]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/cpu.h
target-arm: Implement AArch64 view of CPACR
[mirror_qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3926cc84 22#include "config.h"
3cf1e035 23
72b0cd35
PM
24#include "kvm-consts.h"
25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
29# define ELF_MACHINE EM_AARCH64
30#else
31# define TARGET_LONG_BITS 32
32# define ELF_MACHINE EM_ARM
33#endif
9042c0e2 34
9349b4f9 35#define CPUArchState struct CPUARMState
c2764719 36
9a78eead 37#include "qemu-common.h"
022c62cb 38#include "exec/cpu-defs.h"
2c0262af 39
6b4c305c 40#include "fpu/softfloat.h"
53cd6637 41
1fddef4b
FB
42#define TARGET_HAS_ICE 1
43
b8a9e8f1
FB
44#define EXCP_UDEF 1 /* undefined instruction */
45#define EXCP_SWI 2 /* software interrupt */
46#define EXCP_PREFETCH_ABORT 3
47#define EXCP_DATA_ABORT 4
b5ff1b31
FB
48#define EXCP_IRQ 5
49#define EXCP_FIQ 6
06c949e6 50#define EXCP_BKPT 7
9ee6e8bb 51#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 52#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 53#define EXCP_STREX 10
9ee6e8bb
PB
54
55#define ARMV7M_EXCP_RESET 1
56#define ARMV7M_EXCP_NMI 2
57#define ARMV7M_EXCP_HARD 3
58#define ARMV7M_EXCP_MEM 4
59#define ARMV7M_EXCP_BUS 5
60#define ARMV7M_EXCP_USAGE 6
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
403946c0
RH
66/* ARM-specific interrupt pending bits. */
67#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
68
e4fe830b
PM
69/* The usual mapping for an AArch64 system register to its AArch32
70 * counterpart is for the 32 bit world to have access to the lower
71 * half only (with writes leaving the upper half untouched). It's
72 * therefore useful to be able to pass TCG the offset of the least
73 * significant half of a uint64_t struct member.
74 */
75#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 76#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 77#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
78#else
79#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 80#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
81#endif
82
7c1840b6
PM
83/* Meanings of the ARMCPU object's two inbound GPIO lines */
84#define ARM_CPU_IRQ 0
85#define ARM_CPU_FIQ 1
403946c0 86
c1713132
AZ
87typedef void ARMWriteCPFunc(void *opaque, int cp_info,
88 int srcreg, int operand, uint32_t value);
89typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
90 int dstreg, int operand);
91
f93eb9ff
AZ
92struct arm_boot_info;
93
6ebbf390
JM
94#define NB_MMU_MODES 2
95
b7bcbe95
FB
96/* We currently assume float and double are IEEE single and double
97 precision respectively.
98 Doing runtime conversions is tricky because VFP registers may contain
99 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
100 s<2n> maps to the least significant half of d<n>
101 s<2n+1> maps to the most significant half of d<n>
102 */
b7bcbe95 103
55d284af
PM
104/* CPU state for each instance of a generic timer (in cp15 c14) */
105typedef struct ARMGenericTimer {
106 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 107 uint64_t ctl; /* Timer Control register */
55d284af
PM
108} ARMGenericTimer;
109
110#define GTIMER_PHYS 0
111#define GTIMER_VIRT 1
112#define NUM_GTIMERS 2
113
114/* Scale factor for generic timers, ie number of ns per tick.
115 * This gives a 62.5MHz timer.
116 */
117#define GTIMER_SCALE 16
118
2c0262af 119typedef struct CPUARMState {
b5ff1b31 120 /* Regs for current mode. */
2c0262af 121 uint32_t regs[16];
3926cc84
AG
122
123 /* 32/64 switch only happens when taking and returning from
124 * exceptions so the overlap semantics are taken care of then
125 * instead of having a complicated union.
126 */
127 /* Regs for A64 mode. */
128 uint64_t xregs[32];
129 uint64_t pc;
d356312f
PM
130 /* PSTATE isn't an architectural register for ARMv8. However, it is
131 * convenient for us to assemble the underlying state into a 32 bit format
132 * identical to the architectural format used for the SPSR. (This is also
133 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
134 * 'pstate' register are.) Of the PSTATE bits:
135 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
136 * semantics as for AArch32, as described in the comments on each field)
137 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 138 * DAIF (exception masks) are kept in env->daif
d356312f 139 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
140 */
141 uint32_t pstate;
142 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
143
b90372ad 144 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 145 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
146 the whole CPSR. */
147 uint32_t uncached_cpsr;
148 uint32_t spsr;
149
150 /* Banked registers. */
151 uint32_t banked_spsr[6];
152 uint32_t banked_r13[6];
153 uint32_t banked_r14[6];
3b46e624 154
b5ff1b31
FB
155 /* These hold r8-r12. */
156 uint32_t usr_regs[5];
157 uint32_t fiq_regs[5];
3b46e624 158
2c0262af
FB
159 /* cpsr flag cache for faster execution */
160 uint32_t CF; /* 0 or 1 */
161 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
162 uint32_t NF; /* N is bit 31. All other bits are undefined. */
163 uint32_t ZF; /* Z set if zero. */
99c475ab 164 uint32_t QF; /* 0 or 1 */
9ee6e8bb 165 uint32_t GE; /* cpsr[19:16] */
b26eefb6 166 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 167 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
4cc35614 168 uint32_t daif; /* exception masks, in the bits they are in in PSTATE */
2c0262af 169
b5ff1b31
FB
170 /* System control coprocessor (cp15) */
171 struct {
40f137e1 172 uint32_t c0_cpuid;
7da845b0 173 uint64_t c0_cssel; /* Cache size selection. */
5ebafdf3 174 uint64_t c1_sys; /* System control register. */
34222fb8 175 uint64_t c1_coproc; /* Coprocessor access register. */
610c3c8a 176 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
2be27624 177 uint32_t c1_scr; /* secure config register. */
327ed10f
PM
178 uint64_t ttbr0_el1; /* MMU translation table base 0. */
179 uint64_t ttbr1_el1; /* MMU translation table base 1. */
cb2e37df 180 uint64_t c2_control; /* MMU translation table base control. */
b2fa1797
PB
181 uint32_t c2_mask; /* MMU translation table base selection mask. */
182 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
183 uint32_t c2_data; /* MPU data cachable bits. */
184 uint32_t c2_insn; /* MPU instruction cachable bits. */
185 uint32_t c3; /* MMU domain access control register
186 MPU write buffer control. */
b5ff1b31
FB
187 uint32_t c5_insn; /* Fault status registers. */
188 uint32_t c5_data;
ce819861 189 uint32_t c6_region[8]; /* MPU base/size registers. */
b5ff1b31
FB
190 uint32_t c6_insn; /* Fault address registers. */
191 uint32_t c6_data;
f8bf8606 192 uint32_t c7_par; /* Translation result. */
891a2fe7 193 uint32_t c7_par_hi; /* Translation result, high 32 bits */
b5ff1b31
FB
194 uint32_t c9_insn; /* Cache lockdown registers. */
195 uint32_t c9_data;
74594c9d
PM
196 uint32_t c9_pmcr; /* performance monitor control register */
197 uint32_t c9_pmcnten; /* perf monitor counter enables */
198 uint32_t c9_pmovsr; /* perf monitor overflow status */
199 uint32_t c9_pmxevtyper; /* perf monitor event type */
200 uint32_t c9_pmuserenr; /* perf monitor user enable */
201 uint32_t c9_pminten; /* perf monitor interrupt enables */
b0fe2427 202 uint64_t mair_el1;
a505d7fe 203 uint64_t c12_vbar; /* vector base address register */
b5ff1b31
FB
204 uint32_t c13_fcse; /* FCSE PID. */
205 uint32_t c13_context; /* Context ID. */
e4fe830b
PM
206 uint64_t tpidr_el0; /* User RW Thread register. */
207 uint64_t tpidrro_el0; /* User RO Thread register. */
208 uint64_t tpidr_el1; /* Privileged Thread register. */
a7adc4b7
PM
209 uint64_t c14_cntfrq; /* Counter Frequency register */
210 uint64_t c14_cntkctl; /* Timer Control register */
55d284af 211 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 212 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
213 uint32_t c15_ticonfig; /* TI925T configuration byte. */
214 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
215 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
216 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
217 uint32_t c15_config_base_address; /* SCU base address. */
218 uint32_t c15_diagnostic; /* diagnostic register */
219 uint32_t c15_power_diagnostic;
220 uint32_t c15_power_control; /* power control */
0b45451e
PM
221 uint64_t dbgbvr[16]; /* breakpoint value registers */
222 uint64_t dbgbcr[16]; /* breakpoint control registers */
223 uint64_t dbgwvr[16]; /* watchpoint value registers */
224 uint64_t dbgwcr[16]; /* watchpoint control registers */
b5ff1b31 225 } cp15;
40f137e1 226
9ee6e8bb
PB
227 struct {
228 uint32_t other_sp;
229 uint32_t vecbase;
230 uint32_t basepri;
231 uint32_t control;
232 int current_sp;
233 int exception;
234 int pending_exception;
9ee6e8bb
PB
235 } v7m;
236
fe1479c3
PB
237 /* Thumb-2 EE state. */
238 uint32_t teecr;
239 uint32_t teehbr;
240
b7bcbe95
FB
241 /* VFP coprocessor state. */
242 struct {
3926cc84
AG
243 /* VFP/Neon register state. Note that the mapping between S, D and Q
244 * views of the register bank differs between AArch64 and AArch32:
245 * In AArch32:
246 * Qn = regs[2n+1]:regs[2n]
247 * Dn = regs[n]
248 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
249 * (and regs[32] to regs[63] are inaccessible)
250 * In AArch64:
251 * Qn = regs[2n+1]:regs[2n]
252 * Dn = regs[2n]
253 * Sn = regs[2n] bits 31..0
254 * This corresponds to the architecturally defined mapping between
255 * the two execution states, and means we do not need to explicitly
256 * map these registers when changing states.
257 */
258 float64 regs[64];
b7bcbe95 259
40f137e1 260 uint32_t xregs[16];
b7bcbe95
FB
261 /* We store these fpcsr fields separately for convenience. */
262 int vec_len;
263 int vec_stride;
264
9ee6e8bb
PB
265 /* scratch space when Tn are not sufficient. */
266 uint32_t scratch[8];
3b46e624 267
3a492f3a
PM
268 /* fp_status is the "normal" fp status. standard_fp_status retains
269 * values corresponding to the ARM "Standard FPSCR Value", ie
270 * default-NaN, flush-to-zero, round-to-nearest and is used by
271 * any operations (generally Neon) which the architecture defines
272 * as controlled by the standard FPSCR value rather than the FPSCR.
273 *
274 * To avoid having to transfer exception bits around, we simply
275 * say that the FPSCR cumulative exception flags are the logical
276 * OR of the flags in the two fp statuses. This relies on the
277 * only thing which needs to read the exception flags being
278 * an explicit FPSCR read.
279 */
53cd6637 280 float_status fp_status;
3a492f3a 281 float_status standard_fp_status;
b7bcbe95 282 } vfp;
03d05e2d
PM
283 uint64_t exclusive_addr;
284 uint64_t exclusive_val;
285 uint64_t exclusive_high;
9ee6e8bb 286#if defined(CONFIG_USER_ONLY)
03d05e2d 287 uint64_t exclusive_test;
426f5abc 288 uint32_t exclusive_info;
9ee6e8bb 289#endif
b7bcbe95 290
18c9b560
AZ
291 /* iwMMXt coprocessor state. */
292 struct {
293 uint64_t regs[16];
294 uint64_t val;
295
296 uint32_t cregs[16];
297 } iwmmxt;
298
d8fd2954
PB
299 /* For mixed endian mode. */
300 bool bswap_code;
301
ce4defa0
PB
302#if defined(CONFIG_USER_ONLY)
303 /* For usermode syscall translation. */
304 int eabi;
305#endif
306
a316d335
FB
307 CPU_COMMON
308
9d551997 309 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 310
581be094 311 /* Internal CPU feature flags. */
918f5dca 312 uint64_t features;
581be094 313
983fe826 314 void *nvic;
462a8bc6 315 const struct arm_boot_info *boot_info;
2c0262af
FB
316} CPUARMState;
317
778c3a06
AF
318#include "cpu-qom.h"
319
320ARMCPU *cpu_arm_init(const char *cpu_model);
b26eefb6 321void arm_translate_init(void);
14969266 322void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
2c0262af 323int cpu_arm_exec(CPUARMState *s);
494b00c7 324int bank_number(int mode);
b5ff1b31 325void switch_mode(CPUARMState *, int);
9ee6e8bb 326uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 327
3926cc84
AG
328static inline bool is_a64(CPUARMState *env)
329{
330 return env->aarch64;
331}
332
2c0262af
FB
333/* you can call this signal handler from your SIGBUS and SIGSEGV
334 signal handlers to inform the virtual CPU of exceptions. non zero
335 is returned if the signal was handled by the virtual CPU. */
5fafdf24 336int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 337 void *puc);
84a031c6 338int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 339 int mmu_idx);
0b5c1ce8 340#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
2c0262af 341
76e3e1bc
PM
342/* SCTLR bit meanings. Several bits have been reused in newer
343 * versions of the architecture; in that case we define constants
344 * for both old and new bit meanings. Code which tests against those
345 * bits should probably check or otherwise arrange that the CPU
346 * is the architectural version it expects.
347 */
348#define SCTLR_M (1U << 0)
349#define SCTLR_A (1U << 1)
350#define SCTLR_C (1U << 2)
351#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
352#define SCTLR_SA (1U << 3)
353#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
354#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
355#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
356#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
357#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
358#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
359#define SCTLR_ITD (1U << 7) /* v8 onward */
360#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
361#define SCTLR_SED (1U << 8) /* v8 onward */
362#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
363#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
364#define SCTLR_F (1U << 10) /* up to v6 */
365#define SCTLR_SW (1U << 10) /* v7 onward */
366#define SCTLR_Z (1U << 11)
367#define SCTLR_I (1U << 12)
368#define SCTLR_V (1U << 13)
369#define SCTLR_RR (1U << 14) /* up to v7 */
370#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
371#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
372#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
373#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
374#define SCTLR_nTWI (1U << 16) /* v8 onward */
375#define SCTLR_HA (1U << 17)
376#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
377#define SCTLR_nTWE (1U << 18) /* v8 onward */
378#define SCTLR_WXN (1U << 19)
379#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
380#define SCTLR_UWXN (1U << 20) /* v7 onward */
381#define SCTLR_FI (1U << 21)
382#define SCTLR_U (1U << 22)
383#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
384#define SCTLR_VE (1U << 24) /* up to v7 */
385#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
386#define SCTLR_EE (1U << 25)
387#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
388#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
389#define SCTLR_NMFI (1U << 27)
390#define SCTLR_TRE (1U << 28)
391#define SCTLR_AFE (1U << 29)
392#define SCTLR_TE (1U << 30)
393
78dbbbe4
PM
394#define CPSR_M (0x1fU)
395#define CPSR_T (1U << 5)
396#define CPSR_F (1U << 6)
397#define CPSR_I (1U << 7)
398#define CPSR_A (1U << 8)
399#define CPSR_E (1U << 9)
400#define CPSR_IT_2_7 (0xfc00U)
401#define CPSR_GE (0xfU << 16)
402#define CPSR_RESERVED (0xfU << 20)
403#define CPSR_J (1U << 24)
404#define CPSR_IT_0_1 (3U << 25)
405#define CPSR_Q (1U << 27)
406#define CPSR_V (1U << 28)
407#define CPSR_C (1U << 29)
408#define CPSR_Z (1U << 30)
409#define CPSR_N (1U << 31)
9ee6e8bb 410#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 411#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
412
413#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
414#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
415 | CPSR_NZCV)
9ee6e8bb
PB
416/* Bits writable in user mode. */
417#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
418/* Execution state bits. MRS read as zero, MSR writes ignored. */
419#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
b5ff1b31 420
d356312f
PM
421/* Bit definitions for ARMv8 SPSR (PSTATE) format.
422 * Only these are valid when in AArch64 mode; in
423 * AArch32 mode SPSRs are basically CPSR-format.
424 */
425#define PSTATE_M (0xFU)
426#define PSTATE_nRW (1U << 4)
427#define PSTATE_F (1U << 6)
428#define PSTATE_I (1U << 7)
429#define PSTATE_A (1U << 8)
430#define PSTATE_D (1U << 9)
431#define PSTATE_IL (1U << 20)
432#define PSTATE_SS (1U << 21)
433#define PSTATE_V (1U << 28)
434#define PSTATE_C (1U << 29)
435#define PSTATE_Z (1U << 30)
436#define PSTATE_N (1U << 31)
437#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
438#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
439#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
440/* Mode values for AArch64 */
441#define PSTATE_MODE_EL3h 13
442#define PSTATE_MODE_EL3t 12
443#define PSTATE_MODE_EL2h 9
444#define PSTATE_MODE_EL2t 8
445#define PSTATE_MODE_EL1h 5
446#define PSTATE_MODE_EL1t 4
447#define PSTATE_MODE_EL0t 0
448
449/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
450 * interprocessing, so we don't attempt to sync with the cpsr state used by
451 * the 32 bit decoder.
452 */
453static inline uint32_t pstate_read(CPUARMState *env)
454{
455 int ZF;
456
457 ZF = (env->ZF == 0);
458 return (env->NF & 0x80000000) | (ZF << 30)
459 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 460 | env->pstate | env->daif;
d356312f
PM
461}
462
463static inline void pstate_write(CPUARMState *env, uint32_t val)
464{
465 env->ZF = (~val) & PSTATE_Z;
466 env->NF = val;
467 env->CF = (val >> 29) & 1;
468 env->VF = (val << 3) & 0x80000000;
4cc35614 469 env->daif = val & PSTATE_DAIF;
d356312f
PM
470 env->pstate = val & ~CACHED_PSTATE_BITS;
471}
472
b5ff1b31 473/* Return the current CPSR value. */
2f4a40e5
AZ
474uint32_t cpsr_read(CPUARMState *env);
475/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
476void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
477
478/* Return the current xPSR value. */
479static inline uint32_t xpsr_read(CPUARMState *env)
480{
481 int ZF;
6fbe23d5
PB
482 ZF = (env->ZF == 0);
483 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
484 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
485 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
486 | ((env->condexec_bits & 0xfc) << 8)
487 | env->v7m.exception;
b5ff1b31
FB
488}
489
9ee6e8bb
PB
490/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
491static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
492{
9ee6e8bb 493 if (mask & CPSR_NZCV) {
6fbe23d5
PB
494 env->ZF = (~val) & CPSR_Z;
495 env->NF = val;
9ee6e8bb
PB
496 env->CF = (val >> 29) & 1;
497 env->VF = (val << 3) & 0x80000000;
498 }
499 if (mask & CPSR_Q)
500 env->QF = ((val & CPSR_Q) != 0);
501 if (mask & (1 << 24))
502 env->thumb = ((val & (1 << 24)) != 0);
503 if (mask & CPSR_IT_0_1) {
504 env->condexec_bits &= ~3;
505 env->condexec_bits |= (val >> 25) & 3;
506 }
507 if (mask & CPSR_IT_2_7) {
508 env->condexec_bits &= 3;
509 env->condexec_bits |= (val >> 8) & 0xfc;
510 }
511 if (mask & 0x1ff) {
512 env->v7m.exception = val & 0x1ff;
513 }
514}
515
01653295
PM
516/* Return the current FPSCR value. */
517uint32_t vfp_get_fpscr(CPUARMState *env);
518void vfp_set_fpscr(CPUARMState *env, uint32_t val);
519
f903fa22
PM
520/* For A64 the FPSCR is split into two logically distinct registers,
521 * FPCR and FPSR. However since they still use non-overlapping bits
522 * we store the underlying state in fpscr and just mask on read/write.
523 */
524#define FPSR_MASK 0xf800009f
525#define FPCR_MASK 0x07f79f00
526static inline uint32_t vfp_get_fpsr(CPUARMState *env)
527{
528 return vfp_get_fpscr(env) & FPSR_MASK;
529}
530
531static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
532{
533 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
534 vfp_set_fpscr(env, new_fpscr);
535}
536
537static inline uint32_t vfp_get_fpcr(CPUARMState *env)
538{
539 return vfp_get_fpscr(env) & FPCR_MASK;
540}
541
542static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
543{
544 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
545 vfp_set_fpscr(env, new_fpscr);
546}
547
4d3da0f3
AG
548enum arm_fprounding {
549 FPROUNDING_TIEEVEN,
550 FPROUNDING_POSINF,
551 FPROUNDING_NEGINF,
552 FPROUNDING_ZERO,
553 FPROUNDING_TIEAWAY,
554 FPROUNDING_ODD
555};
556
9972da66
WN
557int arm_rmode_to_sf(int rmode);
558
b5ff1b31
FB
559enum arm_cpu_mode {
560 ARM_CPU_MODE_USR = 0x10,
561 ARM_CPU_MODE_FIQ = 0x11,
562 ARM_CPU_MODE_IRQ = 0x12,
563 ARM_CPU_MODE_SVC = 0x13,
564 ARM_CPU_MODE_ABT = 0x17,
565 ARM_CPU_MODE_UND = 0x1b,
566 ARM_CPU_MODE_SYS = 0x1f
567};
568
40f137e1
PB
569/* VFP system registers. */
570#define ARM_VFP_FPSID 0
571#define ARM_VFP_FPSCR 1
9ee6e8bb
PB
572#define ARM_VFP_MVFR1 6
573#define ARM_VFP_MVFR0 7
40f137e1
PB
574#define ARM_VFP_FPEXC 8
575#define ARM_VFP_FPINST 9
576#define ARM_VFP_FPINST2 10
577
18c9b560
AZ
578/* iwMMXt coprocessor control registers. */
579#define ARM_IWMMXT_wCID 0
580#define ARM_IWMMXT_wCon 1
581#define ARM_IWMMXT_wCSSF 2
582#define ARM_IWMMXT_wCASF 3
583#define ARM_IWMMXT_wCGR0 8
584#define ARM_IWMMXT_wCGR1 9
585#define ARM_IWMMXT_wCGR2 10
586#define ARM_IWMMXT_wCGR3 11
587
ce854d7c
BC
588/* If adding a feature bit which corresponds to a Linux ELF
589 * HWCAP bit, remember to update the feature-bit-to-hwcap
590 * mapping in linux-user/elfload.c:get_elf_hwcap().
591 */
40f137e1
PB
592enum arm_features {
593 ARM_FEATURE_VFP,
c1713132
AZ
594 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
595 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 596 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
597 ARM_FEATURE_V6,
598 ARM_FEATURE_V6K,
599 ARM_FEATURE_V7,
600 ARM_FEATURE_THUMB2,
c3d2689d 601 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 602 ARM_FEATURE_VFP3,
60011498 603 ARM_FEATURE_VFP_FP16,
9ee6e8bb 604 ARM_FEATURE_NEON,
47789990 605 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 606 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 607 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 608 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
609 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
610 ARM_FEATURE_V4T,
611 ARM_FEATURE_V5,
5bc95aa2 612 ARM_FEATURE_STRONGARM,
906879a9 613 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 614 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 615 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 616 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 617 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 618 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
619 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
620 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
621 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 622 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
623 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
624 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 625 ARM_FEATURE_V8,
3926cc84 626 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 627 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 628 ARM_FEATURE_CBAR, /* has cp15 CBAR */
40f137e1
PB
629};
630
631static inline int arm_feature(CPUARMState *env, int feature)
632{
918f5dca 633 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
634}
635
9a78eead 636void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
40f137e1 637
9ee6e8bb
PB
638/* Interface between CPU and Interrupt controller. */
639void armv7m_nvic_set_pending(void *opaque, int irq);
640int armv7m_nvic_acknowledge_irq(void *opaque);
641void armv7m_nvic_complete_irq(void *opaque, int irq);
642
4b6a83fb
PM
643/* Interface for defining coprocessor registers.
644 * Registers are defined in tables of arm_cp_reginfo structs
645 * which are passed to define_arm_cp_regs().
646 */
647
648/* When looking up a coprocessor register we look for it
649 * via an integer which encodes all of:
650 * coprocessor number
651 * Crn, Crm, opc1, opc2 fields
652 * 32 or 64 bit register (ie is it accessed via MRC/MCR
653 * or via MRRC/MCRR?)
654 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
655 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
656 * For AArch64, there is no 32/64 bit size distinction;
657 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
658 * and 4 bit CRn and CRm. The encoding patterns are chosen
659 * to be easy to convert to and from the KVM encodings, and also
660 * so that the hashtable can contain both AArch32 and AArch64
661 * registers (to allow for interprocessing where we might run
662 * 32 bit code on a 64 bit core).
4b6a83fb 663 */
f5a0a5a5
PM
664/* This bit is private to our hashtable cpreg; in KVM register
665 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
666 * in the upper bits of the 64 bit ID.
667 */
668#define CP_REG_AA64_SHIFT 28
669#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
670
4b6a83fb
PM
671#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
672 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
673 ((crm) << 7) | ((opc1) << 3) | (opc2))
674
f5a0a5a5
PM
675#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
676 (CP_REG_AA64_MASK | \
677 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
678 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
679 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
680 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
681 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
682 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
683
721fae12
PM
684/* Convert a full 64 bit KVM register ID to the truncated 32 bit
685 * version used as a key for the coprocessor register hashtable
686 */
687static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
688{
689 uint32_t cpregid = kvmid;
f5a0a5a5
PM
690 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
691 cpregid |= CP_REG_AA64_MASK;
692 } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
721fae12
PM
693 cpregid |= (1 << 15);
694 }
695 return cpregid;
696}
697
698/* Convert a truncated 32 bit hashtable key into the full
699 * 64 bit KVM register ID.
700 */
701static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
702{
f5a0a5a5
PM
703 uint64_t kvmid;
704
705 if (cpregid & CP_REG_AA64_MASK) {
706 kvmid = cpregid & ~CP_REG_AA64_MASK;
707 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 708 } else {
f5a0a5a5
PM
709 kvmid = cpregid & ~(1 << 15);
710 if (cpregid & (1 << 15)) {
711 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
712 } else {
713 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
714 }
721fae12
PM
715 }
716 return kvmid;
717}
718
4b6a83fb
PM
719/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
720 * special-behaviour cp reg and bits [15..8] indicate what behaviour
721 * it has. Otherwise it is a simple cp reg, where CONST indicates that
722 * TCG can assume the value to be constant (ie load at translate time)
723 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
724 * indicates that the TB should not be ended after a write to this register
725 * (the default is that the TB ends after cp writes). OVERRIDE permits
726 * a register definition to override a previous definition for the
727 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
728 * old must have the OVERRIDE bit set.
7023ec7e
PM
729 * NO_MIGRATE indicates that this register should be ignored for migration;
730 * (eg because any state is accessed via some other coprocessor register).
2452731c
PM
731 * IO indicates that this register does I/O and therefore its accesses
732 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
733 * registers which implement clocks or timers require this.
4b6a83fb
PM
734 */
735#define ARM_CP_SPECIAL 1
736#define ARM_CP_CONST 2
737#define ARM_CP_64BIT 4
738#define ARM_CP_SUPPRESS_TB_END 8
739#define ARM_CP_OVERRIDE 16
7023ec7e 740#define ARM_CP_NO_MIGRATE 32
2452731c 741#define ARM_CP_IO 64
4b6a83fb
PM
742#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
743#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
b0d2b7d0 744#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
0eef9d98
PM
745#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
746#define ARM_LAST_SPECIAL ARM_CP_CURRENTEL
4b6a83fb
PM
747/* Used only as a terminator for ARMCPRegInfo lists */
748#define ARM_CP_SENTINEL 0xffff
749/* Mask of only the flag bits in a type field */
2452731c 750#define ARM_CP_FLAG_MASK 0x7f
4b6a83fb 751
f5a0a5a5
PM
752/* Valid values for ARMCPRegInfo state field, indicating which of
753 * the AArch32 and AArch64 execution states this register is visible in.
754 * If the reginfo doesn't explicitly specify then it is AArch32 only.
755 * If the reginfo is declared to be visible in both states then a second
756 * reginfo is synthesised for the AArch32 view of the AArch64 register,
757 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
758 * Note that we rely on the values of these enums as we iterate through
759 * the various states in some places.
760 */
761enum {
762 ARM_CP_STATE_AA32 = 0,
763 ARM_CP_STATE_AA64 = 1,
764 ARM_CP_STATE_BOTH = 2,
765};
766
4b6a83fb
PM
767/* Return true if cptype is a valid type field. This is used to try to
768 * catch errors where the sentinel has been accidentally left off the end
769 * of a list of registers.
770 */
771static inline bool cptype_valid(int cptype)
772{
773 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
774 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 775 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
776}
777
778/* Access rights:
779 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
780 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
781 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
782 * (ie any of the privileged modes in Secure state, or Monitor mode).
783 * If a register is accessible in one privilege level it's always accessible
784 * in higher privilege levels too. Since "Secure PL1" also follows this rule
785 * (ie anything visible in PL2 is visible in S-PL1, some things are only
786 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
787 * terminology a little and call this PL3.
f5a0a5a5
PM
788 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
789 * with the ELx exception levels.
4b6a83fb
PM
790 *
791 * If access permissions for a register are more complex than can be
792 * described with these bits, then use a laxer set of restrictions, and
793 * do the more restrictive/complex check inside a helper function.
794 */
795#define PL3_R 0x80
796#define PL3_W 0x40
797#define PL2_R (0x20 | PL3_R)
798#define PL2_W (0x10 | PL3_W)
799#define PL1_R (0x08 | PL2_R)
800#define PL1_W (0x04 | PL2_W)
801#define PL0_R (0x02 | PL1_R)
802#define PL0_W (0x01 | PL1_W)
803
804#define PL3_RW (PL3_R | PL3_W)
805#define PL2_RW (PL2_R | PL2_W)
806#define PL1_RW (PL1_R | PL1_W)
807#define PL0_RW (PL0_R | PL0_W)
808
809static inline int arm_current_pl(CPUARMState *env)
810{
f5a0a5a5
PM
811 if (env->aarch64) {
812 return extract32(env->pstate, 2, 2);
813 }
814
4b6a83fb
PM
815 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
816 return 0;
817 }
818 /* We don't currently implement the Virtualization or TrustZone
819 * extensions, so PL2 and PL3 don't exist for us.
820 */
821 return 1;
822}
823
824typedef struct ARMCPRegInfo ARMCPRegInfo;
825
f59df3f2
PM
826typedef enum CPAccessResult {
827 /* Access is permitted */
828 CP_ACCESS_OK = 0,
829 /* Access fails due to a configurable trap or enable which would
830 * result in a categorized exception syndrome giving information about
831 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
832 * 0xc or 0x18).
833 */
834 CP_ACCESS_TRAP = 1,
835 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
836 * Note that this is not a catch-all case -- the set of cases which may
837 * result in this failure is specifically defined by the architecture.
838 */
839 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
840} CPAccessResult;
841
c4241c7d
PM
842/* Access functions for coprocessor registers. These cannot fail and
843 * may not raise exceptions.
844 */
845typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
846typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
847 uint64_t value);
f59df3f2
PM
848/* Access permission check functions for coprocessor registers. */
849typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
4b6a83fb
PM
850/* Hook function for register reset */
851typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
852
853#define CP_ANY 0xff
854
855/* Definition of an ARM coprocessor register */
856struct ARMCPRegInfo {
857 /* Name of register (useful mainly for debugging, need not be unique) */
858 const char *name;
859 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
860 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
861 * 'wildcard' field -- any value of that field in the MRC/MCR insn
862 * will be decoded to this register. The register read and write
863 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
864 * used by the program, so it is possible to register a wildcard and
865 * then behave differently on read/write if necessary.
866 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
867 * must both be zero.
f5a0a5a5
PM
868 * For AArch64-visible registers, opc0 is also used.
869 * Since there are no "coprocessors" in AArch64, cp is purely used as a
870 * way to distinguish (for KVM's benefit) guest-visible system registers
871 * from demuxed ones provided to preserve the "no side effects on
872 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
873 * visible (to match KVM's encoding); cp==0 will be converted to
874 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
875 */
876 uint8_t cp;
877 uint8_t crn;
878 uint8_t crm;
f5a0a5a5 879 uint8_t opc0;
4b6a83fb
PM
880 uint8_t opc1;
881 uint8_t opc2;
f5a0a5a5
PM
882 /* Execution state in which this register is visible: ARM_CP_STATE_* */
883 int state;
4b6a83fb
PM
884 /* Register type: ARM_CP_* bits/values */
885 int type;
886 /* Access rights: PL*_[RW] */
887 int access;
888 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
889 * this register was defined: can be used to hand data through to the
890 * register read/write functions, since they are passed the ARMCPRegInfo*.
891 */
892 void *opaque;
893 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
894 * fieldoffset is non-zero, the reset value of the register.
895 */
896 uint64_t resetvalue;
897 /* Offset of the field in CPUARMState for this register. This is not
898 * needed if either:
899 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
900 * 2. both readfn and writefn are specified
901 */
902 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
f59df3f2
PM
903 /* Function for making any access checks for this register in addition to
904 * those specified by the 'access' permissions bits. If NULL, no extra
905 * checks required. The access check is performed at runtime, not at
906 * translate time.
907 */
908 CPAccessFn *accessfn;
4b6a83fb
PM
909 /* Function for handling reads of this register. If NULL, then reads
910 * will be done by loading from the offset into CPUARMState specified
911 * by fieldoffset.
912 */
913 CPReadFn *readfn;
914 /* Function for handling writes of this register. If NULL, then writes
915 * will be done by writing to the offset into CPUARMState specified
916 * by fieldoffset.
917 */
918 CPWriteFn *writefn;
7023ec7e
PM
919 /* Function for doing a "raw" read; used when we need to copy
920 * coprocessor state to the kernel for KVM or out for
921 * migration. This only needs to be provided if there is also a
c4241c7d 922 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
923 */
924 CPReadFn *raw_readfn;
925 /* Function for doing a "raw" write; used when we need to copy KVM
926 * kernel coprocessor state into userspace, or for inbound
927 * migration. This only needs to be provided if there is also a
c4241c7d
PM
928 * writefn and it masks out "unwritable" bits or has write-one-to-clear
929 * or similar behaviour.
7023ec7e
PM
930 */
931 CPWriteFn *raw_writefn;
4b6a83fb
PM
932 /* Function for resetting the register. If NULL, then reset will be done
933 * by writing resetvalue to the field specified in fieldoffset. If
934 * fieldoffset is 0 then no reset will be done.
935 */
936 CPResetFn *resetfn;
937};
938
939/* Macros which are lvalues for the field in CPUARMState for the
940 * ARMCPRegInfo *ri.
941 */
942#define CPREG_FIELD32(env, ri) \
943 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
944#define CPREG_FIELD64(env, ri) \
945 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
946
947#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
948
949void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
950 const ARMCPRegInfo *regs, void *opaque);
951void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
952 const ARMCPRegInfo *regs, void *opaque);
953static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
954{
955 define_arm_cp_regs_with_opaque(cpu, regs, 0);
956}
957static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
958{
959 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
960}
60322b39 961const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
962
963/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
964void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
965 uint64_t value);
4b6a83fb 966/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 967uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 968
f5a0a5a5
PM
969/* CPResetFn that does nothing, for use if no reset is required even
970 * if fieldoffset is non zero.
971 */
972void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
973
67ed771d
PM
974/* Return true if this reginfo struct's field in the cpu state struct
975 * is 64 bits wide.
976 */
977static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
978{
979 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
980}
981
60322b39 982static inline bool cp_access_ok(int current_pl,
4b6a83fb
PM
983 const ARMCPRegInfo *ri, int isread)
984{
60322b39 985 return (ri->access >> ((current_pl * 2) + isread)) & 1;
4b6a83fb
PM
986}
987
721fae12
PM
988/**
989 * write_list_to_cpustate
990 * @cpu: ARMCPU
991 *
992 * For each register listed in the ARMCPU cpreg_indexes list, write
993 * its value from the cpreg_values list into the ARMCPUState structure.
994 * This updates TCG's working data structures from KVM data or
995 * from incoming migration state.
996 *
997 * Returns: true if all register values were updated correctly,
998 * false if some register was unknown or could not be written.
999 * Note that we do not stop early on failure -- we will attempt
1000 * writing all registers in the list.
1001 */
1002bool write_list_to_cpustate(ARMCPU *cpu);
1003
1004/**
1005 * write_cpustate_to_list:
1006 * @cpu: ARMCPU
1007 *
1008 * For each register listed in the ARMCPU cpreg_indexes list, write
1009 * its value from the ARMCPUState structure into the cpreg_values list.
1010 * This is used to copy info from TCG's working data structures into
1011 * KVM or for outbound migration.
1012 *
1013 * Returns: true if all register values were read correctly,
1014 * false if some register was unknown or could not be read.
1015 * Note that we do not stop early on failure -- we will attempt
1016 * reading all registers in the list.
1017 */
1018bool write_cpustate_to_list(ARMCPU *cpu);
1019
9ee6e8bb
PB
1020/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1021 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1022 conventional cores (ie. Application or Realtime profile). */
1023
1024#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 1025
9ee6e8bb
PB
1026#define ARM_CPUID_TI915T 0x54029152
1027#define ARM_CPUID_TI925T 0x54029252
40f137e1 1028
b5ff1b31 1029#if defined(CONFIG_USER_ONLY)
2c0262af 1030#define TARGET_PAGE_BITS 12
b5ff1b31
FB
1031#else
1032/* The ARM MMU allows 1k pages. */
1033/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 1034 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
1035#define TARGET_PAGE_BITS 10
1036#endif
9467d44c 1037
3926cc84
AG
1038#if defined(TARGET_AARCH64)
1039# define TARGET_PHYS_ADDR_SPACE_BITS 48
1040# define TARGET_VIRT_ADDR_SPACE_BITS 64
1041#else
1042# define TARGET_PHYS_ADDR_SPACE_BITS 40
1043# define TARGET_VIRT_ADDR_SPACE_BITS 32
1044#endif
52705890 1045
ad37ad5b
PM
1046static inline CPUARMState *cpu_init(const char *cpu_model)
1047{
1048 ARMCPU *cpu = cpu_arm_init(cpu_model);
1049 if (cpu) {
1050 return &cpu->env;
1051 }
1052 return NULL;
1053}
1054
9467d44c
TS
1055#define cpu_exec cpu_arm_exec
1056#define cpu_gen_code cpu_arm_gen_code
1057#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 1058#define cpu_list arm_cpu_list
9467d44c 1059
6ebbf390
JM
1060/* MMU modes definitions */
1061#define MMU_MODE0_SUFFIX _kernel
1062#define MMU_MODE1_SUFFIX _user
1063#define MMU_USER_IDX 1
0ecb72a5 1064static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390 1065{
d9ea7d29 1066 return arm_current_pl(env) ? 0 : 1;
6ebbf390
JM
1067}
1068
022c62cb 1069#include "exec/cpu-all.h"
622ed360 1070
3926cc84
AG
1071/* Bit usage in the TB flags field: bit 31 indicates whether we are
1072 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1073 */
1074#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1075#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1076
1077/* Bit usage when in AArch32 state: */
a1705768
PM
1078#define ARM_TBFLAG_THUMB_SHIFT 0
1079#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1080#define ARM_TBFLAG_VECLEN_SHIFT 1
1081#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1082#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1083#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1084#define ARM_TBFLAG_PRIV_SHIFT 6
1085#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
1086#define ARM_TBFLAG_VFPEN_SHIFT 7
1087#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1088#define ARM_TBFLAG_CONDEXEC_SHIFT 8
1089#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1090#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1091#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
3926cc84 1092
d9ea7d29
PM
1093/* Bit usage when in AArch64 state */
1094#define ARM_TBFLAG_AA64_EL_SHIFT 0
1095#define ARM_TBFLAG_AA64_EL_MASK (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
a1705768
PM
1096
1097/* some convenience accessor macros */
3926cc84
AG
1098#define ARM_TBFLAG_AARCH64_STATE(F) \
1099 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
a1705768
PM
1100#define ARM_TBFLAG_THUMB(F) \
1101 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1102#define ARM_TBFLAG_VECLEN(F) \
1103 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1104#define ARM_TBFLAG_VECSTRIDE(F) \
1105 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1106#define ARM_TBFLAG_PRIV(F) \
1107 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1108#define ARM_TBFLAG_VFPEN(F) \
1109 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1110#define ARM_TBFLAG_CONDEXEC(F) \
1111 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1112#define ARM_TBFLAG_BSWAP_CODE(F) \
1113 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
d9ea7d29
PM
1114#define ARM_TBFLAG_AA64_EL(F) \
1115 (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
a1705768 1116
0ecb72a5 1117static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
1118 target_ulong *cs_base, int *flags)
1119{
3926cc84
AG
1120 if (is_a64(env)) {
1121 *pc = env->pc;
d9ea7d29
PM
1122 *flags = ARM_TBFLAG_AARCH64_STATE_MASK
1123 | (arm_current_pl(env) << ARM_TBFLAG_AA64_EL_SHIFT);
05ed9a99 1124 } else {
3926cc84
AG
1125 int privmode;
1126 *pc = env->regs[15];
1127 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1128 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1129 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1130 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1131 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1132 if (arm_feature(env, ARM_FEATURE_M)) {
1133 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1134 } else {
1135 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1136 }
1137 if (privmode) {
1138 *flags |= ARM_TBFLAG_PRIV_MASK;
1139 }
1140 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
1141 *flags |= ARM_TBFLAG_VFPEN_MASK;
1142 }
a1705768 1143 }
3926cc84
AG
1144
1145 *cs_base = 0;
6b917547
AL
1146}
1147
3993c6bd 1148static inline bool cpu_has_work(CPUState *cpu)
f081c76c 1149{
259186a7 1150 return cpu->interrupt_request &
f081c76c
BS
1151 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
1152}
1153
022c62cb 1154#include "exec/exec-all.h"
f081c76c 1155
3926cc84
AG
1156static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1157{
1158 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1159 env->pc = tb->pc;
1160 } else {
1161 env->regs[15] = tb->pc;
1162 }
1163}
1164
d8fd2954 1165/* Load an instruction and return it in the standard little-endian order */
0a2461fa 1166static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
d31dd73e 1167 bool do_swap)
d8fd2954 1168{
d31dd73e 1169 uint32_t insn = cpu_ldl_code(env, addr);
d8fd2954
PB
1170 if (do_swap) {
1171 return bswap32(insn);
1172 }
1173 return insn;
1174}
1175
1176/* Ditto, for a halfword (Thumb) instruction */
0a2461fa 1177static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
d31dd73e 1178 bool do_swap)
d8fd2954 1179{
d31dd73e 1180 uint16_t insn = cpu_lduw_code(env, addr);
d8fd2954
PB
1181 if (do_swap) {
1182 return bswap16(insn);
1183 }
1184 return insn;
1185}
1186
2c0262af 1187#endif