]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/cpu.h
target-arm: A64: Refactor aarch64_cpu_do_interrupt
[mirror_qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3926cc84 22#include "config.h"
3cf1e035 23
72b0cd35
PM
24#include "kvm-consts.h"
25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
29# define ELF_MACHINE EM_AARCH64
30#else
31# define TARGET_LONG_BITS 32
32# define ELF_MACHINE EM_ARM
33#endif
9042c0e2 34
9349b4f9 35#define CPUArchState struct CPUARMState
c2764719 36
9a78eead 37#include "qemu-common.h"
022c62cb 38#include "exec/cpu-defs.h"
2c0262af 39
6b4c305c 40#include "fpu/softfloat.h"
53cd6637 41
1fddef4b
FB
42#define TARGET_HAS_ICE 1
43
b8a9e8f1
FB
44#define EXCP_UDEF 1 /* undefined instruction */
45#define EXCP_SWI 2 /* software interrupt */
46#define EXCP_PREFETCH_ABORT 3
47#define EXCP_DATA_ABORT 4
b5ff1b31
FB
48#define EXCP_IRQ 5
49#define EXCP_FIQ 6
06c949e6 50#define EXCP_BKPT 7
9ee6e8bb 51#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 52#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 53#define EXCP_STREX 10
9ee6e8bb
PB
54
55#define ARMV7M_EXCP_RESET 1
56#define ARMV7M_EXCP_NMI 2
57#define ARMV7M_EXCP_HARD 3
58#define ARMV7M_EXCP_MEM 4
59#define ARMV7M_EXCP_BUS 5
60#define ARMV7M_EXCP_USAGE 6
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
403946c0
RH
66/* ARM-specific interrupt pending bits. */
67#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
68
e4fe830b
PM
69/* The usual mapping for an AArch64 system register to its AArch32
70 * counterpart is for the 32 bit world to have access to the lower
71 * half only (with writes leaving the upper half untouched). It's
72 * therefore useful to be able to pass TCG the offset of the least
73 * significant half of a uint64_t struct member.
74 */
75#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 76#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 77#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
78#else
79#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 80#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
81#endif
82
7c1840b6
PM
83/* Meanings of the ARMCPU object's two inbound GPIO lines */
84#define ARM_CPU_IRQ 0
85#define ARM_CPU_FIQ 1
403946c0 86
c1713132
AZ
87typedef void ARMWriteCPFunc(void *opaque, int cp_info,
88 int srcreg, int operand, uint32_t value);
89typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
90 int dstreg, int operand);
91
f93eb9ff
AZ
92struct arm_boot_info;
93
6ebbf390
JM
94#define NB_MMU_MODES 2
95
b7bcbe95
FB
96/* We currently assume float and double are IEEE single and double
97 precision respectively.
98 Doing runtime conversions is tricky because VFP registers may contain
99 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
100 s<2n> maps to the least significant half of d<n>
101 s<2n+1> maps to the most significant half of d<n>
102 */
b7bcbe95 103
55d284af
PM
104/* CPU state for each instance of a generic timer (in cp15 c14) */
105typedef struct ARMGenericTimer {
106 uint64_t cval; /* Timer CompareValue register */
a7adc4b7 107 uint64_t ctl; /* Timer Control register */
55d284af
PM
108} ARMGenericTimer;
109
110#define GTIMER_PHYS 0
111#define GTIMER_VIRT 1
112#define NUM_GTIMERS 2
113
2c0262af 114typedef struct CPUARMState {
b5ff1b31 115 /* Regs for current mode. */
2c0262af 116 uint32_t regs[16];
3926cc84
AG
117
118 /* 32/64 switch only happens when taking and returning from
119 * exceptions so the overlap semantics are taken care of then
120 * instead of having a complicated union.
121 */
122 /* Regs for A64 mode. */
123 uint64_t xregs[32];
124 uint64_t pc;
d356312f
PM
125 /* PSTATE isn't an architectural register for ARMv8. However, it is
126 * convenient for us to assemble the underlying state into a 32 bit format
127 * identical to the architectural format used for the SPSR. (This is also
128 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
129 * 'pstate' register are.) Of the PSTATE bits:
130 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
131 * semantics as for AArch32, as described in the comments on each field)
132 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
4cc35614 133 * DAIF (exception masks) are kept in env->daif
d356312f 134 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
135 */
136 uint32_t pstate;
137 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
138
b90372ad 139 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 140 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
141 the whole CPSR. */
142 uint32_t uncached_cpsr;
143 uint32_t spsr;
144
145 /* Banked registers. */
28c9457d 146 uint64_t banked_spsr[8];
b5ff1b31
FB
147 uint32_t banked_r13[6];
148 uint32_t banked_r14[6];
3b46e624 149
b5ff1b31
FB
150 /* These hold r8-r12. */
151 uint32_t usr_regs[5];
152 uint32_t fiq_regs[5];
3b46e624 153
2c0262af
FB
154 /* cpsr flag cache for faster execution */
155 uint32_t CF; /* 0 or 1 */
156 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
157 uint32_t NF; /* N is bit 31. All other bits are undefined. */
158 uint32_t ZF; /* Z set if zero. */
99c475ab 159 uint32_t QF; /* 0 or 1 */
9ee6e8bb 160 uint32_t GE; /* cpsr[19:16] */
b26eefb6 161 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 162 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
c2b820fe 163 uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
2c0262af 164
1b174238 165 uint64_t elr_el[4]; /* AArch64 exception link regs */
73fb3b76 166 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
a0618a19 167
b5ff1b31
FB
168 /* System control coprocessor (cp15) */
169 struct {
40f137e1 170 uint32_t c0_cpuid;
7da845b0 171 uint64_t c0_cssel; /* Cache size selection. */
5ebafdf3 172 uint64_t c1_sys; /* System control register. */
34222fb8 173 uint64_t c1_coproc; /* Coprocessor access register. */
610c3c8a 174 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
327ed10f
PM
175 uint64_t ttbr0_el1; /* MMU translation table base 0. */
176 uint64_t ttbr1_el1; /* MMU translation table base 1. */
cb2e37df 177 uint64_t c2_control; /* MMU translation table base control. */
b2fa1797
PB
178 uint32_t c2_mask; /* MMU translation table base selection mask. */
179 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
180 uint32_t c2_data; /* MPU data cachable bits. */
181 uint32_t c2_insn; /* MPU instruction cachable bits. */
182 uint32_t c3; /* MMU domain access control register
183 MPU write buffer control. */
7e09797c
PM
184 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
185 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
f149e3e8 186 uint64_t hcr_el2; /* Hypervisor configuration register */
64e0e2de 187 uint64_t scr_el3; /* Secure configuration register. */
6cd8a264 188 uint32_t ifsr_el2; /* Fault status registers. */
f2c30f42 189 uint64_t esr_el[4];
ce819861 190 uint32_t c6_region[8]; /* MPU base/size registers. */
63b60551 191 uint64_t far_el[4]; /* Fault address registers. */
19525524 192 uint64_t par_el1; /* Translation result. */
b5ff1b31
FB
193 uint32_t c9_insn; /* Cache lockdown registers. */
194 uint32_t c9_data;
8521466b
AF
195 uint64_t c9_pmcr; /* performance monitor control register */
196 uint64_t c9_pmcnten; /* perf monitor counter enables */
74594c9d
PM
197 uint32_t c9_pmovsr; /* perf monitor overflow status */
198 uint32_t c9_pmxevtyper; /* perf monitor event type */
199 uint32_t c9_pmuserenr; /* perf monitor user enable */
200 uint32_t c9_pminten; /* perf monitor interrupt enables */
b0fe2427 201 uint64_t mair_el1;
a1ba125c 202 uint64_t vbar_el[4]; /* vector base address register */
b5ff1b31 203 uint32_t c13_fcse; /* FCSE PID. */
014406b5 204 uint64_t contextidr_el1; /* Context ID. */
e4fe830b
PM
205 uint64_t tpidr_el0; /* User RW Thread register. */
206 uint64_t tpidrro_el0; /* User RO Thread register. */
207 uint64_t tpidr_el1; /* Privileged Thread register. */
a7adc4b7
PM
208 uint64_t c14_cntfrq; /* Counter Frequency register */
209 uint64_t c14_cntkctl; /* Timer Control register */
55d284af 210 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 211 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
212 uint32_t c15_ticonfig; /* TI925T configuration byte. */
213 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
214 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
215 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
216 uint32_t c15_config_base_address; /* SCU base address. */
217 uint32_t c15_diagnostic; /* diagnostic register */
218 uint32_t c15_power_diagnostic;
219 uint32_t c15_power_control; /* power control */
0b45451e
PM
220 uint64_t dbgbvr[16]; /* breakpoint value registers */
221 uint64_t dbgbcr[16]; /* breakpoint control registers */
222 uint64_t dbgwvr[16]; /* watchpoint value registers */
223 uint64_t dbgwcr[16]; /* watchpoint control registers */
3a298203 224 uint64_t mdscr_el1;
7c2cb42b
AF
225 /* If the counter is enabled, this stores the last time the counter
226 * was reset. Otherwise it stores the counter value
227 */
c92c0687 228 uint64_t c15_ccnt;
8521466b 229 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
b5ff1b31 230 } cp15;
40f137e1 231
9ee6e8bb
PB
232 struct {
233 uint32_t other_sp;
234 uint32_t vecbase;
235 uint32_t basepri;
236 uint32_t control;
237 int current_sp;
238 int exception;
239 int pending_exception;
9ee6e8bb
PB
240 } v7m;
241
abf1172f
PM
242 /* Information associated with an exception about to be taken:
243 * code which raises an exception must set cs->exception_index and
244 * the relevant parts of this structure; the cpu_do_interrupt function
245 * will then set the guest-visible registers as part of the exception
246 * entry process.
247 */
248 struct {
249 uint32_t syndrome; /* AArch64 format syndrome register */
250 uint32_t fsr; /* AArch32 format fault status register info */
251 uint64_t vaddress; /* virtual addr associated with exception, if any */
252 /* If we implement EL2 we will also need to store information
253 * about the intermediate physical address for stage 2 faults.
254 */
255 } exception;
256
fe1479c3
PB
257 /* Thumb-2 EE state. */
258 uint32_t teecr;
259 uint32_t teehbr;
260
b7bcbe95
FB
261 /* VFP coprocessor state. */
262 struct {
3926cc84
AG
263 /* VFP/Neon register state. Note that the mapping between S, D and Q
264 * views of the register bank differs between AArch64 and AArch32:
265 * In AArch32:
266 * Qn = regs[2n+1]:regs[2n]
267 * Dn = regs[n]
268 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
269 * (and regs[32] to regs[63] are inaccessible)
270 * In AArch64:
271 * Qn = regs[2n+1]:regs[2n]
272 * Dn = regs[2n]
273 * Sn = regs[2n] bits 31..0
274 * This corresponds to the architecturally defined mapping between
275 * the two execution states, and means we do not need to explicitly
276 * map these registers when changing states.
277 */
278 float64 regs[64];
b7bcbe95 279
40f137e1 280 uint32_t xregs[16];
b7bcbe95
FB
281 /* We store these fpcsr fields separately for convenience. */
282 int vec_len;
283 int vec_stride;
284
9ee6e8bb
PB
285 /* scratch space when Tn are not sufficient. */
286 uint32_t scratch[8];
3b46e624 287
3a492f3a
PM
288 /* fp_status is the "normal" fp status. standard_fp_status retains
289 * values corresponding to the ARM "Standard FPSCR Value", ie
290 * default-NaN, flush-to-zero, round-to-nearest and is used by
291 * any operations (generally Neon) which the architecture defines
292 * as controlled by the standard FPSCR value rather than the FPSCR.
293 *
294 * To avoid having to transfer exception bits around, we simply
295 * say that the FPSCR cumulative exception flags are the logical
296 * OR of the flags in the two fp statuses. This relies on the
297 * only thing which needs to read the exception flags being
298 * an explicit FPSCR read.
299 */
53cd6637 300 float_status fp_status;
3a492f3a 301 float_status standard_fp_status;
b7bcbe95 302 } vfp;
03d05e2d
PM
303 uint64_t exclusive_addr;
304 uint64_t exclusive_val;
305 uint64_t exclusive_high;
9ee6e8bb 306#if defined(CONFIG_USER_ONLY)
03d05e2d 307 uint64_t exclusive_test;
426f5abc 308 uint32_t exclusive_info;
9ee6e8bb 309#endif
b7bcbe95 310
18c9b560
AZ
311 /* iwMMXt coprocessor state. */
312 struct {
313 uint64_t regs[16];
314 uint64_t val;
315
316 uint32_t cregs[16];
317 } iwmmxt;
318
d8fd2954
PB
319 /* For mixed endian mode. */
320 bool bswap_code;
321
ce4defa0
PB
322#if defined(CONFIG_USER_ONLY)
323 /* For usermode syscall translation. */
324 int eabi;
325#endif
326
46747d15 327 struct CPUBreakpoint *cpu_breakpoint[16];
9ee98ce8
PM
328 struct CPUWatchpoint *cpu_watchpoint[16];
329
a316d335
FB
330 CPU_COMMON
331
9d551997 332 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 333
581be094 334 /* Internal CPU feature flags. */
918f5dca 335 uint64_t features;
581be094 336
983fe826 337 void *nvic;
462a8bc6 338 const struct arm_boot_info *boot_info;
2c0262af
FB
339} CPUARMState;
340
778c3a06
AF
341#include "cpu-qom.h"
342
343ARMCPU *cpu_arm_init(const char *cpu_model);
2c0262af 344int cpu_arm_exec(CPUARMState *s);
9ee6e8bb 345uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 346
3926cc84
AG
347static inline bool is_a64(CPUARMState *env)
348{
349 return env->aarch64;
350}
351
2c0262af
FB
352/* you can call this signal handler from your SIGBUS and SIGSEGV
353 signal handlers to inform the virtual CPU of exceptions. non zero
354 is returned if the signal was handled by the virtual CPU. */
5fafdf24 355int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 356 void *puc);
7510454e
AF
357int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
358 int mmu_idx);
2c0262af 359
ec7b4ce4
AF
360/**
361 * pmccntr_sync
362 * @env: CPUARMState
363 *
364 * Synchronises the counter in the PMCCNTR. This must always be called twice,
365 * once before any action that might affect the timer and again afterwards.
366 * The function is used to swap the state of the register if required.
367 * This only happens when not in user mode (!CONFIG_USER_ONLY)
368 */
369void pmccntr_sync(CPUARMState *env);
370
76e3e1bc
PM
371/* SCTLR bit meanings. Several bits have been reused in newer
372 * versions of the architecture; in that case we define constants
373 * for both old and new bit meanings. Code which tests against those
374 * bits should probably check or otherwise arrange that the CPU
375 * is the architectural version it expects.
376 */
377#define SCTLR_M (1U << 0)
378#define SCTLR_A (1U << 1)
379#define SCTLR_C (1U << 2)
380#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
381#define SCTLR_SA (1U << 3)
382#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
383#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
384#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
385#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
386#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
387#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
388#define SCTLR_ITD (1U << 7) /* v8 onward */
389#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
390#define SCTLR_SED (1U << 8) /* v8 onward */
391#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
392#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
393#define SCTLR_F (1U << 10) /* up to v6 */
394#define SCTLR_SW (1U << 10) /* v7 onward */
395#define SCTLR_Z (1U << 11)
396#define SCTLR_I (1U << 12)
397#define SCTLR_V (1U << 13)
398#define SCTLR_RR (1U << 14) /* up to v7 */
399#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
400#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
401#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
402#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
403#define SCTLR_nTWI (1U << 16) /* v8 onward */
404#define SCTLR_HA (1U << 17)
405#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
406#define SCTLR_nTWE (1U << 18) /* v8 onward */
407#define SCTLR_WXN (1U << 19)
408#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
409#define SCTLR_UWXN (1U << 20) /* v7 onward */
410#define SCTLR_FI (1U << 21)
411#define SCTLR_U (1U << 22)
412#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
413#define SCTLR_VE (1U << 24) /* up to v7 */
414#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
415#define SCTLR_EE (1U << 25)
416#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
417#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
418#define SCTLR_NMFI (1U << 27)
419#define SCTLR_TRE (1U << 28)
420#define SCTLR_AFE (1U << 29)
421#define SCTLR_TE (1U << 30)
422
78dbbbe4
PM
423#define CPSR_M (0x1fU)
424#define CPSR_T (1U << 5)
425#define CPSR_F (1U << 6)
426#define CPSR_I (1U << 7)
427#define CPSR_A (1U << 8)
428#define CPSR_E (1U << 9)
429#define CPSR_IT_2_7 (0xfc00U)
430#define CPSR_GE (0xfU << 16)
4051e12c
PM
431#define CPSR_IL (1U << 20)
432/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
433 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
434 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
435 * where it is live state but not accessible to the AArch32 code.
436 */
437#define CPSR_RESERVED (0x7U << 21)
78dbbbe4
PM
438#define CPSR_J (1U << 24)
439#define CPSR_IT_0_1 (3U << 25)
440#define CPSR_Q (1U << 27)
441#define CPSR_V (1U << 28)
442#define CPSR_C (1U << 29)
443#define CPSR_Z (1U << 30)
444#define CPSR_N (1U << 31)
9ee6e8bb 445#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
4cc35614 446#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
9ee6e8bb
PB
447
448#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
4cc35614
PM
449#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
450 | CPSR_NZCV)
9ee6e8bb
PB
451/* Bits writable in user mode. */
452#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
453/* Execution state bits. MRS read as zero, MSR writes ignored. */
4051e12c
PM
454#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
455/* Mask of bits which may be set by exception return copying them from SPSR */
456#define CPSR_ERET_MASK (~CPSR_RESERVED)
b5ff1b31 457
e389be16
FA
458#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
459#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
460#define TTBCR_PD0 (1U << 4)
461#define TTBCR_PD1 (1U << 5)
462#define TTBCR_EPD0 (1U << 7)
463#define TTBCR_IRGN0 (3U << 8)
464#define TTBCR_ORGN0 (3U << 10)
465#define TTBCR_SH0 (3U << 12)
466#define TTBCR_T1SZ (3U << 16)
467#define TTBCR_A1 (1U << 22)
468#define TTBCR_EPD1 (1U << 23)
469#define TTBCR_IRGN1 (3U << 24)
470#define TTBCR_ORGN1 (3U << 26)
471#define TTBCR_SH1 (1U << 28)
472#define TTBCR_EAE (1U << 31)
473
d356312f
PM
474/* Bit definitions for ARMv8 SPSR (PSTATE) format.
475 * Only these are valid when in AArch64 mode; in
476 * AArch32 mode SPSRs are basically CPSR-format.
477 */
f502cfc2 478#define PSTATE_SP (1U)
d356312f
PM
479#define PSTATE_M (0xFU)
480#define PSTATE_nRW (1U << 4)
481#define PSTATE_F (1U << 6)
482#define PSTATE_I (1U << 7)
483#define PSTATE_A (1U << 8)
484#define PSTATE_D (1U << 9)
485#define PSTATE_IL (1U << 20)
486#define PSTATE_SS (1U << 21)
487#define PSTATE_V (1U << 28)
488#define PSTATE_C (1U << 29)
489#define PSTATE_Z (1U << 30)
490#define PSTATE_N (1U << 31)
491#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
4cc35614
PM
492#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
493#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
d356312f
PM
494/* Mode values for AArch64 */
495#define PSTATE_MODE_EL3h 13
496#define PSTATE_MODE_EL3t 12
497#define PSTATE_MODE_EL2h 9
498#define PSTATE_MODE_EL2t 8
499#define PSTATE_MODE_EL1h 5
500#define PSTATE_MODE_EL1t 4
501#define PSTATE_MODE_EL0t 0
502
9e729b57
EI
503/* Map EL and handler into a PSTATE_MODE. */
504static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
505{
506 return (el << 2) | handler;
507}
508
d356312f
PM
509/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
510 * interprocessing, so we don't attempt to sync with the cpsr state used by
511 * the 32 bit decoder.
512 */
513static inline uint32_t pstate_read(CPUARMState *env)
514{
515 int ZF;
516
517 ZF = (env->ZF == 0);
518 return (env->NF & 0x80000000) | (ZF << 30)
519 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
4cc35614 520 | env->pstate | env->daif;
d356312f
PM
521}
522
523static inline void pstate_write(CPUARMState *env, uint32_t val)
524{
525 env->ZF = (~val) & PSTATE_Z;
526 env->NF = val;
527 env->CF = (val >> 29) & 1;
528 env->VF = (val << 3) & 0x80000000;
4cc35614 529 env->daif = val & PSTATE_DAIF;
d356312f
PM
530 env->pstate = val & ~CACHED_PSTATE_BITS;
531}
532
b5ff1b31 533/* Return the current CPSR value. */
2f4a40e5
AZ
534uint32_t cpsr_read(CPUARMState *env);
535/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
536void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
537
538/* Return the current xPSR value. */
539static inline uint32_t xpsr_read(CPUARMState *env)
540{
541 int ZF;
6fbe23d5
PB
542 ZF = (env->ZF == 0);
543 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
544 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
545 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
546 | ((env->condexec_bits & 0xfc) << 8)
547 | env->v7m.exception;
b5ff1b31
FB
548}
549
9ee6e8bb
PB
550/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
551static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
552{
9ee6e8bb 553 if (mask & CPSR_NZCV) {
6fbe23d5
PB
554 env->ZF = (~val) & CPSR_Z;
555 env->NF = val;
9ee6e8bb
PB
556 env->CF = (val >> 29) & 1;
557 env->VF = (val << 3) & 0x80000000;
558 }
559 if (mask & CPSR_Q)
560 env->QF = ((val & CPSR_Q) != 0);
561 if (mask & (1 << 24))
562 env->thumb = ((val & (1 << 24)) != 0);
563 if (mask & CPSR_IT_0_1) {
564 env->condexec_bits &= ~3;
565 env->condexec_bits |= (val >> 25) & 3;
566 }
567 if (mask & CPSR_IT_2_7) {
568 env->condexec_bits &= 3;
569 env->condexec_bits |= (val >> 8) & 0xfc;
570 }
571 if (mask & 0x1ff) {
572 env->v7m.exception = val & 0x1ff;
573 }
574}
575
f149e3e8
EI
576#define HCR_VM (1ULL << 0)
577#define HCR_SWIO (1ULL << 1)
578#define HCR_PTW (1ULL << 2)
579#define HCR_FMO (1ULL << 3)
580#define HCR_IMO (1ULL << 4)
581#define HCR_AMO (1ULL << 5)
582#define HCR_VF (1ULL << 6)
583#define HCR_VI (1ULL << 7)
584#define HCR_VSE (1ULL << 8)
585#define HCR_FB (1ULL << 9)
586#define HCR_BSU_MASK (3ULL << 10)
587#define HCR_DC (1ULL << 12)
588#define HCR_TWI (1ULL << 13)
589#define HCR_TWE (1ULL << 14)
590#define HCR_TID0 (1ULL << 15)
591#define HCR_TID1 (1ULL << 16)
592#define HCR_TID2 (1ULL << 17)
593#define HCR_TID3 (1ULL << 18)
594#define HCR_TSC (1ULL << 19)
595#define HCR_TIDCP (1ULL << 20)
596#define HCR_TACR (1ULL << 21)
597#define HCR_TSW (1ULL << 22)
598#define HCR_TPC (1ULL << 23)
599#define HCR_TPU (1ULL << 24)
600#define HCR_TTLB (1ULL << 25)
601#define HCR_TVM (1ULL << 26)
602#define HCR_TGE (1ULL << 27)
603#define HCR_TDZ (1ULL << 28)
604#define HCR_HCD (1ULL << 29)
605#define HCR_TRVM (1ULL << 30)
606#define HCR_RW (1ULL << 31)
607#define HCR_CD (1ULL << 32)
608#define HCR_ID (1ULL << 33)
609#define HCR_MASK ((1ULL << 34) - 1)
610
64e0e2de
EI
611#define SCR_NS (1U << 0)
612#define SCR_IRQ (1U << 1)
613#define SCR_FIQ (1U << 2)
614#define SCR_EA (1U << 3)
615#define SCR_FW (1U << 4)
616#define SCR_AW (1U << 5)
617#define SCR_NET (1U << 6)
618#define SCR_SMD (1U << 7)
619#define SCR_HCE (1U << 8)
620#define SCR_SIF (1U << 9)
621#define SCR_RW (1U << 10)
622#define SCR_ST (1U << 11)
623#define SCR_TWI (1U << 12)
624#define SCR_TWE (1U << 13)
625#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
626#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
627
01653295
PM
628/* Return the current FPSCR value. */
629uint32_t vfp_get_fpscr(CPUARMState *env);
630void vfp_set_fpscr(CPUARMState *env, uint32_t val);
631
f903fa22
PM
632/* For A64 the FPSCR is split into two logically distinct registers,
633 * FPCR and FPSR. However since they still use non-overlapping bits
634 * we store the underlying state in fpscr and just mask on read/write.
635 */
636#define FPSR_MASK 0xf800009f
637#define FPCR_MASK 0x07f79f00
638static inline uint32_t vfp_get_fpsr(CPUARMState *env)
639{
640 return vfp_get_fpscr(env) & FPSR_MASK;
641}
642
643static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
644{
645 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
646 vfp_set_fpscr(env, new_fpscr);
647}
648
649static inline uint32_t vfp_get_fpcr(CPUARMState *env)
650{
651 return vfp_get_fpscr(env) & FPCR_MASK;
652}
653
654static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
655{
656 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
657 vfp_set_fpscr(env, new_fpscr);
658}
659
b5ff1b31
FB
660enum arm_cpu_mode {
661 ARM_CPU_MODE_USR = 0x10,
662 ARM_CPU_MODE_FIQ = 0x11,
663 ARM_CPU_MODE_IRQ = 0x12,
664 ARM_CPU_MODE_SVC = 0x13,
28c9457d 665 ARM_CPU_MODE_MON = 0x16,
b5ff1b31 666 ARM_CPU_MODE_ABT = 0x17,
28c9457d 667 ARM_CPU_MODE_HYP = 0x1a,
b5ff1b31
FB
668 ARM_CPU_MODE_UND = 0x1b,
669 ARM_CPU_MODE_SYS = 0x1f
670};
671
40f137e1
PB
672/* VFP system registers. */
673#define ARM_VFP_FPSID 0
674#define ARM_VFP_FPSCR 1
a50c0f51 675#define ARM_VFP_MVFR2 5
9ee6e8bb
PB
676#define ARM_VFP_MVFR1 6
677#define ARM_VFP_MVFR0 7
40f137e1
PB
678#define ARM_VFP_FPEXC 8
679#define ARM_VFP_FPINST 9
680#define ARM_VFP_FPINST2 10
681
18c9b560
AZ
682/* iwMMXt coprocessor control registers. */
683#define ARM_IWMMXT_wCID 0
684#define ARM_IWMMXT_wCon 1
685#define ARM_IWMMXT_wCSSF 2
686#define ARM_IWMMXT_wCASF 3
687#define ARM_IWMMXT_wCGR0 8
688#define ARM_IWMMXT_wCGR1 9
689#define ARM_IWMMXT_wCGR2 10
690#define ARM_IWMMXT_wCGR3 11
691
ce854d7c
BC
692/* If adding a feature bit which corresponds to a Linux ELF
693 * HWCAP bit, remember to update the feature-bit-to-hwcap
694 * mapping in linux-user/elfload.c:get_elf_hwcap().
695 */
40f137e1
PB
696enum arm_features {
697 ARM_FEATURE_VFP,
c1713132
AZ
698 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
699 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 700 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
701 ARM_FEATURE_V6,
702 ARM_FEATURE_V6K,
703 ARM_FEATURE_V7,
704 ARM_FEATURE_THUMB2,
c3d2689d 705 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 706 ARM_FEATURE_VFP3,
60011498 707 ARM_FEATURE_VFP_FP16,
9ee6e8bb 708 ARM_FEATURE_NEON,
47789990 709 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 710 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 711 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 712 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
713 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
714 ARM_FEATURE_V4T,
715 ARM_FEATURE_V5,
5bc95aa2 716 ARM_FEATURE_STRONGARM,
906879a9 717 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 718 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 719 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 720 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 721 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 722 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
723 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
724 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
725 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 726 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
727 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
728 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 729 ARM_FEATURE_V8,
3926cc84 730 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 731 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 732 ARM_FEATURE_CBAR, /* has cp15 CBAR */
eb0ecd5a 733 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
f318cec6 734 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
cca7c2f5 735 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1fe8141e 736 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
f1ecb913
AB
737 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
738 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
4e624eda 739 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
40f137e1
PB
740};
741
742static inline int arm_feature(CPUARMState *env, int feature)
743{
918f5dca 744 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
745}
746
1f79ee32
PM
747/* Return true if the specified exception level is running in AArch64 state. */
748static inline bool arm_el_is_aa64(CPUARMState *env, int el)
749{
750 /* We don't currently support EL2 or EL3, and this isn't valid for EL0
751 * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
752 * then the state of EL0 isn't well defined.)
753 */
754 assert(el == 1);
755 /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
756 * is a QEMU-imposed simplification which we may wish to change later.
757 * If we in future support EL2 and/or EL3, then the state of lower
758 * exception levels is controlled by the HCR.RW and SCR.RW bits.
759 */
760 return arm_feature(env, ARM_FEATURE_AARCH64);
761}
762
9a78eead 763void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
9e729b57 764unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx);
40f137e1 765
9ee6e8bb
PB
766/* Interface between CPU and Interrupt controller. */
767void armv7m_nvic_set_pending(void *opaque, int irq);
768int armv7m_nvic_acknowledge_irq(void *opaque);
769void armv7m_nvic_complete_irq(void *opaque, int irq);
770
4b6a83fb
PM
771/* Interface for defining coprocessor registers.
772 * Registers are defined in tables of arm_cp_reginfo structs
773 * which are passed to define_arm_cp_regs().
774 */
775
776/* When looking up a coprocessor register we look for it
777 * via an integer which encodes all of:
778 * coprocessor number
779 * Crn, Crm, opc1, opc2 fields
780 * 32 or 64 bit register (ie is it accessed via MRC/MCR
781 * or via MRRC/MCRR?)
782 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
783 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
784 * For AArch64, there is no 32/64 bit size distinction;
785 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
786 * and 4 bit CRn and CRm. The encoding patterns are chosen
787 * to be easy to convert to and from the KVM encodings, and also
788 * so that the hashtable can contain both AArch32 and AArch64
789 * registers (to allow for interprocessing where we might run
790 * 32 bit code on a 64 bit core).
4b6a83fb 791 */
f5a0a5a5
PM
792/* This bit is private to our hashtable cpreg; in KVM register
793 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
794 * in the upper bits of the 64 bit ID.
795 */
796#define CP_REG_AA64_SHIFT 28
797#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
798
4b6a83fb
PM
799#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
800 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
801 ((crm) << 7) | ((opc1) << 3) | (opc2))
802
f5a0a5a5
PM
803#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
804 (CP_REG_AA64_MASK | \
805 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
806 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
807 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
808 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
809 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
810 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
811
721fae12
PM
812/* Convert a full 64 bit KVM register ID to the truncated 32 bit
813 * version used as a key for the coprocessor register hashtable
814 */
815static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
816{
817 uint32_t cpregid = kvmid;
f5a0a5a5
PM
818 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
819 cpregid |= CP_REG_AA64_MASK;
820 } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
721fae12
PM
821 cpregid |= (1 << 15);
822 }
823 return cpregid;
824}
825
826/* Convert a truncated 32 bit hashtable key into the full
827 * 64 bit KVM register ID.
828 */
829static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
830{
f5a0a5a5
PM
831 uint64_t kvmid;
832
833 if (cpregid & CP_REG_AA64_MASK) {
834 kvmid = cpregid & ~CP_REG_AA64_MASK;
835 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 836 } else {
f5a0a5a5
PM
837 kvmid = cpregid & ~(1 << 15);
838 if (cpregid & (1 << 15)) {
839 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
840 } else {
841 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
842 }
721fae12
PM
843 }
844 return kvmid;
845}
846
4b6a83fb
PM
847/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
848 * special-behaviour cp reg and bits [15..8] indicate what behaviour
849 * it has. Otherwise it is a simple cp reg, where CONST indicates that
850 * TCG can assume the value to be constant (ie load at translate time)
851 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
852 * indicates that the TB should not be ended after a write to this register
853 * (the default is that the TB ends after cp writes). OVERRIDE permits
854 * a register definition to override a previous definition for the
855 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
856 * old must have the OVERRIDE bit set.
7023ec7e
PM
857 * NO_MIGRATE indicates that this register should be ignored for migration;
858 * (eg because any state is accessed via some other coprocessor register).
2452731c
PM
859 * IO indicates that this register does I/O and therefore its accesses
860 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
861 * registers which implement clocks or timers require this.
4b6a83fb
PM
862 */
863#define ARM_CP_SPECIAL 1
864#define ARM_CP_CONST 2
865#define ARM_CP_64BIT 4
866#define ARM_CP_SUPPRESS_TB_END 8
867#define ARM_CP_OVERRIDE 16
7023ec7e 868#define ARM_CP_NO_MIGRATE 32
2452731c 869#define ARM_CP_IO 64
4b6a83fb
PM
870#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
871#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
b0d2b7d0 872#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
0eef9d98 873#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
aca3f40b
PM
874#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
875#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
4b6a83fb
PM
876/* Used only as a terminator for ARMCPRegInfo lists */
877#define ARM_CP_SENTINEL 0xffff
878/* Mask of only the flag bits in a type field */
2452731c 879#define ARM_CP_FLAG_MASK 0x7f
4b6a83fb 880
f5a0a5a5
PM
881/* Valid values for ARMCPRegInfo state field, indicating which of
882 * the AArch32 and AArch64 execution states this register is visible in.
883 * If the reginfo doesn't explicitly specify then it is AArch32 only.
884 * If the reginfo is declared to be visible in both states then a second
885 * reginfo is synthesised for the AArch32 view of the AArch64 register,
886 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
887 * Note that we rely on the values of these enums as we iterate through
888 * the various states in some places.
889 */
890enum {
891 ARM_CP_STATE_AA32 = 0,
892 ARM_CP_STATE_AA64 = 1,
893 ARM_CP_STATE_BOTH = 2,
894};
895
4b6a83fb
PM
896/* Return true if cptype is a valid type field. This is used to try to
897 * catch errors where the sentinel has been accidentally left off the end
898 * of a list of registers.
899 */
900static inline bool cptype_valid(int cptype)
901{
902 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
903 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 904 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
905}
906
907/* Access rights:
908 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
909 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
910 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
911 * (ie any of the privileged modes in Secure state, or Monitor mode).
912 * If a register is accessible in one privilege level it's always accessible
913 * in higher privilege levels too. Since "Secure PL1" also follows this rule
914 * (ie anything visible in PL2 is visible in S-PL1, some things are only
915 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
916 * terminology a little and call this PL3.
f5a0a5a5
PM
917 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
918 * with the ELx exception levels.
4b6a83fb
PM
919 *
920 * If access permissions for a register are more complex than can be
921 * described with these bits, then use a laxer set of restrictions, and
922 * do the more restrictive/complex check inside a helper function.
923 */
924#define PL3_R 0x80
925#define PL3_W 0x40
926#define PL2_R (0x20 | PL3_R)
927#define PL2_W (0x10 | PL3_W)
928#define PL1_R (0x08 | PL2_R)
929#define PL1_W (0x04 | PL2_W)
930#define PL0_R (0x02 | PL1_R)
931#define PL0_W (0x01 | PL1_W)
932
933#define PL3_RW (PL3_R | PL3_W)
934#define PL2_RW (PL2_R | PL2_W)
935#define PL1_RW (PL1_R | PL1_W)
936#define PL0_RW (PL0_R | PL0_W)
937
938static inline int arm_current_pl(CPUARMState *env)
939{
f5a0a5a5
PM
940 if (env->aarch64) {
941 return extract32(env->pstate, 2, 2);
942 }
943
4b6a83fb
PM
944 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
945 return 0;
946 }
947 /* We don't currently implement the Virtualization or TrustZone
948 * extensions, so PL2 and PL3 don't exist for us.
949 */
950 return 1;
951}
952
953typedef struct ARMCPRegInfo ARMCPRegInfo;
954
f59df3f2
PM
955typedef enum CPAccessResult {
956 /* Access is permitted */
957 CP_ACCESS_OK = 0,
958 /* Access fails due to a configurable trap or enable which would
959 * result in a categorized exception syndrome giving information about
960 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
961 * 0xc or 0x18).
962 */
963 CP_ACCESS_TRAP = 1,
964 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
965 * Note that this is not a catch-all case -- the set of cases which may
966 * result in this failure is specifically defined by the architecture.
967 */
968 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
969} CPAccessResult;
970
c4241c7d
PM
971/* Access functions for coprocessor registers. These cannot fail and
972 * may not raise exceptions.
973 */
974typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
975typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
976 uint64_t value);
f59df3f2
PM
977/* Access permission check functions for coprocessor registers. */
978typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
4b6a83fb
PM
979/* Hook function for register reset */
980typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
981
982#define CP_ANY 0xff
983
984/* Definition of an ARM coprocessor register */
985struct ARMCPRegInfo {
986 /* Name of register (useful mainly for debugging, need not be unique) */
987 const char *name;
988 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
989 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
990 * 'wildcard' field -- any value of that field in the MRC/MCR insn
991 * will be decoded to this register. The register read and write
992 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
993 * used by the program, so it is possible to register a wildcard and
994 * then behave differently on read/write if necessary.
995 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
996 * must both be zero.
f5a0a5a5
PM
997 * For AArch64-visible registers, opc0 is also used.
998 * Since there are no "coprocessors" in AArch64, cp is purely used as a
999 * way to distinguish (for KVM's benefit) guest-visible system registers
1000 * from demuxed ones provided to preserve the "no side effects on
1001 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1002 * visible (to match KVM's encoding); cp==0 will be converted to
1003 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
1004 */
1005 uint8_t cp;
1006 uint8_t crn;
1007 uint8_t crm;
f5a0a5a5 1008 uint8_t opc0;
4b6a83fb
PM
1009 uint8_t opc1;
1010 uint8_t opc2;
f5a0a5a5
PM
1011 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1012 int state;
4b6a83fb
PM
1013 /* Register type: ARM_CP_* bits/values */
1014 int type;
1015 /* Access rights: PL*_[RW] */
1016 int access;
1017 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1018 * this register was defined: can be used to hand data through to the
1019 * register read/write functions, since they are passed the ARMCPRegInfo*.
1020 */
1021 void *opaque;
1022 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1023 * fieldoffset is non-zero, the reset value of the register.
1024 */
1025 uint64_t resetvalue;
1026 /* Offset of the field in CPUARMState for this register. This is not
1027 * needed if either:
1028 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1029 * 2. both readfn and writefn are specified
1030 */
1031 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
f59df3f2
PM
1032 /* Function for making any access checks for this register in addition to
1033 * those specified by the 'access' permissions bits. If NULL, no extra
1034 * checks required. The access check is performed at runtime, not at
1035 * translate time.
1036 */
1037 CPAccessFn *accessfn;
4b6a83fb
PM
1038 /* Function for handling reads of this register. If NULL, then reads
1039 * will be done by loading from the offset into CPUARMState specified
1040 * by fieldoffset.
1041 */
1042 CPReadFn *readfn;
1043 /* Function for handling writes of this register. If NULL, then writes
1044 * will be done by writing to the offset into CPUARMState specified
1045 * by fieldoffset.
1046 */
1047 CPWriteFn *writefn;
7023ec7e
PM
1048 /* Function for doing a "raw" read; used when we need to copy
1049 * coprocessor state to the kernel for KVM or out for
1050 * migration. This only needs to be provided if there is also a
c4241c7d 1051 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
1052 */
1053 CPReadFn *raw_readfn;
1054 /* Function for doing a "raw" write; used when we need to copy KVM
1055 * kernel coprocessor state into userspace, or for inbound
1056 * migration. This only needs to be provided if there is also a
c4241c7d
PM
1057 * writefn and it masks out "unwritable" bits or has write-one-to-clear
1058 * or similar behaviour.
7023ec7e
PM
1059 */
1060 CPWriteFn *raw_writefn;
4b6a83fb
PM
1061 /* Function for resetting the register. If NULL, then reset will be done
1062 * by writing resetvalue to the field specified in fieldoffset. If
1063 * fieldoffset is 0 then no reset will be done.
1064 */
1065 CPResetFn *resetfn;
1066};
1067
1068/* Macros which are lvalues for the field in CPUARMState for the
1069 * ARMCPRegInfo *ri.
1070 */
1071#define CPREG_FIELD32(env, ri) \
1072 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1073#define CPREG_FIELD64(env, ri) \
1074 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1075
1076#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1077
1078void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1079 const ARMCPRegInfo *regs, void *opaque);
1080void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1081 const ARMCPRegInfo *regs, void *opaque);
1082static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1083{
1084 define_arm_cp_regs_with_opaque(cpu, regs, 0);
1085}
1086static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1087{
1088 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1089}
60322b39 1090const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
1091
1092/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
1093void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1094 uint64_t value);
4b6a83fb 1095/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 1096uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 1097
f5a0a5a5
PM
1098/* CPResetFn that does nothing, for use if no reset is required even
1099 * if fieldoffset is non zero.
1100 */
1101void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1102
67ed771d
PM
1103/* Return true if this reginfo struct's field in the cpu state struct
1104 * is 64 bits wide.
1105 */
1106static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1107{
1108 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1109}
1110
60322b39 1111static inline bool cp_access_ok(int current_pl,
4b6a83fb
PM
1112 const ARMCPRegInfo *ri, int isread)
1113{
60322b39 1114 return (ri->access >> ((current_pl * 2) + isread)) & 1;
4b6a83fb
PM
1115}
1116
721fae12
PM
1117/**
1118 * write_list_to_cpustate
1119 * @cpu: ARMCPU
1120 *
1121 * For each register listed in the ARMCPU cpreg_indexes list, write
1122 * its value from the cpreg_values list into the ARMCPUState structure.
1123 * This updates TCG's working data structures from KVM data or
1124 * from incoming migration state.
1125 *
1126 * Returns: true if all register values were updated correctly,
1127 * false if some register was unknown or could not be written.
1128 * Note that we do not stop early on failure -- we will attempt
1129 * writing all registers in the list.
1130 */
1131bool write_list_to_cpustate(ARMCPU *cpu);
1132
1133/**
1134 * write_cpustate_to_list:
1135 * @cpu: ARMCPU
1136 *
1137 * For each register listed in the ARMCPU cpreg_indexes list, write
1138 * its value from the ARMCPUState structure into the cpreg_values list.
1139 * This is used to copy info from TCG's working data structures into
1140 * KVM or for outbound migration.
1141 *
1142 * Returns: true if all register values were read correctly,
1143 * false if some register was unknown or could not be read.
1144 * Note that we do not stop early on failure -- we will attempt
1145 * reading all registers in the list.
1146 */
1147bool write_cpustate_to_list(ARMCPU *cpu);
1148
9ee6e8bb
PB
1149/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1150 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1151 conventional cores (ie. Application or Realtime profile). */
1152
1153#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 1154
9ee6e8bb
PB
1155#define ARM_CPUID_TI915T 0x54029152
1156#define ARM_CPUID_TI925T 0x54029252
40f137e1 1157
b5ff1b31 1158#if defined(CONFIG_USER_ONLY)
2c0262af 1159#define TARGET_PAGE_BITS 12
b5ff1b31
FB
1160#else
1161/* The ARM MMU allows 1k pages. */
1162/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 1163 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
1164#define TARGET_PAGE_BITS 10
1165#endif
9467d44c 1166
3926cc84
AG
1167#if defined(TARGET_AARCH64)
1168# define TARGET_PHYS_ADDR_SPACE_BITS 48
1169# define TARGET_VIRT_ADDR_SPACE_BITS 64
1170#else
1171# define TARGET_PHYS_ADDR_SPACE_BITS 40
1172# define TARGET_VIRT_ADDR_SPACE_BITS 32
1173#endif
52705890 1174
ad37ad5b
PM
1175static inline CPUARMState *cpu_init(const char *cpu_model)
1176{
1177 ARMCPU *cpu = cpu_arm_init(cpu_model);
1178 if (cpu) {
1179 return &cpu->env;
1180 }
1181 return NULL;
1182}
1183
9467d44c
TS
1184#define cpu_exec cpu_arm_exec
1185#define cpu_gen_code cpu_arm_gen_code
1186#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 1187#define cpu_list arm_cpu_list
9467d44c 1188
6ebbf390 1189/* MMU modes definitions */
f79fbf39
EI
1190#define MMU_MODE0_SUFFIX _user
1191#define MMU_MODE1_SUFFIX _kernel
1192#define MMU_USER_IDX 0
0ecb72a5 1193static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390 1194{
f79fbf39 1195 return arm_current_pl(env);
6ebbf390
JM
1196}
1197
3a298203
PM
1198/* Return the Exception Level targeted by debug exceptions;
1199 * currently always EL1 since we don't implement EL2 or EL3.
1200 */
1201static inline int arm_debug_target_el(CPUARMState *env)
1202{
1203 return 1;
1204}
1205
1206static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
1207{
1208 if (arm_current_pl(env) == arm_debug_target_el(env)) {
1209 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
1210 || (env->daif & PSTATE_D)) {
1211 return false;
1212 }
1213 }
1214 return true;
1215}
1216
1217static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
1218{
1219 if (arm_current_pl(env) == 0 && arm_el_is_aa64(env, 1)) {
1220 return aa64_generate_debug_exceptions(env);
1221 }
1222 return arm_current_pl(env) != 2;
1223}
1224
1225/* Return true if debugging exceptions are currently enabled.
1226 * This corresponds to what in ARM ARM pseudocode would be
1227 * if UsingAArch32() then
1228 * return AArch32.GenerateDebugExceptions()
1229 * else
1230 * return AArch64.GenerateDebugExceptions()
1231 * We choose to push the if() down into this function for clarity,
1232 * since the pseudocode has it at all callsites except for the one in
1233 * CheckSoftwareStep(), where it is elided because both branches would
1234 * always return the same value.
1235 *
1236 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
1237 * don't yet implement those exception levels or their associated trap bits.
1238 */
1239static inline bool arm_generate_debug_exceptions(CPUARMState *env)
1240{
1241 if (env->aarch64) {
1242 return aa64_generate_debug_exceptions(env);
1243 } else {
1244 return aa32_generate_debug_exceptions(env);
1245 }
1246}
1247
1248/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
1249 * implicitly means this always returns false in pre-v8 CPUs.)
1250 */
1251static inline bool arm_singlestep_active(CPUARMState *env)
1252{
1253 return extract32(env->cp15.mdscr_el1, 0, 1)
1254 && arm_el_is_aa64(env, arm_debug_target_el(env))
1255 && arm_generate_debug_exceptions(env);
1256}
1257
022c62cb 1258#include "exec/cpu-all.h"
622ed360 1259
3926cc84
AG
1260/* Bit usage in the TB flags field: bit 31 indicates whether we are
1261 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1262 */
1263#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1264#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1265
1266/* Bit usage when in AArch32 state: */
a1705768
PM
1267#define ARM_TBFLAG_THUMB_SHIFT 0
1268#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1269#define ARM_TBFLAG_VECLEN_SHIFT 1
1270#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1271#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1272#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1273#define ARM_TBFLAG_PRIV_SHIFT 6
1274#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
1275#define ARM_TBFLAG_VFPEN_SHIFT 7
1276#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1277#define ARM_TBFLAG_CONDEXEC_SHIFT 8
1278#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1279#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1280#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
2c7ffc41
PM
1281#define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
1282#define ARM_TBFLAG_CPACR_FPEN_MASK (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
50225ad0
PM
1283#define ARM_TBFLAG_SS_ACTIVE_SHIFT 18
1284#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
1285#define ARM_TBFLAG_PSTATE_SS_SHIFT 19
1286#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
c0f4af17
PM
1287/* We store the bottom two bits of the CPAR as TB flags and handle
1288 * checks on the other bits at runtime
1289 */
1290#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 20
1291#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
3926cc84 1292
d9ea7d29
PM
1293/* Bit usage when in AArch64 state */
1294#define ARM_TBFLAG_AA64_EL_SHIFT 0
1295#define ARM_TBFLAG_AA64_EL_MASK (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
8c6afa6a
PM
1296#define ARM_TBFLAG_AA64_FPEN_SHIFT 2
1297#define ARM_TBFLAG_AA64_FPEN_MASK (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
7ea47fe7
PM
1298#define ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT 3
1299#define ARM_TBFLAG_AA64_SS_ACTIVE_MASK (1 << ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1300#define ARM_TBFLAG_AA64_PSTATE_SS_SHIFT 4
1301#define ARM_TBFLAG_AA64_PSTATE_SS_MASK (1 << ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
a1705768
PM
1302
1303/* some convenience accessor macros */
3926cc84
AG
1304#define ARM_TBFLAG_AARCH64_STATE(F) \
1305 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
a1705768
PM
1306#define ARM_TBFLAG_THUMB(F) \
1307 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1308#define ARM_TBFLAG_VECLEN(F) \
1309 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1310#define ARM_TBFLAG_VECSTRIDE(F) \
1311 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1312#define ARM_TBFLAG_PRIV(F) \
1313 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1314#define ARM_TBFLAG_VFPEN(F) \
1315 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1316#define ARM_TBFLAG_CONDEXEC(F) \
1317 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1318#define ARM_TBFLAG_BSWAP_CODE(F) \
1319 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
2c7ffc41
PM
1320#define ARM_TBFLAG_CPACR_FPEN(F) \
1321 (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
50225ad0
PM
1322#define ARM_TBFLAG_SS_ACTIVE(F) \
1323 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
1324#define ARM_TBFLAG_PSTATE_SS(F) \
1325 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
c0f4af17
PM
1326#define ARM_TBFLAG_XSCALE_CPAR(F) \
1327 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
d9ea7d29
PM
1328#define ARM_TBFLAG_AA64_EL(F) \
1329 (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
8c6afa6a
PM
1330#define ARM_TBFLAG_AA64_FPEN(F) \
1331 (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
7ea47fe7
PM
1332#define ARM_TBFLAG_AA64_SS_ACTIVE(F) \
1333 (((F) & ARM_TBFLAG_AA64_SS_ACTIVE_MASK) >> ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
1334#define ARM_TBFLAG_AA64_PSTATE_SS(F) \
1335 (((F) & ARM_TBFLAG_AA64_PSTATE_SS_MASK) >> ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
a1705768 1336
0ecb72a5 1337static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
1338 target_ulong *cs_base, int *flags)
1339{
ed1f13d6
PM
1340 int fpen;
1341
1342 if (arm_feature(env, ARM_FEATURE_V6)) {
1343 fpen = extract32(env->cp15.c1_coproc, 20, 2);
1344 } else {
1345 /* CPACR doesn't exist before v6, so VFP is always accessible */
1346 fpen = 3;
1347 }
8c6afa6a 1348
3926cc84
AG
1349 if (is_a64(env)) {
1350 *pc = env->pc;
d9ea7d29
PM
1351 *flags = ARM_TBFLAG_AARCH64_STATE_MASK
1352 | (arm_current_pl(env) << ARM_TBFLAG_AA64_EL_SHIFT);
8c6afa6a
PM
1353 if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
1354 *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
1355 }
7ea47fe7
PM
1356 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1357 * states defined in the ARM ARM for software singlestep:
1358 * SS_ACTIVE PSTATE.SS State
1359 * 0 x Inactive (the TB flag for SS is always 0)
1360 * 1 0 Active-pending
1361 * 1 1 Active-not-pending
1362 */
1363 if (arm_singlestep_active(env)) {
1364 *flags |= ARM_TBFLAG_AA64_SS_ACTIVE_MASK;
1365 if (env->pstate & PSTATE_SS) {
1366 *flags |= ARM_TBFLAG_AA64_PSTATE_SS_MASK;
1367 }
1368 }
05ed9a99 1369 } else {
3926cc84
AG
1370 int privmode;
1371 *pc = env->regs[15];
1372 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1373 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1374 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1375 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1376 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1377 if (arm_feature(env, ARM_FEATURE_M)) {
1378 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1379 } else {
1380 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1381 }
1382 if (privmode) {
1383 *flags |= ARM_TBFLAG_PRIV_MASK;
1384 }
2c7ffc41
PM
1385 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
1386 || arm_el_is_aa64(env, 1)) {
3926cc84
AG
1387 *flags |= ARM_TBFLAG_VFPEN_MASK;
1388 }
2c7ffc41
PM
1389 if (fpen == 3 || (fpen == 1 && arm_current_pl(env) != 0)) {
1390 *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
1391 }
50225ad0
PM
1392 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
1393 * states defined in the ARM ARM for software singlestep:
1394 * SS_ACTIVE PSTATE.SS State
1395 * 0 x Inactive (the TB flag for SS is always 0)
1396 * 1 0 Active-pending
1397 * 1 1 Active-not-pending
1398 */
1399 if (arm_singlestep_active(env)) {
1400 *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
1401 if (env->uncached_cpsr & PSTATE_SS) {
1402 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
1403 }
1404 }
c0f4af17
PM
1405 *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
1406 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
a1705768 1407 }
3926cc84
AG
1408
1409 *cs_base = 0;
6b917547
AL
1410}
1411
022c62cb 1412#include "exec/exec-all.h"
f081c76c 1413
3926cc84
AG
1414static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1415{
1416 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1417 env->pc = tb->pc;
1418 } else {
1419 env->regs[15] = tb->pc;
1420 }
1421}
1422
2c0262af 1423#endif