794 * CheckSoftwareStep(), where it is elided because both branches would
1795 * always return the same value.
1796 *
1797 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1798 * don't yet implement those exception levels or their associated trap bits.
1799 */
1800static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1801{
1802 if (env->aarch64) {
1803 return aa64_generate_debug_exceptions(env);
1804 } else {
1805 return aa32_generate_debug_exceptions(env);
1806 }
1807}
1808
1809/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1810 * implicitly means this always returns false in pre-v8 CPUs.)
1811 */
1812static inline bool arm_singlestep_active(CPUARMState *env)
1813{
1814 return extract32(env->cp15.mdscr_el1, 0, 1)
1815 && arm_el_is_aa64(env, arm_debug_target_el(env))
1816 && arm_generate_debug_exceptions(env);
1817}
1818
022c62cb 1819#include "exec/cpu-all.h"
622ed360 1820
3926cc84
AG
1821/* Bit usage in the TB flags field: bit 31 indicates whether we are
1822 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
1823 * We put flags which are shared between 32 and 64 bit mode at the top
1824 * of the word, and flags which apply to only one mode at the bottom.
3926cc84
AG
1825 */
1826#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1827#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
1828#define ARM_TBFLAG_MMUIDX_SHIFT 28
1829#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
1830#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
1831#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1832#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
1833#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
1834/* Target EL if we take a floating-point-disabled exception */
1835#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
1836#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
3926cc84
AG
1837
1838/* Bit usage when in AArch32 state: */
a1705768
PM
1839#define ARM_TBFLAG_THUMB_SHIFT 0
1840#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1841#define ARM_TBFLAG_VECLEN_SHIFT 1
1842#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1843#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1844#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
1845#define ARM_TBFLAG_VFPEN_SHIFT 7
1846#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1847#define ARM_TBFLAG_CONDEXEC_SHIFT 8
1848#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1849#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1850#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
c0f4af17
PM
1851/* We store the bottom two bits of the CPAR as TB flags and handle
1852 * checks on the other bits at runtime
1853 */
647f767b 1854#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
c0f4af17 1855#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
1856/* Indicates whether cp register reads and writes by guest code should access
1857 * the secure or nonsecure bank of banked registers; note that this is not
1858 * the same thing as the current security state of the processor!
1859 */
647f767b 1860#define ARM_TBFLAG_NS_SHIFT 19
3f342b9e 1861#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
3926cc84 1862
9dbbc748 1863/* Bit usage when in AArch64 state: currently we have no A64 specific bits */
a1705768
PM
1864
1865/* some convenience accessor macros */
3926cc84
AG
1866#define ARM_TBFLAG_AARCH64_STATE(F) \
1867 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
1868#define ARM_TBFLAG_MMUIDX(F) \
1869 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
1870#define ARM_TBFLAG_SS_ACTIVE(F) \
1871 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1872#define ARM_TBFLAG_PSTATE_SS(F) \
1873 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
1874#define ARM_TBFLAG_FPEXC_EL(F) \
1875 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
a1705768
PM
1876#define ARM_TBFLAG_THUMB(F) \
1877 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1878#define ARM_TBFLAG_VECLEN(F) \
1879 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1880#define ARM_TBFLAG_VECSTRIDE(F) \
1881 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
1882#define ARM_TBFLAG_VFPEN(F) \
1883 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1884#define ARM_TBFLAG_CONDEXEC(F) \
1885 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1886#define ARM_TBFLAG_BSWAP_CODE(F) \
1887 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
c0f4af17
PM
1888#define ARM_TBFLAG_XSCALE_CPAR(F) \
1889 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
1890#define ARM_TBFLAG_NS(F) \
1891 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
a1705768 1892
9dbbc748
GB
1893/* Return the exception level to which FP-disabled exceptions should
1894 * be taken, or 0 if FP is enabled.
1895 */
1896static inline int fp_exception_el(CPUARMState *env)
6b917547 1897{
ed1f13d6 1898 int fpen;
9dbbc748 1899 int cur_el = arm_current_el(env);
ed1f13d6 1900
9dbbc748
GB
1901 /* CPACR and the CPTR registers don't exist before v6, so FP is
1902 * always accessible
1903 */
1904 if (!arm_feature(env, ARM_FEATURE_V6)) {
1905 return 0;
1906 }
1907
1908 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
1909 * 0, 2 : trap EL0 and EL1/PL1 accesses
1910 * 1 : trap only EL0 accesses
1911 * 3 : trap no accesses
1912 */
1913 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
1914 switch (fpen) {
1915 case 0:
1916 case 2:
1917 if (cur_el == 0 || cur_el == 1) {
1918 /* Trap to PL1, which might be EL1 or EL3 */
1919 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1920 return 3;
1921 }
1922 return 1;
1923 }
1924 if (cur_el == 3 && !is_a64(env)) {
1925 /* Secure PL1 running at EL3 */
1926 return 3;
1927 }
1928 break;
1929 case 1:
1930 if (cur_el == 0) {
1931 return 1;
1932 }
1933 break;
1934 case 3:
1935 break;
1936 }
1937
1938 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
1939 * check because zero bits in the registers mean "don't trap".
1940 */
1941
1942 /* CPTR_EL2 : present in v7VE or v8 */
1943 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
1944 && !arm_is_secure_below_el3(env)) {
1945 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
1946 return 2;
1947 }
1948
1949 /* CPTR_EL3 : present in v8 */
1950 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
1951 /* Trap all FP ops to EL3 */
1952 return 3;
ed1f13d6 1953 }
8c6afa6a 1954
9dbbc748
GB
1955 return 0;
1956}
1957
1958static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1959 target_ulong *cs_base, int *flags)
1960{
3926cc84
AG
1961 if (is_a64(env)) {
1962 *pc = env->pc;
c1e37810 1963 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
05ed9a99 1964 } else {
3926cc84
AG
1965 *pc = env->regs[15];
1966 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1967 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1968 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1969 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1970 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
3f342b9e
SF
1971 if (!(access_secure_reg(env))) {
1972 *flags |= ARM_TBFLAG_NS_MASK;
1973 }
2c7ffc41
PM
1974 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1975 || arm_el_is_aa64(env, 1)) {
3926cc84
AG
1976 *flags |= ARM_TBFLAG_VFPEN_MASK;
1977 }
c0f4af17
PM
1978 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
1979 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
a1705768 1980 }
3926cc84 1981
97ed5ccd 1982 *flags |= (cpu_mmu_index(env, false) << ARM_TBFLAG_MMUIDX_SHIFT);
3cf6a0fc
PM
1983 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1984 * states defined in the ARM ARM for software singlestep:
1985 * SS_ACTIVE PSTATE.SS State
1986 * 0 x Inactive (the TB flag for SS is always 0)
1987 * 1 0 Active-pending
1988 * 1 1 Active-not-pending
1989 */
1990 if (arm_singlestep_active(env)) {
1991 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
1992 if (is_a64(env)) {
1993 if (env->pstate & PSTATE_SS) {
1994 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1995 }
1996 } else {
1997 if (env->uncached_cpsr & PSTATE_SS) {
1998 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1999 }
2000 }
2001 }
9dbbc748 2002 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
c1e37810 2003
3926cc84 2004 *cs_base = 0;
6b917547
AL
2005}
2006
022c62cb 2007#include "exec/exec-all.h"
f081c76c 2008
98128601
RH
2009enum {
2010 QEMU_PSCI_CONDUIT_DISABLED = 0,
2011 QEMU_PSCI_CONDUIT_SMC = 1,
2012 QEMU_PSCI_CONDUIT_HVC = 2,
2013};
2014
017518c1
PM
2015#ifndef CONFIG_USER_ONLY
2016/* Return the address space index to use for a memory access */
2017static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2018{
2019 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2020}
5ce4ff65
PM
2021
2022/* Return the AddressSpace to use for a memory access
2023 * (which depends on whether the access is S or NS, and whether
2024 * the board gave us a separate AddressSpace for S accesses).
2025 */
2026static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2027{
2028 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2029}
017518c1
PM
2030#endif
2031
2c0262af 2032#endif