]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/cpu.h
target-arm: Implement AArch64 memory attribute registers
[mirror_qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3926cc84 22#include "config.h"
3cf1e035 23
72b0cd35
PM
24#include "kvm-consts.h"
25
3926cc84
AG
26#if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28# define TARGET_LONG_BITS 64
29# define ELF_MACHINE EM_AARCH64
30#else
31# define TARGET_LONG_BITS 32
32# define ELF_MACHINE EM_ARM
33#endif
9042c0e2 34
9349b4f9 35#define CPUArchState struct CPUARMState
c2764719 36
9a78eead 37#include "qemu-common.h"
022c62cb 38#include "exec/cpu-defs.h"
2c0262af 39
6b4c305c 40#include "fpu/softfloat.h"
53cd6637 41
1fddef4b
FB
42#define TARGET_HAS_ICE 1
43
b8a9e8f1
FB
44#define EXCP_UDEF 1 /* undefined instruction */
45#define EXCP_SWI 2 /* software interrupt */
46#define EXCP_PREFETCH_ABORT 3
47#define EXCP_DATA_ABORT 4
b5ff1b31
FB
48#define EXCP_IRQ 5
49#define EXCP_FIQ 6
06c949e6 50#define EXCP_BKPT 7
9ee6e8bb 51#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 52#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 53#define EXCP_STREX 10
9ee6e8bb
PB
54
55#define ARMV7M_EXCP_RESET 1
56#define ARMV7M_EXCP_NMI 2
57#define ARMV7M_EXCP_HARD 3
58#define ARMV7M_EXCP_MEM 4
59#define ARMV7M_EXCP_BUS 5
60#define ARMV7M_EXCP_USAGE 6
61#define ARMV7M_EXCP_SVC 11
62#define ARMV7M_EXCP_DEBUG 12
63#define ARMV7M_EXCP_PENDSV 14
64#define ARMV7M_EXCP_SYSTICK 15
2c0262af 65
403946c0
RH
66/* ARM-specific interrupt pending bits. */
67#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
68
e4fe830b
PM
69/* The usual mapping for an AArch64 system register to its AArch32
70 * counterpart is for the 32 bit world to have access to the lower
71 * half only (with writes leaving the upper half untouched). It's
72 * therefore useful to be able to pass TCG the offset of the least
73 * significant half of a uint64_t struct member.
74 */
75#ifdef HOST_WORDS_BIGENDIAN
5cd8a118 76#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
b0fe2427 77#define offsetofhigh32(S, M) offsetof(S, M)
e4fe830b
PM
78#else
79#define offsetoflow32(S, M) offsetof(S, M)
b0fe2427 80#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
e4fe830b
PM
81#endif
82
7c1840b6
PM
83/* Meanings of the ARMCPU object's two inbound GPIO lines */
84#define ARM_CPU_IRQ 0
85#define ARM_CPU_FIQ 1
403946c0 86
c1713132
AZ
87typedef void ARMWriteCPFunc(void *opaque, int cp_info,
88 int srcreg, int operand, uint32_t value);
89typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
90 int dstreg, int operand);
91
f93eb9ff
AZ
92struct arm_boot_info;
93
6ebbf390
JM
94#define NB_MMU_MODES 2
95
b7bcbe95
FB
96/* We currently assume float and double are IEEE single and double
97 precision respectively.
98 Doing runtime conversions is tricky because VFP registers may contain
99 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
100 s<2n> maps to the least significant half of d<n>
101 s<2n+1> maps to the most significant half of d<n>
102 */
b7bcbe95 103
55d284af
PM
104/* CPU state for each instance of a generic timer (in cp15 c14) */
105typedef struct ARMGenericTimer {
106 uint64_t cval; /* Timer CompareValue register */
107 uint32_t ctl; /* Timer Control register */
108} ARMGenericTimer;
109
110#define GTIMER_PHYS 0
111#define GTIMER_VIRT 1
112#define NUM_GTIMERS 2
113
114/* Scale factor for generic timers, ie number of ns per tick.
115 * This gives a 62.5MHz timer.
116 */
117#define GTIMER_SCALE 16
118
2c0262af 119typedef struct CPUARMState {
b5ff1b31 120 /* Regs for current mode. */
2c0262af 121 uint32_t regs[16];
3926cc84
AG
122
123 /* 32/64 switch only happens when taking and returning from
124 * exceptions so the overlap semantics are taken care of then
125 * instead of having a complicated union.
126 */
127 /* Regs for A64 mode. */
128 uint64_t xregs[32];
129 uint64_t pc;
d356312f
PM
130 /* PSTATE isn't an architectural register for ARMv8. However, it is
131 * convenient for us to assemble the underlying state into a 32 bit format
132 * identical to the architectural format used for the SPSR. (This is also
133 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
134 * 'pstate' register are.) Of the PSTATE bits:
135 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
136 * semantics as for AArch32, as described in the comments on each field)
137 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
138 * all other bits are stored in their correct places in env->pstate
3926cc84
AG
139 */
140 uint32_t pstate;
141 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
142
b90372ad 143 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 144 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
145 the whole CPSR. */
146 uint32_t uncached_cpsr;
147 uint32_t spsr;
148
149 /* Banked registers. */
150 uint32_t banked_spsr[6];
151 uint32_t banked_r13[6];
152 uint32_t banked_r14[6];
3b46e624 153
b5ff1b31
FB
154 /* These hold r8-r12. */
155 uint32_t usr_regs[5];
156 uint32_t fiq_regs[5];
3b46e624 157
2c0262af
FB
158 /* cpsr flag cache for faster execution */
159 uint32_t CF; /* 0 or 1 */
160 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
161 uint32_t NF; /* N is bit 31. All other bits are undefined. */
162 uint32_t ZF; /* Z set if zero. */
99c475ab 163 uint32_t QF; /* 0 or 1 */
9ee6e8bb 164 uint32_t GE; /* cpsr[19:16] */
b26eefb6 165 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 166 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
2c0262af 167
b5ff1b31
FB
168 /* System control coprocessor (cp15) */
169 struct {
40f137e1 170 uint32_t c0_cpuid;
7da845b0 171 uint64_t c0_cssel; /* Cache size selection. */
b5ff1b31
FB
172 uint32_t c1_sys; /* System control register. */
173 uint32_t c1_coproc; /* Coprocessor access register. */
610c3c8a 174 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
2be27624 175 uint32_t c1_scr; /* secure config register. */
9ee6e8bb 176 uint32_t c2_base0; /* MMU translation table base 0. */
891a2fe7
PM
177 uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
178 uint32_t c2_base1; /* MMU translation table base 0. */
179 uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
b2fa1797
PB
180 uint32_t c2_control; /* MMU translation table base control. */
181 uint32_t c2_mask; /* MMU translation table base selection mask. */
182 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
183 uint32_t c2_data; /* MPU data cachable bits. */
184 uint32_t c2_insn; /* MPU instruction cachable bits. */
185 uint32_t c3; /* MMU domain access control register
186 MPU write buffer control. */
b5ff1b31
FB
187 uint32_t c5_insn; /* Fault status registers. */
188 uint32_t c5_data;
ce819861 189 uint32_t c6_region[8]; /* MPU base/size registers. */
b5ff1b31
FB
190 uint32_t c6_insn; /* Fault address registers. */
191 uint32_t c6_data;
f8bf8606 192 uint32_t c7_par; /* Translation result. */
891a2fe7 193 uint32_t c7_par_hi; /* Translation result, high 32 bits */
b5ff1b31
FB
194 uint32_t c9_insn; /* Cache lockdown registers. */
195 uint32_t c9_data;
74594c9d
PM
196 uint32_t c9_pmcr; /* performance monitor control register */
197 uint32_t c9_pmcnten; /* perf monitor counter enables */
198 uint32_t c9_pmovsr; /* perf monitor overflow status */
199 uint32_t c9_pmxevtyper; /* perf monitor event type */
200 uint32_t c9_pmuserenr; /* perf monitor user enable */
201 uint32_t c9_pminten; /* perf monitor interrupt enables */
b0fe2427 202 uint64_t mair_el1;
8641136c 203 uint32_t c12_vbar; /* vector base address register */
b5ff1b31
FB
204 uint32_t c13_fcse; /* FCSE PID. */
205 uint32_t c13_context; /* Context ID. */
e4fe830b
PM
206 uint64_t tpidr_el0; /* User RW Thread register. */
207 uint64_t tpidrro_el0; /* User RO Thread register. */
208 uint64_t tpidr_el1; /* Privileged Thread register. */
55d284af
PM
209 uint32_t c14_cntfrq; /* Counter Frequency register */
210 uint32_t c14_cntkctl; /* Timer Control register */
211 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 212 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
213 uint32_t c15_ticonfig; /* TI925T configuration byte. */
214 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
215 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
216 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
217 uint32_t c15_config_base_address; /* SCU base address. */
218 uint32_t c15_diagnostic; /* diagnostic register */
219 uint32_t c15_power_diagnostic;
220 uint32_t c15_power_control; /* power control */
b5ff1b31 221 } cp15;
40f137e1 222
9ee6e8bb
PB
223 struct {
224 uint32_t other_sp;
225 uint32_t vecbase;
226 uint32_t basepri;
227 uint32_t control;
228 int current_sp;
229 int exception;
230 int pending_exception;
9ee6e8bb
PB
231 } v7m;
232
fe1479c3
PB
233 /* Thumb-2 EE state. */
234 uint32_t teecr;
235 uint32_t teehbr;
236
b7bcbe95
FB
237 /* VFP coprocessor state. */
238 struct {
3926cc84
AG
239 /* VFP/Neon register state. Note that the mapping between S, D and Q
240 * views of the register bank differs between AArch64 and AArch32:
241 * In AArch32:
242 * Qn = regs[2n+1]:regs[2n]
243 * Dn = regs[n]
244 * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
245 * (and regs[32] to regs[63] are inaccessible)
246 * In AArch64:
247 * Qn = regs[2n+1]:regs[2n]
248 * Dn = regs[2n]
249 * Sn = regs[2n] bits 31..0
250 * This corresponds to the architecturally defined mapping between
251 * the two execution states, and means we do not need to explicitly
252 * map these registers when changing states.
253 */
254 float64 regs[64];
b7bcbe95 255
40f137e1 256 uint32_t xregs[16];
b7bcbe95
FB
257 /* We store these fpcsr fields separately for convenience. */
258 int vec_len;
259 int vec_stride;
260
9ee6e8bb
PB
261 /* scratch space when Tn are not sufficient. */
262 uint32_t scratch[8];
3b46e624 263
3a492f3a
PM
264 /* fp_status is the "normal" fp status. standard_fp_status retains
265 * values corresponding to the ARM "Standard FPSCR Value", ie
266 * default-NaN, flush-to-zero, round-to-nearest and is used by
267 * any operations (generally Neon) which the architecture defines
268 * as controlled by the standard FPSCR value rather than the FPSCR.
269 *
270 * To avoid having to transfer exception bits around, we simply
271 * say that the FPSCR cumulative exception flags are the logical
272 * OR of the flags in the two fp statuses. This relies on the
273 * only thing which needs to read the exception flags being
274 * an explicit FPSCR read.
275 */
53cd6637 276 float_status fp_status;
3a492f3a 277 float_status standard_fp_status;
b7bcbe95 278 } vfp;
03d05e2d
PM
279 uint64_t exclusive_addr;
280 uint64_t exclusive_val;
281 uint64_t exclusive_high;
9ee6e8bb 282#if defined(CONFIG_USER_ONLY)
03d05e2d 283 uint64_t exclusive_test;
426f5abc 284 uint32_t exclusive_info;
9ee6e8bb 285#endif
b7bcbe95 286
18c9b560
AZ
287 /* iwMMXt coprocessor state. */
288 struct {
289 uint64_t regs[16];
290 uint64_t val;
291
292 uint32_t cregs[16];
293 } iwmmxt;
294
d8fd2954
PB
295 /* For mixed endian mode. */
296 bool bswap_code;
297
ce4defa0
PB
298#if defined(CONFIG_USER_ONLY)
299 /* For usermode syscall translation. */
300 int eabi;
301#endif
302
a316d335
FB
303 CPU_COMMON
304
9d551997 305 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 306
581be094 307 /* Internal CPU feature flags. */
918f5dca 308 uint64_t features;
581be094 309
983fe826 310 void *nvic;
462a8bc6 311 const struct arm_boot_info *boot_info;
2c0262af
FB
312} CPUARMState;
313
778c3a06
AF
314#include "cpu-qom.h"
315
316ARMCPU *cpu_arm_init(const char *cpu_model);
b26eefb6 317void arm_translate_init(void);
14969266 318void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
2c0262af 319int cpu_arm_exec(CPUARMState *s);
494b00c7 320int bank_number(int mode);
b5ff1b31 321void switch_mode(CPUARMState *, int);
9ee6e8bb 322uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 323
3926cc84
AG
324static inline bool is_a64(CPUARMState *env)
325{
326 return env->aarch64;
327}
328
2c0262af
FB
329/* you can call this signal handler from your SIGBUS and SIGSEGV
330 signal handlers to inform the virtual CPU of exceptions. non zero
331 is returned if the signal was handled by the virtual CPU. */
5fafdf24 332int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 333 void *puc);
84a031c6 334int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 335 int mmu_idx);
0b5c1ce8 336#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
2c0262af 337
76e3e1bc
PM
338/* SCTLR bit meanings. Several bits have been reused in newer
339 * versions of the architecture; in that case we define constants
340 * for both old and new bit meanings. Code which tests against those
341 * bits should probably check or otherwise arrange that the CPU
342 * is the architectural version it expects.
343 */
344#define SCTLR_M (1U << 0)
345#define SCTLR_A (1U << 1)
346#define SCTLR_C (1U << 2)
347#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
348#define SCTLR_SA (1U << 3)
349#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
350#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
351#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
352#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
353#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
354#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
355#define SCTLR_ITD (1U << 7) /* v8 onward */
356#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
357#define SCTLR_SED (1U << 8) /* v8 onward */
358#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
359#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
360#define SCTLR_F (1U << 10) /* up to v6 */
361#define SCTLR_SW (1U << 10) /* v7 onward */
362#define SCTLR_Z (1U << 11)
363#define SCTLR_I (1U << 12)
364#define SCTLR_V (1U << 13)
365#define SCTLR_RR (1U << 14) /* up to v7 */
366#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
367#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
368#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
369#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
370#define SCTLR_nTWI (1U << 16) /* v8 onward */
371#define SCTLR_HA (1U << 17)
372#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
373#define SCTLR_nTWE (1U << 18) /* v8 onward */
374#define SCTLR_WXN (1U << 19)
375#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
376#define SCTLR_UWXN (1U << 20) /* v7 onward */
377#define SCTLR_FI (1U << 21)
378#define SCTLR_U (1U << 22)
379#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
380#define SCTLR_VE (1U << 24) /* up to v7 */
381#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
382#define SCTLR_EE (1U << 25)
383#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
384#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
385#define SCTLR_NMFI (1U << 27)
386#define SCTLR_TRE (1U << 28)
387#define SCTLR_AFE (1U << 29)
388#define SCTLR_TE (1U << 30)
389
78dbbbe4
PM
390#define CPSR_M (0x1fU)
391#define CPSR_T (1U << 5)
392#define CPSR_F (1U << 6)
393#define CPSR_I (1U << 7)
394#define CPSR_A (1U << 8)
395#define CPSR_E (1U << 9)
396#define CPSR_IT_2_7 (0xfc00U)
397#define CPSR_GE (0xfU << 16)
398#define CPSR_RESERVED (0xfU << 20)
399#define CPSR_J (1U << 24)
400#define CPSR_IT_0_1 (3U << 25)
401#define CPSR_Q (1U << 27)
402#define CPSR_V (1U << 28)
403#define CPSR_C (1U << 29)
404#define CPSR_Z (1U << 30)
405#define CPSR_N (1U << 31)
9ee6e8bb
PB
406#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
407
408#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
409#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
410/* Bits writable in user mode. */
411#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
412/* Execution state bits. MRS read as zero, MSR writes ignored. */
413#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
b5ff1b31 414
d356312f
PM
415/* Bit definitions for ARMv8 SPSR (PSTATE) format.
416 * Only these are valid when in AArch64 mode; in
417 * AArch32 mode SPSRs are basically CPSR-format.
418 */
419#define PSTATE_M (0xFU)
420#define PSTATE_nRW (1U << 4)
421#define PSTATE_F (1U << 6)
422#define PSTATE_I (1U << 7)
423#define PSTATE_A (1U << 8)
424#define PSTATE_D (1U << 9)
425#define PSTATE_IL (1U << 20)
426#define PSTATE_SS (1U << 21)
427#define PSTATE_V (1U << 28)
428#define PSTATE_C (1U << 29)
429#define PSTATE_Z (1U << 30)
430#define PSTATE_N (1U << 31)
431#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
432#define CACHED_PSTATE_BITS (PSTATE_NZCV)
433/* Mode values for AArch64 */
434#define PSTATE_MODE_EL3h 13
435#define PSTATE_MODE_EL3t 12
436#define PSTATE_MODE_EL2h 9
437#define PSTATE_MODE_EL2t 8
438#define PSTATE_MODE_EL1h 5
439#define PSTATE_MODE_EL1t 4
440#define PSTATE_MODE_EL0t 0
441
442/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
443 * interprocessing, so we don't attempt to sync with the cpsr state used by
444 * the 32 bit decoder.
445 */
446static inline uint32_t pstate_read(CPUARMState *env)
447{
448 int ZF;
449
450 ZF = (env->ZF == 0);
451 return (env->NF & 0x80000000) | (ZF << 30)
452 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
453 | env->pstate;
454}
455
456static inline void pstate_write(CPUARMState *env, uint32_t val)
457{
458 env->ZF = (~val) & PSTATE_Z;
459 env->NF = val;
460 env->CF = (val >> 29) & 1;
461 env->VF = (val << 3) & 0x80000000;
462 env->pstate = val & ~CACHED_PSTATE_BITS;
463}
464
b5ff1b31 465/* Return the current CPSR value. */
2f4a40e5
AZ
466uint32_t cpsr_read(CPUARMState *env);
467/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
468void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
469
470/* Return the current xPSR value. */
471static inline uint32_t xpsr_read(CPUARMState *env)
472{
473 int ZF;
6fbe23d5
PB
474 ZF = (env->ZF == 0);
475 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
476 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
477 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
478 | ((env->condexec_bits & 0xfc) << 8)
479 | env->v7m.exception;
b5ff1b31
FB
480}
481
9ee6e8bb
PB
482/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
483static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
484{
9ee6e8bb 485 if (mask & CPSR_NZCV) {
6fbe23d5
PB
486 env->ZF = (~val) & CPSR_Z;
487 env->NF = val;
9ee6e8bb
PB
488 env->CF = (val >> 29) & 1;
489 env->VF = (val << 3) & 0x80000000;
490 }
491 if (mask & CPSR_Q)
492 env->QF = ((val & CPSR_Q) != 0);
493 if (mask & (1 << 24))
494 env->thumb = ((val & (1 << 24)) != 0);
495 if (mask & CPSR_IT_0_1) {
496 env->condexec_bits &= ~3;
497 env->condexec_bits |= (val >> 25) & 3;
498 }
499 if (mask & CPSR_IT_2_7) {
500 env->condexec_bits &= 3;
501 env->condexec_bits |= (val >> 8) & 0xfc;
502 }
503 if (mask & 0x1ff) {
504 env->v7m.exception = val & 0x1ff;
505 }
506}
507
01653295
PM
508/* Return the current FPSCR value. */
509uint32_t vfp_get_fpscr(CPUARMState *env);
510void vfp_set_fpscr(CPUARMState *env, uint32_t val);
511
f903fa22
PM
512/* For A64 the FPSCR is split into two logically distinct registers,
513 * FPCR and FPSR. However since they still use non-overlapping bits
514 * we store the underlying state in fpscr and just mask on read/write.
515 */
516#define FPSR_MASK 0xf800009f
517#define FPCR_MASK 0x07f79f00
518static inline uint32_t vfp_get_fpsr(CPUARMState *env)
519{
520 return vfp_get_fpscr(env) & FPSR_MASK;
521}
522
523static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
524{
525 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
526 vfp_set_fpscr(env, new_fpscr);
527}
528
529static inline uint32_t vfp_get_fpcr(CPUARMState *env)
530{
531 return vfp_get_fpscr(env) & FPCR_MASK;
532}
533
534static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
535{
536 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
537 vfp_set_fpscr(env, new_fpscr);
538}
539
4d3da0f3
AG
540enum arm_fprounding {
541 FPROUNDING_TIEEVEN,
542 FPROUNDING_POSINF,
543 FPROUNDING_NEGINF,
544 FPROUNDING_ZERO,
545 FPROUNDING_TIEAWAY,
546 FPROUNDING_ODD
547};
548
9972da66
WN
549int arm_rmode_to_sf(int rmode);
550
b5ff1b31
FB
551enum arm_cpu_mode {
552 ARM_CPU_MODE_USR = 0x10,
553 ARM_CPU_MODE_FIQ = 0x11,
554 ARM_CPU_MODE_IRQ = 0x12,
555 ARM_CPU_MODE_SVC = 0x13,
556 ARM_CPU_MODE_ABT = 0x17,
557 ARM_CPU_MODE_UND = 0x1b,
558 ARM_CPU_MODE_SYS = 0x1f
559};
560
40f137e1
PB
561/* VFP system registers. */
562#define ARM_VFP_FPSID 0
563#define ARM_VFP_FPSCR 1
9ee6e8bb
PB
564#define ARM_VFP_MVFR1 6
565#define ARM_VFP_MVFR0 7
40f137e1
PB
566#define ARM_VFP_FPEXC 8
567#define ARM_VFP_FPINST 9
568#define ARM_VFP_FPINST2 10
569
18c9b560
AZ
570/* iwMMXt coprocessor control registers. */
571#define ARM_IWMMXT_wCID 0
572#define ARM_IWMMXT_wCon 1
573#define ARM_IWMMXT_wCSSF 2
574#define ARM_IWMMXT_wCASF 3
575#define ARM_IWMMXT_wCGR0 8
576#define ARM_IWMMXT_wCGR1 9
577#define ARM_IWMMXT_wCGR2 10
578#define ARM_IWMMXT_wCGR3 11
579
ce854d7c
BC
580/* If adding a feature bit which corresponds to a Linux ELF
581 * HWCAP bit, remember to update the feature-bit-to-hwcap
582 * mapping in linux-user/elfload.c:get_elf_hwcap().
583 */
40f137e1
PB
584enum arm_features {
585 ARM_FEATURE_VFP,
c1713132
AZ
586 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
587 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 588 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
589 ARM_FEATURE_V6,
590 ARM_FEATURE_V6K,
591 ARM_FEATURE_V7,
592 ARM_FEATURE_THUMB2,
c3d2689d 593 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 594 ARM_FEATURE_VFP3,
60011498 595 ARM_FEATURE_VFP_FP16,
9ee6e8bb 596 ARM_FEATURE_NEON,
47789990 597 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 598 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 599 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 600 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
601 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
602 ARM_FEATURE_V4T,
603 ARM_FEATURE_V5,
5bc95aa2 604 ARM_FEATURE_STRONGARM,
906879a9 605 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 606 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 607 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 608 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 609 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 610 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
611 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
612 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
613 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 614 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
615 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
616 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 617 ARM_FEATURE_V8,
3926cc84 618 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
9d935509 619 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
d8ba780b 620 ARM_FEATURE_CBAR, /* has cp15 CBAR */
40f137e1
PB
621};
622
623static inline int arm_feature(CPUARMState *env, int feature)
624{
918f5dca 625 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
626}
627
9a78eead 628void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
40f137e1 629
9ee6e8bb
PB
630/* Interface between CPU and Interrupt controller. */
631void armv7m_nvic_set_pending(void *opaque, int irq);
632int armv7m_nvic_acknowledge_irq(void *opaque);
633void armv7m_nvic_complete_irq(void *opaque, int irq);
634
4b6a83fb
PM
635/* Interface for defining coprocessor registers.
636 * Registers are defined in tables of arm_cp_reginfo structs
637 * which are passed to define_arm_cp_regs().
638 */
639
640/* When looking up a coprocessor register we look for it
641 * via an integer which encodes all of:
642 * coprocessor number
643 * Crn, Crm, opc1, opc2 fields
644 * 32 or 64 bit register (ie is it accessed via MRC/MCR
645 * or via MRRC/MCRR?)
646 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
647 * (In this case crn and opc2 should be zero.)
f5a0a5a5
PM
648 * For AArch64, there is no 32/64 bit size distinction;
649 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
650 * and 4 bit CRn and CRm. The encoding patterns are chosen
651 * to be easy to convert to and from the KVM encodings, and also
652 * so that the hashtable can contain both AArch32 and AArch64
653 * registers (to allow for interprocessing where we might run
654 * 32 bit code on a 64 bit core).
4b6a83fb 655 */
f5a0a5a5
PM
656/* This bit is private to our hashtable cpreg; in KVM register
657 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
658 * in the upper bits of the 64 bit ID.
659 */
660#define CP_REG_AA64_SHIFT 28
661#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
662
4b6a83fb
PM
663#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
664 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
665 ((crm) << 7) | ((opc1) << 3) | (opc2))
666
f5a0a5a5
PM
667#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
668 (CP_REG_AA64_MASK | \
669 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
670 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
671 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
672 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
673 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
674 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
675
721fae12
PM
676/* Convert a full 64 bit KVM register ID to the truncated 32 bit
677 * version used as a key for the coprocessor register hashtable
678 */
679static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
680{
681 uint32_t cpregid = kvmid;
f5a0a5a5
PM
682 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
683 cpregid |= CP_REG_AA64_MASK;
684 } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
721fae12
PM
685 cpregid |= (1 << 15);
686 }
687 return cpregid;
688}
689
690/* Convert a truncated 32 bit hashtable key into the full
691 * 64 bit KVM register ID.
692 */
693static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
694{
f5a0a5a5
PM
695 uint64_t kvmid;
696
697 if (cpregid & CP_REG_AA64_MASK) {
698 kvmid = cpregid & ~CP_REG_AA64_MASK;
699 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
721fae12 700 } else {
f5a0a5a5
PM
701 kvmid = cpregid & ~(1 << 15);
702 if (cpregid & (1 << 15)) {
703 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
704 } else {
705 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
706 }
721fae12
PM
707 }
708 return kvmid;
709}
710
4b6a83fb
PM
711/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
712 * special-behaviour cp reg and bits [15..8] indicate what behaviour
713 * it has. Otherwise it is a simple cp reg, where CONST indicates that
714 * TCG can assume the value to be constant (ie load at translate time)
715 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
716 * indicates that the TB should not be ended after a write to this register
717 * (the default is that the TB ends after cp writes). OVERRIDE permits
718 * a register definition to override a previous definition for the
719 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
720 * old must have the OVERRIDE bit set.
7023ec7e
PM
721 * NO_MIGRATE indicates that this register should be ignored for migration;
722 * (eg because any state is accessed via some other coprocessor register).
2452731c
PM
723 * IO indicates that this register does I/O and therefore its accesses
724 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
725 * registers which implement clocks or timers require this.
4b6a83fb
PM
726 */
727#define ARM_CP_SPECIAL 1
728#define ARM_CP_CONST 2
729#define ARM_CP_64BIT 4
730#define ARM_CP_SUPPRESS_TB_END 8
731#define ARM_CP_OVERRIDE 16
7023ec7e 732#define ARM_CP_NO_MIGRATE 32
2452731c 733#define ARM_CP_IO 64
4b6a83fb
PM
734#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
735#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
b0d2b7d0 736#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
0eef9d98
PM
737#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
738#define ARM_LAST_SPECIAL ARM_CP_CURRENTEL
4b6a83fb
PM
739/* Used only as a terminator for ARMCPRegInfo lists */
740#define ARM_CP_SENTINEL 0xffff
741/* Mask of only the flag bits in a type field */
2452731c 742#define ARM_CP_FLAG_MASK 0x7f
4b6a83fb 743
f5a0a5a5
PM
744/* Valid values for ARMCPRegInfo state field, indicating which of
745 * the AArch32 and AArch64 execution states this register is visible in.
746 * If the reginfo doesn't explicitly specify then it is AArch32 only.
747 * If the reginfo is declared to be visible in both states then a second
748 * reginfo is synthesised for the AArch32 view of the AArch64 register,
749 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
750 * Note that we rely on the values of these enums as we iterate through
751 * the various states in some places.
752 */
753enum {
754 ARM_CP_STATE_AA32 = 0,
755 ARM_CP_STATE_AA64 = 1,
756 ARM_CP_STATE_BOTH = 2,
757};
758
4b6a83fb
PM
759/* Return true if cptype is a valid type field. This is used to try to
760 * catch errors where the sentinel has been accidentally left off the end
761 * of a list of registers.
762 */
763static inline bool cptype_valid(int cptype)
764{
765 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
766 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 767 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
768}
769
770/* Access rights:
771 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
772 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
773 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
774 * (ie any of the privileged modes in Secure state, or Monitor mode).
775 * If a register is accessible in one privilege level it's always accessible
776 * in higher privilege levels too. Since "Secure PL1" also follows this rule
777 * (ie anything visible in PL2 is visible in S-PL1, some things are only
778 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
779 * terminology a little and call this PL3.
f5a0a5a5
PM
780 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
781 * with the ELx exception levels.
4b6a83fb
PM
782 *
783 * If access permissions for a register are more complex than can be
784 * described with these bits, then use a laxer set of restrictions, and
785 * do the more restrictive/complex check inside a helper function.
786 */
787#define PL3_R 0x80
788#define PL3_W 0x40
789#define PL2_R (0x20 | PL3_R)
790#define PL2_W (0x10 | PL3_W)
791#define PL1_R (0x08 | PL2_R)
792#define PL1_W (0x04 | PL2_W)
793#define PL0_R (0x02 | PL1_R)
794#define PL0_W (0x01 | PL1_W)
795
796#define PL3_RW (PL3_R | PL3_W)
797#define PL2_RW (PL2_R | PL2_W)
798#define PL1_RW (PL1_R | PL1_W)
799#define PL0_RW (PL0_R | PL0_W)
800
801static inline int arm_current_pl(CPUARMState *env)
802{
f5a0a5a5
PM
803 if (env->aarch64) {
804 return extract32(env->pstate, 2, 2);
805 }
806
4b6a83fb
PM
807 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
808 return 0;
809 }
810 /* We don't currently implement the Virtualization or TrustZone
811 * extensions, so PL2 and PL3 don't exist for us.
812 */
813 return 1;
814}
815
816typedef struct ARMCPRegInfo ARMCPRegInfo;
817
f59df3f2
PM
818typedef enum CPAccessResult {
819 /* Access is permitted */
820 CP_ACCESS_OK = 0,
821 /* Access fails due to a configurable trap or enable which would
822 * result in a categorized exception syndrome giving information about
823 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
824 * 0xc or 0x18).
825 */
826 CP_ACCESS_TRAP = 1,
827 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
828 * Note that this is not a catch-all case -- the set of cases which may
829 * result in this failure is specifically defined by the architecture.
830 */
831 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
832} CPAccessResult;
833
c4241c7d
PM
834/* Access functions for coprocessor registers. These cannot fail and
835 * may not raise exceptions.
836 */
837typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
838typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
839 uint64_t value);
f59df3f2
PM
840/* Access permission check functions for coprocessor registers. */
841typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
4b6a83fb
PM
842/* Hook function for register reset */
843typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
844
845#define CP_ANY 0xff
846
847/* Definition of an ARM coprocessor register */
848struct ARMCPRegInfo {
849 /* Name of register (useful mainly for debugging, need not be unique) */
850 const char *name;
851 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
852 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
853 * 'wildcard' field -- any value of that field in the MRC/MCR insn
854 * will be decoded to this register. The register read and write
855 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
856 * used by the program, so it is possible to register a wildcard and
857 * then behave differently on read/write if necessary.
858 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
859 * must both be zero.
f5a0a5a5
PM
860 * For AArch64-visible registers, opc0 is also used.
861 * Since there are no "coprocessors" in AArch64, cp is purely used as a
862 * way to distinguish (for KVM's benefit) guest-visible system registers
863 * from demuxed ones provided to preserve the "no side effects on
864 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
865 * visible (to match KVM's encoding); cp==0 will be converted to
866 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
4b6a83fb
PM
867 */
868 uint8_t cp;
869 uint8_t crn;
870 uint8_t crm;
f5a0a5a5 871 uint8_t opc0;
4b6a83fb
PM
872 uint8_t opc1;
873 uint8_t opc2;
f5a0a5a5
PM
874 /* Execution state in which this register is visible: ARM_CP_STATE_* */
875 int state;
4b6a83fb
PM
876 /* Register type: ARM_CP_* bits/values */
877 int type;
878 /* Access rights: PL*_[RW] */
879 int access;
880 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
881 * this register was defined: can be used to hand data through to the
882 * register read/write functions, since they are passed the ARMCPRegInfo*.
883 */
884 void *opaque;
885 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
886 * fieldoffset is non-zero, the reset value of the register.
887 */
888 uint64_t resetvalue;
889 /* Offset of the field in CPUARMState for this register. This is not
890 * needed if either:
891 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
892 * 2. both readfn and writefn are specified
893 */
894 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
f59df3f2
PM
895 /* Function for making any access checks for this register in addition to
896 * those specified by the 'access' permissions bits. If NULL, no extra
897 * checks required. The access check is performed at runtime, not at
898 * translate time.
899 */
900 CPAccessFn *accessfn;
4b6a83fb
PM
901 /* Function for handling reads of this register. If NULL, then reads
902 * will be done by loading from the offset into CPUARMState specified
903 * by fieldoffset.
904 */
905 CPReadFn *readfn;
906 /* Function for handling writes of this register. If NULL, then writes
907 * will be done by writing to the offset into CPUARMState specified
908 * by fieldoffset.
909 */
910 CPWriteFn *writefn;
7023ec7e
PM
911 /* Function for doing a "raw" read; used when we need to copy
912 * coprocessor state to the kernel for KVM or out for
913 * migration. This only needs to be provided if there is also a
c4241c7d 914 * readfn and it has side effects (for instance clear-on-read bits).
7023ec7e
PM
915 */
916 CPReadFn *raw_readfn;
917 /* Function for doing a "raw" write; used when we need to copy KVM
918 * kernel coprocessor state into userspace, or for inbound
919 * migration. This only needs to be provided if there is also a
c4241c7d
PM
920 * writefn and it masks out "unwritable" bits or has write-one-to-clear
921 * or similar behaviour.
7023ec7e
PM
922 */
923 CPWriteFn *raw_writefn;
4b6a83fb
PM
924 /* Function for resetting the register. If NULL, then reset will be done
925 * by writing resetvalue to the field specified in fieldoffset. If
926 * fieldoffset is 0 then no reset will be done.
927 */
928 CPResetFn *resetfn;
929};
930
931/* Macros which are lvalues for the field in CPUARMState for the
932 * ARMCPRegInfo *ri.
933 */
934#define CPREG_FIELD32(env, ri) \
935 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
936#define CPREG_FIELD64(env, ri) \
937 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
938
939#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
940
941void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
942 const ARMCPRegInfo *regs, void *opaque);
943void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
944 const ARMCPRegInfo *regs, void *opaque);
945static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
946{
947 define_arm_cp_regs_with_opaque(cpu, regs, 0);
948}
949static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
950{
951 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
952}
60322b39 953const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
4b6a83fb
PM
954
955/* CPWriteFn that can be used to implement writes-ignored behaviour */
c4241c7d
PM
956void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
957 uint64_t value);
4b6a83fb 958/* CPReadFn that can be used for read-as-zero behaviour */
c4241c7d 959uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
4b6a83fb 960
f5a0a5a5
PM
961/* CPResetFn that does nothing, for use if no reset is required even
962 * if fieldoffset is non zero.
963 */
964void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
965
67ed771d
PM
966/* Return true if this reginfo struct's field in the cpu state struct
967 * is 64 bits wide.
968 */
969static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
970{
971 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
972}
973
60322b39 974static inline bool cp_access_ok(int current_pl,
4b6a83fb
PM
975 const ARMCPRegInfo *ri, int isread)
976{
60322b39 977 return (ri->access >> ((current_pl * 2) + isread)) & 1;
4b6a83fb
PM
978}
979
721fae12
PM
980/**
981 * write_list_to_cpustate
982 * @cpu: ARMCPU
983 *
984 * For each register listed in the ARMCPU cpreg_indexes list, write
985 * its value from the cpreg_values list into the ARMCPUState structure.
986 * This updates TCG's working data structures from KVM data or
987 * from incoming migration state.
988 *
989 * Returns: true if all register values were updated correctly,
990 * false if some register was unknown or could not be written.
991 * Note that we do not stop early on failure -- we will attempt
992 * writing all registers in the list.
993 */
994bool write_list_to_cpustate(ARMCPU *cpu);
995
996/**
997 * write_cpustate_to_list:
998 * @cpu: ARMCPU
999 *
1000 * For each register listed in the ARMCPU cpreg_indexes list, write
1001 * its value from the ARMCPUState structure into the cpreg_values list.
1002 * This is used to copy info from TCG's working data structures into
1003 * KVM or for outbound migration.
1004 *
1005 * Returns: true if all register values were read correctly,
1006 * false if some register was unknown or could not be read.
1007 * Note that we do not stop early on failure -- we will attempt
1008 * reading all registers in the list.
1009 */
1010bool write_cpustate_to_list(ARMCPU *cpu);
1011
9ee6e8bb
PB
1012/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
1013 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1014 conventional cores (ie. Application or Realtime profile). */
1015
1016#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 1017
9ee6e8bb
PB
1018#define ARM_CPUID_TI915T 0x54029152
1019#define ARM_CPUID_TI925T 0x54029252
40f137e1 1020
b5ff1b31 1021#if defined(CONFIG_USER_ONLY)
2c0262af 1022#define TARGET_PAGE_BITS 12
b5ff1b31
FB
1023#else
1024/* The ARM MMU allows 1k pages. */
1025/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 1026 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
1027#define TARGET_PAGE_BITS 10
1028#endif
9467d44c 1029
3926cc84
AG
1030#if defined(TARGET_AARCH64)
1031# define TARGET_PHYS_ADDR_SPACE_BITS 48
1032# define TARGET_VIRT_ADDR_SPACE_BITS 64
1033#else
1034# define TARGET_PHYS_ADDR_SPACE_BITS 40
1035# define TARGET_VIRT_ADDR_SPACE_BITS 32
1036#endif
52705890 1037
ad37ad5b
PM
1038static inline CPUARMState *cpu_init(const char *cpu_model)
1039{
1040 ARMCPU *cpu = cpu_arm_init(cpu_model);
1041 if (cpu) {
1042 return &cpu->env;
1043 }
1044 return NULL;
1045}
1046
9467d44c
TS
1047#define cpu_exec cpu_arm_exec
1048#define cpu_gen_code cpu_arm_gen_code
1049#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 1050#define cpu_list arm_cpu_list
9467d44c 1051
6ebbf390
JM
1052/* MMU modes definitions */
1053#define MMU_MODE0_SUFFIX _kernel
1054#define MMU_MODE1_SUFFIX _user
1055#define MMU_USER_IDX 1
0ecb72a5 1056static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390
JM
1057{
1058 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
1059}
1060
022c62cb 1061#include "exec/cpu-all.h"
622ed360 1062
3926cc84
AG
1063/* Bit usage in the TB flags field: bit 31 indicates whether we are
1064 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
1065 */
1066#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
1067#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
1068
1069/* Bit usage when in AArch32 state: */
a1705768
PM
1070#define ARM_TBFLAG_THUMB_SHIFT 0
1071#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
1072#define ARM_TBFLAG_VECLEN_SHIFT 1
1073#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
1074#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
1075#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
1076#define ARM_TBFLAG_PRIV_SHIFT 6
1077#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
1078#define ARM_TBFLAG_VFPEN_SHIFT 7
1079#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
1080#define ARM_TBFLAG_CONDEXEC_SHIFT 8
1081#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1082#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
1083#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
3926cc84
AG
1084
1085/* Bit usage when in AArch64 state: currently no bits defined */
a1705768
PM
1086
1087/* some convenience accessor macros */
3926cc84
AG
1088#define ARM_TBFLAG_AARCH64_STATE(F) \
1089 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
a1705768
PM
1090#define ARM_TBFLAG_THUMB(F) \
1091 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
1092#define ARM_TBFLAG_VECLEN(F) \
1093 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
1094#define ARM_TBFLAG_VECSTRIDE(F) \
1095 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
1096#define ARM_TBFLAG_PRIV(F) \
1097 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
1098#define ARM_TBFLAG_VFPEN(F) \
1099 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
1100#define ARM_TBFLAG_CONDEXEC(F) \
1101 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
1102#define ARM_TBFLAG_BSWAP_CODE(F) \
1103 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
a1705768 1104
0ecb72a5 1105static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
1106 target_ulong *cs_base, int *flags)
1107{
3926cc84
AG
1108 if (is_a64(env)) {
1109 *pc = env->pc;
1110 *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
05ed9a99 1111 } else {
3926cc84
AG
1112 int privmode;
1113 *pc = env->regs[15];
1114 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
1115 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
1116 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
1117 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
1118 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
1119 if (arm_feature(env, ARM_FEATURE_M)) {
1120 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
1121 } else {
1122 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
1123 }
1124 if (privmode) {
1125 *flags |= ARM_TBFLAG_PRIV_MASK;
1126 }
1127 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
1128 *flags |= ARM_TBFLAG_VFPEN_MASK;
1129 }
a1705768 1130 }
3926cc84
AG
1131
1132 *cs_base = 0;
6b917547
AL
1133}
1134
3993c6bd 1135static inline bool cpu_has_work(CPUState *cpu)
f081c76c 1136{
259186a7 1137 return cpu->interrupt_request &
f081c76c
BS
1138 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
1139}
1140
022c62cb 1141#include "exec/exec-all.h"
f081c76c 1142
3926cc84
AG
1143static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
1144{
1145 if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
1146 env->pc = tb->pc;
1147 } else {
1148 env->regs[15] = tb->pc;
1149 }
1150}
1151
d8fd2954 1152/* Load an instruction and return it in the standard little-endian order */
0a2461fa 1153static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
d31dd73e 1154 bool do_swap)
d8fd2954 1155{
d31dd73e 1156 uint32_t insn = cpu_ldl_code(env, addr);
d8fd2954
PB
1157 if (do_swap) {
1158 return bswap32(insn);
1159 }
1160 return insn;
1161}
1162
1163/* Ditto, for a halfword (Thumb) instruction */
0a2461fa 1164static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
d31dd73e 1165 bool do_swap)
d8fd2954 1166{
d31dd73e 1167 uint16_t insn = cpu_lduw_code(env, addr);
d8fd2954
PB
1168 if (do_swap) {
1169 return bswap16(insn);
1170 }
1171 return insn;
1172}
1173
2c0262af 1174#endif