]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/cpu.h
target-arm: Support coprocessor registers which do I/O
[mirror_qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3cf1e035
FB
22#define TARGET_LONG_BITS 32
23
9042c0e2
TS
24#define ELF_MACHINE EM_ARM
25
9349b4f9 26#define CPUArchState struct CPUARMState
c2764719 27
9a78eead
SW
28#include "config.h"
29#include "qemu-common.h"
022c62cb 30#include "exec/cpu-defs.h"
2c0262af 31
6b4c305c 32#include "fpu/softfloat.h"
53cd6637 33
1fddef4b
FB
34#define TARGET_HAS_ICE 1
35
b8a9e8f1
FB
36#define EXCP_UDEF 1 /* undefined instruction */
37#define EXCP_SWI 2 /* software interrupt */
38#define EXCP_PREFETCH_ABORT 3
39#define EXCP_DATA_ABORT 4
b5ff1b31
FB
40#define EXCP_IRQ 5
41#define EXCP_FIQ 6
06c949e6 42#define EXCP_BKPT 7
9ee6e8bb 43#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 44#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 45#define EXCP_STREX 10
9ee6e8bb
PB
46
47#define ARMV7M_EXCP_RESET 1
48#define ARMV7M_EXCP_NMI 2
49#define ARMV7M_EXCP_HARD 3
50#define ARMV7M_EXCP_MEM 4
51#define ARMV7M_EXCP_BUS 5
52#define ARMV7M_EXCP_USAGE 6
53#define ARMV7M_EXCP_SVC 11
54#define ARMV7M_EXCP_DEBUG 12
55#define ARMV7M_EXCP_PENDSV 14
56#define ARMV7M_EXCP_SYSTICK 15
2c0262af 57
403946c0
RH
58/* ARM-specific interrupt pending bits. */
59#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
60
7c1840b6
PM
61/* Meanings of the ARMCPU object's two inbound GPIO lines */
62#define ARM_CPU_IRQ 0
63#define ARM_CPU_FIQ 1
403946c0 64
c1713132
AZ
65typedef void ARMWriteCPFunc(void *opaque, int cp_info,
66 int srcreg, int operand, uint32_t value);
67typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
68 int dstreg, int operand);
69
f93eb9ff
AZ
70struct arm_boot_info;
71
6ebbf390
JM
72#define NB_MMU_MODES 2
73
b7bcbe95
FB
74/* We currently assume float and double are IEEE single and double
75 precision respectively.
76 Doing runtime conversions is tricky because VFP registers may contain
77 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
78 s<2n> maps to the least significant half of d<n>
79 s<2n+1> maps to the most significant half of d<n>
80 */
b7bcbe95 81
2c0262af 82typedef struct CPUARMState {
b5ff1b31 83 /* Regs for current mode. */
2c0262af 84 uint32_t regs[16];
b90372ad 85 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 86 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
87 the whole CPSR. */
88 uint32_t uncached_cpsr;
89 uint32_t spsr;
90
91 /* Banked registers. */
92 uint32_t banked_spsr[6];
93 uint32_t banked_r13[6];
94 uint32_t banked_r14[6];
3b46e624 95
b5ff1b31
FB
96 /* These hold r8-r12. */
97 uint32_t usr_regs[5];
98 uint32_t fiq_regs[5];
3b46e624 99
2c0262af
FB
100 /* cpsr flag cache for faster execution */
101 uint32_t CF; /* 0 or 1 */
102 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
103 uint32_t NF; /* N is bit 31. All other bits are undefined. */
104 uint32_t ZF; /* Z set if zero. */
99c475ab 105 uint32_t QF; /* 0 or 1 */
9ee6e8bb 106 uint32_t GE; /* cpsr[19:16] */
b26eefb6 107 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 108 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
2c0262af 109
b5ff1b31
FB
110 /* System control coprocessor (cp15) */
111 struct {
40f137e1 112 uint32_t c0_cpuid;
a49ea279 113 uint32_t c0_cssel; /* Cache size selection. */
b5ff1b31
FB
114 uint32_t c1_sys; /* System control register. */
115 uint32_t c1_coproc; /* Coprocessor access register. */
610c3c8a 116 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
2be27624 117 uint32_t c1_scr; /* secure config register. */
9ee6e8bb 118 uint32_t c2_base0; /* MMU translation table base 0. */
891a2fe7
PM
119 uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
120 uint32_t c2_base1; /* MMU translation table base 0. */
121 uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
b2fa1797
PB
122 uint32_t c2_control; /* MMU translation table base control. */
123 uint32_t c2_mask; /* MMU translation table base selection mask. */
124 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
125 uint32_t c2_data; /* MPU data cachable bits. */
126 uint32_t c2_insn; /* MPU instruction cachable bits. */
127 uint32_t c3; /* MMU domain access control register
128 MPU write buffer control. */
b5ff1b31
FB
129 uint32_t c5_insn; /* Fault status registers. */
130 uint32_t c5_data;
ce819861 131 uint32_t c6_region[8]; /* MPU base/size registers. */
b5ff1b31
FB
132 uint32_t c6_insn; /* Fault address registers. */
133 uint32_t c6_data;
f8bf8606 134 uint32_t c7_par; /* Translation result. */
891a2fe7 135 uint32_t c7_par_hi; /* Translation result, high 32 bits */
b5ff1b31
FB
136 uint32_t c9_insn; /* Cache lockdown registers. */
137 uint32_t c9_data;
74594c9d
PM
138 uint32_t c9_pmcr; /* performance monitor control register */
139 uint32_t c9_pmcnten; /* perf monitor counter enables */
140 uint32_t c9_pmovsr; /* perf monitor overflow status */
141 uint32_t c9_pmxevtyper; /* perf monitor event type */
142 uint32_t c9_pmuserenr; /* perf monitor user enable */
143 uint32_t c9_pminten; /* perf monitor interrupt enables */
b5ff1b31
FB
144 uint32_t c13_fcse; /* FCSE PID. */
145 uint32_t c13_context; /* Context ID. */
9ee6e8bb
PB
146 uint32_t c13_tls1; /* User RW Thread register. */
147 uint32_t c13_tls2; /* User RO Thread register. */
148 uint32_t c13_tls3; /* Privileged Thread register. */
c1713132 149 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
150 uint32_t c15_ticonfig; /* TI925T configuration byte. */
151 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
152 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
153 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
154 uint32_t c15_config_base_address; /* SCU base address. */
155 uint32_t c15_diagnostic; /* diagnostic register */
156 uint32_t c15_power_diagnostic;
157 uint32_t c15_power_control; /* power control */
b5ff1b31 158 } cp15;
40f137e1 159
9ee6e8bb
PB
160 struct {
161 uint32_t other_sp;
162 uint32_t vecbase;
163 uint32_t basepri;
164 uint32_t control;
165 int current_sp;
166 int exception;
167 int pending_exception;
9ee6e8bb
PB
168 } v7m;
169
fe1479c3
PB
170 /* Thumb-2 EE state. */
171 uint32_t teecr;
172 uint32_t teehbr;
173
b7bcbe95
FB
174 /* VFP coprocessor state. */
175 struct {
9ee6e8bb 176 float64 regs[32];
b7bcbe95 177
40f137e1 178 uint32_t xregs[16];
b7bcbe95
FB
179 /* We store these fpcsr fields separately for convenience. */
180 int vec_len;
181 int vec_stride;
182
9ee6e8bb
PB
183 /* scratch space when Tn are not sufficient. */
184 uint32_t scratch[8];
3b46e624 185
3a492f3a
PM
186 /* fp_status is the "normal" fp status. standard_fp_status retains
187 * values corresponding to the ARM "Standard FPSCR Value", ie
188 * default-NaN, flush-to-zero, round-to-nearest and is used by
189 * any operations (generally Neon) which the architecture defines
190 * as controlled by the standard FPSCR value rather than the FPSCR.
191 *
192 * To avoid having to transfer exception bits around, we simply
193 * say that the FPSCR cumulative exception flags are the logical
194 * OR of the flags in the two fp statuses. This relies on the
195 * only thing which needs to read the exception flags being
196 * an explicit FPSCR read.
197 */
53cd6637 198 float_status fp_status;
3a492f3a 199 float_status standard_fp_status;
b7bcbe95 200 } vfp;
426f5abc
PB
201 uint32_t exclusive_addr;
202 uint32_t exclusive_val;
203 uint32_t exclusive_high;
9ee6e8bb 204#if defined(CONFIG_USER_ONLY)
426f5abc
PB
205 uint32_t exclusive_test;
206 uint32_t exclusive_info;
9ee6e8bb 207#endif
b7bcbe95 208
18c9b560
AZ
209 /* iwMMXt coprocessor state. */
210 struct {
211 uint64_t regs[16];
212 uint64_t val;
213
214 uint32_t cregs[16];
215 } iwmmxt;
216
d8fd2954
PB
217 /* For mixed endian mode. */
218 bool bswap_code;
219
ce4defa0
PB
220#if defined(CONFIG_USER_ONLY)
221 /* For usermode syscall translation. */
222 int eabi;
223#endif
224
a316d335
FB
225 CPU_COMMON
226
9d551997 227 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 228
581be094 229 /* Internal CPU feature flags. */
918f5dca 230 uint64_t features;
581be094 231
983fe826 232 void *nvic;
462a8bc6 233 const struct arm_boot_info *boot_info;
2c0262af
FB
234} CPUARMState;
235
778c3a06
AF
236#include "cpu-qom.h"
237
238ARMCPU *cpu_arm_init(const char *cpu_model);
b26eefb6 239void arm_translate_init(void);
14969266 240void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
2c0262af 241int cpu_arm_exec(CPUARMState *s);
494b00c7 242int bank_number(int mode);
b5ff1b31 243void switch_mode(CPUARMState *, int);
9ee6e8bb 244uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 245
2c0262af
FB
246/* you can call this signal handler from your SIGBUS and SIGSEGV
247 signal handlers to inform the virtual CPU of exceptions. non zero
248 is returned if the signal was handled by the virtual CPU. */
5fafdf24 249int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 250 void *puc);
84a031c6 251int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 252 int mmu_idx);
0b5c1ce8 253#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
2c0262af 254
b5ff1b31
FB
255#define CPSR_M (0x1f)
256#define CPSR_T (1 << 5)
257#define CPSR_F (1 << 6)
258#define CPSR_I (1 << 7)
259#define CPSR_A (1 << 8)
260#define CPSR_E (1 << 9)
261#define CPSR_IT_2_7 (0xfc00)
9ee6e8bb
PB
262#define CPSR_GE (0xf << 16)
263#define CPSR_RESERVED (0xf << 20)
b5ff1b31
FB
264#define CPSR_J (1 << 24)
265#define CPSR_IT_0_1 (3 << 25)
266#define CPSR_Q (1 << 27)
9ee6e8bb
PB
267#define CPSR_V (1 << 28)
268#define CPSR_C (1 << 29)
269#define CPSR_Z (1 << 30)
270#define CPSR_N (1 << 31)
271#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
272
273#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
274#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
275/* Bits writable in user mode. */
276#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
277/* Execution state bits. MRS read as zero, MSR writes ignored. */
278#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
b5ff1b31 279
b5ff1b31 280/* Return the current CPSR value. */
2f4a40e5
AZ
281uint32_t cpsr_read(CPUARMState *env);
282/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
283void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
284
285/* Return the current xPSR value. */
286static inline uint32_t xpsr_read(CPUARMState *env)
287{
288 int ZF;
6fbe23d5
PB
289 ZF = (env->ZF == 0);
290 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
291 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
292 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
293 | ((env->condexec_bits & 0xfc) << 8)
294 | env->v7m.exception;
b5ff1b31
FB
295}
296
9ee6e8bb
PB
297/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
298static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
299{
9ee6e8bb 300 if (mask & CPSR_NZCV) {
6fbe23d5
PB
301 env->ZF = (~val) & CPSR_Z;
302 env->NF = val;
9ee6e8bb
PB
303 env->CF = (val >> 29) & 1;
304 env->VF = (val << 3) & 0x80000000;
305 }
306 if (mask & CPSR_Q)
307 env->QF = ((val & CPSR_Q) != 0);
308 if (mask & (1 << 24))
309 env->thumb = ((val & (1 << 24)) != 0);
310 if (mask & CPSR_IT_0_1) {
311 env->condexec_bits &= ~3;
312 env->condexec_bits |= (val >> 25) & 3;
313 }
314 if (mask & CPSR_IT_2_7) {
315 env->condexec_bits &= 3;
316 env->condexec_bits |= (val >> 8) & 0xfc;
317 }
318 if (mask & 0x1ff) {
319 env->v7m.exception = val & 0x1ff;
320 }
321}
322
01653295
PM
323/* Return the current FPSCR value. */
324uint32_t vfp_get_fpscr(CPUARMState *env);
325void vfp_set_fpscr(CPUARMState *env, uint32_t val);
326
b5ff1b31
FB
327enum arm_cpu_mode {
328 ARM_CPU_MODE_USR = 0x10,
329 ARM_CPU_MODE_FIQ = 0x11,
330 ARM_CPU_MODE_IRQ = 0x12,
331 ARM_CPU_MODE_SVC = 0x13,
332 ARM_CPU_MODE_ABT = 0x17,
333 ARM_CPU_MODE_UND = 0x1b,
334 ARM_CPU_MODE_SYS = 0x1f
335};
336
40f137e1
PB
337/* VFP system registers. */
338#define ARM_VFP_FPSID 0
339#define ARM_VFP_FPSCR 1
9ee6e8bb
PB
340#define ARM_VFP_MVFR1 6
341#define ARM_VFP_MVFR0 7
40f137e1
PB
342#define ARM_VFP_FPEXC 8
343#define ARM_VFP_FPINST 9
344#define ARM_VFP_FPINST2 10
345
18c9b560
AZ
346/* iwMMXt coprocessor control registers. */
347#define ARM_IWMMXT_wCID 0
348#define ARM_IWMMXT_wCon 1
349#define ARM_IWMMXT_wCSSF 2
350#define ARM_IWMMXT_wCASF 3
351#define ARM_IWMMXT_wCGR0 8
352#define ARM_IWMMXT_wCGR1 9
353#define ARM_IWMMXT_wCGR2 10
354#define ARM_IWMMXT_wCGR3 11
355
ce854d7c
BC
356/* If adding a feature bit which corresponds to a Linux ELF
357 * HWCAP bit, remember to update the feature-bit-to-hwcap
358 * mapping in linux-user/elfload.c:get_elf_hwcap().
359 */
40f137e1
PB
360enum arm_features {
361 ARM_FEATURE_VFP,
c1713132
AZ
362 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
363 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 364 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
365 ARM_FEATURE_V6,
366 ARM_FEATURE_V6K,
367 ARM_FEATURE_V7,
368 ARM_FEATURE_THUMB2,
c3d2689d 369 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 370 ARM_FEATURE_VFP3,
60011498 371 ARM_FEATURE_VFP_FP16,
9ee6e8bb 372 ARM_FEATURE_NEON,
47789990 373 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 374 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 375 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 376 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
377 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
378 ARM_FEATURE_V4T,
379 ARM_FEATURE_V5,
5bc95aa2 380 ARM_FEATURE_STRONGARM,
906879a9 381 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 382 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 383 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 384 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 385 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 386 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
387 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
388 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
389 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 390 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
391 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
392 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 393 ARM_FEATURE_V8,
40f137e1
PB
394};
395
396static inline int arm_feature(CPUARMState *env, int feature)
397{
918f5dca 398 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
399}
400
9a78eead 401void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
40f137e1 402
9ee6e8bb
PB
403/* Interface between CPU and Interrupt controller. */
404void armv7m_nvic_set_pending(void *opaque, int irq);
405int armv7m_nvic_acknowledge_irq(void *opaque);
406void armv7m_nvic_complete_irq(void *opaque, int irq);
407
4b6a83fb
PM
408/* Interface for defining coprocessor registers.
409 * Registers are defined in tables of arm_cp_reginfo structs
410 * which are passed to define_arm_cp_regs().
411 */
412
413/* When looking up a coprocessor register we look for it
414 * via an integer which encodes all of:
415 * coprocessor number
416 * Crn, Crm, opc1, opc2 fields
417 * 32 or 64 bit register (ie is it accessed via MRC/MCR
418 * or via MRRC/MCRR?)
419 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
420 * (In this case crn and opc2 should be zero.)
421 */
422#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
423 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
424 ((crm) << 7) | ((opc1) << 3) | (opc2))
425
721fae12
PM
426/* Note that these must line up with the KVM/ARM register
427 * ID field definitions (kvm.c will check this, but we
428 * can't just use the KVM defines here as the kvm headers
429 * are unavailable to non-KVM-specific files)
430 */
431#define CP_REG_SIZE_SHIFT 52
432#define CP_REG_SIZE_MASK 0x00f0000000000000ULL
433#define CP_REG_SIZE_U32 0x0020000000000000ULL
434#define CP_REG_SIZE_U64 0x0030000000000000ULL
435#define CP_REG_ARM 0x4000000000000000ULL
436
437/* Convert a full 64 bit KVM register ID to the truncated 32 bit
438 * version used as a key for the coprocessor register hashtable
439 */
440static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
441{
442 uint32_t cpregid = kvmid;
443 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
444 cpregid |= (1 << 15);
445 }
446 return cpregid;
447}
448
449/* Convert a truncated 32 bit hashtable key into the full
450 * 64 bit KVM register ID.
451 */
452static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
453{
454 uint64_t kvmid = cpregid & ~(1 << 15);
455 if (cpregid & (1 << 15)) {
456 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
457 } else {
458 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
459 }
460 return kvmid;
461}
462
4b6a83fb
PM
463/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
464 * special-behaviour cp reg and bits [15..8] indicate what behaviour
465 * it has. Otherwise it is a simple cp reg, where CONST indicates that
466 * TCG can assume the value to be constant (ie load at translate time)
467 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
468 * indicates that the TB should not be ended after a write to this register
469 * (the default is that the TB ends after cp writes). OVERRIDE permits
470 * a register definition to override a previous definition for the
471 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
472 * old must have the OVERRIDE bit set.
7023ec7e
PM
473 * NO_MIGRATE indicates that this register should be ignored for migration;
474 * (eg because any state is accessed via some other coprocessor register).
2452731c
PM
475 * IO indicates that this register does I/O and therefore its accesses
476 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
477 * registers which implement clocks or timers require this.
4b6a83fb
PM
478 */
479#define ARM_CP_SPECIAL 1
480#define ARM_CP_CONST 2
481#define ARM_CP_64BIT 4
482#define ARM_CP_SUPPRESS_TB_END 8
483#define ARM_CP_OVERRIDE 16
7023ec7e 484#define ARM_CP_NO_MIGRATE 32
2452731c 485#define ARM_CP_IO 64
4b6a83fb
PM
486#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
487#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
488#define ARM_LAST_SPECIAL ARM_CP_WFI
489/* Used only as a terminator for ARMCPRegInfo lists */
490#define ARM_CP_SENTINEL 0xffff
491/* Mask of only the flag bits in a type field */
2452731c 492#define ARM_CP_FLAG_MASK 0x7f
4b6a83fb
PM
493
494/* Return true if cptype is a valid type field. This is used to try to
495 * catch errors where the sentinel has been accidentally left off the end
496 * of a list of registers.
497 */
498static inline bool cptype_valid(int cptype)
499{
500 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
501 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 502 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
503}
504
505/* Access rights:
506 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
507 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
508 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
509 * (ie any of the privileged modes in Secure state, or Monitor mode).
510 * If a register is accessible in one privilege level it's always accessible
511 * in higher privilege levels too. Since "Secure PL1" also follows this rule
512 * (ie anything visible in PL2 is visible in S-PL1, some things are only
513 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
514 * terminology a little and call this PL3.
515 *
516 * If access permissions for a register are more complex than can be
517 * described with these bits, then use a laxer set of restrictions, and
518 * do the more restrictive/complex check inside a helper function.
519 */
520#define PL3_R 0x80
521#define PL3_W 0x40
522#define PL2_R (0x20 | PL3_R)
523#define PL2_W (0x10 | PL3_W)
524#define PL1_R (0x08 | PL2_R)
525#define PL1_W (0x04 | PL2_W)
526#define PL0_R (0x02 | PL1_R)
527#define PL0_W (0x01 | PL1_W)
528
529#define PL3_RW (PL3_R | PL3_W)
530#define PL2_RW (PL2_R | PL2_W)
531#define PL1_RW (PL1_R | PL1_W)
532#define PL0_RW (PL0_R | PL0_W)
533
534static inline int arm_current_pl(CPUARMState *env)
535{
536 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
537 return 0;
538 }
539 /* We don't currently implement the Virtualization or TrustZone
540 * extensions, so PL2 and PL3 don't exist for us.
541 */
542 return 1;
543}
544
545typedef struct ARMCPRegInfo ARMCPRegInfo;
546
547/* Access functions for coprocessor registers. These should return
548 * 0 on success, or one of the EXCP_* constants if access should cause
549 * an exception (in which case *value is not written).
550 */
551typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
552 uint64_t *value);
553typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
554 uint64_t value);
555/* Hook function for register reset */
556typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
557
558#define CP_ANY 0xff
559
560/* Definition of an ARM coprocessor register */
561struct ARMCPRegInfo {
562 /* Name of register (useful mainly for debugging, need not be unique) */
563 const char *name;
564 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
565 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
566 * 'wildcard' field -- any value of that field in the MRC/MCR insn
567 * will be decoded to this register. The register read and write
568 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
569 * used by the program, so it is possible to register a wildcard and
570 * then behave differently on read/write if necessary.
571 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
572 * must both be zero.
573 */
574 uint8_t cp;
575 uint8_t crn;
576 uint8_t crm;
577 uint8_t opc1;
578 uint8_t opc2;
579 /* Register type: ARM_CP_* bits/values */
580 int type;
581 /* Access rights: PL*_[RW] */
582 int access;
583 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
584 * this register was defined: can be used to hand data through to the
585 * register read/write functions, since they are passed the ARMCPRegInfo*.
586 */
587 void *opaque;
588 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
589 * fieldoffset is non-zero, the reset value of the register.
590 */
591 uint64_t resetvalue;
592 /* Offset of the field in CPUARMState for this register. This is not
593 * needed if either:
594 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
595 * 2. both readfn and writefn are specified
596 */
597 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
598 /* Function for handling reads of this register. If NULL, then reads
599 * will be done by loading from the offset into CPUARMState specified
600 * by fieldoffset.
601 */
602 CPReadFn *readfn;
603 /* Function for handling writes of this register. If NULL, then writes
604 * will be done by writing to the offset into CPUARMState specified
605 * by fieldoffset.
606 */
607 CPWriteFn *writefn;
7023ec7e
PM
608 /* Function for doing a "raw" read; used when we need to copy
609 * coprocessor state to the kernel for KVM or out for
610 * migration. This only needs to be provided if there is also a
611 * readfn and it makes an access permission check.
612 */
613 CPReadFn *raw_readfn;
614 /* Function for doing a "raw" write; used when we need to copy KVM
615 * kernel coprocessor state into userspace, or for inbound
616 * migration. This only needs to be provided if there is also a
617 * writefn and it makes an access permission check or masks out
618 * "unwritable" bits or has write-one-to-clear or similar behaviour.
619 */
620 CPWriteFn *raw_writefn;
4b6a83fb
PM
621 /* Function for resetting the register. If NULL, then reset will be done
622 * by writing resetvalue to the field specified in fieldoffset. If
623 * fieldoffset is 0 then no reset will be done.
624 */
625 CPResetFn *resetfn;
626};
627
628/* Macros which are lvalues for the field in CPUARMState for the
629 * ARMCPRegInfo *ri.
630 */
631#define CPREG_FIELD32(env, ri) \
632 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
633#define CPREG_FIELD64(env, ri) \
634 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
635
636#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
637
638void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
639 const ARMCPRegInfo *regs, void *opaque);
640void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
641 const ARMCPRegInfo *regs, void *opaque);
642static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
643{
644 define_arm_cp_regs_with_opaque(cpu, regs, 0);
645}
646static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
647{
648 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
649}
650const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
651
652/* CPWriteFn that can be used to implement writes-ignored behaviour */
653int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
654 uint64_t value);
655/* CPReadFn that can be used for read-as-zero behaviour */
656int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
657
658static inline bool cp_access_ok(CPUARMState *env,
659 const ARMCPRegInfo *ri, int isread)
660{
661 return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
662}
663
721fae12
PM
664/**
665 * write_list_to_cpustate
666 * @cpu: ARMCPU
667 *
668 * For each register listed in the ARMCPU cpreg_indexes list, write
669 * its value from the cpreg_values list into the ARMCPUState structure.
670 * This updates TCG's working data structures from KVM data or
671 * from incoming migration state.
672 *
673 * Returns: true if all register values were updated correctly,
674 * false if some register was unknown or could not be written.
675 * Note that we do not stop early on failure -- we will attempt
676 * writing all registers in the list.
677 */
678bool write_list_to_cpustate(ARMCPU *cpu);
679
680/**
681 * write_cpustate_to_list:
682 * @cpu: ARMCPU
683 *
684 * For each register listed in the ARMCPU cpreg_indexes list, write
685 * its value from the ARMCPUState structure into the cpreg_values list.
686 * This is used to copy info from TCG's working data structures into
687 * KVM or for outbound migration.
688 *
689 * Returns: true if all register values were read correctly,
690 * false if some register was unknown or could not be read.
691 * Note that we do not stop early on failure -- we will attempt
692 * reading all registers in the list.
693 */
694bool write_cpustate_to_list(ARMCPU *cpu);
695
9ee6e8bb
PB
696/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
697 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
698 conventional cores (ie. Application or Realtime profile). */
699
700#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 701
9ee6e8bb
PB
702#define ARM_CPUID_TI915T 0x54029152
703#define ARM_CPUID_TI925T 0x54029252
40f137e1 704
b5ff1b31 705#if defined(CONFIG_USER_ONLY)
2c0262af 706#define TARGET_PAGE_BITS 12
b5ff1b31
FB
707#else
708/* The ARM MMU allows 1k pages. */
709/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 710 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
711#define TARGET_PAGE_BITS 10
712#endif
9467d44c 713
3cc0cd61 714#define TARGET_PHYS_ADDR_SPACE_BITS 40
52705890
RH
715#define TARGET_VIRT_ADDR_SPACE_BITS 32
716
ad37ad5b
PM
717static inline CPUARMState *cpu_init(const char *cpu_model)
718{
719 ARMCPU *cpu = cpu_arm_init(cpu_model);
720 if (cpu) {
721 return &cpu->env;
722 }
723 return NULL;
724}
725
9467d44c
TS
726#define cpu_exec cpu_arm_exec
727#define cpu_gen_code cpu_arm_gen_code
728#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 729#define cpu_list arm_cpu_list
9467d44c 730
6ebbf390
JM
731/* MMU modes definitions */
732#define MMU_MODE0_SUFFIX _kernel
733#define MMU_MODE1_SUFFIX _user
734#define MMU_USER_IDX 1
0ecb72a5 735static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390
JM
736{
737 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
738}
739
022c62cb 740#include "exec/cpu-all.h"
622ed360 741
a1705768
PM
742/* Bit usage in the TB flags field: */
743#define ARM_TBFLAG_THUMB_SHIFT 0
744#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
745#define ARM_TBFLAG_VECLEN_SHIFT 1
746#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
747#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
748#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
749#define ARM_TBFLAG_PRIV_SHIFT 6
750#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
751#define ARM_TBFLAG_VFPEN_SHIFT 7
752#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
753#define ARM_TBFLAG_CONDEXEC_SHIFT 8
754#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
755#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
756#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
757/* Bits 31..17 are currently unused. */
a1705768
PM
758
759/* some convenience accessor macros */
760#define ARM_TBFLAG_THUMB(F) \
761 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
762#define ARM_TBFLAG_VECLEN(F) \
763 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
764#define ARM_TBFLAG_VECSTRIDE(F) \
765 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
766#define ARM_TBFLAG_PRIV(F) \
767 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
768#define ARM_TBFLAG_VFPEN(F) \
769 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
770#define ARM_TBFLAG_CONDEXEC(F) \
771 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
772#define ARM_TBFLAG_BSWAP_CODE(F) \
773 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
a1705768 774
0ecb72a5 775static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
776 target_ulong *cs_base, int *flags)
777{
05ed9a99 778 int privmode;
6b917547
AL
779 *pc = env->regs[15];
780 *cs_base = 0;
a1705768
PM
781 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
782 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
783 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
d8fd2954
PB
784 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
785 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
05ed9a99
PM
786 if (arm_feature(env, ARM_FEATURE_M)) {
787 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
788 } else {
789 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
790 }
791 if (privmode) {
a1705768
PM
792 *flags |= ARM_TBFLAG_PRIV_MASK;
793 }
794 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
795 *flags |= ARM_TBFLAG_VFPEN_MASK;
796 }
6b917547
AL
797}
798
3993c6bd 799static inline bool cpu_has_work(CPUState *cpu)
f081c76c 800{
259186a7 801 return cpu->interrupt_request &
f081c76c
BS
802 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
803}
804
022c62cb 805#include "exec/exec-all.h"
f081c76c 806
d8fd2954 807/* Load an instruction and return it in the standard little-endian order */
d31dd73e
BS
808static inline uint32_t arm_ldl_code(CPUARMState *env, uint32_t addr,
809 bool do_swap)
d8fd2954 810{
d31dd73e 811 uint32_t insn = cpu_ldl_code(env, addr);
d8fd2954
PB
812 if (do_swap) {
813 return bswap32(insn);
814 }
815 return insn;
816}
817
818/* Ditto, for a halfword (Thumb) instruction */
d31dd73e
BS
819static inline uint16_t arm_lduw_code(CPUARMState *env, uint32_t addr,
820 bool do_swap)
d8fd2954 821{
d31dd73e 822 uint16_t insn = cpu_lduw_code(env, addr);
d8fd2954
PB
823 if (do_swap) {
824 return bswap16(insn);
825 }
826 return insn;
827}
828
2c0262af 829#endif