]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/cpu.h
target-arm: Implement AArch64 dummy MDSCR_EL1
[mirror_qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3926cc84 22#include "config.h"
3cf1e035 23
72b0cd35
PM
24#include "kvm-consts.h"
25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
29# define ELF_MACHINE EM_AARCH64
30#else
31# define TARGET_LONG_BITS 32
32# define ELF_MACHINE EM_ARM
33#endif
9042c0e2 34
9349b4f9 35#define CPUArchState struct CPUARMState
c2764719 36
9a78eead 37#include "qemu-common.h"
022c62cb 38#include "exec/cpu-defs.h"
2c0262af 39
6b4c305c 40#include "fpu/softfloat.h"
53cd6637 41
1fddef4b
FB
42#define TARGET_HAS_ICE 1
43
b8a9e8f1
FB
44#define EXCP_UDEF 1 /* undefined instruction */
45#define EXCP_SWI 2 /* software interrupt */
46#define EXCP_PREFETCH_ABORT 3
47#define EXCP_DATA_ABORT 4
b5ff1b31
FB
48#define EXCP_IRQ 5
49#define EXCP_FIQ 6
06c949e6 50#define EXCP_BKPT 7
9ee6e8bb 51#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 52#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 53#define EXCP_STREX 10
9ee6e8bb
PB
54
55#define ARMV7M_EXCP_RESET 1
56#define ARMV7M_EXCP_NMI 2
57#define ARMV7M_EXCP_HARD 3
58#define ARMV7M_EXCP_MEM 4
59#define ARMV7M_EXCP_BUS 5
60#define ARMV7M_EXCP_USAGE 6
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
403946c0
RH
66/* ARM-specific interrupt pending bits. */
67#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
68
e4fe830b
PM
69/* The usual mapping for an AArch64 system register to its AArch32
70 * counterpart is for the 32 bit world to have access to the lower
71 * half only (with writes leaving the upper half untouched). It's
72 * therefore useful to be able to pass TCG the offset of the least
73 * significant half of a uint64_t struct member.
74 */
75#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 76#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
77#else
78#define offsetoflow32(S, M) offsetof(S, M)
79#endif
80
7c1840b6
PM
81/* Meanings of the ARMCPU object's two inbound GPIO lines */
82#define ARM_CPU_IRQ 0
83#define ARM_CPU_FIQ 1
403946c0 84
c1713132
AZ
85typedef void ARMWriteCPFunc(void *opaque, int cp_info,
86 int srcreg, int operand, uint32_t value);
87typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
88 int dstreg, int operand);
89
f93eb9ff
AZ
90struct arm_boot_info;
91
6ebbf390
JM
92#define NB_MMU_MODES 2
93
b7bcbe95
FB
94/* We currently assume float and double are IEEE single and double
95 precision respectively.
96 Doing runtime conversions is tricky because VFP registers may contain
97 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
98 s<2n> maps to the least significant half of d<n>
99 s<2n+1> maps to the most significant half of d<n>
100 */
b7bcbe95 101
55d284af
PM
102/* CPU state for each instance of a generic timer (in cp15 c14) */
103typedef struct ARMGenericTimer {
104 uint64_t cval; /* Timer CompareValue register */
105 uint32_t ctl; /* Timer Control register */
106} ARMGenericTimer;
107
108#define GTIMER_PHYS 0
109#define GTIMER_VIRT 1
110#define NUM_GTIMERS 2
111
112/* Scale factor for generic timers, ie number of ns per tick.
113 * This gives a 62.5MHz timer.
114 */
115#define GTIMER_SCALE 16
116
2c0262af 117typedef struct CPUARMState {
b5ff1b31 118 /* Regs for current mode. */
2c0262af 119 uint32_t regs[16];
3926cc84
AG
120
121 /* 32/64 switch only happens when taking and returning from
122 * exceptions so the overlap semantics are taken care of then
123 * instead of having a complicated union.
124 */
125 /* Regs for A64 mode. */
126 uint64_t xregs[32];
127 uint64_t pc;
d356312f
PM
128 /* PSTATE isn't an architectural register for ARMv8. However, it is
129 * convenient for us to assemble the underlying state into a 32 bit format
130 * identical to the architectural format used for the SPSR. (This is also
131 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
132 * 'pstate' register are.) Of the PSTATE bits:
133 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
134 * semantics as for AArch32, as described in the comments on each field)
135 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
136 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
137 */
138 uint32_t pstate;
139 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
140
b90372ad 141 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 142 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
143 the whole CPSR. */
144 uint32_t uncached_cpsr;
145 uint32_t spsr;
146
147 /* Banked registers. */
148 uint32_t banked_spsr[6];
149 uint32_t banked_r13[6];
150 uint32_t banked_r14[6];
3b46e624 151
b5ff1b31
FB
152 /* These hold r8-r12. */
153 uint32_t usr_regs[5];
154 uint32_t fiq_regs[5];
3b46e624 155
2c0262af
FB
156 /* cpsr flag cache for faster execution */
157 uint32_t CF; /* 0 or 1 */
158 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
159 uint32_t NF; /* N is bit 31. All other bits are undefined. */
160 uint32_t ZF; /* Z set if zero. */
99c475ab 161 uint32_t QF; /* 0 or 1 */
9ee6e8bb 162 uint32_t GE; /* cpsr[19:16] */
b26eefb6 163 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 164 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
2c0262af 165
b5ff1b31
FB
166 /* System control coprocessor (cp15) */
167 struct {
40f137e1 168 uint32_t c0_cpuid;
7da845b0 169 uint64_t c0_cssel; /* Cache size selection. */
b5ff1b31
FB
170 uint32_t c1_sys; /* System control register. */
171 uint32_t c1_coproc; /* Coprocessor access register. */
610c3c8a 172 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
2be27624 173 uint32_t c1_scr; /* secure config register. */
9ee6e8bb 174 uint32_t c2_base0; /* MMU translation table base 0. */
891a2fe7
PM
175 uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
176 uint32_t c2_base1; /* MMU translation table base 0. */
177 uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
b2fa1797
PB
178 uint32_t c2_control; /* MMU translation table base control. */
179 uint32_t c2_mask; /* MMU translation table base selection mask. */
180 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
181 uint32_t c2_data; /* MPU data cachable bits. */
182 uint32_t c2_insn; /* MPU instruction cachable bits. */
183 uint32_t c3; /* MMU domain access control register
184 MPU write buffer control. */
b5ff1b31
FB
185 uint32_t c5_insn; /* Fault status registers. */
186 uint32_t c5_data;
ce819861 187 uint32_t c6_region[8]; /* MPU base/size registers. */
b5ff1b31
FB
188 uint32_t c6_insn; /* Fault address registers. */
189 uint32_t c6_data;
f8bf8606 190 uint32_t c7_par; /* Translation result. */
891a2fe7 191 uint32_t c7_par_hi; /* Translation result, high 32 bits */
b5ff1b31
FB
192 uint32_t c9_insn; /* Cache lockdown registers. */
193 uint32_t c9_data;
74594c9d
PM
194 uint32_t c9_pmcr; /* performance monitor control register */
195 uint32_t c9_pmcnten; /* perf monitor counter enables */
196 uint32_t c9_pmovsr; /* perf monitor overflow status */
197 uint32_t c9_pmxevtyper; /* perf monitor event type */
198 uint32_t c9_pmuserenr; /* perf monitor user enable */
199 uint32_t c9_pminten; /* perf monitor interrupt enables */
8641136c 200 uint32_t c12_vbar; /* vector base address register */
b5ff1b31
FB
201 uint32_t c13_fcse; /* FCSE PID. */
202 uint32_t c13_context; /* Context ID. */
e4fe830b
PM
203 uint64_t tpidr_el0; /* User RW Thread register. */
204 uint64_t tpidrro_el0; /* User RO Thread register. */
205 uint64_t tpidr_el1; /* Privileged Thread register. */
55d284af
PM
206 uint32_t c14_cntfrq; /* Counter Frequency register */
207 uint32_t c14_cntkctl; /* Timer Control register */
208 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 209 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
210 uint32_t c15_ticonfig; /* TI925T configuration byte. */
211 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
212 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
213 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
214 uint32_t c15_config_base_address; /* SCU base address. */
215 uint32_t c15_diagnostic; /* diagnostic register */
216 uint32_t c15_power_diagnostic;
217 uint32_t c15_power_control; /* power control */
b5ff1b31 218 } cp15;
40f137e1 219
9ee6e8bb
PB
220 struct {
221 uint32_t other_sp;
222 uint32_t vecbase;
223 uint32_t basepri;
224 uint32_t control;
225 int current_sp;
226 int exception;
227 int pending_exception;
9ee6e8bb
PB
228 } v7m;
229
fe1479c3
PB
230 /* Thumb-2 EE state. */
231 uint32_t teecr;
232 uint32_t teehbr;
233
b7bcbe95
FB
234 /* VFP coprocessor state. */
235 struct {
3926cc84
AG
236 /* VFP/Neon register state. Note that the mapping between S, D and Q
237 * views of the register bank differs between AArch64 and AArch32:
238 * In AArch32:
239 * Qn = regs[2n+1]:regs[2n]
240 * Dn = regs[n]
241 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
242 * (and regs[32] to regs[63] are inaccessible)
243 * In AArch64:
244 * Qn = regs[2n+1]:regs[2n]
245 * Dn = regs[2n]
246 * Sn = regs[2n] bits 31..0
247 * This corresponds to the architecturally defined mapping between
248 * the two execution states, and means we do not need to explicitly
249 * map these registers when changing states.
250 */
251 float64 regs[64];
b7bcbe95 252
40f137e1 253 uint32_t xregs[16];
b7bcbe95
FB
254 /* We store these fpcsr fields separately for convenience. */
255 int vec_len;
256 int vec_stride;
257
9ee6e8bb
PB
258 /* scratch space when Tn are not sufficient. */
259 uint32_t scratch[8];
3b46e624 260
3a492f3a
PM
261 /* fp_status is the "normal" fp status. standard_fp_status retains
262 * values corresponding to the ARM "Standard FPSCR Value", ie
263 * default-NaN, flush-to-zero, round-to-nearest and is used by
264 * any operations (generally Neon) which the architecture defines
265 * as controlled by the standard FPSCR value rather than the FPSCR.
266 *
267 * To avoid having to transfer exception bits around, we simply
268 * say that the FPSCR cumulative exception flags are the logical
269 * OR of the flags in the two fp statuses. This relies on the
270 * only thing which needs to read the exception flags being
271 * an explicit FPSCR read.
272 */
53cd6637 273 float_status fp_status;
3a492f3a 274 float_status standard_fp_status;
b7bcbe95 275 } vfp;
03d05e2d
PM
276 uint64_t exclusive_addr;
277 uint64_t exclusive_val;
278 uint64_t exclusive_high;
9ee6e8bb 279#if defined(CONFIG_USER_ONLY)
03d05e2d 280 uint64_t exclusive_test;
426f5abc 281 uint32_t exclusive_info;
9ee6e8bb 282#endif
b7bcbe95 283
18c9b560
AZ
284 /* iwMMXt coprocessor state. */
285 struct {
286 uint64_t regs[16];
287 uint64_t val;
288
289 uint32_t cregs[16];
290 } iwmmxt;
291
d8fd2954
PB
292 /* For mixed endian mode. */
293 bool bswap_code;
294
ce4defa0
PB
295#if defined(CONFIG_USER_ONLY)
296 /* For usermode syscall translation. */
297 int eabi;
298#endif
299
a316d335
FB
300 CPU_COMMON
301
9d551997 302 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 303
581be094 304 /* Internal CPU feature flags. */
918f5dca 305 uint64_t features;
581be094 306
983fe826 307 void *nvic;
462a8bc6 308 const struct arm_boot_info *boot_info;
2c0262af
FB
309} CPUARMState;
310
778c3a06
AF
311#include "cpu-qom.h"
312
313ARMCPU *cpu_arm_init(const char *cpu_model);
b26eefb6 314void arm_translate_init(void);
14969266 315void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
2c0262af 316int cpu_arm_exec(CPUARMState *s);
494b00c7 317int bank_number(int mode);
b5ff1b31 318void switch_mode(CPUARMState *, int);
9ee6e8bb 319uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 320
3926cc84
AG
321static inline bool is_a64(CPUARMState *env)
322{
323 return env->aarch64;
324}
325
2c0262af
FB
326/* you can call this signal handler from your SIGBUS and SIGSEGV
327 signal handlers to inform the virtual CPU of exceptions. non zero
328 is returned if the signal was handled by the virtual CPU. */
5fafdf24 329int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 330 void *puc);
84a031c6 331int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 332 int mmu_idx);
0b5c1ce8 333#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
2c0262af 334
76e3e1bc
PM
335/* SCTLR bit meanings. Several bits have been reused in newer
336 * versions of the architecture; in that case we define constants
337 * for both old and new bit meanings. Code which tests against those
338 * bits should probably check or otherwise arrange that the CPU
339 * is the architectural version it expects.
340 */
341#define SCTLR_M (1U << 0)
342#define SCTLR_A (1U << 1)
343#define SCTLR_C (1U << 2)
344#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
345#define SCTLR_SA (1U << 3)
346#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
347#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
348#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
349#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
350#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
351#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
352#define SCTLR_ITD (1U << 7) /* v8 onward */
353#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
354#define SCTLR_SED (1U << 8) /* v8 onward */
355#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
356#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
357#define SCTLR_F (1U << 10) /* up to v6 */
358#define SCTLR_SW (1U << 10) /* v7 onward */
359#define SCTLR_Z (1U << 11)
360#define SCTLR_I (1U << 12)
361#define SCTLR_V (1U << 13)
362#define SCTLR_RR (1U << 14) /* up to v7 */
363#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
364#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
365#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
366#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
367#define SCTLR_nTWI (1U << 16) /* v8 onward */
368#define SCTLR_HA (1U << 17)
369#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
370#define SCTLR_nTWE (1U << 18) /* v8 onward */
371#define SCTLR_WXN (1U << 19)
372#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
373#define SCTLR_UWXN (1U << 20) /* v7 onward */
374#define SCTLR_FI (1U << 21)
375#define SCTLR_U (1U << 22)
376#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
377#define SCTLR_VE (1U << 24) /* up to v7 */
378#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
379#define SCTLR_EE (1U << 25)
380#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
381#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
382#define SCTLR_NMFI (1U << 27)
383#define SCTLR_TRE (1U << 28)
384#define SCTLR_AFE (1U << 29)
385#define SCTLR_TE (1U << 30)
386
78dbbbe4
PM
387#define CPSR_M (0x1fU)
388#define CPSR_T (1U << 5)
389#define CPSR_F (1U << 6)
390#define CPSR_I (1U << 7)
391#define CPSR_A (1U << 8)
392#define CPSR_E (1U << 9)
393#define CPSR_IT_2_7 (0xfc00U)
394#define CPSR_GE (0xfU << 16)
395#define CPSR_RESERVED (0xfU << 20)
396#define CPSR_J (1U << 24)
397#define CPSR_IT_0_1 (3U << 25)
398#define CPSR_Q (1U << 27)
399#define CPSR_V (1U << 28)
400#define CPSR_C (1U << 29)
401#define CPSR_Z (1U << 30)
402#define CPSR_N (1U << 31)
9ee6e8bb
PB
403#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
404
405#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
406#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
407/* Bits writable in user mode. */
408#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
409/* Execution state bits. MRS read as zero, MSR writes ignored. */
410#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
b5ff1b31 411
d356312f
PM
412/* Bit definitions for ARMv8 SPSR (PSTATE) format.
413 * Only these are valid when in AArch64 mode; in
414 * AArch32 mode SPSRs are basically CPSR-format.
415 */
416#define PSTATE_M (0xFU)
417#define PSTATE_nRW (1U << 4)
418#define PSTATE_F (1U << 6)
419#define PSTATE_I (1U << 7)
420#define PSTATE_A (1U << 8)
421#define PSTATE_D (1U << 9)
422#define PSTATE_IL (1U << 20)
423#define PSTATE_SS (1U << 21)
424#define PSTATE_V (1U << 28)
425#define PSTATE_C (1U << 29)
426#define PSTATE_Z (1U << 30)
427#define PSTATE_N (1U << 31)
428#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
429#define CACHED_PSTATE_BITS (PSTATE_NZCV)
430/* Mode values for AArch64 */
431#define PSTATE_MODE_EL3h 13
432#define PSTATE_MODE_EL3t 12
433#define PSTATE_MODE_EL2h 9
434#define PSTATE_MODE_EL2t 8
435#define PSTATE_MODE_EL1h 5
436#define PSTATE_MODE_EL1t 4
437#define PSTATE_MODE_EL0t 0
438
439/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
440 * interprocessing, so we don't attempt to sync with the cpsr state used by
441 * the 32 bit decoder.
442 */
443static inline uint32_t pstate_read(CPUARMState *env)
444{
445 int ZF;
446
447 ZF = (env->ZF == 0);
448 return (env->NF & 0x80000000) | (ZF << 30)
449 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
450 | env->pstate;
451}
452
453static inline void pstate_write(CPUARMState *env, uint32_t val)
454{
455 env->ZF = (~val) & PSTATE_Z;
456 env->NF = val;
457 env->CF = (val >> 29) & 1;
458 env->VF = (val << 3) & 0x80000000;
459 env->pstate = val & ~CACHED_PSTATE_BITS;
460}
461
b5ff1b31 462/* Return the current CPSR value. */
2f4a40e5
AZ
463uint32_t cpsr_read(CPUARMState *env);
464/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
465void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
466
467/* Return the current xPSR value. */
468static inline uint32_t xpsr_read(CPUARMState *env)
469{
470 int ZF;
6fbe23d5
PB
471 ZF = (env->ZF == 0);
472 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
473 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
474 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
475 | ((env->condexec_bits & 0xfc) << 8)
476 | env->v7m.exception;
b5ff1b31
FB
477}
478
9ee6e8bb
PB
479/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
480static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
481{
9ee6e8bb 482 if (mask & CPSR_NZCV) {
6fbe23d5
PB
483 env->ZF = (~val) & CPSR_Z;
484 env->NF = val;
9ee6e8bb
PB
485 env->CF = (val >> 29) & 1;
486 env->VF = (val << 3) & 0x80000000;
487 }
488 if (mask & CPSR_Q)
489 env->QF = ((val & CPSR_Q) != 0);
490 if (mask & (1 << 24))
491 env->thumb = ((val & (1 << 24)) != 0);
492 if (mask & CPSR_IT_0_1) {
493 env->condexec_bits &= ~3;
494 env->condexec_bits |= (val >> 25) & 3;
495 }
496 if (mask & CPSR_IT_2_7) {
497 env->condexec_bits &= 3;
498 env->condexec_bits |= (val >> 8) & 0xfc;
499 }
500 if (mask & 0x1ff) {
501 env->v7m.exception = val & 0x1ff;
502 }
503}
504
01653295
PM
505/* Return the current FPSCR value. */
506uint32_t vfp_get_fpscr(CPUARMState *env);
507void vfp_set_fpscr(CPUARMState *env, uint32_t val);
508
f903fa22
PM
509/* For A64 the FPSCR is split into two logically distinct registers,
510 * FPCR and FPSR. However since they still use non-overlapping bits
511 * we store the underlying state in fpscr and just mask on read/write.
512 */
513#define FPSR_MASK 0xf800009f
514#define FPCR_MASK 0x07f79f00
515static inline uint32_t vfp_get_fpsr(CPUARMState *env)
516{
517 return vfp_get_fpscr(env) & FPSR_MASK;
518}
519
520static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
521{
522 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
523 vfp_set_fpscr(env, new_fpscr);
524}
525
526static inline uint32_t vfp_get_fpcr(CPUARMState *env)
527{
528 return vfp_get_fpscr(env) & FPCR_MASK;
529}
530
531static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
532{
533 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
534 vfp_set_fpscr(env, new_fpscr);
535}
536
4d3da0f3
AG
537enum arm_fprounding {
538 FPROUNDING_TIEEVEN,
539 FPROUNDING_POSINF,
540 FPROUNDING_NEGINF,
541 FPROUNDING_ZERO,
542 FPROUNDING_TIEAWAY,
543 FPROUNDING_ODD
544};
545
9972da66
WN
546int arm_rmode_to_sf(int rmode);
547
b5ff1b31
FB
548enum arm_cpu_mode {
549 ARM_CPU_MODE_USR = 0x10,
550 ARM_CPU_MODE_FIQ = 0x11,
551 ARM_CPU_MODE_IRQ = 0x12,
552 ARM_CPU_MODE_SVC = 0x13,
553 ARM_CPU_MODE_ABT = 0x17,
554 ARM_CPU_MODE_UND = 0x1b,
555 ARM_CPU_MODE_SYS = 0x1f
556};
557
40f137e1
PB
558/* VFP system registers. */
559#define ARM_VFP_FPSID 0
560#define ARM_VFP_FPSCR 1
9ee6e8bb
PB
561#define ARM_VFP_MVFR1 6
562#define ARM_VFP_MVFR0 7
40f137e1
PB
563#define ARM_VFP_FPEXC 8
564#define ARM_VFP_FPINST 9
565#define ARM_VFP_FPINST2 10
566
18c9b560
AZ
567/* iwMMXt coprocessor control registers. */
568#define ARM_IWMMXT_wCID 0
569#define ARM_IWMMXT_wCon 1
570#define ARM_IWMMXT_wCSSF 2
571#define ARM_IWMMXT_wCASF 3
572#define ARM_IWMMXT_wCGR0 8
573#define ARM_IWMMXT_wCGR1 9
574#define ARM_IWMMXT_wCGR2 10
575#define ARM_IWMMXT_wCGR3 11
576
ce854d7c
BC
577/* If adding a feature bit which corresponds to a Linux ELF
578 * HWCAP bit, remember to update the feature-bit-to-hwcap
579 * mapping in linux-user/elfload.c:get_elf_hwcap().
580 */
40f137e1
PB
581enum arm_features {
582 ARM_FEATURE_VFP,
c1713132
AZ
583 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
584 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 585 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
586 ARM_FEATURE_V6,
587 ARM_FEATURE_V6K,
588 ARM_FEATURE_V7,
589 ARM_FEATURE_THUMB2,
c3d2689d 590 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 591 ARM_FEATURE_VFP3,
60011498 592 ARM_FEATURE_VFP_FP16,
9ee6e8bb 593 ARM_FEATURE_NEON,
47789990 594 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 595 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 596 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 597 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
598 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
599 ARM_FEATURE_V4T,
600 ARM_FEATURE_V5,
5bc95aa2 601 ARM_FEATURE_STRONGARM,
906879a9 602 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 603 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 604 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 605 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 606 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 607 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
608 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
609 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
610 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 611 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
612 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
613 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 614 ARM_FEATURE_V8,
3926cc84 615 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 616 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 617 ARM_FEATURE_CBAR, /* has cp15 CBAR */
40f137e1
PB
618};
619
620static inline int arm_feature(CPUARMState *env, int feature)
621{
918f5dca 622 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
623}
624
9a78eead 625void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
40f137e1 626
9ee6e8bb
PB
627/* Interface between CPU and Interrupt controller. */
628void armv7m_nvic_set_pending(void *opaque, int irq);
629int armv7m_nvic_acknowledge_irq(void *opaque);
630void armv7m_nvic_complete_irq(void *opaque, int irq);
631
4b6a83fb
PM
632/* Interface for defining coprocessor registers.
633 * Registers are defined in tables of arm_cp_reginfo structs
634 * which are passed to define_arm_cp_regs().
635 */
636
637/* When looking up a coprocessor register we look for it
638 * via an integer which encodes all of:
639 * coprocessor number
640 * Crn, Crm, opc1, opc2 fields
641 * 32 or 64 bit register (ie is it accessed via MRC/MCR
642 * or via MRRC/MCRR?)
643 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
644 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
645 * For AArch64, there is no 32/64 bit size distinction;
646 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
647 * and 4 bit CRn and CRm. The encoding patterns are chosen
648 * to be easy to convert to and from the KVM encodings, and also
649 * so that the hashtable can contain both AArch32 and AArch64
650 * registers (to allow for interprocessing where we might run
651 * 32 bit code on a 64 bit core).
4b6a83fb 652 */
f5a0a5a5
PM
653/* This bit is private to our hashtable cpreg; in KVM register
654 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
655 * in the upper bits of the 64 bit ID.
656 */
657#define CP_REG_AA64_SHIFT 28
658#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
659
4b6a83fb
PM
660#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
661 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
662 ((crm) << 7) | ((opc1) << 3) | (opc2))
663
f5a0a5a5
PM
664#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
665 (CP_REG_AA64_MASK | \
666 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
667 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
668 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
669 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
670 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
671 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
672
721fae12
PM
673/* Convert a full 64 bit KVM register ID to the truncated 32 bit
674 * version used as a key for the coprocessor register hashtable
675 */
676static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
677{
678 uint32_t cpregid = kvmid;
f5a0a5a5
PM
679 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
680 cpregid |= CP_REG_AA64_MASK;
681 } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
721fae12
PM
682 cpregid |= (1 << 15);
683 }
684 return cpregid;
685}
686
687/* Convert a truncated 32 bit hashtable key into the full
688 * 64 bit KVM register ID.
689 */
690static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
691{
f5a0a5a5
PM
692 uint64_t kvmid;
693
694 if (cpregid & CP_REG_AA64_MASK) {
695 kvmid = cpregid & ~CP_REG_AA64_MASK;
696 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 697 } else {
f5a0a5a5
PM
698 kvmid = cpregid & ~(1 << 15);
699 if (cpregid & (1 << 15)) {
700 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
701 } else {
702 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
703 }
721fae12
PM
704 }
705 return kvmid;
706}
707
4b6a83fb
PM
708/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
709 * special-behaviour cp reg and bits [15..8] indicate what behaviour
710 * it has. Otherwise it is a simple cp reg, where CONST indicates that
711 * TCG can assume the value to be constant (ie load at translate time)
712 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
713 * indicates that the TB should not be ended after a write to this register
714 * (the default is that the TB ends after cp writes). OVERRIDE permits
715 * a register definition to override a previous definition for the
716 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
717 * old must have the OVERRIDE bit set.
7023ec7e
PM
718 * NO_MIGRATE indicates that this register should be ignored for migration;
719 * (eg because any state is accessed via some other coprocessor register).
2452731c
PM
720 * IO indicates that this register does I/O and therefore its accesses
721 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
722 * registers which implement clocks or timers require this.
4b6a83fb
PM
723 */
724#define ARM_CP_SPECIAL 1
725#define ARM_CP_CONST 2
726#define ARM_CP_64BIT 4
727#define ARM_CP_SUPPRESS_TB_END 8
728#define ARM_CP_OVERRIDE 16
7023ec7e 729#define ARM_CP_NO_MIGRATE 32
2452731c 730#define ARM_CP_IO 64
4b6a83fb
PM
731#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
732#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
b0d2b7d0 733#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
0eef9d98
PM
734#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
735#define ARM_LAST_SPECIAL ARM_CP_CURRENTEL
4b6a83fb
PM
736/* Used only as a terminator for ARMCPRegInfo lists */
737#define ARM_CP_SENTINEL 0xffff
738/* Mask of only the flag bits in a type field */
2452731c 739#define ARM_CP_FLAG_MASK 0x7f
4b6a83fb 740
f5a0a5a5
PM
741/* Valid values for ARMCPRegInfo state field, indicating which of
742 * the AArch32 and AArch64 execution states this register is visible in.
743 * If the reginfo doesn't explicitly specify then it is AArch32 only.
744 * If the reginfo is declared to be visible in both states then a second
745 * reginfo is synthesised for the AArch32 view of the AArch64 register,
746 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
747 * Note that we rely on the values of these enums as we iterate through
748 * the various states in some places.
749 */
750enum {
751 ARM_CP_STATE_AA32 = 0,
752 ARM_CP_STATE_AA64 = 1,
753 ARM_CP_STATE_BOTH = 2,
754};
755
4b6a83fb
PM
756/* Return true if cptype is a valid type field. This is used to try to
757 * catch errors where the sentinel has been accidentally left off the end
758 * of a list of registers.
759 */
760static inline bool cptype_valid(int cptype)
761{
762 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
763 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 764 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
765}
766
767/* Access rights:
768 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
769 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
770 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
771 * (ie any of the privileged modes in Secure state, or Monitor mode).
772 * If a register is accessible in one privilege level it's always accessible
773 * in higher privilege levels too. Since "Secure PL1" also follows this rule
774 * (ie anything visible in PL2 is visible in S-PL1, some things are only
775 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
776 * terminology a little and call this PL3.
f5a0a5a5
PM
777 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
778 * with the ELx exception levels.
4b6a83fb
PM
779 *
780 * If access permissions for a register are more complex than can be
781 * described with these bits, then use a laxer set of restrictions, and
782 * do the more restrictive/complex check inside a helper function.
783 */
784#define PL3_R 0x80
785#define PL3_W 0x40
786#define PL2_R (0x20 | PL3_R)
787#define PL2_W (0x10 | PL3_W)
788#define PL1_R (0x08 | PL2_R)
789#define PL1_W (0x04 | PL2_W)
790#define PL0_R (0x02 | PL1_R)
791#define PL0_W (0x01 | PL1_W)
792
793#define PL3_RW (PL3_R | PL3_W)
794#define PL2_RW (PL2_R | PL2_W)
795#define PL1_RW (PL1_R | PL1_W)
796#define PL0_RW (PL0_R | PL0_W)
797
798static inline int arm_current_pl(CPUARMState *env)
799{
f5a0a5a5
PM
800 if (env->aarch64) {
801 return extract32(env->pstate, 2, 2);
802 }
803
4b6a83fb
PM
804 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
805 return 0;
806 }
807 /* We don't currently implement the Virtualization or TrustZone
808 * extensions, so PL2 and PL3 don't exist for us.
809 */
810 return 1;
811}
812
813typedef struct ARMCPRegInfo ARMCPRegInfo;
814
f59df3f2
PM
815typedef enum CPAccessResult {
816 /* Access is permitted */
817 CP_ACCESS_OK = 0,
818 /* Access fails due to a configurable trap or enable which would
819 * result in a categorized exception syndrome giving information about
820 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
821 * 0xc or 0x18).
822 */
823 CP_ACCESS_TRAP = 1,
824 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
825 * Note that this is not a catch-all case -- the set of cases which may
826 * result in this failure is specifically defined by the architecture.
827 */
828 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
829} CPAccessResult;
830
c4241c7d
PM
831/* Access functions for coprocessor registers. These cannot fail and
832 * may not raise exceptions.
833 */
834typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
835typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
836 uint64_t value);
f59df3f2
PM
837/* Access permission check functions for coprocessor registers. */
838typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
4b6a83fb
PM
839/* Hook function for register reset */
840typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
841
842#define CP_ANY 0xff
843
844/* Definition of an ARM coprocessor register */
845struct ARMCPRegInfo {
846 /* Name of register (useful mainly for debugging, need not be unique) */
847 const char *name;
848 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
849 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
850 * 'wildcard' field -- any value of that field in the MRC/MCR insn
851 * will be decoded to this register. The register read and write
852 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
853 * used by the program, so it is possible to register a wildcard and
854 * then behave differently on read/write if necessary.
855 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
856 * must both be zero.
f5a0a5a5
PM
857 * For AArch64-visible registers, opc0 is also used.
858 * Since there are no "coprocessors" in AArch64, cp is purely used as a
859 * way to distinguish (for KVM's benefit) guest-visible system registers
860 * from demuxed ones provided to preserve the "no side effects on
861 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
862 * visible (to match KVM's encoding); cp==0 will be converted to
863 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
864 */
865 uint8_t cp;
866 uint8_t crn;
867 uint8_t crm;
f5a0a5a5 868 uint8_t opc0;
4b6a83fb
PM
869 uint8_t opc1;
870 uint8_t opc2;
f5a0a5a5
PM
871 /* Execution state in which this register is visible: ARM_CP_STATE_* */
872 int state;
4b6a83fb
PM
873 /* Register type: ARM_CP_* bits/values */
874 int type;
875 /* Access rights: PL*_[RW] */
876 int access;
877 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
878 * this register was defined: can be used to hand data through to the
879 * register read/write functions, since they are passed the ARMCPRegInfo*.
880 */
881 void *opaque;
882 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
883 * fieldoffset is non-zero, the reset value of the register.
884 */
885 uint64_t resetvalue;
886 /* Offset of the field in CPUARMState for this register. This is not
887 * needed if either:
888 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
889 * 2. both readfn and writefn are specified
890 */
891 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
f59df3f2
PM
892 /* Function for making any access checks for this register in addition to
893 * those specified by the 'access' permissions bits. If NULL, no extra
894 * checks required. The access check is performed at runtime, not at
895 * translate time.
896 */
897 CPAccessFn *accessfn;
4b6a83fb
PM
898 /* Function for handling reads of this register. If NULL, then reads
899 * will be done by loading from the offset into CPUARMState specified
900 * by fieldoffset.
901 */
902 CPReadFn *readfn;
903 /* Function for handling writes of this register. If NULL, then writes
904 * will be done by writing to the offset into CPUARMState specified
905 * by fieldoffset.
906 */
907 CPWriteFn *writefn;
7023ec7e
PM
908 /* Function for doing a "raw" read; used when we need to copy
909 * coprocessor state to the kernel for KVM or out for
910 * migration. This only needs to be provided if there is also a
c4241c7d 911 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
912 */
913 CPReadFn *raw_readfn;
914 /* Function for doing a "raw" write; used when we need to copy KVM
915 * kernel coprocessor state into userspace, or for inbound
916 * migration. This only needs to be provided if there is also a
c4241c7d
PM
917 * writefn and it masks out "unwritable" bits or has write-one-to-clear
918 * or similar behaviour.
7023ec7e
PM
919 */
920 CPWriteFn *raw_writefn;
4b6a83fb
PM
921 /* Function for resetting the register. If NULL, then reset will be done
922 * by writing resetvalue to the field specified in fieldoffset. If
923 * fieldoffset is 0 then no reset will be done.
924 */
925 CPResetFn *resetfn;
926};
927
928/* Macros which are lvalues for the field in CPUARMState for the
929 * ARMCPRegInfo *ri.
930 */
931#define CPREG_FIELD32(env, ri) \
932 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
933#define CPREG_FIELD64(env, ri) \
934 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
935
936#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
937
938void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
939 const ARMCPRegInfo *regs, void *opaque);
940void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
941 const ARMCPRegInfo *regs, void *opaque);
942static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
943{
944 define_arm_cp_regs_with_opaque(cpu, regs, 0);
945}
946static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
947{
948 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
949}
60322b39 950const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
951
952/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
953void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
954 uint64_t value);
4b6a83fb 955/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 956uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 957
f5a0a5a5
PM
958/* CPResetFn that does nothing, for use if no reset is required even
959 * if fieldoffset is non zero.
960 */
961void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
962
67ed771d
PM
963/* Return true if this reginfo struct's field in the cpu state struct
964 * is 64 bits wide.
965 */
966static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
967{
968 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
969}
970
60322b39 971static inline bool cp_access_ok(int current_pl,
4b6a83fb
PM
972 const ARMCPRegInfo *ri, int isread)
973{
60322b39 974 return (ri->access >> ((current_pl * 2) + isread)) & 1;
4b6a83fb
PM
975}
976
721fae12
PM
977/**
978 * write_list_to_cpustate
979 * @cpu: ARMCPU
980 *
981 * For each register listed in the ARMCPU cpreg_indexes list, write
982 * its value from the cpreg_values list into the ARMCPUState structure.
983 * This updates TCG's working data structures from KVM data or
984 * from incoming migration state.
985 *
986 * Returns: true if all register values were updated correctly,
987 * false if some register was unknown or could not be written.
988 * Note that we do not stop early on failure -- we will attempt
989 * writing all registers in the list.
990 */
991bool write_list_to_cpustate(ARMCPU *cpu);
992
993/**
994 * write_cpustate_to_list:
995 * @cpu: ARMCPU
996 *
997 * For each register listed in the ARMCPU cpreg_indexes list, write
998 * its value from the ARMCPUState structure into the cpreg_values list.
999 * This is used to copy info from TCG's working data structures into
1000 * KVM or for outbound migration.
1001 *
1002 * Returns: true if all register values were read correctly,
1003 * false if some register was unknown or could not be read.
1004 * Note that we do not stop early on failure -- we will attempt
1005 * reading all registers in the list.
1006 */
1007bool write_cpustate_to_list(ARMCPU *cpu);
1008
9ee6e8bb
PB
1009/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1010 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1011 conventional cores (ie. Application or Realtime profile). */
1012
1013#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 1014
9ee6e8bb
PB
1015#define ARM_CPUID_TI915T 0x54029152
1016#define ARM_CPUID_TI925T 0x54029252
40f137e1 1017
b5ff1b31 1018#if defined(CONFIG_USER_ONLY)
2c0262af 1019#define TARGET_PAGE_BITS 12
b5ff1b31
FB
1020#else
1021/* The ARM MMU allows 1k pages. */
1022/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 1023 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
1024#define TARGET_PAGE_BITS 10
1025#endif
9467d44c 1026
3926cc84
AG
1027#if defined(TARGET_AARCH64)
1028# define TARGET_PHYS_ADDR_SPACE_BITS 48
1029# define TARGET_VIRT_ADDR_SPACE_BITS 64
1030#else
1031# define TARGET_PHYS_ADDR_SPACE_BITS 40
1032# define TARGET_VIRT_ADDR_SPACE_BITS 32
1033#endif
52705890 1034
ad37ad5b
PM
1035static inline CPUARMState *cpu_init(const char *cpu_model)
1036{
1037 ARMCPU *cpu = cpu_arm_init(cpu_model);
1038 if (cpu) {
1039 return &cpu->env;
1040 }
1041 return NULL;
1042}
1043
9467d44c
TS
1044#define cpu_exec cpu_arm_exec
1045#define cpu_gen_code cpu_arm_gen_code
1046#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 1047#define cpu_list arm_cpu_list
9467d44c 1048
6ebbf390
JM
1049/* MMU modes definitions */
1050#define MMU_MODE0_SUFFIX _kernel
1051#define MMU_MODE1_SUFFIX _user
1052#define MMU_USER_IDX 1
0ecb72a5 1053static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390
JM
1054{
1055 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
1056}
1057
022c62cb 1058#include "exec/cpu-all.h"
622ed360 1059
3926cc84
AG
1060/* Bit usage in the TB flags field: bit 31 indicates whether we are
1061 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1062 */
1063#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1064#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1065
1066/* Bit usage when in AArch32 state: */
a1705768
PM
1067#define ARM_TBFLAG_THUMB_SHIFT 0
1068#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1069#define ARM_TBFLAG_VECLEN_SHIFT 1
1070#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1071#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1072#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1073#define ARM_TBFLAG_PRIV_SHIFT 6
1074#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
1075#define ARM_TBFLAG_VFPEN_SHIFT 7
1076#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1077#define ARM_TBFLAG_CONDEXEC_SHIFT 8
1078#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1079#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1080#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
3926cc84
AG
1081
1082/* Bit usage when in AArch64 state: currently no bits defined */
a1705768
PM
1083
1084/* some convenience accessor macros */
3926cc84
AG
1085#define ARM_TBFLAG_AARCH64_STATE(F) \
1086 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
a1705768
PM
1087#define ARM_TBFLAG_THUMB(F) \
1088 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1089#define ARM_TBFLAG_VECLEN(F) \
1090 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1091#define ARM_TBFLAG_VECSTRIDE(F) \
1092 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1093#define ARM_TBFLAG_PRIV(F) \
1094 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1095#define ARM_TBFLAG_VFPEN(F) \
1096 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1097#define ARM_TBFLAG_CONDEXEC(F) \
1098 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1099#define ARM_TBFLAG_BSWAP_CODE(F) \
1100 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
a1705768 1101
0ecb72a5 1102static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
1103 target_ulong *cs_base, int *flags)
1104{
3926cc84
AG
1105 if (is_a64(env)) {
1106 *pc = env->pc;
1107 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
05ed9a99 1108 } else {
3926cc84
AG
1109 int privmode;
1110 *pc = env->regs[15];
1111 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1112 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1113 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1114 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1115 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1116 if (arm_feature(env, ARM_FEATURE_M)) {
1117 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1118 } else {
1119 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1120 }
1121 if (privmode) {
1122 *flags |= ARM_TBFLAG_PRIV_MASK;
1123 }
1124 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
1125 *flags |= ARM_TBFLAG_VFPEN_MASK;
1126 }
a1705768 1127 }
3926cc84
AG
1128
1129 *cs_base = 0;
6b917547
AL
1130}
1131
3993c6bd 1132static inline bool cpu_has_work(CPUState *cpu)
f081c76c 1133{
259186a7 1134 return cpu->interrupt_request &
f081c76c
BS
1135 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
1136}
1137
022c62cb 1138#include "exec/exec-all.h"
f081c76c 1139
3926cc84
AG
1140static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1141{
1142 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1143 env->pc = tb->pc;
1144 } else {
1145 env->regs[15] = tb->pc;
1146 }
1147}
1148
d8fd2954 1149/* Load an instruction and return it in the standard little-endian order */
0a2461fa 1150static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
d31dd73e 1151 bool do_swap)
d8fd2954 1152{
d31dd73e 1153 uint32_t insn = cpu_ldl_code(env, addr);
d8fd2954
PB
1154 if (do_swap) {
1155 return bswap32(insn);
1156 }
1157 return insn;
1158}
1159
1160/* Ditto, for a halfword (Thumb) instruction */
0a2461fa 1161static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
d31dd73e 1162 bool do_swap)
d8fd2954 1163{
d31dd73e 1164 uint16_t insn = cpu_lduw_code(env, addr);
d8fd2954
PB
1165 if (do_swap) {
1166 return bswap16(insn);
1167 }
1168 return insn;
1169}
1170
2c0262af 1171#endif