]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/cpu.h
target-arm: Implement AArch64 MPIDR
[mirror_qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3926cc84 22#include "config.h"
3cf1e035 23
72b0cd35
PM
24#include "kvm-consts.h"
25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
29# define ELF_MACHINE EM_AARCH64
30#else
31# define TARGET_LONG_BITS 32
32# define ELF_MACHINE EM_ARM
33#endif
9042c0e2 34
9349b4f9 35#define CPUArchState struct CPUARMState
c2764719 36
9a78eead 37#include "qemu-common.h"
022c62cb 38#include "exec/cpu-defs.h"
2c0262af 39
6b4c305c 40#include "fpu/softfloat.h"
53cd6637 41
1fddef4b
FB
42#define TARGET_HAS_ICE 1
43
b8a9e8f1
FB
44#define EXCP_UDEF 1 /* undefined instruction */
45#define EXCP_SWI 2 /* software interrupt */
46#define EXCP_PREFETCH_ABORT 3
47#define EXCP_DATA_ABORT 4
b5ff1b31
FB
48#define EXCP_IRQ 5
49#define EXCP_FIQ 6
06c949e6 50#define EXCP_BKPT 7
9ee6e8bb 51#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 52#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 53#define EXCP_STREX 10
9ee6e8bb
PB
54
55#define ARMV7M_EXCP_RESET 1
56#define ARMV7M_EXCP_NMI 2
57#define ARMV7M_EXCP_HARD 3
58#define ARMV7M_EXCP_MEM 4
59#define ARMV7M_EXCP_BUS 5
60#define ARMV7M_EXCP_USAGE 6
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
403946c0
RH
66/* ARM-specific interrupt pending bits. */
67#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
68
e4fe830b
PM
69/* The usual mapping for an AArch64 system register to its AArch32
70 * counterpart is for the 32 bit world to have access to the lower
71 * half only (with writes leaving the upper half untouched). It's
72 * therefore useful to be able to pass TCG the offset of the least
73 * significant half of a uint64_t struct member.
74 */
75#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 76#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 77#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
78#else
79#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 80#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
81#endif
82
7c1840b6
PM
83/* Meanings of the ARMCPU object's two inbound GPIO lines */
84#define ARM_CPU_IRQ 0
85#define ARM_CPU_FIQ 1
403946c0 86
c1713132
AZ
87typedef void ARMWriteCPFunc(void *opaque, int cp_info,
88 int srcreg, int operand, uint32_t value);
89typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
90 int dstreg, int operand);
91
f93eb9ff
AZ
92struct arm_boot_info;
93
6ebbf390
JM
94#define NB_MMU_MODES 2
95
b7bcbe95
FB
96/* We currently assume float and double are IEEE single and double
97 precision respectively.
98 Doing runtime conversions is tricky because VFP registers may contain
99 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
100 s<2n> maps to the least significant half of d<n>
101 s<2n+1> maps to the most significant half of d<n>
102 */
b7bcbe95 103
55d284af
PM
104/* CPU state for each instance of a generic timer (in cp15 c14) */
105typedef struct ARMGenericTimer {
106 uint64_t cval; /* Timer CompareValue register */
107 uint32_t ctl; /* Timer Control register */
108} ARMGenericTimer;
109
110#define GTIMER_PHYS 0
111#define GTIMER_VIRT 1
112#define NUM_GTIMERS 2
113
114/* Scale factor for generic timers, ie number of ns per tick.
115 * This gives a 62.5MHz timer.
116 */
117#define GTIMER_SCALE 16
118
2c0262af 119typedef struct CPUARMState {
b5ff1b31 120 /* Regs for current mode. */
2c0262af 121 uint32_t regs[16];
3926cc84
AG
122
123 /* 32/64 switch only happens when taking and returning from
124 * exceptions so the overlap semantics are taken care of then
125 * instead of having a complicated union.
126 */
127 /* Regs for A64 mode. */
128 uint64_t xregs[32];
129 uint64_t pc;
d356312f
PM
130 /* PSTATE isn't an architectural register for ARMv8. However, it is
131 * convenient for us to assemble the underlying state into a 32 bit format
132 * identical to the architectural format used for the SPSR. (This is also
133 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
134 * 'pstate' register are.) Of the PSTATE bits:
135 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
136 * semantics as for AArch32, as described in the comments on each field)
137 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
138 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
139 */
140 uint32_t pstate;
141 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
142
b90372ad 143 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 144 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
145 the whole CPSR. */
146 uint32_t uncached_cpsr;
147 uint32_t spsr;
148
149 /* Banked registers. */
150 uint32_t banked_spsr[6];
151 uint32_t banked_r13[6];
152 uint32_t banked_r14[6];
3b46e624 153
b5ff1b31
FB
154 /* These hold r8-r12. */
155 uint32_t usr_regs[5];
156 uint32_t fiq_regs[5];
3b46e624 157
2c0262af
FB
158 /* cpsr flag cache for faster execution */
159 uint32_t CF; /* 0 or 1 */
160 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
161 uint32_t NF; /* N is bit 31. All other bits are undefined. */
162 uint32_t ZF; /* Z set if zero. */
99c475ab 163 uint32_t QF; /* 0 or 1 */
9ee6e8bb 164 uint32_t GE; /* cpsr[19:16] */
b26eefb6 165 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 166 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
2c0262af 167
b5ff1b31
FB
168 /* System control coprocessor (cp15) */
169 struct {
40f137e1 170 uint32_t c0_cpuid;
7da845b0 171 uint64_t c0_cssel; /* Cache size selection. */
5ebafdf3 172 uint64_t c1_sys; /* System control register. */
b5ff1b31 173 uint32_t c1_coproc; /* Coprocessor access register. */
610c3c8a 174 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
2be27624 175 uint32_t c1_scr; /* secure config register. */
327ed10f
PM
176 uint64_t ttbr0_el1; /* MMU translation table base 0. */
177 uint64_t ttbr1_el1; /* MMU translation table base 1. */
cb2e37df 178 uint64_t c2_control; /* MMU translation table base control. */
b2fa1797
PB
179 uint32_t c2_mask; /* MMU translation table base selection mask. */
180 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
181 uint32_t c2_data; /* MPU data cachable bits. */
182 uint32_t c2_insn; /* MPU instruction cachable bits. */
183 uint32_t c3; /* MMU domain access control register
184 MPU write buffer control. */
b5ff1b31
FB
185 uint32_t c5_insn; /* Fault status registers. */
186 uint32_t c5_data;
ce819861 187 uint32_t c6_region[8]; /* MPU base/size registers. */
b5ff1b31
FB
188 uint32_t c6_insn; /* Fault address registers. */
189 uint32_t c6_data;
f8bf8606 190 uint32_t c7_par; /* Translation result. */
891a2fe7 191 uint32_t c7_par_hi; /* Translation result, high 32 bits */
b5ff1b31
FB
192 uint32_t c9_insn; /* Cache lockdown registers. */
193 uint32_t c9_data;
74594c9d
PM
194 uint32_t c9_pmcr; /* performance monitor control register */
195 uint32_t c9_pmcnten; /* perf monitor counter enables */
196 uint32_t c9_pmovsr; /* perf monitor overflow status */
197 uint32_t c9_pmxevtyper; /* perf monitor event type */
198 uint32_t c9_pmuserenr; /* perf monitor user enable */
199 uint32_t c9_pminten; /* perf monitor interrupt enables */
b0fe2427 200 uint64_t mair_el1;
a505d7fe 201 uint64_t c12_vbar; /* vector base address register */
b5ff1b31
FB
202 uint32_t c13_fcse; /* FCSE PID. */
203 uint32_t c13_context; /* Context ID. */
e4fe830b
PM
204 uint64_t tpidr_el0; /* User RW Thread register. */
205 uint64_t tpidrro_el0; /* User RO Thread register. */
206 uint64_t tpidr_el1; /* Privileged Thread register. */
55d284af
PM
207 uint32_t c14_cntfrq; /* Counter Frequency register */
208 uint32_t c14_cntkctl; /* Timer Control register */
209 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 210 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
211 uint32_t c15_ticonfig; /* TI925T configuration byte. */
212 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
213 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
214 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
215 uint32_t c15_config_base_address; /* SCU base address. */
216 uint32_t c15_diagnostic; /* diagnostic register */
217 uint32_t c15_power_diagnostic;
218 uint32_t c15_power_control; /* power control */
b5ff1b31 219 } cp15;
40f137e1 220
9ee6e8bb
PB
221 struct {
222 uint32_t other_sp;
223 uint32_t vecbase;
224 uint32_t basepri;
225 uint32_t control;
226 int current_sp;
227 int exception;
228 int pending_exception;
9ee6e8bb
PB
229 } v7m;
230
fe1479c3
PB
231 /* Thumb-2 EE state. */
232 uint32_t teecr;
233 uint32_t teehbr;
234
b7bcbe95
FB
235 /* VFP coprocessor state. */
236 struct {
3926cc84
AG
237 /* VFP/Neon register state. Note that the mapping between S, D and Q
238 * views of the register bank differs between AArch64 and AArch32:
239 * In AArch32:
240 * Qn = regs[2n+1]:regs[2n]
241 * Dn = regs[n]
242 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
243 * (and regs[32] to regs[63] are inaccessible)
244 * In AArch64:
245 * Qn = regs[2n+1]:regs[2n]
246 * Dn = regs[2n]
247 * Sn = regs[2n] bits 31..0
248 * This corresponds to the architecturally defined mapping between
249 * the two execution states, and means we do not need to explicitly
250 * map these registers when changing states.
251 */
252 float64 regs[64];
b7bcbe95 253
40f137e1 254 uint32_t xregs[16];
b7bcbe95
FB
255 /* We store these fpcsr fields separately for convenience. */
256 int vec_len;
257 int vec_stride;
258
9ee6e8bb
PB
259 /* scratch space when Tn are not sufficient. */
260 uint32_t scratch[8];
3b46e624 261
3a492f3a
PM
262 /* fp_status is the "normal" fp status. standard_fp_status retains
263 * values corresponding to the ARM "Standard FPSCR Value", ie
264 * default-NaN, flush-to-zero, round-to-nearest and is used by
265 * any operations (generally Neon) which the architecture defines
266 * as controlled by the standard FPSCR value rather than the FPSCR.
267 *
268 * To avoid having to transfer exception bits around, we simply
269 * say that the FPSCR cumulative exception flags are the logical
270 * OR of the flags in the two fp statuses. This relies on the
271 * only thing which needs to read the exception flags being
272 * an explicit FPSCR read.
273 */
53cd6637 274 float_status fp_status;
3a492f3a 275 float_status standard_fp_status;
b7bcbe95 276 } vfp;
03d05e2d
PM
277 uint64_t exclusive_addr;
278 uint64_t exclusive_val;
279 uint64_t exclusive_high;
9ee6e8bb 280#if defined(CONFIG_USER_ONLY)
03d05e2d 281 uint64_t exclusive_test;
426f5abc 282 uint32_t exclusive_info;
9ee6e8bb 283#endif
b7bcbe95 284
18c9b560
AZ
285 /* iwMMXt coprocessor state. */
286 struct {
287 uint64_t regs[16];
288 uint64_t val;
289
290 uint32_t cregs[16];
291 } iwmmxt;
292
d8fd2954
PB
293 /* For mixed endian mode. */
294 bool bswap_code;
295
ce4defa0
PB
296#if defined(CONFIG_USER_ONLY)
297 /* For usermode syscall translation. */
298 int eabi;
299#endif
300
a316d335
FB
301 CPU_COMMON
302
9d551997 303 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 304
581be094 305 /* Internal CPU feature flags. */
918f5dca 306 uint64_t features;
581be094 307
983fe826 308 void *nvic;
462a8bc6 309 const struct arm_boot_info *boot_info;
2c0262af
FB
310} CPUARMState;
311
778c3a06
AF
312#include "cpu-qom.h"
313
314ARMCPU *cpu_arm_init(const char *cpu_model);
b26eefb6 315void arm_translate_init(void);
14969266 316void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
2c0262af 317int cpu_arm_exec(CPUARMState *s);
494b00c7 318int bank_number(int mode);
b5ff1b31 319void switch_mode(CPUARMState *, int);
9ee6e8bb 320uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 321
3926cc84
AG
322static inline bool is_a64(CPUARMState *env)
323{
324 return env->aarch64;
325}
326
2c0262af
FB
327/* you can call this signal handler from your SIGBUS and SIGSEGV
328 signal handlers to inform the virtual CPU of exceptions. non zero
329 is returned if the signal was handled by the virtual CPU. */
5fafdf24 330int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 331 void *puc);
84a031c6 332int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 333 int mmu_idx);
0b5c1ce8 334#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
2c0262af 335
76e3e1bc
PM
336/* SCTLR bit meanings. Several bits have been reused in newer
337 * versions of the architecture; in that case we define constants
338 * for both old and new bit meanings. Code which tests against those
339 * bits should probably check or otherwise arrange that the CPU
340 * is the architectural version it expects.
341 */
342#define SCTLR_M (1U << 0)
343#define SCTLR_A (1U << 1)
344#define SCTLR_C (1U << 2)
345#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
346#define SCTLR_SA (1U << 3)
347#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
348#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
349#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
350#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
351#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
352#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
353#define SCTLR_ITD (1U << 7) /* v8 onward */
354#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
355#define SCTLR_SED (1U << 8) /* v8 onward */
356#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
357#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
358#define SCTLR_F (1U << 10) /* up to v6 */
359#define SCTLR_SW (1U << 10) /* v7 onward */
360#define SCTLR_Z (1U << 11)
361#define SCTLR_I (1U << 12)
362#define SCTLR_V (1U << 13)
363#define SCTLR_RR (1U << 14) /* up to v7 */
364#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
365#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
366#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
367#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
368#define SCTLR_nTWI (1U << 16) /* v8 onward */
369#define SCTLR_HA (1U << 17)
370#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
371#define SCTLR_nTWE (1U << 18) /* v8 onward */
372#define SCTLR_WXN (1U << 19)
373#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
374#define SCTLR_UWXN (1U << 20) /* v7 onward */
375#define SCTLR_FI (1U << 21)
376#define SCTLR_U (1U << 22)
377#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
378#define SCTLR_VE (1U << 24) /* up to v7 */
379#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
380#define SCTLR_EE (1U << 25)
381#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
382#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
383#define SCTLR_NMFI (1U << 27)
384#define SCTLR_TRE (1U << 28)
385#define SCTLR_AFE (1U << 29)
386#define SCTLR_TE (1U << 30)
387
78dbbbe4
PM
388#define CPSR_M (0x1fU)
389#define CPSR_T (1U << 5)
390#define CPSR_F (1U << 6)
391#define CPSR_I (1U << 7)
392#define CPSR_A (1U << 8)
393#define CPSR_E (1U << 9)
394#define CPSR_IT_2_7 (0xfc00U)
395#define CPSR_GE (0xfU << 16)
396#define CPSR_RESERVED (0xfU << 20)
397#define CPSR_J (1U << 24)
398#define CPSR_IT_0_1 (3U << 25)
399#define CPSR_Q (1U << 27)
400#define CPSR_V (1U << 28)
401#define CPSR_C (1U << 29)
402#define CPSR_Z (1U << 30)
403#define CPSR_N (1U << 31)
9ee6e8bb
PB
404#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
405
406#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
407#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
408/* Bits writable in user mode. */
409#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
410/* Execution state bits. MRS read as zero, MSR writes ignored. */
411#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
b5ff1b31 412
d356312f
PM
413/* Bit definitions for ARMv8 SPSR (PSTATE) format.
414 * Only these are valid when in AArch64 mode; in
415 * AArch32 mode SPSRs are basically CPSR-format.
416 */
417#define PSTATE_M (0xFU)
418#define PSTATE_nRW (1U << 4)
419#define PSTATE_F (1U << 6)
420#define PSTATE_I (1U << 7)
421#define PSTATE_A (1U << 8)
422#define PSTATE_D (1U << 9)
423#define PSTATE_IL (1U << 20)
424#define PSTATE_SS (1U << 21)
425#define PSTATE_V (1U << 28)
426#define PSTATE_C (1U << 29)
427#define PSTATE_Z (1U << 30)
428#define PSTATE_N (1U << 31)
429#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
430#define CACHED_PSTATE_BITS (PSTATE_NZCV)
431/* Mode values for AArch64 */
432#define PSTATE_MODE_EL3h 13
433#define PSTATE_MODE_EL3t 12
434#define PSTATE_MODE_EL2h 9
435#define PSTATE_MODE_EL2t 8
436#define PSTATE_MODE_EL1h 5
437#define PSTATE_MODE_EL1t 4
438#define PSTATE_MODE_EL0t 0
439
440/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
441 * interprocessing, so we don't attempt to sync with the cpsr state used by
442 * the 32 bit decoder.
443 */
444static inline uint32_t pstate_read(CPUARMState *env)
445{
446 int ZF;
447
448 ZF = (env->ZF == 0);
449 return (env->NF & 0x80000000) | (ZF << 30)
450 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
451 | env->pstate;
452}
453
454static inline void pstate_write(CPUARMState *env, uint32_t val)
455{
456 env->ZF = (~val) & PSTATE_Z;
457 env->NF = val;
458 env->CF = (val >> 29) & 1;
459 env->VF = (val << 3) & 0x80000000;
460 env->pstate = val & ~CACHED_PSTATE_BITS;
461}
462
b5ff1b31 463/* Return the current CPSR value. */
2f4a40e5
AZ
464uint32_t cpsr_read(CPUARMState *env);
465/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
466void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
467
468/* Return the current xPSR value. */
469static inline uint32_t xpsr_read(CPUARMState *env)
470{
471 int ZF;
6fbe23d5
PB
472 ZF = (env->ZF == 0);
473 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
474 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
475 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
476 | ((env->condexec_bits & 0xfc) << 8)
477 | env->v7m.exception;
b5ff1b31
FB
478}
479
9ee6e8bb
PB
480/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
481static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
482{
9ee6e8bb 483 if (mask & CPSR_NZCV) {
6fbe23d5
PB
484 env->ZF = (~val) & CPSR_Z;
485 env->NF = val;
9ee6e8bb
PB
486 env->CF = (val >> 29) & 1;
487 env->VF = (val << 3) & 0x80000000;
488 }
489 if (mask & CPSR_Q)
490 env->QF = ((val & CPSR_Q) != 0);
491 if (mask & (1 << 24))
492 env->thumb = ((val & (1 << 24)) != 0);
493 if (mask & CPSR_IT_0_1) {
494 env->condexec_bits &= ~3;
495 env->condexec_bits |= (val >> 25) & 3;
496 }
497 if (mask & CPSR_IT_2_7) {
498 env->condexec_bits &= 3;
499 env->condexec_bits |= (val >> 8) & 0xfc;
500 }
501 if (mask & 0x1ff) {
502 env->v7m.exception = val & 0x1ff;
503 }
504}
505
01653295
PM
506/* Return the current FPSCR value. */
507uint32_t vfp_get_fpscr(CPUARMState *env);
508void vfp_set_fpscr(CPUARMState *env, uint32_t val);
509
f903fa22
PM
510/* For A64 the FPSCR is split into two logically distinct registers,
511 * FPCR and FPSR. However since they still use non-overlapping bits
512 * we store the underlying state in fpscr and just mask on read/write.
513 */
514#define FPSR_MASK 0xf800009f
515#define FPCR_MASK 0x07f79f00
516static inline uint32_t vfp_get_fpsr(CPUARMState *env)
517{
518 return vfp_get_fpscr(env) & FPSR_MASK;
519}
520
521static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
522{
523 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
524 vfp_set_fpscr(env, new_fpscr);
525}
526
527static inline uint32_t vfp_get_fpcr(CPUARMState *env)
528{
529 return vfp_get_fpscr(env) & FPCR_MASK;
530}
531
532static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
533{
534 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
535 vfp_set_fpscr(env, new_fpscr);
536}
537
4d3da0f3
AG
538enum arm_fprounding {
539 FPROUNDING_TIEEVEN,
540 FPROUNDING_POSINF,
541 FPROUNDING_NEGINF,
542 FPROUNDING_ZERO,
543 FPROUNDING_TIEAWAY,
544 FPROUNDING_ODD
545};
546
9972da66
WN
547int arm_rmode_to_sf(int rmode);
548
b5ff1b31
FB
549enum arm_cpu_mode {
550 ARM_CPU_MODE_USR = 0x10,
551 ARM_CPU_MODE_FIQ = 0x11,
552 ARM_CPU_MODE_IRQ = 0x12,
553 ARM_CPU_MODE_SVC = 0x13,
554 ARM_CPU_MODE_ABT = 0x17,
555 ARM_CPU_MODE_UND = 0x1b,
556 ARM_CPU_MODE_SYS = 0x1f
557};
558
40f137e1
PB
559/* VFP system registers. */
560#define ARM_VFP_FPSID 0
561#define ARM_VFP_FPSCR 1
9ee6e8bb
PB
562#define ARM_VFP_MVFR1 6
563#define ARM_VFP_MVFR0 7
40f137e1
PB
564#define ARM_VFP_FPEXC 8
565#define ARM_VFP_FPINST 9
566#define ARM_VFP_FPINST2 10
567
18c9b560
AZ
568/* iwMMXt coprocessor control registers. */
569#define ARM_IWMMXT_wCID 0
570#define ARM_IWMMXT_wCon 1
571#define ARM_IWMMXT_wCSSF 2
572#define ARM_IWMMXT_wCASF 3
573#define ARM_IWMMXT_wCGR0 8
574#define ARM_IWMMXT_wCGR1 9
575#define ARM_IWMMXT_wCGR2 10
576#define ARM_IWMMXT_wCGR3 11
577
ce854d7c
BC
578/* If adding a feature bit which corresponds to a Linux ELF
579 * HWCAP bit, remember to update the feature-bit-to-hwcap
580 * mapping in linux-user/elfload.c:get_elf_hwcap().
581 */
40f137e1
PB
582enum arm_features {
583 ARM_FEATURE_VFP,
c1713132
AZ
584 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
585 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 586 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
587 ARM_FEATURE_V6,
588 ARM_FEATURE_V6K,
589 ARM_FEATURE_V7,
590 ARM_FEATURE_THUMB2,
c3d2689d 591 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 592 ARM_FEATURE_VFP3,
60011498 593 ARM_FEATURE_VFP_FP16,
9ee6e8bb 594 ARM_FEATURE_NEON,
47789990 595 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 596 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 597 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 598 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
599 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
600 ARM_FEATURE_V4T,
601 ARM_FEATURE_V5,
5bc95aa2 602 ARM_FEATURE_STRONGARM,
906879a9 603 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 604 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 605 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 606 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 607 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 608 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
609 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
610 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
611 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 612 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
613 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
614 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 615 ARM_FEATURE_V8,
3926cc84 616 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 617 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 618 ARM_FEATURE_CBAR, /* has cp15 CBAR */
40f137e1
PB
619};
620
621static inline int arm_feature(CPUARMState *env, int feature)
622{
918f5dca 623 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
624}
625
9a78eead 626void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
40f137e1 627
9ee6e8bb
PB
628/* Interface between CPU and Interrupt controller. */
629void armv7m_nvic_set_pending(void *opaque, int irq);
630int armv7m_nvic_acknowledge_irq(void *opaque);
631void armv7m_nvic_complete_irq(void *opaque, int irq);
632
4b6a83fb
PM
633/* Interface for defining coprocessor registers.
634 * Registers are defined in tables of arm_cp_reginfo structs
635 * which are passed to define_arm_cp_regs().
636 */
637
638/* When looking up a coprocessor register we look for it
639 * via an integer which encodes all of:
640 * coprocessor number
641 * Crn, Crm, opc1, opc2 fields
642 * 32 or 64 bit register (ie is it accessed via MRC/MCR
643 * or via MRRC/MCRR?)
644 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
645 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
646 * For AArch64, there is no 32/64 bit size distinction;
647 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
648 * and 4 bit CRn and CRm. The encoding patterns are chosen
649 * to be easy to convert to and from the KVM encodings, and also
650 * so that the hashtable can contain both AArch32 and AArch64
651 * registers (to allow for interprocessing where we might run
652 * 32 bit code on a 64 bit core).
4b6a83fb 653 */
f5a0a5a5
PM
654/* This bit is private to our hashtable cpreg; in KVM register
655 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
656 * in the upper bits of the 64 bit ID.
657 */
658#define CP_REG_AA64_SHIFT 28
659#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
660
4b6a83fb
PM
661#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
662 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
663 ((crm) << 7) | ((opc1) << 3) | (opc2))
664
f5a0a5a5
PM
665#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
666 (CP_REG_AA64_MASK | \
667 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
668 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
669 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
670 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
671 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
672 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
673
721fae12
PM
674/* Convert a full 64 bit KVM register ID to the truncated 32 bit
675 * version used as a key for the coprocessor register hashtable
676 */
677static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
678{
679 uint32_t cpregid = kvmid;
f5a0a5a5
PM
680 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
681 cpregid |= CP_REG_AA64_MASK;
682 } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
721fae12
PM
683 cpregid |= (1 << 15);
684 }
685 return cpregid;
686}
687
688/* Convert a truncated 32 bit hashtable key into the full
689 * 64 bit KVM register ID.
690 */
691static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
692{
f5a0a5a5
PM
693 uint64_t kvmid;
694
695 if (cpregid & CP_REG_AA64_MASK) {
696 kvmid = cpregid & ~CP_REG_AA64_MASK;
697 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 698 } else {
f5a0a5a5
PM
699 kvmid = cpregid & ~(1 << 15);
700 if (cpregid & (1 << 15)) {
701 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
702 } else {
703 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
704 }
721fae12
PM
705 }
706 return kvmid;
707}
708
4b6a83fb
PM
709/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
710 * special-behaviour cp reg and bits [15..8] indicate what behaviour
711 * it has. Otherwise it is a simple cp reg, where CONST indicates that
712 * TCG can assume the value to be constant (ie load at translate time)
713 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
714 * indicates that the TB should not be ended after a write to this register
715 * (the default is that the TB ends after cp writes). OVERRIDE permits
716 * a register definition to override a previous definition for the
717 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
718 * old must have the OVERRIDE bit set.
7023ec7e
PM
719 * NO_MIGRATE indicates that this register should be ignored for migration;
720 * (eg because any state is accessed via some other coprocessor register).
2452731c
PM
721 * IO indicates that this register does I/O and therefore its accesses
722 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
723 * registers which implement clocks or timers require this.
4b6a83fb
PM
724 */
725#define ARM_CP_SPECIAL 1
726#define ARM_CP_CONST 2
727#define ARM_CP_64BIT 4
728#define ARM_CP_SUPPRESS_TB_END 8
729#define ARM_CP_OVERRIDE 16
7023ec7e 730#define ARM_CP_NO_MIGRATE 32
2452731c 731#define ARM_CP_IO 64
4b6a83fb
PM
732#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
733#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
b0d2b7d0 734#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
0eef9d98
PM
735#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
736#define ARM_LAST_SPECIAL ARM_CP_CURRENTEL
4b6a83fb
PM
737/* Used only as a terminator for ARMCPRegInfo lists */
738#define ARM_CP_SENTINEL 0xffff
739/* Mask of only the flag bits in a type field */
2452731c 740#define ARM_CP_FLAG_MASK 0x7f
4b6a83fb 741
f5a0a5a5
PM
742/* Valid values for ARMCPRegInfo state field, indicating which of
743 * the AArch32 and AArch64 execution states this register is visible in.
744 * If the reginfo doesn't explicitly specify then it is AArch32 only.
745 * If the reginfo is declared to be visible in both states then a second
746 * reginfo is synthesised for the AArch32 view of the AArch64 register,
747 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
748 * Note that we rely on the values of these enums as we iterate through
749 * the various states in some places.
750 */
751enum {
752 ARM_CP_STATE_AA32 = 0,
753 ARM_CP_STATE_AA64 = 1,
754 ARM_CP_STATE_BOTH = 2,
755};
756
4b6a83fb
PM
757/* Return true if cptype is a valid type field. This is used to try to
758 * catch errors where the sentinel has been accidentally left off the end
759 * of a list of registers.
760 */
761static inline bool cptype_valid(int cptype)
762{
763 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
764 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 765 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
766}
767
768/* Access rights:
769 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
770 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
771 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
772 * (ie any of the privileged modes in Secure state, or Monitor mode).
773 * If a register is accessible in one privilege level it's always accessible
774 * in higher privilege levels too. Since "Secure PL1" also follows this rule
775 * (ie anything visible in PL2 is visible in S-PL1, some things are only
776 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
777 * terminology a little and call this PL3.
f5a0a5a5
PM
778 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
779 * with the ELx exception levels.
4b6a83fb
PM
780 *
781 * If access permissions for a register are more complex than can be
782 * described with these bits, then use a laxer set of restrictions, and
783 * do the more restrictive/complex check inside a helper function.
784 */
785#define PL3_R 0x80
786#define PL3_W 0x40
787#define PL2_R (0x20 | PL3_R)
788#define PL2_W (0x10 | PL3_W)
789#define PL1_R (0x08 | PL2_R)
790#define PL1_W (0x04 | PL2_W)
791#define PL0_R (0x02 | PL1_R)
792#define PL0_W (0x01 | PL1_W)
793
794#define PL3_RW (PL3_R | PL3_W)
795#define PL2_RW (PL2_R | PL2_W)
796#define PL1_RW (PL1_R | PL1_W)
797#define PL0_RW (PL0_R | PL0_W)
798
799static inline int arm_current_pl(CPUARMState *env)
800{
f5a0a5a5
PM
801 if (env->aarch64) {
802 return extract32(env->pstate, 2, 2);
803 }
804
4b6a83fb
PM
805 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
806 return 0;
807 }
808 /* We don't currently implement the Virtualization or TrustZone
809 * extensions, so PL2 and PL3 don't exist for us.
810 */
811 return 1;
812}
813
814typedef struct ARMCPRegInfo ARMCPRegInfo;
815
f59df3f2
PM
816typedef enum CPAccessResult {
817 /* Access is permitted */
818 CP_ACCESS_OK = 0,
819 /* Access fails due to a configurable trap or enable which would
820 * result in a categorized exception syndrome giving information about
821 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
822 * 0xc or 0x18).
823 */
824 CP_ACCESS_TRAP = 1,
825 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
826 * Note that this is not a catch-all case -- the set of cases which may
827 * result in this failure is specifically defined by the architecture.
828 */
829 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
830} CPAccessResult;
831
c4241c7d
PM
832/* Access functions for coprocessor registers. These cannot fail and
833 * may not raise exceptions.
834 */
835typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
836typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
837 uint64_t value);
f59df3f2
PM
838/* Access permission check functions for coprocessor registers. */
839typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
4b6a83fb
PM
840/* Hook function for register reset */
841typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
842
843#define CP_ANY 0xff
844
845/* Definition of an ARM coprocessor register */
846struct ARMCPRegInfo {
847 /* Name of register (useful mainly for debugging, need not be unique) */
848 const char *name;
849 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
850 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
851 * 'wildcard' field -- any value of that field in the MRC/MCR insn
852 * will be decoded to this register. The register read and write
853 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
854 * used by the program, so it is possible to register a wildcard and
855 * then behave differently on read/write if necessary.
856 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
857 * must both be zero.
f5a0a5a5
PM
858 * For AArch64-visible registers, opc0 is also used.
859 * Since there are no "coprocessors" in AArch64, cp is purely used as a
860 * way to distinguish (for KVM's benefit) guest-visible system registers
861 * from demuxed ones provided to preserve the "no side effects on
862 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
863 * visible (to match KVM's encoding); cp==0 will be converted to
864 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
865 */
866 uint8_t cp;
867 uint8_t crn;
868 uint8_t crm;
f5a0a5a5 869 uint8_t opc0;
4b6a83fb
PM
870 uint8_t opc1;
871 uint8_t opc2;
f5a0a5a5
PM
872 /* Execution state in which this register is visible: ARM_CP_STATE_* */
873 int state;
4b6a83fb
PM
874 /* Register type: ARM_CP_* bits/values */
875 int type;
876 /* Access rights: PL*_[RW] */
877 int access;
878 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
879 * this register was defined: can be used to hand data through to the
880 * register read/write functions, since they are passed the ARMCPRegInfo*.
881 */
882 void *opaque;
883 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
884 * fieldoffset is non-zero, the reset value of the register.
885 */
886 uint64_t resetvalue;
887 /* Offset of the field in CPUARMState for this register. This is not
888 * needed if either:
889 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
890 * 2. both readfn and writefn are specified
891 */
892 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
f59df3f2
PM
893 /* Function for making any access checks for this register in addition to
894 * those specified by the 'access' permissions bits. If NULL, no extra
895 * checks required. The access check is performed at runtime, not at
896 * translate time.
897 */
898 CPAccessFn *accessfn;
4b6a83fb
PM
899 /* Function for handling reads of this register. If NULL, then reads
900 * will be done by loading from the offset into CPUARMState specified
901 * by fieldoffset.
902 */
903 CPReadFn *readfn;
904 /* Function for handling writes of this register. If NULL, then writes
905 * will be done by writing to the offset into CPUARMState specified
906 * by fieldoffset.
907 */
908 CPWriteFn *writefn;
7023ec7e
PM
909 /* Function for doing a "raw" read; used when we need to copy
910 * coprocessor state to the kernel for KVM or out for
911 * migration. This only needs to be provided if there is also a
c4241c7d 912 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
913 */
914 CPReadFn *raw_readfn;
915 /* Function for doing a "raw" write; used when we need to copy KVM
916 * kernel coprocessor state into userspace, or for inbound
917 * migration. This only needs to be provided if there is also a
c4241c7d
PM
918 * writefn and it masks out "unwritable" bits or has write-one-to-clear
919 * or similar behaviour.
7023ec7e
PM
920 */
921 CPWriteFn *raw_writefn;
4b6a83fb
PM
922 /* Function for resetting the register. If NULL, then reset will be done
923 * by writing resetvalue to the field specified in fieldoffset. If
924 * fieldoffset is 0 then no reset will be done.
925 */
926 CPResetFn *resetfn;
927};
928
929/* Macros which are lvalues for the field in CPUARMState for the
930 * ARMCPRegInfo *ri.
931 */
932#define CPREG_FIELD32(env, ri) \
933 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
934#define CPREG_FIELD64(env, ri) \
935 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
936
937#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
938
939void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
940 const ARMCPRegInfo *regs, void *opaque);
941void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
942 const ARMCPRegInfo *regs, void *opaque);
943static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
944{
945 define_arm_cp_regs_with_opaque(cpu, regs, 0);
946}
947static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
948{
949 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
950}
60322b39 951const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
952
953/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
954void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
955 uint64_t value);
4b6a83fb 956/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 957uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 958
f5a0a5a5
PM
959/* CPResetFn that does nothing, for use if no reset is required even
960 * if fieldoffset is non zero.
961 */
962void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
963
67ed771d
PM
964/* Return true if this reginfo struct's field in the cpu state struct
965 * is 64 bits wide.
966 */
967static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
968{
969 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
970}
971
60322b39 972static inline bool cp_access_ok(int current_pl,
4b6a83fb
PM
973 const ARMCPRegInfo *ri, int isread)
974{
60322b39 975 return (ri->access >> ((current_pl * 2) + isread)) & 1;
4b6a83fb
PM
976}
977
721fae12
PM
978/**
979 * write_list_to_cpustate
980 * @cpu: ARMCPU
981 *
982 * For each register listed in the ARMCPU cpreg_indexes list, write
983 * its value from the cpreg_values list into the ARMCPUState structure.
984 * This updates TCG's working data structures from KVM data or
985 * from incoming migration state.
986 *
987 * Returns: true if all register values were updated correctly,
988 * false if some register was unknown or could not be written.
989 * Note that we do not stop early on failure -- we will attempt
990 * writing all registers in the list.
991 */
992bool write_list_to_cpustate(ARMCPU *cpu);
993
994/**
995 * write_cpustate_to_list:
996 * @cpu: ARMCPU
997 *
998 * For each register listed in the ARMCPU cpreg_indexes list, write
999 * its value from the ARMCPUState structure into the cpreg_values list.
1000 * This is used to copy info from TCG's working data structures into
1001 * KVM or for outbound migration.
1002 *
1003 * Returns: true if all register values were read correctly,
1004 * false if some register was unknown or could not be read.
1005 * Note that we do not stop early on failure -- we will attempt
1006 * reading all registers in the list.
1007 */
1008bool write_cpustate_to_list(ARMCPU *cpu);
1009
9ee6e8bb
PB
1010/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1011 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1012 conventional cores (ie. Application or Realtime profile). */
1013
1014#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 1015
9ee6e8bb
PB
1016#define ARM_CPUID_TI915T 0x54029152
1017#define ARM_CPUID_TI925T 0x54029252
40f137e1 1018
b5ff1b31 1019#if defined(CONFIG_USER_ONLY)
2c0262af 1020#define TARGET_PAGE_BITS 12
b5ff1b31
FB
1021#else
1022/* The ARM MMU allows 1k pages. */
1023/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 1024 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
1025#define TARGET_PAGE_BITS 10
1026#endif
9467d44c 1027
3926cc84
AG
1028#if defined(TARGET_AARCH64)
1029# define TARGET_PHYS_ADDR_SPACE_BITS 48
1030# define TARGET_VIRT_ADDR_SPACE_BITS 64
1031#else
1032# define TARGET_PHYS_ADDR_SPACE_BITS 40
1033# define TARGET_VIRT_ADDR_SPACE_BITS 32
1034#endif
52705890 1035
ad37ad5b
PM
1036static inline CPUARMState *cpu_init(const char *cpu_model)
1037{
1038 ARMCPU *cpu = cpu_arm_init(cpu_model);
1039 if (cpu) {
1040 return &cpu->env;
1041 }
1042 return NULL;
1043}
1044
9467d44c
TS
1045#define cpu_exec cpu_arm_exec
1046#define cpu_gen_code cpu_arm_gen_code
1047#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 1048#define cpu_list arm_cpu_list
9467d44c 1049
6ebbf390
JM
1050/* MMU modes definitions */
1051#define MMU_MODE0_SUFFIX _kernel
1052#define MMU_MODE1_SUFFIX _user
1053#define MMU_USER_IDX 1
0ecb72a5 1054static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390
JM
1055{
1056 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
1057}
1058
022c62cb 1059#include "exec/cpu-all.h"
622ed360 1060
3926cc84
AG
1061/* Bit usage in the TB flags field: bit 31 indicates whether we are
1062 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1063 */
1064#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1065#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1066
1067/* Bit usage when in AArch32 state: */
a1705768
PM
1068#define ARM_TBFLAG_THUMB_SHIFT 0
1069#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1070#define ARM_TBFLAG_VECLEN_SHIFT 1
1071#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1072#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1073#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1074#define ARM_TBFLAG_PRIV_SHIFT 6
1075#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
1076#define ARM_TBFLAG_VFPEN_SHIFT 7
1077#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1078#define ARM_TBFLAG_CONDEXEC_SHIFT 8
1079#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1080#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1081#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
3926cc84
AG
1082
1083/* Bit usage when in AArch64 state: currently no bits defined */
a1705768
PM
1084
1085/* some convenience accessor macros */
3926cc84
AG
1086#define ARM_TBFLAG_AARCH64_STATE(F) \
1087 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
a1705768
PM
1088#define ARM_TBFLAG_THUMB(F) \
1089 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1090#define ARM_TBFLAG_VECLEN(F) \
1091 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1092#define ARM_TBFLAG_VECSTRIDE(F) \
1093 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1094#define ARM_TBFLAG_PRIV(F) \
1095 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1096#define ARM_TBFLAG_VFPEN(F) \
1097 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1098#define ARM_TBFLAG_CONDEXEC(F) \
1099 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1100#define ARM_TBFLAG_BSWAP_CODE(F) \
1101 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
a1705768 1102
0ecb72a5 1103static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
1104 target_ulong *cs_base, int *flags)
1105{
3926cc84
AG
1106 if (is_a64(env)) {
1107 *pc = env->pc;
1108 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
05ed9a99 1109 } else {
3926cc84
AG
1110 int privmode;
1111 *pc = env->regs[15];
1112 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1113 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1114 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1115 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1116 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1117 if (arm_feature(env, ARM_FEATURE_M)) {
1118 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1119 } else {
1120 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1121 }
1122 if (privmode) {
1123 *flags |= ARM_TBFLAG_PRIV_MASK;
1124 }
1125 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
1126 *flags |= ARM_TBFLAG_VFPEN_MASK;
1127 }
a1705768 1128 }
3926cc84
AG
1129
1130 *cs_base = 0;
6b917547
AL
1131}
1132
3993c6bd 1133static inline bool cpu_has_work(CPUState *cpu)
f081c76c 1134{
259186a7 1135 return cpu->interrupt_request &
f081c76c
BS
1136 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
1137}
1138
022c62cb 1139#include "exec/exec-all.h"
f081c76c 1140
3926cc84
AG
1141static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1142{
1143 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1144 env->pc = tb->pc;
1145 } else {
1146 env->regs[15] = tb->pc;
1147 }
1148}
1149
d8fd2954 1150/* Load an instruction and return it in the standard little-endian order */
0a2461fa 1151static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
d31dd73e 1152 bool do_swap)
d8fd2954 1153{
d31dd73e 1154 uint32_t insn = cpu_ldl_code(env, addr);
d8fd2954
PB
1155 if (do_swap) {
1156 return bswap32(insn);
1157 }
1158 return insn;
1159}
1160
1161/* Ditto, for a halfword (Thumb) instruction */
0a2461fa 1162static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
d31dd73e 1163 bool do_swap)
d8fd2954 1164{
d31dd73e 1165 uint16_t insn = cpu_lduw_code(env, addr);
d8fd2954
PB
1166 if (do_swap) {
1167 return bswap16(insn);
1168 }
1169 return insn;
1170}
1171
2c0262af 1172#endif