]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/cpu.h
target-arm: Pull "add one cpreg to hashtable" into its own function
[mirror_qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3926cc84 22#include "config.h"
3cf1e035 23
72b0cd35
PM
24#include "kvm-consts.h"
25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
29# define ELF_MACHINE EM_AARCH64
30#else
31# define TARGET_LONG_BITS 32
32# define ELF_MACHINE EM_ARM
33#endif
9042c0e2 34
9349b4f9 35#define CPUArchState struct CPUARMState
c2764719 36
9a78eead 37#include "qemu-common.h"
022c62cb 38#include "exec/cpu-defs.h"
2c0262af 39
6b4c305c 40#include "fpu/softfloat.h"
53cd6637 41
1fddef4b
FB
42#define TARGET_HAS_ICE 1
43
b8a9e8f1
FB
44#define EXCP_UDEF 1 /* undefined instruction */
45#define EXCP_SWI 2 /* software interrupt */
46#define EXCP_PREFETCH_ABORT 3
47#define EXCP_DATA_ABORT 4
b5ff1b31
FB
48#define EXCP_IRQ 5
49#define EXCP_FIQ 6
06c949e6 50#define EXCP_BKPT 7
9ee6e8bb 51#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 52#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 53#define EXCP_STREX 10
9ee6e8bb
PB
54
55#define ARMV7M_EXCP_RESET 1
56#define ARMV7M_EXCP_NMI 2
57#define ARMV7M_EXCP_HARD 3
58#define ARMV7M_EXCP_MEM 4
59#define ARMV7M_EXCP_BUS 5
60#define ARMV7M_EXCP_USAGE 6
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
403946c0
RH
66/* ARM-specific interrupt pending bits. */
67#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
68
7c1840b6
PM
69/* Meanings of the ARMCPU object's two inbound GPIO lines */
70#define ARM_CPU_IRQ 0
71#define ARM_CPU_FIQ 1
403946c0 72
c1713132
AZ
73typedef void ARMWriteCPFunc(void *opaque, int cp_info,
74 int srcreg, int operand, uint32_t value);
75typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
76 int dstreg, int operand);
77
f93eb9ff
AZ
78struct arm_boot_info;
79
6ebbf390
JM
80#define NB_MMU_MODES 2
81
b7bcbe95
FB
82/* We currently assume float and double are IEEE single and double
83 precision respectively.
84 Doing runtime conversions is tricky because VFP registers may contain
85 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
86 s<2n> maps to the least significant half of d<n>
87 s<2n+1> maps to the most significant half of d<n>
88 */
b7bcbe95 89
55d284af
PM
90/* CPU state for each instance of a generic timer (in cp15 c14) */
91typedef struct ARMGenericTimer {
92 uint64_t cval; /* Timer CompareValue register */
93 uint32_t ctl; /* Timer Control register */
94} ARMGenericTimer;
95
96#define GTIMER_PHYS 0
97#define GTIMER_VIRT 1
98#define NUM_GTIMERS 2
99
100/* Scale factor for generic timers, ie number of ns per tick.
101 * This gives a 62.5MHz timer.
102 */
103#define GTIMER_SCALE 16
104
2c0262af 105typedef struct CPUARMState {
b5ff1b31 106 /* Regs for current mode. */
2c0262af 107 uint32_t regs[16];
3926cc84
AG
108
109 /* 32/64 switch only happens when taking and returning from
110 * exceptions so the overlap semantics are taken care of then
111 * instead of having a complicated union.
112 */
113 /* Regs for A64 mode. */
114 uint64_t xregs[32];
115 uint64_t pc;
d356312f
PM
116 /* PSTATE isn't an architectural register for ARMv8. However, it is
117 * convenient for us to assemble the underlying state into a 32 bit format
118 * identical to the architectural format used for the SPSR. (This is also
119 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
120 * 'pstate' register are.) Of the PSTATE bits:
121 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
122 * semantics as for AArch32, as described in the comments on each field)
123 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
124 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
125 */
126 uint32_t pstate;
127 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
128
b90372ad 129 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 130 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
131 the whole CPSR. */
132 uint32_t uncached_cpsr;
133 uint32_t spsr;
134
135 /* Banked registers. */
136 uint32_t banked_spsr[6];
137 uint32_t banked_r13[6];
138 uint32_t banked_r14[6];
3b46e624 139
b5ff1b31
FB
140 /* These hold r8-r12. */
141 uint32_t usr_regs[5];
142 uint32_t fiq_regs[5];
3b46e624 143
2c0262af
FB
144 /* cpsr flag cache for faster execution */
145 uint32_t CF; /* 0 or 1 */
146 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
147 uint32_t NF; /* N is bit 31. All other bits are undefined. */
148 uint32_t ZF; /* Z set if zero. */
99c475ab 149 uint32_t QF; /* 0 or 1 */
9ee6e8bb 150 uint32_t GE; /* cpsr[19:16] */
b26eefb6 151 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 152 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
2c0262af 153
b5ff1b31
FB
154 /* System control coprocessor (cp15) */
155 struct {
40f137e1 156 uint32_t c0_cpuid;
a49ea279 157 uint32_t c0_cssel; /* Cache size selection. */
b5ff1b31
FB
158 uint32_t c1_sys; /* System control register. */
159 uint32_t c1_coproc; /* Coprocessor access register. */
610c3c8a 160 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
2be27624 161 uint32_t c1_scr; /* secure config register. */
9ee6e8bb 162 uint32_t c2_base0; /* MMU translation table base 0. */
891a2fe7
PM
163 uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
164 uint32_t c2_base1; /* MMU translation table base 0. */
165 uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
b2fa1797
PB
166 uint32_t c2_control; /* MMU translation table base control. */
167 uint32_t c2_mask; /* MMU translation table base selection mask. */
168 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
169 uint32_t c2_data; /* MPU data cachable bits. */
170 uint32_t c2_insn; /* MPU instruction cachable bits. */
171 uint32_t c3; /* MMU domain access control register
172 MPU write buffer control. */
b5ff1b31
FB
173 uint32_t c5_insn; /* Fault status registers. */
174 uint32_t c5_data;
ce819861 175 uint32_t c6_region[8]; /* MPU base/size registers. */
b5ff1b31
FB
176 uint32_t c6_insn; /* Fault address registers. */
177 uint32_t c6_data;
f8bf8606 178 uint32_t c7_par; /* Translation result. */
891a2fe7 179 uint32_t c7_par_hi; /* Translation result, high 32 bits */
b5ff1b31
FB
180 uint32_t c9_insn; /* Cache lockdown registers. */
181 uint32_t c9_data;
74594c9d
PM
182 uint32_t c9_pmcr; /* performance monitor control register */
183 uint32_t c9_pmcnten; /* perf monitor counter enables */
184 uint32_t c9_pmovsr; /* perf monitor overflow status */
185 uint32_t c9_pmxevtyper; /* perf monitor event type */
186 uint32_t c9_pmuserenr; /* perf monitor user enable */
187 uint32_t c9_pminten; /* perf monitor interrupt enables */
8641136c 188 uint32_t c12_vbar; /* vector base address register */
b5ff1b31
FB
189 uint32_t c13_fcse; /* FCSE PID. */
190 uint32_t c13_context; /* Context ID. */
9ee6e8bb
PB
191 uint32_t c13_tls1; /* User RW Thread register. */
192 uint32_t c13_tls2; /* User RO Thread register. */
193 uint32_t c13_tls3; /* Privileged Thread register. */
55d284af
PM
194 uint32_t c14_cntfrq; /* Counter Frequency register */
195 uint32_t c14_cntkctl; /* Timer Control register */
196 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 197 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
198 uint32_t c15_ticonfig; /* TI925T configuration byte. */
199 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
200 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
201 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
202 uint32_t c15_config_base_address; /* SCU base address. */
203 uint32_t c15_diagnostic; /* diagnostic register */
204 uint32_t c15_power_diagnostic;
205 uint32_t c15_power_control; /* power control */
b5ff1b31 206 } cp15;
40f137e1 207
3926cc84
AG
208 /* System registers (AArch64) */
209 struct {
210 uint64_t tpidr_el0;
211 } sr;
212
9ee6e8bb
PB
213 struct {
214 uint32_t other_sp;
215 uint32_t vecbase;
216 uint32_t basepri;
217 uint32_t control;
218 int current_sp;
219 int exception;
220 int pending_exception;
9ee6e8bb
PB
221 } v7m;
222
fe1479c3
PB
223 /* Thumb-2 EE state. */
224 uint32_t teecr;
225 uint32_t teehbr;
226
b7bcbe95
FB
227 /* VFP coprocessor state. */
228 struct {
3926cc84
AG
229 /* VFP/Neon register state. Note that the mapping between S, D and Q
230 * views of the register bank differs between AArch64 and AArch32:
231 * In AArch32:
232 * Qn = regs[2n+1]:regs[2n]
233 * Dn = regs[n]
234 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
235 * (and regs[32] to regs[63] are inaccessible)
236 * In AArch64:
237 * Qn = regs[2n+1]:regs[2n]
238 * Dn = regs[2n]
239 * Sn = regs[2n] bits 31..0
240 * This corresponds to the architecturally defined mapping between
241 * the two execution states, and means we do not need to explicitly
242 * map these registers when changing states.
243 */
244 float64 regs[64];
b7bcbe95 245
40f137e1 246 uint32_t xregs[16];
b7bcbe95
FB
247 /* We store these fpcsr fields separately for convenience. */
248 int vec_len;
249 int vec_stride;
250
9ee6e8bb
PB
251 /* scratch space when Tn are not sufficient. */
252 uint32_t scratch[8];
3b46e624 253
3a492f3a
PM
254 /* fp_status is the "normal" fp status. standard_fp_status retains
255 * values corresponding to the ARM "Standard FPSCR Value", ie
256 * default-NaN, flush-to-zero, round-to-nearest and is used by
257 * any operations (generally Neon) which the architecture defines
258 * as controlled by the standard FPSCR value rather than the FPSCR.
259 *
260 * To avoid having to transfer exception bits around, we simply
261 * say that the FPSCR cumulative exception flags are the logical
262 * OR of the flags in the two fp statuses. This relies on the
263 * only thing which needs to read the exception flags being
264 * an explicit FPSCR read.
265 */
53cd6637 266 float_status fp_status;
3a492f3a 267 float_status standard_fp_status;
b7bcbe95 268 } vfp;
426f5abc
PB
269 uint32_t exclusive_addr;
270 uint32_t exclusive_val;
271 uint32_t exclusive_high;
9ee6e8bb 272#if defined(CONFIG_USER_ONLY)
426f5abc
PB
273 uint32_t exclusive_test;
274 uint32_t exclusive_info;
9ee6e8bb 275#endif
b7bcbe95 276
18c9b560
AZ
277 /* iwMMXt coprocessor state. */
278 struct {
279 uint64_t regs[16];
280 uint64_t val;
281
282 uint32_t cregs[16];
283 } iwmmxt;
284
d8fd2954
PB
285 /* For mixed endian mode. */
286 bool bswap_code;
287
ce4defa0
PB
288#if defined(CONFIG_USER_ONLY)
289 /* For usermode syscall translation. */
290 int eabi;
291#endif
292
a316d335
FB
293 CPU_COMMON
294
9d551997 295 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 296
581be094 297 /* Internal CPU feature flags. */
918f5dca 298 uint64_t features;
581be094 299
983fe826 300 void *nvic;
462a8bc6 301 const struct arm_boot_info *boot_info;
2c0262af
FB
302} CPUARMState;
303
778c3a06
AF
304#include "cpu-qom.h"
305
306ARMCPU *cpu_arm_init(const char *cpu_model);
b26eefb6 307void arm_translate_init(void);
14969266 308void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
2c0262af 309int cpu_arm_exec(CPUARMState *s);
494b00c7 310int bank_number(int mode);
b5ff1b31 311void switch_mode(CPUARMState *, int);
9ee6e8bb 312uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 313
3926cc84
AG
314static inline bool is_a64(CPUARMState *env)
315{
316 return env->aarch64;
317}
318
2c0262af
FB
319/* you can call this signal handler from your SIGBUS and SIGSEGV
320 signal handlers to inform the virtual CPU of exceptions. non zero
321 is returned if the signal was handled by the virtual CPU. */
5fafdf24 322int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 323 void *puc);
84a031c6 324int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 325 int mmu_idx);
0b5c1ce8 326#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
2c0262af 327
78dbbbe4
PM
328#define CPSR_M (0x1fU)
329#define CPSR_T (1U << 5)
330#define CPSR_F (1U << 6)
331#define CPSR_I (1U << 7)
332#define CPSR_A (1U << 8)
333#define CPSR_E (1U << 9)
334#define CPSR_IT_2_7 (0xfc00U)
335#define CPSR_GE (0xfU << 16)
336#define CPSR_RESERVED (0xfU << 20)
337#define CPSR_J (1U << 24)
338#define CPSR_IT_0_1 (3U << 25)
339#define CPSR_Q (1U << 27)
340#define CPSR_V (1U << 28)
341#define CPSR_C (1U << 29)
342#define CPSR_Z (1U << 30)
343#define CPSR_N (1U << 31)
9ee6e8bb
PB
344#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
345
346#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
347#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
348/* Bits writable in user mode. */
349#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
350/* Execution state bits. MRS read as zero, MSR writes ignored. */
351#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
b5ff1b31 352
d356312f
PM
353/* Bit definitions for ARMv8 SPSR (PSTATE) format.
354 * Only these are valid when in AArch64 mode; in
355 * AArch32 mode SPSRs are basically CPSR-format.
356 */
357#define PSTATE_M (0xFU)
358#define PSTATE_nRW (1U << 4)
359#define PSTATE_F (1U << 6)
360#define PSTATE_I (1U << 7)
361#define PSTATE_A (1U << 8)
362#define PSTATE_D (1U << 9)
363#define PSTATE_IL (1U << 20)
364#define PSTATE_SS (1U << 21)
365#define PSTATE_V (1U << 28)
366#define PSTATE_C (1U << 29)
367#define PSTATE_Z (1U << 30)
368#define PSTATE_N (1U << 31)
369#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
370#define CACHED_PSTATE_BITS (PSTATE_NZCV)
371/* Mode values for AArch64 */
372#define PSTATE_MODE_EL3h 13
373#define PSTATE_MODE_EL3t 12
374#define PSTATE_MODE_EL2h 9
375#define PSTATE_MODE_EL2t 8
376#define PSTATE_MODE_EL1h 5
377#define PSTATE_MODE_EL1t 4
378#define PSTATE_MODE_EL0t 0
379
380/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
381 * interprocessing, so we don't attempt to sync with the cpsr state used by
382 * the 32 bit decoder.
383 */
384static inline uint32_t pstate_read(CPUARMState *env)
385{
386 int ZF;
387
388 ZF = (env->ZF == 0);
389 return (env->NF & 0x80000000) | (ZF << 30)
390 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
391 | env->pstate;
392}
393
394static inline void pstate_write(CPUARMState *env, uint32_t val)
395{
396 env->ZF = (~val) & PSTATE_Z;
397 env->NF = val;
398 env->CF = (val >> 29) & 1;
399 env->VF = (val << 3) & 0x80000000;
400 env->pstate = val & ~CACHED_PSTATE_BITS;
401}
402
b5ff1b31 403/* Return the current CPSR value. */
2f4a40e5
AZ
404uint32_t cpsr_read(CPUARMState *env);
405/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
406void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
407
408/* Return the current xPSR value. */
409static inline uint32_t xpsr_read(CPUARMState *env)
410{
411 int ZF;
6fbe23d5
PB
412 ZF = (env->ZF == 0);
413 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
414 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
415 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
416 | ((env->condexec_bits & 0xfc) << 8)
417 | env->v7m.exception;
b5ff1b31
FB
418}
419
9ee6e8bb
PB
420/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
421static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
422{
9ee6e8bb 423 if (mask & CPSR_NZCV) {
6fbe23d5
PB
424 env->ZF = (~val) & CPSR_Z;
425 env->NF = val;
9ee6e8bb
PB
426 env->CF = (val >> 29) & 1;
427 env->VF = (val << 3) & 0x80000000;
428 }
429 if (mask & CPSR_Q)
430 env->QF = ((val & CPSR_Q) != 0);
431 if (mask & (1 << 24))
432 env->thumb = ((val & (1 << 24)) != 0);
433 if (mask & CPSR_IT_0_1) {
434 env->condexec_bits &= ~3;
435 env->condexec_bits |= (val >> 25) & 3;
436 }
437 if (mask & CPSR_IT_2_7) {
438 env->condexec_bits &= 3;
439 env->condexec_bits |= (val >> 8) & 0xfc;
440 }
441 if (mask & 0x1ff) {
442 env->v7m.exception = val & 0x1ff;
443 }
444}
445
01653295
PM
446/* Return the current FPSCR value. */
447uint32_t vfp_get_fpscr(CPUARMState *env);
448void vfp_set_fpscr(CPUARMState *env, uint32_t val);
449
f903fa22
PM
450/* For A64 the FPSCR is split into two logically distinct registers,
451 * FPCR and FPSR. However since they still use non-overlapping bits
452 * we store the underlying state in fpscr and just mask on read/write.
453 */
454#define FPSR_MASK 0xf800009f
455#define FPCR_MASK 0x07f79f00
456static inline uint32_t vfp_get_fpsr(CPUARMState *env)
457{
458 return vfp_get_fpscr(env) & FPSR_MASK;
459}
460
461static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
462{
463 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
464 vfp_set_fpscr(env, new_fpscr);
465}
466
467static inline uint32_t vfp_get_fpcr(CPUARMState *env)
468{
469 return vfp_get_fpscr(env) & FPCR_MASK;
470}
471
472static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
473{
474 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
475 vfp_set_fpscr(env, new_fpscr);
476}
477
b5ff1b31
FB
478enum arm_cpu_mode {
479 ARM_CPU_MODE_USR = 0x10,
480 ARM_CPU_MODE_FIQ = 0x11,
481 ARM_CPU_MODE_IRQ = 0x12,
482 ARM_CPU_MODE_SVC = 0x13,
483 ARM_CPU_MODE_ABT = 0x17,
484 ARM_CPU_MODE_UND = 0x1b,
485 ARM_CPU_MODE_SYS = 0x1f
486};
487
40f137e1
PB
488/* VFP system registers. */
489#define ARM_VFP_FPSID 0
490#define ARM_VFP_FPSCR 1
9ee6e8bb
PB
491#define ARM_VFP_MVFR1 6
492#define ARM_VFP_MVFR0 7
40f137e1
PB
493#define ARM_VFP_FPEXC 8
494#define ARM_VFP_FPINST 9
495#define ARM_VFP_FPINST2 10
496
18c9b560
AZ
497/* iwMMXt coprocessor control registers. */
498#define ARM_IWMMXT_wCID 0
499#define ARM_IWMMXT_wCon 1
500#define ARM_IWMMXT_wCSSF 2
501#define ARM_IWMMXT_wCASF 3
502#define ARM_IWMMXT_wCGR0 8
503#define ARM_IWMMXT_wCGR1 9
504#define ARM_IWMMXT_wCGR2 10
505#define ARM_IWMMXT_wCGR3 11
506
ce854d7c
BC
507/* If adding a feature bit which corresponds to a Linux ELF
508 * HWCAP bit, remember to update the feature-bit-to-hwcap
509 * mapping in linux-user/elfload.c:get_elf_hwcap().
510 */
40f137e1
PB
511enum arm_features {
512 ARM_FEATURE_VFP,
c1713132
AZ
513 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
514 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 515 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
516 ARM_FEATURE_V6,
517 ARM_FEATURE_V6K,
518 ARM_FEATURE_V7,
519 ARM_FEATURE_THUMB2,
c3d2689d 520 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 521 ARM_FEATURE_VFP3,
60011498 522 ARM_FEATURE_VFP_FP16,
9ee6e8bb 523 ARM_FEATURE_NEON,
47789990 524 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 525 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 526 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 527 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
528 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
529 ARM_FEATURE_V4T,
530 ARM_FEATURE_V5,
5bc95aa2 531 ARM_FEATURE_STRONGARM,
906879a9 532 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 533 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 534 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 535 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 536 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 537 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
538 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
539 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
540 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 541 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
542 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
543 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 544 ARM_FEATURE_V8,
3926cc84 545 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 546 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 547 ARM_FEATURE_CBAR, /* has cp15 CBAR */
40f137e1
PB
548};
549
550static inline int arm_feature(CPUARMState *env, int feature)
551{
918f5dca 552 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
553}
554
9a78eead 555void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
40f137e1 556
9ee6e8bb
PB
557/* Interface between CPU and Interrupt controller. */
558void armv7m_nvic_set_pending(void *opaque, int irq);
559int armv7m_nvic_acknowledge_irq(void *opaque);
560void armv7m_nvic_complete_irq(void *opaque, int irq);
561
4b6a83fb
PM
562/* Interface for defining coprocessor registers.
563 * Registers are defined in tables of arm_cp_reginfo structs
564 * which are passed to define_arm_cp_regs().
565 */
566
567/* When looking up a coprocessor register we look for it
568 * via an integer which encodes all of:
569 * coprocessor number
570 * Crn, Crm, opc1, opc2 fields
571 * 32 or 64 bit register (ie is it accessed via MRC/MCR
572 * or via MRRC/MCRR?)
573 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
574 * (In this case crn and opc2 should be zero.)
575 */
576#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
577 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
578 ((crm) << 7) | ((opc1) << 3) | (opc2))
579
721fae12
PM
580/* Convert a full 64 bit KVM register ID to the truncated 32 bit
581 * version used as a key for the coprocessor register hashtable
582 */
583static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
584{
585 uint32_t cpregid = kvmid;
586 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
587 cpregid |= (1 << 15);
588 }
589 return cpregid;
590}
591
592/* Convert a truncated 32 bit hashtable key into the full
593 * 64 bit KVM register ID.
594 */
595static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
596{
597 uint64_t kvmid = cpregid & ~(1 << 15);
598 if (cpregid & (1 << 15)) {
599 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
600 } else {
601 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
602 }
603 return kvmid;
604}
605
4b6a83fb
PM
606/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
607 * special-behaviour cp reg and bits [15..8] indicate what behaviour
608 * it has. Otherwise it is a simple cp reg, where CONST indicates that
609 * TCG can assume the value to be constant (ie load at translate time)
610 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
611 * indicates that the TB should not be ended after a write to this register
612 * (the default is that the TB ends after cp writes). OVERRIDE permits
613 * a register definition to override a previous definition for the
614 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
615 * old must have the OVERRIDE bit set.
7023ec7e
PM
616 * NO_MIGRATE indicates that this register should be ignored for migration;
617 * (eg because any state is accessed via some other coprocessor register).
2452731c
PM
618 * IO indicates that this register does I/O and therefore its accesses
619 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
620 * registers which implement clocks or timers require this.
4b6a83fb
PM
621 */
622#define ARM_CP_SPECIAL 1
623#define ARM_CP_CONST 2
624#define ARM_CP_64BIT 4
625#define ARM_CP_SUPPRESS_TB_END 8
626#define ARM_CP_OVERRIDE 16
7023ec7e 627#define ARM_CP_NO_MIGRATE 32
2452731c 628#define ARM_CP_IO 64
4b6a83fb
PM
629#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
630#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
631#define ARM_LAST_SPECIAL ARM_CP_WFI
632/* Used only as a terminator for ARMCPRegInfo lists */
633#define ARM_CP_SENTINEL 0xffff
634/* Mask of only the flag bits in a type field */
2452731c 635#define ARM_CP_FLAG_MASK 0x7f
4b6a83fb
PM
636
637/* Return true if cptype is a valid type field. This is used to try to
638 * catch errors where the sentinel has been accidentally left off the end
639 * of a list of registers.
640 */
641static inline bool cptype_valid(int cptype)
642{
643 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
644 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 645 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
646}
647
648/* Access rights:
649 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
650 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
651 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
652 * (ie any of the privileged modes in Secure state, or Monitor mode).
653 * If a register is accessible in one privilege level it's always accessible
654 * in higher privilege levels too. Since "Secure PL1" also follows this rule
655 * (ie anything visible in PL2 is visible in S-PL1, some things are only
656 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
657 * terminology a little and call this PL3.
658 *
659 * If access permissions for a register are more complex than can be
660 * described with these bits, then use a laxer set of restrictions, and
661 * do the more restrictive/complex check inside a helper function.
662 */
663#define PL3_R 0x80
664#define PL3_W 0x40
665#define PL2_R (0x20 | PL3_R)
666#define PL2_W (0x10 | PL3_W)
667#define PL1_R (0x08 | PL2_R)
668#define PL1_W (0x04 | PL2_W)
669#define PL0_R (0x02 | PL1_R)
670#define PL0_W (0x01 | PL1_W)
671
672#define PL3_RW (PL3_R | PL3_W)
673#define PL2_RW (PL2_R | PL2_W)
674#define PL1_RW (PL1_R | PL1_W)
675#define PL0_RW (PL0_R | PL0_W)
676
677static inline int arm_current_pl(CPUARMState *env)
678{
679 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
680 return 0;
681 }
682 /* We don't currently implement the Virtualization or TrustZone
683 * extensions, so PL2 and PL3 don't exist for us.
684 */
685 return 1;
686}
687
688typedef struct ARMCPRegInfo ARMCPRegInfo;
689
690/* Access functions for coprocessor registers. These should return
691 * 0 on success, or one of the EXCP_* constants if access should cause
692 * an exception (in which case *value is not written).
693 */
694typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
695 uint64_t *value);
696typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
697 uint64_t value);
698/* Hook function for register reset */
699typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
700
701#define CP_ANY 0xff
702
703/* Definition of an ARM coprocessor register */
704struct ARMCPRegInfo {
705 /* Name of register (useful mainly for debugging, need not be unique) */
706 const char *name;
707 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
708 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
709 * 'wildcard' field -- any value of that field in the MRC/MCR insn
710 * will be decoded to this register. The register read and write
711 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
712 * used by the program, so it is possible to register a wildcard and
713 * then behave differently on read/write if necessary.
714 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
715 * must both be zero.
716 */
717 uint8_t cp;
718 uint8_t crn;
719 uint8_t crm;
720 uint8_t opc1;
721 uint8_t opc2;
722 /* Register type: ARM_CP_* bits/values */
723 int type;
724 /* Access rights: PL*_[RW] */
725 int access;
726 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
727 * this register was defined: can be used to hand data through to the
728 * register read/write functions, since they are passed the ARMCPRegInfo*.
729 */
730 void *opaque;
731 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
732 * fieldoffset is non-zero, the reset value of the register.
733 */
734 uint64_t resetvalue;
735 /* Offset of the field in CPUARMState for this register. This is not
736 * needed if either:
737 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
738 * 2. both readfn and writefn are specified
739 */
740 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
741 /* Function for handling reads of this register. If NULL, then reads
742 * will be done by loading from the offset into CPUARMState specified
743 * by fieldoffset.
744 */
745 CPReadFn *readfn;
746 /* Function for handling writes of this register. If NULL, then writes
747 * will be done by writing to the offset into CPUARMState specified
748 * by fieldoffset.
749 */
750 CPWriteFn *writefn;
7023ec7e
PM
751 /* Function for doing a "raw" read; used when we need to copy
752 * coprocessor state to the kernel for KVM or out for
753 * migration. This only needs to be provided if there is also a
754 * readfn and it makes an access permission check.
755 */
756 CPReadFn *raw_readfn;
757 /* Function for doing a "raw" write; used when we need to copy KVM
758 * kernel coprocessor state into userspace, or for inbound
759 * migration. This only needs to be provided if there is also a
760 * writefn and it makes an access permission check or masks out
761 * "unwritable" bits or has write-one-to-clear or similar behaviour.
762 */
763 CPWriteFn *raw_writefn;
4b6a83fb
PM
764 /* Function for resetting the register. If NULL, then reset will be done
765 * by writing resetvalue to the field specified in fieldoffset. If
766 * fieldoffset is 0 then no reset will be done.
767 */
768 CPResetFn *resetfn;
769};
770
771/* Macros which are lvalues for the field in CPUARMState for the
772 * ARMCPRegInfo *ri.
773 */
774#define CPREG_FIELD32(env, ri) \
775 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
776#define CPREG_FIELD64(env, ri) \
777 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
778
779#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
780
781void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
782 const ARMCPRegInfo *regs, void *opaque);
783void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
784 const ARMCPRegInfo *regs, void *opaque);
785static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
786{
787 define_arm_cp_regs_with_opaque(cpu, regs, 0);
788}
789static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
790{
791 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
792}
793const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
794
795/* CPWriteFn that can be used to implement writes-ignored behaviour */
796int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
797 uint64_t value);
798/* CPReadFn that can be used for read-as-zero behaviour */
799int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
800
801static inline bool cp_access_ok(CPUARMState *env,
802 const ARMCPRegInfo *ri, int isread)
803{
804 return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
805}
806
721fae12
PM
807/**
808 * write_list_to_cpustate
809 * @cpu: ARMCPU
810 *
811 * For each register listed in the ARMCPU cpreg_indexes list, write
812 * its value from the cpreg_values list into the ARMCPUState structure.
813 * This updates TCG's working data structures from KVM data or
814 * from incoming migration state.
815 *
816 * Returns: true if all register values were updated correctly,
817 * false if some register was unknown or could not be written.
818 * Note that we do not stop early on failure -- we will attempt
819 * writing all registers in the list.
820 */
821bool write_list_to_cpustate(ARMCPU *cpu);
822
823/**
824 * write_cpustate_to_list:
825 * @cpu: ARMCPU
826 *
827 * For each register listed in the ARMCPU cpreg_indexes list, write
828 * its value from the ARMCPUState structure into the cpreg_values list.
829 * This is used to copy info from TCG's working data structures into
830 * KVM or for outbound migration.
831 *
832 * Returns: true if all register values were read correctly,
833 * false if some register was unknown or could not be read.
834 * Note that we do not stop early on failure -- we will attempt
835 * reading all registers in the list.
836 */
837bool write_cpustate_to_list(ARMCPU *cpu);
838
9ee6e8bb
PB
839/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
840 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
841 conventional cores (ie. Application or Realtime profile). */
842
843#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 844
9ee6e8bb
PB
845#define ARM_CPUID_TI915T 0x54029152
846#define ARM_CPUID_TI925T 0x54029252
40f137e1 847
b5ff1b31 848#if defined(CONFIG_USER_ONLY)
2c0262af 849#define TARGET_PAGE_BITS 12
b5ff1b31
FB
850#else
851/* The ARM MMU allows 1k pages. */
852/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 853 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
854#define TARGET_PAGE_BITS 10
855#endif
9467d44c 856
3926cc84
AG
857#if defined(TARGET_AARCH64)
858# define TARGET_PHYS_ADDR_SPACE_BITS 48
859# define TARGET_VIRT_ADDR_SPACE_BITS 64
860#else
861# define TARGET_PHYS_ADDR_SPACE_BITS 40
862# define TARGET_VIRT_ADDR_SPACE_BITS 32
863#endif
52705890 864
ad37ad5b
PM
865static inline CPUARMState *cpu_init(const char *cpu_model)
866{
867 ARMCPU *cpu = cpu_arm_init(cpu_model);
868 if (cpu) {
869 return &cpu->env;
870 }
871 return NULL;
872}
873
9467d44c
TS
874#define cpu_exec cpu_arm_exec
875#define cpu_gen_code cpu_arm_gen_code
876#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 877#define cpu_list arm_cpu_list
9467d44c 878
6ebbf390
JM
879/* MMU modes definitions */
880#define MMU_MODE0_SUFFIX _kernel
881#define MMU_MODE1_SUFFIX _user
882#define MMU_USER_IDX 1
0ecb72a5 883static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390
JM
884{
885 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
886}
887
022c62cb 888#include "exec/cpu-all.h"
622ed360 889
3926cc84
AG
890/* Bit usage in the TB flags field: bit 31 indicates whether we are
891 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
892 */
893#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
894#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
895
896/* Bit usage when in AArch32 state: */
a1705768
PM
897#define ARM_TBFLAG_THUMB_SHIFT 0
898#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
899#define ARM_TBFLAG_VECLEN_SHIFT 1
900#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
901#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
902#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
903#define ARM_TBFLAG_PRIV_SHIFT 6
904#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
905#define ARM_TBFLAG_VFPEN_SHIFT 7
906#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
907#define ARM_TBFLAG_CONDEXEC_SHIFT 8
908#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
909#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
910#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
3926cc84
AG
911
912/* Bit usage when in AArch64 state: currently no bits defined */
a1705768
PM
913
914/* some convenience accessor macros */
3926cc84
AG
915#define ARM_TBFLAG_AARCH64_STATE(F) \
916 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
a1705768
PM
917#define ARM_TBFLAG_THUMB(F) \
918 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
919#define ARM_TBFLAG_VECLEN(F) \
920 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
921#define ARM_TBFLAG_VECSTRIDE(F) \
922 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
923#define ARM_TBFLAG_PRIV(F) \
924 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
925#define ARM_TBFLAG_VFPEN(F) \
926 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
927#define ARM_TBFLAG_CONDEXEC(F) \
928 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
929#define ARM_TBFLAG_BSWAP_CODE(F) \
930 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
a1705768 931
0ecb72a5 932static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
933 target_ulong *cs_base, int *flags)
934{
3926cc84
AG
935 if (is_a64(env)) {
936 *pc = env->pc;
937 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
05ed9a99 938 } else {
3926cc84
AG
939 int privmode;
940 *pc = env->regs[15];
941 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
942 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
943 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
944 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
945 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
946 if (arm_feature(env, ARM_FEATURE_M)) {
947 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
948 } else {
949 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
950 }
951 if (privmode) {
952 *flags |= ARM_TBFLAG_PRIV_MASK;
953 }
954 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
955 *flags |= ARM_TBFLAG_VFPEN_MASK;
956 }
a1705768 957 }
3926cc84
AG
958
959 *cs_base = 0;
6b917547
AL
960}
961
3993c6bd 962static inline bool cpu_has_work(CPUState *cpu)
f081c76c 963{
259186a7 964 return cpu->interrupt_request &
f081c76c
BS
965 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
966}
967
022c62cb 968#include "exec/exec-all.h"
f081c76c 969
3926cc84
AG
970static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
971{
972 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
973 env->pc = tb->pc;
974 } else {
975 env->regs[15] = tb->pc;
976 }
977}
978
d8fd2954 979/* Load an instruction and return it in the standard little-endian order */
0a2461fa 980static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
d31dd73e 981 bool do_swap)
d8fd2954 982{
d31dd73e 983 uint32_t insn = cpu_ldl_code(env, addr);
d8fd2954
PB
984 if (do_swap) {
985 return bswap32(insn);
986 }
987 return insn;
988}
989
990/* Ditto, for a halfword (Thumb) instruction */
0a2461fa 991static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
d31dd73e 992 bool do_swap)
d8fd2954 993{
d31dd73e 994 uint16_t insn = cpu_lduw_code(env, addr);
d8fd2954
PB
995 if (do_swap) {
996 return bswap16(insn);
997 }
998 return insn;
999}
1000
2c0262af 1001#endif