]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/cpu.h
tlb: Add "ifetch" argument to cpu_mmu_index()
[mirror_qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3926cc84 22#include "config.h"
3cf1e035 23
72b0cd35
PM
24#include "kvm-consts.h"
25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
29# define ELF_MACHINE EM_AARCH64
30#else
31# define TARGET_LONG_BITS 32
32# define ELF_MACHINE EM_ARM
33#endif
9042c0e2 34
84f2bed3
PS
35#define TARGET_IS_BIENDIAN 1
36
9349b4f9 37#define CPUArchState struct CPUARMState
c2764719 38
9a78eead 39#include "qemu-common.h"
022c62cb 40#include "exec/cpu-defs.h"
2c0262af 41
6b4c305c 42#include "fpu/softfloat.h"
53cd6637 43
b8a9e8f1
FB
44#define EXCP_UDEF 1 /* undefined instruction */
45#define EXCP_SWI 2 /* software interrupt */
46#define EXCP_PREFETCH_ABORT 3
47#define EXCP_DATA_ABORT 4
b5ff1b31
FB
48#define EXCP_IRQ 5
49#define EXCP_FIQ 6
06c949e6 50#define EXCP_BKPT 7
9ee6e8bb 51#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 52#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 53#define EXCP_STREX 10
35979d71 54#define EXCP_HVC 11 /* HyperVisor Call */
607d98b8 55#define EXCP_HYP_TRAP 12
e0d6e6a5 56#define EXCP_SMC 13 /* Secure Monitor Call */
136e67e9
EI
57#define EXCP_VIRQ 14
58#define EXCP_VFIQ 15
8012c84f 59#define EXCP_SEMIHOST 16 /* semihosting call (A64 only) */
9ee6e8bb
PB
60
61#define ARMV7M_EXCP_RESET 1
62#define ARMV7M_EXCP_NMI 2
63#define ARMV7M_EXCP_HARD 3
64#define ARMV7M_EXCP_MEM 4
65#define ARMV7M_EXCP_BUS 5
66#define ARMV7M_EXCP_USAGE 6
67#define ARMV7M_EXCP_SVC 11
68#define ARMV7M_EXCP_DEBUG 12
69#define ARMV7M_EXCP_PENDSV 14
70#define ARMV7M_EXCP_SYSTICK 15
2c0262af 71
403946c0
RH
72/* ARM-specific interrupt pending bits. */
73#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
136e67e9
EI
74#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
75#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
403946c0 76
e4fe830b
PM
77/* The usual mapping for an AArch64 system register to its AArch32
78 * counterpart is for the 32 bit world to have access to the lower
79 * half only (with writes leaving the upper half untouched). It's
80 * therefore useful to be able to pass TCG the offset of the least
81 * significant half of a uint64_t struct member.
82 */
83#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 84#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 85#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
86#else
87#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 88#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
89#endif
90
136e67e9 91/* Meanings of the ARMCPU object's four inbound GPIO lines */
7c1840b6
PM
92#define ARM_CPU_IRQ 0
93#define ARM_CPU_FIQ 1
136e67e9
EI
94#define ARM_CPU_VIRQ 2
95#define ARM_CPU_VFIQ 3
403946c0 96
f93eb9ff
AZ
97struct arm_boot_info;
98
c1e37810 99#define NB_MMU_MODES 7
6ebbf390 100
b7bcbe95
FB
101/* We currently assume float and double are IEEE single and double
102 precision respectively.
103 Doing runtime conversions is tricky because VFP registers may contain
104 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
105 s<2n> maps to the least significant half of d<n>
106 s<2n+1> maps to the most significant half of d<n>
107 */
b7bcbe95 108
55d284af
PM
109/* CPU state for each instance of a generic timer (in cp15 c14) */
110typedef struct ARMGenericTimer {
111 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 112 uint64_t ctl; /* Timer Control register */
55d284af
PM
113} ARMGenericTimer;
114
115#define GTIMER_PHYS 0
116#define GTIMER_VIRT 1
b0e66d95 117#define GTIMER_HYP 2
b4d3978c
PM
118#define GTIMER_SEC 3
119#define NUM_GTIMERS 4
55d284af 120
11f136ee
FA
121typedef struct {
122 uint64_t raw_tcr;
123 uint32_t mask;
124 uint32_t base_mask;
125} TCR;
126
2c0262af 127typedef struct CPUARMState {
b5ff1b31 128 /* Regs for current mode. */
2c0262af 129 uint32_t regs[16];
3926cc84
AG
130
131 /* 32/64 switch only happens when taking and returning from
132 * exceptions so the overlap semantics are taken care of then
133 * instead of having a complicated union.
134 */
135 /* Regs for A64 mode. */
136 uint64_t xregs[32];
137 uint64_t pc;
d356312f
PM
138 /* PSTATE isn't an architectural register for ARMv8. However, it is
139 * convenient for us to assemble the underlying state into a 32 bit format
140 * identical to the architectural format used for the SPSR. (This is also
141 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
142 * 'pstate' register are.) Of the PSTATE bits:
143 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
144 * semantics as for AArch32, as described in the comments on each field)
145 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 146 * DAIF (exception masks) are kept in env->daif
d356312f 147 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
148 */
149 uint32_t pstate;
150 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
151
b90372ad 152 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 153 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
154 the whole CPSR. */
155 uint32_t uncached_cpsr;
156 uint32_t spsr;
157
158 /* Banked registers. */
28c9457d 159 uint64_t banked_spsr[8];
0b7d409d
FA
160 uint32_t banked_r13[8];
161 uint32_t banked_r14[8];
3b46e624 162
b5ff1b31
FB
163 /* These hold r8-r12. */
164 uint32_t usr_regs[5];
165 uint32_t fiq_regs[5];
3b46e624 166
2c0262af
FB
167 /* cpsr flag cache for faster execution */
168 uint32_t CF; /* 0 or 1 */
169 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
170 uint32_t NF; /* N is bit 31. All other bits are undefined. */
171 uint32_t ZF; /* Z set if zero. */
99c475ab 172 uint32_t QF; /* 0 or 1 */
9ee6e8bb 173 uint32_t GE; /* cpsr[19:16] */
b26eefb6 174 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 175 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
b6af0975 176 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
2c0262af 177
1b174238 178 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 179 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 180
b5ff1b31
FB
181 /* System control coprocessor (cp15) */
182 struct {
40f137e1 183 uint32_t c0_cpuid;
b85a1fd6
FA
184 union { /* Cache size selection */
185 struct {
186 uint64_t _unused_csselr0;
187 uint64_t csselr_ns;
188 uint64_t _unused_csselr1;
189 uint64_t csselr_s;
190 };
191 uint64_t csselr_el[4];
192 };
137feaa9
FA
193 union { /* System control register. */
194 struct {
195 uint64_t _unused_sctlr;
196 uint64_t sctlr_ns;
197 uint64_t hsctlr;
198 uint64_t sctlr_s;
199 };
200 uint64_t sctlr_el[4];
201 };
7ebd5f2e 202 uint64_t cpacr_el1; /* Architectural feature access control register */
c6f19164 203 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
610c3c8a 204 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
144634ae 205 uint64_t sder; /* Secure debug enable register. */
77022576 206 uint32_t nsacr; /* Non-secure access control register. */
7dd8c9af
FA
207 union { /* MMU translation table base 0. */
208 struct {
209 uint64_t _unused_ttbr0_0;
210 uint64_t ttbr0_ns;
211 uint64_t _unused_ttbr0_1;
212 uint64_t ttbr0_s;
213 };
214 uint64_t ttbr0_el[4];
215 };
216 union { /* MMU translation table base 1. */
217 struct {
218 uint64_t _unused_ttbr1_0;
219 uint64_t ttbr1_ns;
220 uint64_t _unused_ttbr1_1;
221 uint64_t ttbr1_s;
222 };
223 uint64_t ttbr1_el[4];
224 };
11f136ee
FA
225 /* MMU translation table base control. */
226 TCR tcr_el[4];
67cc32eb
VL
227 uint32_t c2_data; /* MPU data cacheable bits. */
228 uint32_t c2_insn; /* MPU instruction cacheable bits. */
0c17d68c
FA
229 union { /* MMU domain access control register
230 * MPU write buffer control.
231 */
232 struct {
233 uint64_t dacr_ns;
234 uint64_t dacr_s;
235 };
236 struct {
237 uint64_t dacr32_el2;
238 };
239 };
7e09797c
PM
240 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
241 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 242 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 243 uint64_t scr_el3; /* Secure configuration register. */
88ca1c2d
FA
244 union { /* Fault status registers. */
245 struct {
246 uint64_t ifsr_ns;
247 uint64_t ifsr_s;
248 };
249 struct {
250 uint64_t ifsr32_el2;
251 };
252 };
4a7e2d73
FA
253 union {
254 struct {
255 uint64_t _unused_dfsr;
256 uint64_t dfsr_ns;
257 uint64_t hsr;
258 uint64_t dfsr_s;
259 };
260 uint64_t esr_el[4];
261 };
ce819861 262 uint32_t c6_region[8]; /* MPU base/size registers. */
b848ce2b
FA
263 union { /* Fault address registers. */
264 struct {
265 uint64_t _unused_far0;
266#ifdef HOST_WORDS_BIGENDIAN
267 uint32_t ifar_ns;
268 uint32_t dfar_ns;
269 uint32_t ifar_s;
270 uint32_t dfar_s;
271#else
272 uint32_t dfar_ns;
273 uint32_t ifar_ns;
274 uint32_t dfar_s;
275 uint32_t ifar_s;
276#endif
277 uint64_t _unused_far3;
278 };
279 uint64_t far_el[4];
280 };
01c097f7
FA
281 union { /* Translation result. */
282 struct {
283 uint64_t _unused_par_0;
284 uint64_t par_ns;
285 uint64_t _unused_par_1;
286 uint64_t par_s;
287 };
288 uint64_t par_el[4];
289 };
6cb0b013
PC
290
291 uint32_t c6_rgnr;
292
b5ff1b31
FB
293 uint32_t c9_insn; /* Cache lockdown registers. */
294 uint32_t c9_data;
8521466b
AF
295 uint64_t c9_pmcr; /* performance monitor control register */
296 uint64_t c9_pmcnten; /* perf monitor counter enables */
74594c9d
PM
297 uint32_t c9_pmovsr; /* perf monitor overflow status */
298 uint32_t c9_pmxevtyper; /* perf monitor event type */
299 uint32_t c9_pmuserenr; /* perf monitor user enable */
300 uint32_t c9_pminten; /* perf monitor interrupt enables */
be693c87
GB
301 union { /* Memory attribute redirection */
302 struct {
303#ifdef HOST_WORDS_BIGENDIAN
304 uint64_t _unused_mair_0;
305 uint32_t mair1_ns;
306 uint32_t mair0_ns;
307 uint64_t _unused_mair_1;
308 uint32_t mair1_s;
309 uint32_t mair0_s;
310#else
311 uint64_t _unused_mair_0;
312 uint32_t mair0_ns;
313 uint32_t mair1_ns;
314 uint64_t _unused_mair_1;
315 uint32_t mair0_s;
316 uint32_t mair1_s;
317#endif
318 };
319 uint64_t mair_el[4];
320 };
fb6c91ba
GB
321 union { /* vector base address register */
322 struct {
323 uint64_t _unused_vbar;
324 uint64_t vbar_ns;
325 uint64_t hvbar;
326 uint64_t vbar_s;
327 };
328 uint64_t vbar_el[4];
329 };
e89e51a1 330 uint32_t mvbar; /* (monitor) vector base address register */
54bf36ed
FA
331 struct { /* FCSE PID. */
332 uint32_t fcseidr_ns;
333 uint32_t fcseidr_s;
334 };
335 union { /* Context ID. */
336 struct {
337 uint64_t _unused_contextidr_0;
338 uint64_t contextidr_ns;
339 uint64_t _unused_contextidr_1;
340 uint64_t contextidr_s;
341 };
342 uint64_t contextidr_el[4];
343 };
344 union { /* User RW Thread register. */
345 struct {
346 uint64_t tpidrurw_ns;
347 uint64_t tpidrprw_ns;
348 uint64_t htpidr;
349 uint64_t _tpidr_el3;
350 };
351 uint64_t tpidr_el[4];
352 };
353 /* The secure banks of these registers don't map anywhere */
354 uint64_t tpidrurw_s;
355 uint64_t tpidrprw_s;
356 uint64_t tpidruro_s;
357
358 union { /* User RO Thread register. */
359 uint64_t tpidruro_ns;
360 uint64_t tpidrro_el[1];
361 };
a7adc4b7
PM
362 uint64_t c14_cntfrq; /* Counter Frequency register */
363 uint64_t c14_cntkctl; /* Timer Control register */
0b6440af 364 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
edac4d8a 365 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
55d284af 366 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 367 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
368 uint32_t c15_ticonfig; /* TI925T configuration byte. */
369 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
370 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
371 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
372 uint32_t c15_config_base_address; /* SCU base address. */
373 uint32_t c15_diagnostic; /* diagnostic register */
374 uint32_t c15_power_diagnostic;
375 uint32_t c15_power_control; /* power control */
0b45451e
PM
376 uint64_t dbgbvr[16]; /* breakpoint value registers */
377 uint64_t dbgbcr[16]; /* breakpoint control registers */
378 uint64_t dbgwvr[16]; /* watchpoint value registers */
379 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 380 uint64_t mdscr_el1;
7c2cb42b
AF
381 /* If the counter is enabled, this stores the last time the counter
382 * was reset. Otherwise it stores the counter value
383 */
c92c0687 384 uint64_t c15_ccnt;
8521466b 385 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
b5ff1b31 386 } cp15;
40f137e1 387
9ee6e8bb
PB
388 struct {
389 uint32_t other_sp;
390 uint32_t vecbase;
391 uint32_t basepri;
392 uint32_t control;
393 int current_sp;
394 int exception;
9ee6e8bb
PB
395 } v7m;
396
abf1172f
PM
397 /* Information associated with an exception about to be taken:
398 * code which raises an exception must set cs->exception_index and
399 * the relevant parts of this structure; the cpu_do_interrupt function
400 * will then set the guest-visible registers as part of the exception
401 * entry process.
402 */
403 struct {
404 uint32_t syndrome; /* AArch64 format syndrome register */
405 uint32_t fsr; /* AArch32 format fault status register info */
406 uint64_t vaddress; /* virtual addr associated with exception, if any */
73710361 407 uint32_t target_el; /* EL the exception should be targeted for */
abf1172f
PM
408 /* If we implement EL2 we will also need to store information
409 * about the intermediate physical address for stage 2 faults.
410 */
411 } exception;
412
fe1479c3
PB
413 /* Thumb-2 EE state. */
414 uint32_t teecr;
415 uint32_t teehbr;
416
b7bcbe95
FB
417 /* VFP coprocessor state. */
418 struct {
3926cc84
AG
419 /* VFP/Neon register state. Note that the mapping between S, D and Q
420 * views of the register bank differs between AArch64 and AArch32:
421 * In AArch32:
422 * Qn = regs[2n+1]:regs[2n]
423 * Dn = regs[n]
424 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
425 * (and regs[32] to regs[63] are inaccessible)
426 * In AArch64:
427 * Qn = regs[2n+1]:regs[2n]
428 * Dn = regs[2n]
429 * Sn = regs[2n] bits 31..0
430 * This corresponds to the architecturally defined mapping between
431 * the two execution states, and means we do not need to explicitly
432 * map these registers when changing states.
433 */
434 float64 regs[64];
b7bcbe95 435
40f137e1 436 uint32_t xregs[16];
b7bcbe95
FB
437 /* We store these fpcsr fields separately for convenience. */
438 int vec_len;
439 int vec_stride;
440
9ee6e8bb
PB
441 /* scratch space when Tn are not sufficient. */
442 uint32_t scratch[8];
3b46e624 443
3a492f3a
PM
444 /* fp_status is the "normal" fp status. standard_fp_status retains
445 * values corresponding to the ARM "Standard FPSCR Value", ie
446 * default-NaN, flush-to-zero, round-to-nearest and is used by
447 * any operations (generally Neon) which the architecture defines
448 * as controlled by the standard FPSCR value rather than the FPSCR.
449 *
450 * To avoid having to transfer exception bits around, we simply
451 * say that the FPSCR cumulative exception flags are the logical
452 * OR of the flags in the two fp statuses. This relies on the
453 * only thing which needs to read the exception flags being
454 * an explicit FPSCR read.
455 */
53cd6637 456 float_status fp_status;
3a492f3a 457 float_status standard_fp_status;
b7bcbe95 458 } vfp;
03d05e2d
PM
459 uint64_t exclusive_addr;
460 uint64_t exclusive_val;
461 uint64_t exclusive_high;
9ee6e8bb 462#if defined(CONFIG_USER_ONLY)
03d05e2d 463 uint64_t exclusive_test;
426f5abc 464 uint32_t exclusive_info;
9ee6e8bb 465#endif
b7bcbe95 466
18c9b560
AZ
467 /* iwMMXt coprocessor state. */
468 struct {
469 uint64_t regs[16];
470 uint64_t val;
471
472 uint32_t cregs[16];
473 } iwmmxt;
474
d8fd2954
PB
475 /* For mixed endian mode. */
476 bool bswap_code;
477
ce4defa0
PB
478#if defined(CONFIG_USER_ONLY)
479 /* For usermode syscall translation. */
480 int eabi;
481#endif
482
46747d15 483 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
484 struct CPUWatchpoint *cpu_watchpoint[16];
485
a316d335
FB
486 CPU_COMMON
487
9d551997 488 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 489
581be094 490 /* Internal CPU feature flags. */
918f5dca 491 uint64_t features;
581be094 492
6cb0b013
PC
493 /* PMSAv7 MPU */
494 struct {
495 uint32_t *drbar;
496 uint32_t *drsr;
497 uint32_t *dracr;
498 } pmsav7;
499
983fe826 500 void *nvic;
462a8bc6 501 const struct arm_boot_info *boot_info;
2c0262af
FB
502} CPUARMState;
503
778c3a06
AF
504#include "cpu-qom.h"
505
506ARMCPU *cpu_arm_init(const char *cpu_model);
ea3e9847 507int cpu_arm_exec(CPUState *cpu);
faacc041 508target_ulong do_arm_semihosting(CPUARMState *env);
ce02049d
GB
509void aarch64_sync_32_to_64(CPUARMState *env);
510void aarch64_sync_64_to_32(CPUARMState *env);
b5ff1b31 511
3926cc84
AG
512static inline bool is_a64(CPUARMState *env)
513{
514 return env->aarch64;
515}
516
2c0262af
FB
517/* you can call this signal handler from your SIGBUS and SIGSEGV
518 signal handlers to inform the virtual CPU of exceptions. non zero
519 is returned if the signal was handled by the virtual CPU. */
5fafdf24 520int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af
FB
521 void *puc);
522
ec7b4ce4
AF
523/**
524 * pmccntr_sync
525 * @env: CPUARMState
526 *
527 * Synchronises the counter in the PMCCNTR. This must always be called twice,
528 * once before any action that might affect the timer and again afterwards.
529 * The function is used to swap the state of the register if required.
530 * This only happens when not in user mode (!CONFIG_USER_ONLY)
531 */
532void pmccntr_sync(CPUARMState *env);
533
76e3e1bc
PM
534/* SCTLR bit meanings. Several bits have been reused in newer
535 * versions of the architecture; in that case we define constants
536 * for both old and new bit meanings. Code which tests against those
537 * bits should probably check or otherwise arrange that the CPU
538 * is the architectural version it expects.
539 */
540#define SCTLR_M (1U << 0)
541#define SCTLR_A (1U << 1)
542#define SCTLR_C (1U << 2)
543#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
544#define SCTLR_SA (1U << 3)
545#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
546#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
547#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
548#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
549#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
550#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
551#define SCTLR_ITD (1U << 7) /* v8 onward */
552#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
553#define SCTLR_SED (1U << 8) /* v8 onward */
554#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
555#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
556#define SCTLR_F (1U << 10) /* up to v6 */
557#define SCTLR_SW (1U << 10) /* v7 onward */
558#define SCTLR_Z (1U << 11)
559#define SCTLR_I (1U << 12)
560#define SCTLR_V (1U << 13)
561#define SCTLR_RR (1U << 14) /* up to v7 */
562#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
563#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
564#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
565#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
566#define SCTLR_nTWI (1U << 16) /* v8 onward */
567#define SCTLR_HA (1U << 17)
f6bda88f 568#define SCTLR_BR (1U << 17) /* PMSA only */
76e3e1bc
PM
569#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
570#define SCTLR_nTWE (1U << 18) /* v8 onward */
571#define SCTLR_WXN (1U << 19)
572#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
573#define SCTLR_UWXN (1U << 20) /* v7 onward */
574#define SCTLR_FI (1U << 21)
575#define SCTLR_U (1U << 22)
576#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
577#define SCTLR_VE (1U << 24) /* up to v7 */
578#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
579#define SCTLR_EE (1U << 25)
580#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
581#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
582#define SCTLR_NMFI (1U << 27)
583#define SCTLR_TRE (1U << 28)
584#define SCTLR_AFE (1U << 29)
585#define SCTLR_TE (1U << 30)
586
c6f19164
GB
587#define CPTR_TCPAC (1U << 31)
588#define CPTR_TTA (1U << 20)
589#define CPTR_TFP (1U << 10)
590
78dbbbe4
PM
591#define CPSR_M (0x1fU)
592#define CPSR_T (1U << 5)
593#define CPSR_F (1U << 6)
594#define CPSR_I (1U << 7)
595#define CPSR_A (1U << 8)
596#define CPSR_E (1U << 9)
597#define CPSR_IT_2_7 (0xfc00U)
598#define CPSR_GE (0xfU << 16)
4051e12c
PM
599#define CPSR_IL (1U << 20)
600/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
601 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
602 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
603 * where it is live state but not accessible to the AArch32 code.
604 */
605#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
606#define CPSR_J (1U << 24)
607#define CPSR_IT_0_1 (3U << 25)
608#define CPSR_Q (1U << 27)
609#define CPSR_V (1U << 28)
610#define CPSR_C (1U << 29)
611#define CPSR_Z (1U << 30)
612#define CPSR_N (1U << 31)
9ee6e8bb 613#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 614#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
615
616#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
617#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
618 | CPSR_NZCV)
9ee6e8bb
PB
619/* Bits writable in user mode. */
620#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
621/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
622#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
623/* Mask of bits which may be set by exception return copying them from SPSR */
624#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 625
e389be16
FA
626#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
627#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
628#define TTBCR_PD0 (1U << 4)
629#define TTBCR_PD1 (1U << 5)
630#define TTBCR_EPD0 (1U << 7)
631#define TTBCR_IRGN0 (3U << 8)
632#define TTBCR_ORGN0 (3U << 10)
633#define TTBCR_SH0 (3U << 12)
634#define TTBCR_T1SZ (3U << 16)
635#define TTBCR_A1 (1U << 22)
636#define TTBCR_EPD1 (1U << 23)
637#define TTBCR_IRGN1 (3U << 24)
638#define TTBCR_ORGN1 (3U << 26)
639#define TTBCR_SH1 (1U << 28)
640#define TTBCR_EAE (1U << 31)
641
d356312f
PM
642/* Bit definitions for ARMv8 SPSR (PSTATE) format.
643 * Only these are valid when in AArch64 mode; in
644 * AArch32 mode SPSRs are basically CPSR-format.
645 */
f502cfc2 646#define PSTATE_SP (1U)
d356312f
PM
647#define PSTATE_M (0xFU)
648#define PSTATE_nRW (1U << 4)
649#define PSTATE_F (1U << 6)
650#define PSTATE_I (1U << 7)
651#define PSTATE_A (1U << 8)
652#define PSTATE_D (1U << 9)
653#define PSTATE_IL (1U << 20)
654#define PSTATE_SS (1U << 21)
655#define PSTATE_V (1U << 28)
656#define PSTATE_C (1U << 29)
657#define PSTATE_Z (1U << 30)
658#define PSTATE_N (1U << 31)
659#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
660#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
661#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
662/* Mode values for AArch64 */
663#define PSTATE_MODE_EL3h 13
664#define PSTATE_MODE_EL3t 12
665#define PSTATE_MODE_EL2h 9
666#define PSTATE_MODE_EL2t 8
667#define PSTATE_MODE_EL1h 5
668#define PSTATE_MODE_EL1t 4
669#define PSTATE_MODE_EL0t 0
670
9e729b57
EI
671/* Map EL and handler into a PSTATE_MODE. */
672static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
673{
674 return (el << 2) | handler;
675}
676
d356312f
PM
677/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
678 * interprocessing, so we don't attempt to sync with the cpsr state used by
679 * the 32 bit decoder.
680 */
681static inline uint32_t pstate_read(CPUARMState *env)
682{
683 int ZF;
684
685 ZF = (env->ZF == 0);
686 return (env->NF & 0x80000000) | (ZF << 30)
687 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 688 | env->pstate | env->daif;
d356312f
PM
689}
690
691static inline void pstate_write(CPUARMState *env, uint32_t val)
692{
693 env->ZF = (~val) & PSTATE_Z;
694 env->NF = val;
695 env->CF = (val >> 29) & 1;
696 env->VF = (val << 3) & 0x80000000;
4cc35614 697 env->daif = val & PSTATE_DAIF;
d356312f
PM
698 env->pstate = val & ~CACHED_PSTATE_BITS;
699}
700
b5ff1b31 701/* Return the current CPSR value. */
2f4a40e5
AZ
702uint32_t cpsr_read(CPUARMState *env);
703/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
704void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
705
706/* Return the current xPSR value. */
707static inline uint32_t xpsr_read(CPUARMState *env)
708{
709 int ZF;
6fbe23d5
PB
710 ZF = (env->ZF == 0);
711 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
712 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
713 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
714 | ((env->condexec_bits & 0xfc) << 8)
715 | env->v7m.exception;
b5ff1b31
FB
716}
717
9ee6e8bb
PB
718/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
719static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
720{
9ee6e8bb 721 if (mask & CPSR_NZCV) {
6fbe23d5
PB
722 env->ZF = (~val) & CPSR_Z;
723 env->NF = val;
9ee6e8bb
PB
724 env->CF = (val >> 29) & 1;
725 env->VF = (val << 3) & 0x80000000;
726 }
727 if (mask & CPSR_Q)
728 env->QF = ((val & CPSR_Q) != 0);
729 if (mask & (1 << 24))
730 env->thumb = ((val & (1 << 24)) != 0);
731 if (mask & CPSR_IT_0_1) {
732 env->condexec_bits &= ~3;
733 env->condexec_bits |= (val >> 25) & 3;
734 }
735 if (mask & CPSR_IT_2_7) {
736 env->condexec_bits &= 3;
737 env->condexec_bits |= (val >> 8) & 0xfc;
738 }
739 if (mask & 0x1ff) {
740 env->v7m.exception = val & 0x1ff;
741 }
742}
743
f149e3e8
EI
744#define HCR_VM (1ULL << 0)
745#define HCR_SWIO (1ULL << 1)
746#define HCR_PTW (1ULL << 2)
747#define HCR_FMO (1ULL << 3)
748#define HCR_IMO (1ULL << 4)
749#define HCR_AMO (1ULL << 5)
750#define HCR_VF (1ULL << 6)
751#define HCR_VI (1ULL << 7)
752#define HCR_VSE (1ULL << 8)
753#define HCR_FB (1ULL << 9)
754#define HCR_BSU_MASK (3ULL << 10)
755#define HCR_DC (1ULL << 12)
756#define HCR_TWI (1ULL << 13)
757#define HCR_TWE (1ULL << 14)
758#define HCR_TID0 (1ULL << 15)
759#define HCR_TID1 (1ULL << 16)
760#define HCR_TID2 (1ULL << 17)
761#define HCR_TID3 (1ULL << 18)
762#define HCR_TSC (1ULL << 19)
763#define HCR_TIDCP (1ULL << 20)
764#define HCR_TACR (1ULL << 21)
765#define HCR_TSW (1ULL << 22)
766#define HCR_TPC (1ULL << 23)
767#define HCR_TPU (1ULL << 24)
768#define HCR_TTLB (1ULL << 25)
769#define HCR_TVM (1ULL << 26)
770#define HCR_TGE (1ULL << 27)
771#define HCR_TDZ (1ULL << 28)
772#define HCR_HCD (1ULL << 29)
773#define HCR_TRVM (1ULL << 30)
774#define HCR_RW (1ULL << 31)
775#define HCR_CD (1ULL << 32)
776#define HCR_ID (1ULL << 33)
777#define HCR_MASK ((1ULL << 34) - 1)
778
64e0e2de
EI
779#define SCR_NS (1U << 0)
780#define SCR_IRQ (1U << 1)
781#define SCR_FIQ (1U << 2)
782#define SCR_EA (1U << 3)
783#define SCR_FW (1U << 4)
784#define SCR_AW (1U << 5)
785#define SCR_NET (1U << 6)
786#define SCR_SMD (1U << 7)
787#define SCR_HCE (1U << 8)
788#define SCR_SIF (1U << 9)
789#define SCR_RW (1U << 10)
790#define SCR_ST (1U << 11)
791#define SCR_TWI (1U << 12)
792#define SCR_TWE (1U << 13)
793#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
794#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
795
01653295
PM
796/* Return the current FPSCR value. */
797uint32_t vfp_get_fpscr(CPUARMState *env);
798void vfp_set_fpscr(CPUARMState *env, uint32_t val);
799
f903fa22
PM
800/* For A64 the FPSCR is split into two logically distinct registers,
801 * FPCR and FPSR. However since they still use non-overlapping bits
802 * we store the underlying state in fpscr and just mask on read/write.
803 */
804#define FPSR_MASK 0xf800009f
805#define FPCR_MASK 0x07f79f00
806static inline uint32_t vfp_get_fpsr(CPUARMState *env)
807{
808 return vfp_get_fpscr(env) & FPSR_MASK;
809}
810
811static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
812{
813 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
814 vfp_set_fpscr(env, new_fpscr);
815}
816
817static inline uint32_t vfp_get_fpcr(CPUARMState *env)
818{
819 return vfp_get_fpscr(env) & FPCR_MASK;
820}
821
822static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
823{
824 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
825 vfp_set_fpscr(env, new_fpscr);
826}
827
b5ff1b31
FB
828enum arm_cpu_mode {
829 ARM_CPU_MODE_USR = 0x10,
830 ARM_CPU_MODE_FIQ = 0x11,
831 ARM_CPU_MODE_IRQ = 0x12,
832 ARM_CPU_MODE_SVC = 0x13,
28c9457d 833 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 834 ARM_CPU_MODE_ABT = 0x17,
28c9457d 835 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
836 ARM_CPU_MODE_UND = 0x1b,
837 ARM_CPU_MODE_SYS = 0x1f
838};
839
40f137e1
PB
840/* VFP system registers. */
841#define ARM_VFP_FPSID 0
842#define ARM_VFP_FPSCR 1
a50c0f51 843#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
844#define ARM_VFP_MVFR1 6
845#define ARM_VFP_MVFR0 7
40f137e1
PB
846#define ARM_VFP_FPEXC 8
847#define ARM_VFP_FPINST 9
848#define ARM_VFP_FPINST2 10
849
18c9b560
AZ
850/* iwMMXt coprocessor control registers. */
851#define ARM_IWMMXT_wCID 0
852#define ARM_IWMMXT_wCon 1
853#define ARM_IWMMXT_wCSSF 2
854#define ARM_IWMMXT_wCASF 3
855#define ARM_IWMMXT_wCGR0 8
856#define ARM_IWMMXT_wCGR1 9
857#define ARM_IWMMXT_wCGR2 10
858#define ARM_IWMMXT_wCGR3 11
859
ce854d7c
BC
860/* If adding a feature bit which corresponds to a Linux ELF
861 * HWCAP bit, remember to update the feature-bit-to-hwcap
862 * mapping in linux-user/elfload.c:get_elf_hwcap().
863 */
40f137e1
PB
864enum arm_features {
865 ARM_FEATURE_VFP,
c1713132
AZ
866 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
867 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 868 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
869 ARM_FEATURE_V6,
870 ARM_FEATURE_V6K,
871 ARM_FEATURE_V7,
872 ARM_FEATURE_THUMB2,
c3d2689d 873 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 874 ARM_FEATURE_VFP3,
60011498 875 ARM_FEATURE_VFP_FP16,
9ee6e8bb 876 ARM_FEATURE_NEON,
47789990 877 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 878 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 879 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 880 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
881 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
882 ARM_FEATURE_V4T,
883 ARM_FEATURE_V5,
5bc95aa2 884 ARM_FEATURE_STRONGARM,
906879a9 885 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 886 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 887 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 888 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 889 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 890 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
891 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
892 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
893 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 894 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
895 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
896 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 897 ARM_FEATURE_V8,
3926cc84 898 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 899 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 900 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 901 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 902 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 903 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 904 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
f1ecb913
AB
905 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
906 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
4e624eda 907 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
62b44f05 908 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
40f137e1
PB
909};
910
911static inline int arm_feature(CPUARMState *env, int feature)
912{
918f5dca 913 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
914}
915
19e0fefa
FA
916#if !defined(CONFIG_USER_ONLY)
917/* Return true if exception levels below EL3 are in secure state,
918 * or would be following an exception return to that level.
919 * Unlike arm_is_secure() (which is always a question about the
920 * _current_ state of the CPU) this doesn't care about the current
921 * EL or mode.
922 */
923static inline bool arm_is_secure_below_el3(CPUARMState *env)
924{
925 if (arm_feature(env, ARM_FEATURE_EL3)) {
926 return !(env->cp15.scr_el3 & SCR_NS);
927 } else {
928 /* If EL2 is not supported then the secure state is implementation
929 * defined, in which case QEMU defaults to non-secure.
930 */
931 return false;
932 }
933}
934
935/* Return true if the processor is in secure state */
936static inline bool arm_is_secure(CPUARMState *env)
937{
938 if (arm_feature(env, ARM_FEATURE_EL3)) {
939 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
940 /* CPU currently in AArch64 state and EL3 */
941 return true;
942 } else if (!is_a64(env) &&
943 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
944 /* CPU currently in AArch32 state and monitor mode */
945 return true;
946 }
947 }
948 return arm_is_secure_below_el3(env);
949}
950
951#else
952static inline bool arm_is_secure_below_el3(CPUARMState *env)
953{
954 return false;
955}
956
957static inline bool arm_is_secure(CPUARMState *env)
958{
959 return false;
960}
961#endif
962
1f79ee32
PM
963/* Return true if the specified exception level is running in AArch64 state. */
964static inline bool arm_el_is_aa64(CPUARMState *env, int el)
965{
592125f8 966 /* We don't currently support EL2, and this isn't valid for EL0
1f79ee32
PM
967 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
968 * then the state of EL0 isn't well defined.)
969 */
592125f8
FA
970 assert(el == 1 || el == 3);
971
1f79ee32
PM
972 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
973 * is a QEMU-imposed simplification which we may wish to change later.
974 * If we in future support EL2 and/or EL3, then the state of lower
975 * exception levels is controlled by the HCR.RW and SCR.RW bits.
976 */
977 return arm_feature(env, ARM_FEATURE_AARCH64);
978}
979
3f342b9e
SF
980/* Function for determing whether guest cp register reads and writes should
981 * access the secure or non-secure bank of a cp register. When EL3 is
982 * operating in AArch32 state, the NS-bit determines whether the secure
983 * instance of a cp register should be used. When EL3 is AArch64 (or if
984 * it doesn't exist at all) then there is no register banking, and all
985 * accesses are to the non-secure version.
986 */
987static inline bool access_secure_reg(CPUARMState *env)
988{
989 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
990 !arm_el_is_aa64(env, 3) &&
991 !(env->cp15.scr_el3 & SCR_NS));
992
993 return ret;
994}
995
ea30a4b8
FA
996/* Macros for accessing a specified CP register bank */
997#define A32_BANKED_REG_GET(_env, _regname, _secure) \
998 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
999
1000#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1001 do { \
1002 if (_secure) { \
1003 (_env)->cp15._regname##_s = (_val); \
1004 } else { \
1005 (_env)->cp15._regname##_ns = (_val); \
1006 } \
1007 } while (0)
1008
1009/* Macros for automatically accessing a specific CP register bank depending on
1010 * the current secure state of the system. These macros are not intended for
1011 * supporting instruction translation reads/writes as these are dependent
1012 * solely on the SCR.NS bit and not the mode.
1013 */
1014#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1015 A32_BANKED_REG_GET((_env), _regname, \
1016 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))))
1017
1018#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1019 A32_BANKED_REG_SET((_env), _regname, \
1020 ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))), \
1021 (_val))
1022
9a78eead 1023void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
012a906b
GB
1024uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1025 uint32_t cur_el, bool secure);
40f137e1 1026
9ee6e8bb
PB
1027/* Interface between CPU and Interrupt controller. */
1028void armv7m_nvic_set_pending(void *opaque, int irq);
1029int armv7m_nvic_acknowledge_irq(void *opaque);
1030void armv7m_nvic_complete_irq(void *opaque, int irq);
1031
4b6a83fb
PM
1032/* Interface for defining coprocessor registers.
1033 * Registers are defined in tables of arm_cp_reginfo structs
1034 * which are passed to define_arm_cp_regs().
1035 */
1036
1037/* When looking up a coprocessor register we look for it
1038 * via an integer which encodes all of:
1039 * coprocessor number
1040 * Crn, Crm, opc1, opc2 fields
1041 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1042 * or via MRRC/MCRR?)
51a79b03 1043 * non-secure/secure bank (AArch32 only)
4b6a83fb
PM
1044 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1045 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
1046 * For AArch64, there is no 32/64 bit size distinction;
1047 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1048 * and 4 bit CRn and CRm. The encoding patterns are chosen
1049 * to be easy to convert to and from the KVM encodings, and also
1050 * so that the hashtable can contain both AArch32 and AArch64
1051 * registers (to allow for interprocessing where we might run
1052 * 32 bit code on a 64 bit core).
4b6a83fb 1053 */
f5a0a5a5
PM
1054/* This bit is private to our hashtable cpreg; in KVM register
1055 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1056 * in the upper bits of the 64 bit ID.
1057 */
1058#define CP_REG_AA64_SHIFT 28
1059#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1060
51a79b03
PM
1061/* To enable banking of coprocessor registers depending on ns-bit we
1062 * add a bit to distinguish between secure and non-secure cpregs in the
1063 * hashtable.
1064 */
1065#define CP_REG_NS_SHIFT 29
1066#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1067
1068#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1069 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1070 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
4b6a83fb 1071
f5a0a5a5
PM
1072#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1073 (CP_REG_AA64_MASK | \
1074 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1075 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1076 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1077 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1078 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1079 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1080
721fae12
PM
1081/* Convert a full 64 bit KVM register ID to the truncated 32 bit
1082 * version used as a key for the coprocessor register hashtable
1083 */
1084static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1085{
1086 uint32_t cpregid = kvmid;
f5a0a5a5
PM
1087 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1088 cpregid |= CP_REG_AA64_MASK;
51a79b03
PM
1089 } else {
1090 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1091 cpregid |= (1 << 15);
1092 }
1093
1094 /* KVM is always non-secure so add the NS flag on AArch32 register
1095 * entries.
1096 */
1097 cpregid |= 1 << CP_REG_NS_SHIFT;
721fae12
PM
1098 }
1099 return cpregid;
1100}
1101
1102/* Convert a truncated 32 bit hashtable key into the full
1103 * 64 bit KVM register ID.
1104 */
1105static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1106{
f5a0a5a5
PM
1107 uint64_t kvmid;
1108
1109 if (cpregid & CP_REG_AA64_MASK) {
1110 kvmid = cpregid & ~CP_REG_AA64_MASK;
1111 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 1112 } else {
f5a0a5a5
PM
1113 kvmid = cpregid & ~(1 << 15);
1114 if (cpregid & (1 << 15)) {
1115 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1116 } else {
1117 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1118 }
721fae12
PM
1119 }
1120 return kvmid;
1121}
1122
4b6a83fb
PM
1123/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1124 * special-behaviour cp reg and bits [15..8] indicate what behaviour
1125 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1126 * TCG can assume the value to be constant (ie load at translate time)
1127 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1128 * indicates that the TB should not be ended after a write to this register
1129 * (the default is that the TB ends after cp writes). OVERRIDE permits
1130 * a register definition to override a previous definition for the
1131 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1132 * old must have the OVERRIDE bit set.
7a0e58fa
PM
1133 * ALIAS indicates that this register is an alias view of some underlying
1134 * state which is also visible via another register, and that the other
b061a82b
SF
1135 * register is handling migration and reset; registers marked ALIAS will not be
1136 * migrated but may have their state set by syncing of register state from KVM.
7a0e58fa
PM
1137 * NO_RAW indicates that this register has no underlying state and does not
1138 * support raw access for state saving/loading; it will not be used for either
1139 * migration or KVM state synchronization. (Typically this is for "registers"
1140 * which are actually used as instructions for cache maintenance and so on.)
2452731c
PM
1141 * IO indicates that this register does I/O and therefore its accesses
1142 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1143 * registers which implement clocks or timers require this.
4b6a83fb
PM
1144 */
1145#define ARM_CP_SPECIAL 1
1146#define ARM_CP_CONST 2
1147#define ARM_CP_64BIT 4
1148#define ARM_CP_SUPPRESS_TB_END 8
1149#define ARM_CP_OVERRIDE 16
7a0e58fa 1150#define ARM_CP_ALIAS 32
2452731c 1151#define ARM_CP_IO 64
7a0e58fa 1152#define ARM_CP_NO_RAW 128
4b6a83fb
PM
1153#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1154#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
b0d2b7d0 1155#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
0eef9d98 1156#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
aca3f40b
PM
1157#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1158#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
4b6a83fb
PM
1159/* Used only as a terminator for ARMCPRegInfo lists */
1160#define ARM_CP_SENTINEL 0xffff
1161/* Mask of only the flag bits in a type field */
7a0e58fa 1162#define ARM_CP_FLAG_MASK 0xff
4b6a83fb 1163
f5a0a5a5
PM
1164/* Valid values for ARMCPRegInfo state field, indicating which of
1165 * the AArch32 and AArch64 execution states this register is visible in.
1166 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1167 * If the reginfo is declared to be visible in both states then a second
1168 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1169 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1170 * Note that we rely on the values of these enums as we iterate through
1171 * the various states in some places.
1172 */
1173enum {
1174 ARM_CP_STATE_AA32 = 0,
1175 ARM_CP_STATE_AA64 = 1,
1176 ARM_CP_STATE_BOTH = 2,
1177};
1178
c3e30260
FA
1179/* ARM CP register secure state flags. These flags identify security state
1180 * attributes for a given CP register entry.
1181 * The existence of both or neither secure and non-secure flags indicates that
1182 * the register has both a secure and non-secure hash entry. A single one of
1183 * these flags causes the register to only be hashed for the specified
1184 * security state.
1185 * Although definitions may have any combination of the S/NS bits, each
1186 * registered entry will only have one to identify whether the entry is secure
1187 * or non-secure.
1188 */
1189enum {
1190 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1191 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1192};
1193
4b6a83fb
PM
1194/* Return true if cptype is a valid type field. This is used to try to
1195 * catch errors where the sentinel has been accidentally left off the end
1196 * of a list of registers.
1197 */
1198static inline bool cptype_valid(int cptype)
1199{
1200 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1201 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 1202 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
1203}
1204
1205/* Access rights:
1206 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1207 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1208 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1209 * (ie any of the privileged modes in Secure state, or Monitor mode).
1210 * If a register is accessible in one privilege level it's always accessible
1211 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1212 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1213 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1214 * terminology a little and call this PL3.
f5a0a5a5
PM
1215 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1216 * with the ELx exception levels.
4b6a83fb
PM
1217 *
1218 * If access permissions for a register are more complex than can be
1219 * described with these bits, then use a laxer set of restrictions, and
1220 * do the more restrictive/complex check inside a helper function.
1221 */
1222#define PL3_R 0x80
1223#define PL3_W 0x40
1224#define PL2_R (0x20 | PL3_R)
1225#define PL2_W (0x10 | PL3_W)
1226#define PL1_R (0x08 | PL2_R)
1227#define PL1_W (0x04 | PL2_W)
1228#define PL0_R (0x02 | PL1_R)
1229#define PL0_W (0x01 | PL1_W)
1230
1231#define PL3_RW (PL3_R | PL3_W)
1232#define PL2_RW (PL2_R | PL2_W)
1233#define PL1_RW (PL1_R | PL1_W)
1234#define PL0_RW (PL0_R | PL0_W)
1235
dcbff19b
GB
1236/* Return the current Exception Level (as per ARMv8; note that this differs
1237 * from the ARMv7 Privilege Level).
1238 */
1239static inline int arm_current_el(CPUARMState *env)
4b6a83fb 1240{
6d54ed3c
PM
1241 if (arm_feature(env, ARM_FEATURE_M)) {
1242 return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1243 }
1244
592125f8 1245 if (is_a64(env)) {
f5a0a5a5
PM
1246 return extract32(env->pstate, 2, 2);
1247 }
1248
592125f8
FA
1249 switch (env->uncached_cpsr & 0x1f) {
1250 case ARM_CPU_MODE_USR:
4b6a83fb 1251 return 0;
592125f8
FA
1252 case ARM_CPU_MODE_HYP:
1253 return 2;
1254 case ARM_CPU_MODE_MON:
1255 return 3;
1256 default:
1257 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1258 /* If EL3 is 32-bit then all secure privileged modes run in
1259 * EL3
1260 */
1261 return 3;
1262 }
1263
1264 return 1;
4b6a83fb 1265 }
4b6a83fb
PM
1266}
1267
1268typedef struct ARMCPRegInfo ARMCPRegInfo;
1269
f59df3f2
PM
1270typedef enum CPAccessResult {
1271 /* Access is permitted */
1272 CP_ACCESS_OK = 0,
1273 /* Access fails due to a configurable trap or enable which would
1274 * result in a categorized exception syndrome giving information about
1275 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
38836a2c
PM
1276 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1277 * PL1 if in EL0, otherwise to the current EL).
f59df3f2
PM
1278 */
1279 CP_ACCESS_TRAP = 1,
1280 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1281 * Note that this is not a catch-all case -- the set of cases which may
1282 * result in this failure is specifically defined by the architecture.
1283 */
1284 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
38836a2c
PM
1285 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1286 CP_ACCESS_TRAP_EL2 = 3,
1287 CP_ACCESS_TRAP_EL3 = 4,
e7615726
PM
1288 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1289 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1290 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
f59df3f2
PM
1291} CPAccessResult;
1292
c4241c7d
PM
1293/* Access functions for coprocessor registers. These cannot fail and
1294 * may not raise exceptions.
1295 */
1296typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1297typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1298 uint64_t value);
f59df3f2
PM
1299/* Access permission check functions for coprocessor registers. */
1300typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
4b6a83fb
PM
1301/* Hook function for register reset */
1302typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1303
1304#define CP_ANY 0xff
1305
1306/* Definition of an ARM coprocessor register */
1307struct ARMCPRegInfo {
1308 /* Name of register (useful mainly for debugging, need not be unique) */
1309 const char *name;
1310 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1311 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1312 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1313 * will be decoded to this register. The register read and write
1314 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1315 * used by the program, so it is possible to register a wildcard and
1316 * then behave differently on read/write if necessary.
1317 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1318 * must both be zero.
f5a0a5a5
PM
1319 * For AArch64-visible registers, opc0 is also used.
1320 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1321 * way to distinguish (for KVM's benefit) guest-visible system registers
1322 * from demuxed ones provided to preserve the "no side effects on
1323 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1324 * visible (to match KVM's encoding); cp==0 will be converted to
1325 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
1326 */
1327 uint8_t cp;
1328 uint8_t crn;
1329 uint8_t crm;
f5a0a5a5 1330 uint8_t opc0;
4b6a83fb
PM
1331 uint8_t opc1;
1332 uint8_t opc2;
f5a0a5a5
PM
1333 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1334 int state;
4b6a83fb
PM
1335 /* Register type: ARM_CP_* bits/values */
1336 int type;
1337 /* Access rights: PL*_[RW] */
1338 int access;
c3e30260
FA
1339 /* Security state: ARM_CP_SECSTATE_* bits/values */
1340 int secure;
4b6a83fb
PM
1341 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1342 * this register was defined: can be used to hand data through to the
1343 * register read/write functions, since they are passed the ARMCPRegInfo*.
1344 */
1345 void *opaque;
1346 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1347 * fieldoffset is non-zero, the reset value of the register.
1348 */
1349 uint64_t resetvalue;
c3e30260
FA
1350 /* Offset of the field in CPUARMState for this register.
1351 *
1352 * This is not needed if either:
4b6a83fb
PM
1353 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1354 * 2. both readfn and writefn are specified
1355 */
1356 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
c3e30260
FA
1357
1358 /* Offsets of the secure and non-secure fields in CPUARMState for the
1359 * register if it is banked. These fields are only used during the static
1360 * registration of a register. During hashing the bank associated
1361 * with a given security state is copied to fieldoffset which is used from
1362 * there on out.
1363 *
1364 * It is expected that register definitions use either fieldoffset or
1365 * bank_fieldoffsets in the definition but not both. It is also expected
1366 * that both bank offsets are set when defining a banked register. This
1367 * use indicates that a register is banked.
1368 */
1369 ptrdiff_t bank_fieldoffsets[2];
1370
f59df3f2
PM
1371 /* Function for making any access checks for this register in addition to
1372 * those specified by the 'access' permissions bits. If NULL, no extra
1373 * checks required. The access check is performed at runtime, not at
1374 * translate time.
1375 */
1376 CPAccessFn *accessfn;
4b6a83fb
PM
1377 /* Function for handling reads of this register. If NULL, then reads
1378 * will be done by loading from the offset into CPUARMState specified
1379 * by fieldoffset.
1380 */
1381 CPReadFn *readfn;
1382 /* Function for handling writes of this register. If NULL, then writes
1383 * will be done by writing to the offset into CPUARMState specified
1384 * by fieldoffset.
1385 */
1386 CPWriteFn *writefn;
7023ec7e
PM
1387 /* Function for doing a "raw" read; used when we need to copy
1388 * coprocessor state to the kernel for KVM or out for
1389 * migration. This only needs to be provided if there is also a
c4241c7d 1390 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
1391 */
1392 CPReadFn *raw_readfn;
1393 /* Function for doing a "raw" write; used when we need to copy KVM
1394 * kernel coprocessor state into userspace, or for inbound
1395 * migration. This only needs to be provided if there is also a
c4241c7d
PM
1396 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1397 * or similar behaviour.
7023ec7e
PM
1398 */
1399 CPWriteFn *raw_writefn;
4b6a83fb
PM
1400 /* Function for resetting the register. If NULL, then reset will be done
1401 * by writing resetvalue to the field specified in fieldoffset. If
1402 * fieldoffset is 0 then no reset will be done.
1403 */
1404 CPResetFn *resetfn;
1405};
1406
1407/* Macros which are lvalues for the field in CPUARMState for the
1408 * ARMCPRegInfo *ri.
1409 */
1410#define CPREG_FIELD32(env, ri) \
1411 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1412#define CPREG_FIELD64(env, ri) \
1413 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1414
1415#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1416
1417void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1418 const ARMCPRegInfo *regs, void *opaque);
1419void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1420 const ARMCPRegInfo *regs, void *opaque);
1421static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1422{
1423 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1424}
1425static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1426{
1427 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1428}
60322b39 1429const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
1430
1431/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
1432void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1433 uint64_t value);
4b6a83fb 1434/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 1435uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 1436
f5a0a5a5
PM
1437/* CPResetFn that does nothing, for use if no reset is required even
1438 * if fieldoffset is non zero.
1439 */
1440void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1441
67ed771d
PM
1442/* Return true if this reginfo struct's field in the cpu state struct
1443 * is 64 bits wide.
1444 */
1445static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1446{
1447 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1448}
1449
dcbff19b 1450static inline bool cp_access_ok(int current_el,
4b6a83fb
PM
1451 const ARMCPRegInfo *ri, int isread)
1452{
dcbff19b 1453 return (ri->access >> ((current_el * 2) + isread)) & 1;
4b6a83fb
PM
1454}
1455
49a66191
PM
1456/* Raw read of a coprocessor register (as needed for migration, etc) */
1457uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1458
721fae12
PM
1459/**
1460 * write_list_to_cpustate
1461 * @cpu: ARMCPU
1462 *
1463 * For each register listed in the ARMCPU cpreg_indexes list, write
1464 * its value from the cpreg_values list into the ARMCPUState structure.
1465 * This updates TCG's working data structures from KVM data or
1466 * from incoming migration state.
1467 *
1468 * Returns: true if all register values were updated correctly,
1469 * false if some register was unknown or could not be written.
1470 * Note that we do not stop early on failure -- we will attempt
1471 * writing all registers in the list.
1472 */
1473bool write_list_to_cpustate(ARMCPU *cpu);
1474
1475/**
1476 * write_cpustate_to_list:
1477 * @cpu: ARMCPU
1478 *
1479 * For each register listed in the ARMCPU cpreg_indexes list, write
1480 * its value from the ARMCPUState structure into the cpreg_values list.
1481 * This is used to copy info from TCG's working data structures into
1482 * KVM or for outbound migration.
1483 *
1484 * Returns: true if all register values were read correctly,
1485 * false if some register was unknown or could not be read.
1486 * Note that we do not stop early on failure -- we will attempt
1487 * reading all registers in the list.
1488 */
1489bool write_cpustate_to_list(ARMCPU *cpu);
1490
b6af0975 1491/* Does the core conform to the "MicroController" profile. e.g. Cortex-M3.
9ee6e8bb
PB
1492 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1493 conventional cores (ie. Application or Realtime profile). */
1494
1495#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 1496
9ee6e8bb
PB
1497#define ARM_CPUID_TI915T 0x54029152
1498#define ARM_CPUID_TI925T 0x54029252
40f137e1 1499
b5ff1b31 1500#if defined(CONFIG_USER_ONLY)
2c0262af 1501#define TARGET_PAGE_BITS 12
b5ff1b31
FB
1502#else
1503/* The ARM MMU allows 1k pages. */
1504/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 1505 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
1506#define TARGET_PAGE_BITS 10
1507#endif
9467d44c 1508
3926cc84
AG
1509#if defined(TARGET_AARCH64)
1510# define TARGET_PHYS_ADDR_SPACE_BITS 48
1511# define TARGET_VIRT_ADDR_SPACE_BITS 64
1512#else
1513# define TARGET_PHYS_ADDR_SPACE_BITS 40
1514# define TARGET_VIRT_ADDR_SPACE_BITS 32
1515#endif
52705890 1516
012a906b
GB
1517static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1518 unsigned int target_el)
043b7f8d
EI
1519{
1520 CPUARMState *env = cs->env_ptr;
dcbff19b 1521 unsigned int cur_el = arm_current_el(env);
57e3a0c7 1522 bool secure = arm_is_secure(env);
77184258
SS
1523 bool scr;
1524 bool hcr;
57e3a0c7
GB
1525 bool pstate_unmasked;
1526 int8_t unmasked = 0;
1527
1528 /* Don't take exceptions if they target a lower EL.
1529 * This check should catch any exceptions that would not be taken but left
1530 * pending.
1531 */
dfafd090
EI
1532 if (cur_el > target_el) {
1533 return false;
1534 }
043b7f8d
EI
1535
1536 switch (excp_idx) {
1537 case EXCP_FIQ:
57e3a0c7
GB
1538 /* If FIQs are routed to EL3 or EL2 then there are cases where we
1539 * override the CPSR.F in determining if the exception is masked or
1540 * not. If neither of these are set then we fall back to the CPSR.F
1541 * setting otherwise we further assess the state below.
1542 */
1543 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1544 scr = (env->cp15.scr_el3 & SCR_FIQ);
1545
1546 /* When EL3 is 32-bit, the SCR.FW bit controls whether the CPSR.F bit
1547 * masks FIQ interrupts when taken in non-secure state. If SCR.FW is
1548 * set then FIQs can be masked by CPSR.F when non-secure but only
1549 * when FIQs are only routed to EL3.
1550 */
77184258 1551 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
57e3a0c7
GB
1552 pstate_unmasked = !(env->daif & PSTATE_F);
1553 break;
1554
043b7f8d 1555 case EXCP_IRQ:
57e3a0c7
GB
1556 /* When EL3 execution state is 32-bit, if HCR.IMO is set then we may
1557 * override the CPSR.I masking when in non-secure state. The SCR.IRQ
1558 * setting has already been taken into consideration when setting the
1559 * target EL, so it does not have a further affect here.
1560 */
1561 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1562 scr = false;
1563 pstate_unmasked = !(env->daif & PSTATE_I);
1564 break;
1565
136e67e9 1566 case EXCP_VFIQ:
9fae24f5 1567 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
136e67e9
EI
1568 /* VFIQs are only taken when hypervized and non-secure. */
1569 return false;
1570 }
1571 return !(env->daif & PSTATE_F);
1572 case EXCP_VIRQ:
9fae24f5 1573 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
136e67e9
EI
1574 /* VIRQs are only taken when hypervized and non-secure. */
1575 return false;
1576 }
b5c633c5 1577 return !(env->daif & PSTATE_I);
043b7f8d
EI
1578 default:
1579 g_assert_not_reached();
1580 }
57e3a0c7
GB
1581
1582 /* Use the target EL, current execution state and SCR/HCR settings to
1583 * determine whether the corresponding CPSR bit is used to mask the
1584 * interrupt.
1585 */
1586 if ((target_el > cur_el) && (target_el != 1)) {
1587 if (arm_el_is_aa64(env, 3) || ((scr || hcr) && (!secure))) {
1588 unmasked = 1;
1589 }
1590 }
1591
1592 /* The PSTATE bits only mask the interrupt if we have not overriden the
1593 * ability above.
1594 */
1595 return unmasked || pstate_unmasked;
043b7f8d
EI
1596}
1597
2994fd96 1598#define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
ad37ad5b 1599
9467d44c
TS
1600#define cpu_exec cpu_arm_exec
1601#define cpu_gen_code cpu_arm_gen_code
1602#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 1603#define cpu_list arm_cpu_list
9467d44c 1604
c1e37810
PM
1605/* ARM has the following "translation regimes" (as the ARM ARM calls them):
1606 *
1607 * If EL3 is 64-bit:
1608 * + NonSecure EL1 & 0 stage 1
1609 * + NonSecure EL1 & 0 stage 2
1610 * + NonSecure EL2
1611 * + Secure EL1 & EL0
1612 * + Secure EL3
1613 * If EL3 is 32-bit:
1614 * + NonSecure PL1 & 0 stage 1
1615 * + NonSecure PL1 & 0 stage 2
1616 * + NonSecure PL2
1617 * + Secure PL0 & PL1
1618 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1619 *
1620 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1621 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1622 * may differ in access permissions even if the VA->PA map is the same
1623 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1624 * translation, which means that we have one mmu_idx that deals with two
1625 * concatenated translation regimes [this sort of combined s1+2 TLB is
1626 * architecturally permitted]
1627 * 3. we don't need to allocate an mmu_idx to translations that we won't be
1628 * handling via the TLB. The only way to do a stage 1 translation without
1629 * the immediate stage 2 translation is via the ATS or AT system insns,
1630 * which can be slow-pathed and always do a page table walk.
1631 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1632 * translation regimes, because they map reasonably well to each other
1633 * and they can't both be active at the same time.
1634 * This gives us the following list of mmu_idx values:
1635 *
1636 * NS EL0 (aka NS PL0) stage 1+2
1637 * NS EL1 (aka NS PL1) stage 1+2
1638 * NS EL2 (aka NS PL2)
1639 * S EL3 (aka S PL1)
1640 * S EL0 (aka S PL0)
1641 * S EL1 (not used if EL3 is 32 bit)
1642 * NS EL0+1 stage 2
1643 *
1644 * (The last of these is an mmu_idx because we want to be able to use the TLB
1645 * for the accesses done as part of a stage 1 page table walk, rather than
1646 * having to walk the stage 2 page table over and over.)
1647 *
1648 * Our enumeration includes at the end some entries which are not "true"
1649 * mmu_idx values in that they don't have corresponding TLBs and are only
1650 * valid for doing slow path page table walks.
1651 *
1652 * The constant names here are patterned after the general style of the names
1653 * of the AT/ATS operations.
1654 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
1655 */
1656typedef enum ARMMMUIdx {
1657 ARMMMUIdx_S12NSE0 = 0,
1658 ARMMMUIdx_S12NSE1 = 1,
1659 ARMMMUIdx_S1E2 = 2,
1660 ARMMMUIdx_S1E3 = 3,
1661 ARMMMUIdx_S1SE0 = 4,
1662 ARMMMUIdx_S1SE1 = 5,
1663 ARMMMUIdx_S2NS = 6,
1664 /* Indexes below here don't have TLBs and are used only for AT system
1665 * instructions or for the first stage of an S12 page table walk.
1666 */
1667 ARMMMUIdx_S1NSE0 = 7,
1668 ARMMMUIdx_S1NSE1 = 8,
1669} ARMMMUIdx;
1670
f79fbf39 1671#define MMU_USER_IDX 0
c1e37810
PM
1672
1673/* Return the exception level we're running at if this is our mmu_idx */
1674static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
6ebbf390 1675{
c1e37810
PM
1676 assert(mmu_idx < ARMMMUIdx_S2NS);
1677 return mmu_idx & 3;
1678}
1679
1680/* Determine the current mmu_idx to use for normal loads/stores */
97ed5ccd 1681static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
c1e37810
PM
1682{
1683 int el = arm_current_el(env);
1684
1685 if (el < 2 && arm_is_secure_below_el3(env)) {
1686 return ARMMMUIdx_S1SE0 + el;
1687 }
1688 return el;
6ebbf390
JM
1689}
1690
3a298203
PM
1691/* Return the Exception Level targeted by debug exceptions;
1692 * currently always EL1 since we don't implement EL2 or EL3.
1693 */
1694static inline int arm_debug_target_el(CPUARMState *env)
1695{
1696 return 1;
1697}
1698
1699static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1700{
dcbff19b 1701 if (arm_current_el(env) == arm_debug_target_el(env)) {
3a298203
PM
1702 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1703 || (env->daif & PSTATE_D)) {
1704 return false;
1705 }
1706 }
1707 return true;
1708}
1709
1710static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1711{
dcbff19b 1712 if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
3a298203
PM
1713 return aa64_generate_debug_exceptions(env);
1714 }
dcbff19b 1715 return arm_current_el(env) != 2;
3a298203
PM
1716}
1717
1718/* Return true if debugging exceptions are currently enabled.
1719 * This corresponds to what in ARM ARM pseudocode would be
1720 * if UsingAArch32() then
1721 * return AArch32.GenerateDebugExceptions()
1722 * else
1723 * return AArch64.GenerateDebugExceptions()
1724 * We choose to push the if() down into this function for clarity,
1725 * since the pseudocode has it at all callsites except for the one in
1726 * CheckSoftwareStep(), where it is elided because both branches would
1727 * always return the same value.
1728 *
1729 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1730 * don't yet implement those exception levels or their associated trap bits.
1731 */
1732static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1733{
1734 if (env->aarch64) {
1735 return aa64_generate_debug_exceptions(env);
1736 } else {
1737 return aa32_generate_debug_exceptions(env);
1738 }
1739}
1740
1741/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1742 * implicitly means this always returns false in pre-v8 CPUs.)
1743 */
1744static inline bool arm_singlestep_active(CPUARMState *env)
1745{
1746 return extract32(env->cp15.mdscr_el1, 0, 1)
1747 && arm_el_is_aa64(env, arm_debug_target_el(env))
1748 && arm_generate_debug_exceptions(env);
1749}
1750
022c62cb 1751#include "exec/cpu-all.h"
622ed360 1752
3926cc84
AG
1753/* Bit usage in the TB flags field: bit 31 indicates whether we are
1754 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
c1e37810
PM
1755 * We put flags which are shared between 32 and 64 bit mode at the top
1756 * of the word, and flags which apply to only one mode at the bottom.
3926cc84
AG
1757 */
1758#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1759#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
1760#define ARM_TBFLAG_MMUIDX_SHIFT 28
1761#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
1762#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
1763#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1764#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
1765#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
1766/* Target EL if we take a floating-point-disabled exception */
1767#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
1768#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
3926cc84
AG
1769
1770/* Bit usage when in AArch32 state: */
a1705768
PM
1771#define ARM_TBFLAG_THUMB_SHIFT 0
1772#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1773#define ARM_TBFLAG_VECLEN_SHIFT 1
1774#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1775#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1776#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
1777#define ARM_TBFLAG_VFPEN_SHIFT 7
1778#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1779#define ARM_TBFLAG_CONDEXEC_SHIFT 8
1780#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1781#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1782#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
c0f4af17
PM
1783/* We store the bottom two bits of the CPAR as TB flags and handle
1784 * checks on the other bits at runtime
1785 */
647f767b 1786#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
c0f4af17 1787#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
1788/* Indicates whether cp register reads and writes by guest code should access
1789 * the secure or nonsecure bank of banked registers; note that this is not
1790 * the same thing as the current security state of the processor!
1791 */
647f767b 1792#define ARM_TBFLAG_NS_SHIFT 19
3f342b9e 1793#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
3926cc84 1794
9dbbc748 1795/* Bit usage when in AArch64 state: currently we have no A64 specific bits */
a1705768
PM
1796
1797/* some convenience accessor macros */
3926cc84
AG
1798#define ARM_TBFLAG_AARCH64_STATE(F) \
1799 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
c1e37810
PM
1800#define ARM_TBFLAG_MMUIDX(F) \
1801 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
3cf6a0fc
PM
1802#define ARM_TBFLAG_SS_ACTIVE(F) \
1803 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1804#define ARM_TBFLAG_PSTATE_SS(F) \
1805 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
9dbbc748
GB
1806#define ARM_TBFLAG_FPEXC_EL(F) \
1807 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
a1705768
PM
1808#define ARM_TBFLAG_THUMB(F) \
1809 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1810#define ARM_TBFLAG_VECLEN(F) \
1811 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1812#define ARM_TBFLAG_VECSTRIDE(F) \
1813 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
a1705768
PM
1814#define ARM_TBFLAG_VFPEN(F) \
1815 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1816#define ARM_TBFLAG_CONDEXEC(F) \
1817 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1818#define ARM_TBFLAG_BSWAP_CODE(F) \
1819 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
c0f4af17
PM
1820#define ARM_TBFLAG_XSCALE_CPAR(F) \
1821 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3f342b9e
SF
1822#define ARM_TBFLAG_NS(F) \
1823 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
a1705768 1824
9dbbc748
GB
1825/* Return the exception level to which FP-disabled exceptions should
1826 * be taken, or 0 if FP is enabled.
1827 */
1828static inline int fp_exception_el(CPUARMState *env)
6b917547 1829{
ed1f13d6 1830 int fpen;
9dbbc748 1831 int cur_el = arm_current_el(env);
ed1f13d6 1832
9dbbc748
GB
1833 /* CPACR and the CPTR registers don't exist before v6, so FP is
1834 * always accessible
1835 */
1836 if (!arm_feature(env, ARM_FEATURE_V6)) {
1837 return 0;
1838 }
1839
1840 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
1841 * 0, 2 : trap EL0 and EL1/PL1 accesses
1842 * 1 : trap only EL0 accesses
1843 * 3 : trap no accesses
1844 */
1845 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
1846 switch (fpen) {
1847 case 0:
1848 case 2:
1849 if (cur_el == 0 || cur_el == 1) {
1850 /* Trap to PL1, which might be EL1 or EL3 */
1851 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1852 return 3;
1853 }
1854 return 1;
1855 }
1856 if (cur_el == 3 && !is_a64(env)) {
1857 /* Secure PL1 running at EL3 */
1858 return 3;
1859 }
1860 break;
1861 case 1:
1862 if (cur_el == 0) {
1863 return 1;
1864 }
1865 break;
1866 case 3:
1867 break;
1868 }
1869
1870 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
1871 * check because zero bits in the registers mean "don't trap".
1872 */
1873
1874 /* CPTR_EL2 : present in v7VE or v8 */
1875 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
1876 && !arm_is_secure_below_el3(env)) {
1877 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
1878 return 2;
1879 }
1880
1881 /* CPTR_EL3 : present in v8 */
1882 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
1883 /* Trap all FP ops to EL3 */
1884 return 3;
ed1f13d6 1885 }
8c6afa6a 1886
9dbbc748
GB
1887 return 0;
1888}
1889
1890static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
1891 target_ulong *cs_base, int *flags)
1892{
3926cc84
AG
1893 if (is_a64(env)) {
1894 *pc = env->pc;
c1e37810 1895 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
05ed9a99 1896 } else {
3926cc84
AG
1897 *pc = env->regs[15];
1898 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1899 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1900 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1901 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1902 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
3f342b9e
SF
1903 if (!(access_secure_reg(env))) {
1904 *flags |= ARM_TBFLAG_NS_MASK;
1905 }
2c7ffc41
PM
1906 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1907 || arm_el_is_aa64(env, 1)) {
3926cc84
AG
1908 *flags |= ARM_TBFLAG_VFPEN_MASK;
1909 }
c0f4af17
PM
1910 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
1911 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
a1705768 1912 }
3926cc84 1913
97ed5ccd 1914 *flags |= (cpu_mmu_index(env, false) << ARM_TBFLAG_MMUIDX_SHIFT);
3cf6a0fc
PM
1915 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1916 * states defined in the ARM ARM for software singlestep:
1917 * SS_ACTIVE PSTATE.SS State
1918 * 0 x Inactive (the TB flag for SS is always 0)
1919 * 1 0 Active-pending
1920 * 1 1 Active-not-pending
1921 */
1922 if (arm_singlestep_active(env)) {
1923 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
1924 if (is_a64(env)) {
1925 if (env->pstate & PSTATE_SS) {
1926 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1927 }
1928 } else {
1929 if (env->uncached_cpsr & PSTATE_SS) {
1930 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1931 }
1932 }
1933 }
9dbbc748 1934 *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
c1e37810 1935
3926cc84 1936 *cs_base = 0;
6b917547
AL
1937}
1938
022c62cb 1939#include "exec/exec-all.h"
f081c76c 1940
98128601
RH
1941enum {
1942 QEMU_PSCI_CONDUIT_DISABLED = 0,
1943 QEMU_PSCI_CONDUIT_SMC = 1,
1944 QEMU_PSCI_CONDUIT_HVC = 2,
1945};
1946
2c0262af 1947#endif