]>
Commit | Line | Data |
---|---|---|
d3e35a1f AG |
1 | /* |
2 | * AArch64 specific helpers | |
3 | * | |
4 | * Copyright (c) 2013 Alexander Graf <agraf@suse.de> | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
20 | #include "cpu.h" | |
21 | #include "exec/gdbstub.h" | |
2ef6175a | 22 | #include "exec/helper-proto.h" |
d3e35a1f AG |
23 | #include "qemu/host-utils.h" |
24 | #include "sysemu/sysemu.h" | |
25 | #include "qemu/bitops.h" | |
52e60cdd | 26 | #include "internals.h" |
130f2e7d PM |
27 | #include "qemu/crc32c.h" |
28 | #include <zlib.h> /* For crc32 */ | |
8220e911 AG |
29 | |
30 | /* C2.4.7 Multiply and divide */ | |
31 | /* special cases for 0 and LLONG_MIN are mandated by the standard */ | |
32 | uint64_t HELPER(udiv64)(uint64_t num, uint64_t den) | |
33 | { | |
34 | if (den == 0) { | |
35 | return 0; | |
36 | } | |
37 | return num / den; | |
38 | } | |
39 | ||
40 | int64_t HELPER(sdiv64)(int64_t num, int64_t den) | |
41 | { | |
42 | if (den == 0) { | |
43 | return 0; | |
44 | } | |
45 | if (num == LLONG_MIN && den == -1) { | |
46 | return LLONG_MIN; | |
47 | } | |
48 | return num / den; | |
49 | } | |
680ead21 CF |
50 | |
51 | uint64_t HELPER(clz64)(uint64_t x) | |
52 | { | |
53 | return clz64(x); | |
54 | } | |
82e14b02 | 55 | |
e80c5020 CF |
56 | uint64_t HELPER(cls64)(uint64_t x) |
57 | { | |
58 | return clrsb64(x); | |
59 | } | |
60 | ||
61 | uint32_t HELPER(cls32)(uint32_t x) | |
62 | { | |
63 | return clrsb32(x); | |
64 | } | |
65 | ||
b05c3068 AB |
66 | uint32_t HELPER(clz32)(uint32_t x) |
67 | { | |
68 | return clz32(x); | |
69 | } | |
70 | ||
82e14b02 AG |
71 | uint64_t HELPER(rbit64)(uint64_t x) |
72 | { | |
73 | /* assign the correct byte position */ | |
74 | x = bswap64(x); | |
75 | ||
76 | /* assign the correct nibble position */ | |
77 | x = ((x & 0xf0f0f0f0f0f0f0f0ULL) >> 4) | |
78 | | ((x & 0x0f0f0f0f0f0f0f0fULL) << 4); | |
79 | ||
80 | /* assign the correct bit position */ | |
81 | x = ((x & 0x8888888888888888ULL) >> 3) | |
82 | | ((x & 0x4444444444444444ULL) >> 1) | |
83 | | ((x & 0x2222222222222222ULL) << 1) | |
84 | | ((x & 0x1111111111111111ULL) << 3); | |
85 | ||
86 | return x; | |
87 | } | |
da7dafe7 CF |
88 | |
89 | /* Convert a softfloat float_relation_ (as returned by | |
90 | * the float*_compare functions) to the correct ARM | |
91 | * NZCV flag state. | |
92 | */ | |
93 | static inline uint32_t float_rel_to_flags(int res) | |
94 | { | |
95 | uint64_t flags; | |
96 | switch (res) { | |
97 | case float_relation_equal: | |
98 | flags = PSTATE_Z | PSTATE_C; | |
99 | break; | |
100 | case float_relation_less: | |
101 | flags = PSTATE_N; | |
102 | break; | |
103 | case float_relation_greater: | |
104 | flags = PSTATE_C; | |
105 | break; | |
106 | case float_relation_unordered: | |
107 | default: | |
108 | flags = PSTATE_C | PSTATE_V; | |
109 | break; | |
110 | } | |
111 | return flags; | |
112 | } | |
113 | ||
114 | uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status) | |
115 | { | |
116 | return float_rel_to_flags(float32_compare_quiet(x, y, fp_status)); | |
117 | } | |
118 | ||
119 | uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status) | |
120 | { | |
121 | return float_rel_to_flags(float32_compare(x, y, fp_status)); | |
122 | } | |
123 | ||
124 | uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status) | |
125 | { | |
126 | return float_rel_to_flags(float64_compare_quiet(x, y, fp_status)); | |
127 | } | |
128 | ||
129 | uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status) | |
130 | { | |
131 | return float_rel_to_flags(float64_compare(x, y, fp_status)); | |
132 | } | |
7c51048f | 133 | |
f5e51e7f PM |
134 | float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp) |
135 | { | |
136 | float_status *fpst = fpstp; | |
137 | ||
138 | if ((float32_is_zero(a) && float32_is_infinity(b)) || | |
139 | (float32_is_infinity(a) && float32_is_zero(b))) { | |
140 | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | |
141 | return make_float32((1U << 30) | | |
142 | ((float32_val(a) ^ float32_val(b)) & (1U << 31))); | |
143 | } | |
144 | return float32_mul(a, b, fpst); | |
145 | } | |
146 | ||
147 | float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp) | |
148 | { | |
149 | float_status *fpst = fpstp; | |
150 | ||
151 | if ((float64_is_zero(a) && float64_is_infinity(b)) || | |
152 | (float64_is_infinity(a) && float64_is_zero(b))) { | |
153 | /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ | |
154 | return make_float64((1ULL << 62) | | |
155 | ((float64_val(a) ^ float64_val(b)) & (1ULL << 63))); | |
156 | } | |
157 | return float64_mul(a, b, fpst); | |
158 | } | |
159 | ||
7c51048f MM |
160 | uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices, |
161 | uint32_t rn, uint32_t numregs) | |
162 | { | |
163 | /* Helper function for SIMD TBL and TBX. We have to do the table | |
164 | * lookup part for the 64 bits worth of indices we're passed in. | |
165 | * result is the initial results vector (either zeroes for TBL | |
166 | * or some guest values for TBX), rn the register number where | |
167 | * the table starts, and numregs the number of registers in the table. | |
168 | * We return the results of the lookups. | |
169 | */ | |
170 | int shift; | |
171 | ||
172 | for (shift = 0; shift < 64; shift += 8) { | |
173 | int index = extract64(indices, shift, 8); | |
174 | if (index < 16 * numregs) { | |
175 | /* Convert index (a byte offset into the virtual table | |
176 | * which is a series of 128-bit vectors concatenated) | |
177 | * into the correct vfp.regs[] element plus a bit offset | |
178 | * into that element, bearing in mind that the table | |
179 | * can wrap around from V31 to V0. | |
180 | */ | |
181 | int elt = (rn * 2 + (index >> 3)) % 64; | |
182 | int bitidx = (index & 7) * 8; | |
183 | uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8); | |
184 | ||
185 | result = deposit64(result, shift, 8, val); | |
186 | } | |
187 | } | |
188 | return result; | |
189 | } | |
8908f4d1 AB |
190 | |
191 | /* 64bit/double versions of the neon float compare functions */ | |
192 | uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp) | |
193 | { | |
194 | float_status *fpst = fpstp; | |
195 | return -float64_eq_quiet(a, b, fpst); | |
196 | } | |
197 | ||
198 | uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp) | |
199 | { | |
200 | float_status *fpst = fpstp; | |
201 | return -float64_le(b, a, fpst); | |
202 | } | |
203 | ||
204 | uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp) | |
205 | { | |
206 | float_status *fpst = fpstp; | |
207 | return -float64_lt(b, a, fpst); | |
208 | } | |
057d5f62 PM |
209 | |
210 | /* Reciprocal step and sqrt step. Note that unlike the A32/T32 | |
211 | * versions, these do a fully fused multiply-add or | |
212 | * multiply-add-and-halve. | |
213 | */ | |
214 | #define float32_two make_float32(0x40000000) | |
215 | #define float32_three make_float32(0x40400000) | |
216 | #define float32_one_point_five make_float32(0x3fc00000) | |
217 | ||
218 | #define float64_two make_float64(0x4000000000000000ULL) | |
219 | #define float64_three make_float64(0x4008000000000000ULL) | |
220 | #define float64_one_point_five make_float64(0x3FF8000000000000ULL) | |
221 | ||
222 | float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp) | |
223 | { | |
224 | float_status *fpst = fpstp; | |
225 | ||
226 | a = float32_chs(a); | |
227 | if ((float32_is_infinity(a) && float32_is_zero(b)) || | |
228 | (float32_is_infinity(b) && float32_is_zero(a))) { | |
229 | return float32_two; | |
230 | } | |
231 | return float32_muladd(a, b, float32_two, 0, fpst); | |
232 | } | |
233 | ||
234 | float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp) | |
235 | { | |
236 | float_status *fpst = fpstp; | |
237 | ||
238 | a = float64_chs(a); | |
239 | if ((float64_is_infinity(a) && float64_is_zero(b)) || | |
240 | (float64_is_infinity(b) && float64_is_zero(a))) { | |
241 | return float64_two; | |
242 | } | |
243 | return float64_muladd(a, b, float64_two, 0, fpst); | |
244 | } | |
245 | ||
246 | float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp) | |
247 | { | |
248 | float_status *fpst = fpstp; | |
249 | ||
250 | a = float32_chs(a); | |
251 | if ((float32_is_infinity(a) && float32_is_zero(b)) || | |
252 | (float32_is_infinity(b) && float32_is_zero(a))) { | |
253 | return float32_one_point_five; | |
254 | } | |
255 | return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst); | |
256 | } | |
257 | ||
258 | float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp) | |
259 | { | |
260 | float_status *fpst = fpstp; | |
261 | ||
262 | a = float64_chs(a); | |
263 | if ((float64_is_infinity(a) && float64_is_zero(b)) || | |
264 | (float64_is_infinity(b) && float64_is_zero(a))) { | |
265 | return float64_one_point_five; | |
266 | } | |
267 | return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst); | |
268 | } | |
6781fa11 PM |
269 | |
270 | /* Pairwise long add: add pairs of adjacent elements into | |
271 | * double-width elements in the result (eg _s8 is an 8x8->16 op) | |
272 | */ | |
273 | uint64_t HELPER(neon_addlp_s8)(uint64_t a) | |
274 | { | |
275 | uint64_t nsignmask = 0x0080008000800080ULL; | |
276 | uint64_t wsignmask = 0x8000800080008000ULL; | |
277 | uint64_t elementmask = 0x00ff00ff00ff00ffULL; | |
278 | uint64_t tmp1, tmp2; | |
279 | uint64_t res, signres; | |
280 | ||
281 | /* Extract odd elements, sign extend each to a 16 bit field */ | |
282 | tmp1 = a & elementmask; | |
283 | tmp1 ^= nsignmask; | |
284 | tmp1 |= wsignmask; | |
285 | tmp1 = (tmp1 - nsignmask) ^ wsignmask; | |
286 | /* Ditto for the even elements */ | |
287 | tmp2 = (a >> 8) & elementmask; | |
288 | tmp2 ^= nsignmask; | |
289 | tmp2 |= wsignmask; | |
290 | tmp2 = (tmp2 - nsignmask) ^ wsignmask; | |
291 | ||
292 | /* calculate the result by summing bits 0..14, 16..22, etc, | |
293 | * and then adjusting the sign bits 15, 23, etc manually. | |
294 | * This ensures the addition can't overflow the 16 bit field. | |
295 | */ | |
296 | signres = (tmp1 ^ tmp2) & wsignmask; | |
297 | res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask); | |
298 | res ^= signres; | |
299 | ||
300 | return res; | |
301 | } | |
302 | ||
303 | uint64_t HELPER(neon_addlp_u8)(uint64_t a) | |
304 | { | |
305 | uint64_t tmp; | |
306 | ||
307 | tmp = a & 0x00ff00ff00ff00ffULL; | |
308 | tmp += (a >> 8) & 0x00ff00ff00ff00ffULL; | |
309 | return tmp; | |
310 | } | |
311 | ||
312 | uint64_t HELPER(neon_addlp_s16)(uint64_t a) | |
313 | { | |
314 | int32_t reslo, reshi; | |
315 | ||
316 | reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16); | |
317 | reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48); | |
318 | ||
319 | return (uint32_t)reslo | (((uint64_t)reshi) << 32); | |
320 | } | |
321 | ||
322 | uint64_t HELPER(neon_addlp_u16)(uint64_t a) | |
323 | { | |
324 | uint64_t tmp; | |
325 | ||
326 | tmp = a & 0x0000ffff0000ffffULL; | |
327 | tmp += (a >> 16) & 0x0000ffff0000ffffULL; | |
328 | return tmp; | |
329 | } | |
8f0c6758 AB |
330 | |
331 | /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */ | |
332 | float32 HELPER(frecpx_f32)(float32 a, void *fpstp) | |
333 | { | |
334 | float_status *fpst = fpstp; | |
335 | uint32_t val32, sbit; | |
336 | int32_t exp; | |
337 | ||
338 | if (float32_is_any_nan(a)) { | |
339 | float32 nan = a; | |
340 | if (float32_is_signaling_nan(a)) { | |
341 | float_raise(float_flag_invalid, fpst); | |
342 | nan = float32_maybe_silence_nan(a); | |
343 | } | |
344 | if (fpst->default_nan_mode) { | |
345 | nan = float32_default_nan; | |
346 | } | |
347 | return nan; | |
348 | } | |
349 | ||
350 | val32 = float32_val(a); | |
351 | sbit = 0x80000000ULL & val32; | |
352 | exp = extract32(val32, 23, 8); | |
353 | ||
354 | if (exp == 0) { | |
355 | return make_float32(sbit | (0xfe << 23)); | |
356 | } else { | |
357 | return make_float32(sbit | (~exp & 0xff) << 23); | |
358 | } | |
359 | } | |
360 | ||
361 | float64 HELPER(frecpx_f64)(float64 a, void *fpstp) | |
362 | { | |
363 | float_status *fpst = fpstp; | |
364 | uint64_t val64, sbit; | |
365 | int64_t exp; | |
366 | ||
367 | if (float64_is_any_nan(a)) { | |
368 | float64 nan = a; | |
369 | if (float64_is_signaling_nan(a)) { | |
370 | float_raise(float_flag_invalid, fpst); | |
371 | nan = float64_maybe_silence_nan(a); | |
372 | } | |
373 | if (fpst->default_nan_mode) { | |
374 | nan = float64_default_nan; | |
375 | } | |
376 | return nan; | |
377 | } | |
378 | ||
379 | val64 = float64_val(a); | |
380 | sbit = 0x8000000000000000ULL & val64; | |
381 | exp = extract64(float64_val(a), 52, 11); | |
382 | ||
383 | if (exp == 0) { | |
384 | return make_float64(sbit | (0x7feULL << 52)); | |
385 | } else { | |
386 | return make_float64(sbit | (~exp & 0x7ffULL) << 52); | |
387 | } | |
388 | } | |
5553955e PM |
389 | |
390 | float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env) | |
391 | { | |
392 | /* Von Neumann rounding is implemented by using round-to-zero | |
393 | * and then setting the LSB of the result if Inexact was raised. | |
394 | */ | |
395 | float32 r; | |
396 | float_status *fpst = &env->vfp.fp_status; | |
397 | float_status tstat = *fpst; | |
398 | int exflags; | |
399 | ||
400 | set_float_rounding_mode(float_round_to_zero, &tstat); | |
401 | set_float_exception_flags(0, &tstat); | |
402 | r = float64_to_float32(a, &tstat); | |
403 | r = float32_maybe_silence_nan(r); | |
404 | exflags = get_float_exception_flags(&tstat); | |
405 | if (exflags & float_flag_inexact) { | |
406 | r = make_float32(float32_val(r) | 1); | |
407 | } | |
408 | exflags |= get_float_exception_flags(fpst); | |
409 | set_float_exception_flags(exflags, fpst); | |
410 | return r; | |
411 | } | |
52e60cdd | 412 | |
130f2e7d PM |
413 | /* 64-bit versions of the CRC helpers. Note that although the operation |
414 | * (and the prototypes of crc32c() and crc32() mean that only the bottom | |
415 | * 32 bits of the accumulator and result are used, we pass and return | |
416 | * uint64_t for convenience of the generated code. Unlike the 32-bit | |
417 | * instruction set versions, val may genuinely have 64 bits of data in it. | |
418 | * The upper bytes of val (above the number specified by 'bytes') must have | |
419 | * been zeroed out by the caller. | |
420 | */ | |
421 | uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes) | |
422 | { | |
423 | uint8_t buf[8]; | |
424 | ||
425 | stq_le_p(buf, val); | |
426 | ||
427 | /* zlib crc32 converts the accumulator and output to one's complement. */ | |
428 | return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; | |
429 | } | |
430 | ||
431 | uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes) | |
432 | { | |
433 | uint8_t buf[8]; | |
434 | ||
435 | stq_le_p(buf, val); | |
436 | ||
437 | /* Linux crc32c converts the output to one's complement. */ | |
438 | return crc32c(acc, buf, bytes) ^ 0xffffffff; | |
439 | } | |
440 | ||
52e60cdd RH |
441 | /* Handle a CPU exception. */ |
442 | void aarch64_cpu_do_interrupt(CPUState *cs) | |
443 | { | |
444 | ARMCPU *cpu = ARM_CPU(cs); | |
445 | CPUARMState *env = &cpu->env; | |
68fdb6c5 | 446 | target_ulong addr = env->cp15.vbar_el[1]; |
52e60cdd RH |
447 | int i; |
448 | ||
449 | if (arm_current_pl(env) == 0) { | |
450 | if (env->aarch64) { | |
451 | addr += 0x400; | |
452 | } else { | |
453 | addr += 0x600; | |
454 | } | |
455 | } else if (pstate_read(env) & PSTATE_SP) { | |
456 | addr += 0x200; | |
457 | } | |
458 | ||
459 | arm_log_exception(cs->exception_index); | |
460 | qemu_log_mask(CPU_LOG_INT, "...from EL%d\n", arm_current_pl(env)); | |
461 | if (qemu_loglevel_mask(CPU_LOG_INT) | |
462 | && !excp_is_internal(cs->exception_index)) { | |
463 | qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%" PRIx32 "\n", | |
464 | env->exception.syndrome); | |
465 | } | |
466 | ||
d81c519c | 467 | env->cp15.esr_el[1] = env->exception.syndrome; |
2f0180c5 | 468 | env->cp15.far_el[1] = env->exception.vaddress; |
52e60cdd RH |
469 | |
470 | switch (cs->exception_index) { | |
471 | case EXCP_PREFETCH_ABORT: | |
472 | case EXCP_DATA_ABORT: | |
473 | qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", | |
2f0180c5 | 474 | env->cp15.far_el[1]); |
52e60cdd RH |
475 | break; |
476 | case EXCP_BKPT: | |
477 | case EXCP_UDEF: | |
478 | case EXCP_SWI: | |
479 | break; | |
480 | case EXCP_IRQ: | |
481 | addr += 0x80; | |
482 | break; | |
483 | case EXCP_FIQ: | |
484 | addr += 0x100; | |
485 | break; | |
486 | default: | |
487 | cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); | |
488 | } | |
489 | ||
490 | if (is_a64(env)) { | |
2a923c4d | 491 | env->banked_spsr[aarch64_banked_spsr_index(1)] = pstate_read(env); |
f151b123 | 492 | aarch64_save_sp(env, arm_current_pl(env)); |
6947f059 | 493 | env->elr_el[1] = env->pc; |
52e60cdd RH |
494 | } else { |
495 | env->banked_spsr[0] = cpsr_read(env); | |
496 | if (!env->thumb) { | |
d81c519c | 497 | env->cp15.esr_el[1] |= 1 << 25; |
52e60cdd | 498 | } |
6947f059 | 499 | env->elr_el[1] = env->regs[15]; |
52e60cdd RH |
500 | |
501 | for (i = 0; i < 15; i++) { | |
502 | env->xregs[i] = env->regs[i]; | |
503 | } | |
504 | ||
505 | env->condexec_bits = 0; | |
506 | } | |
507 | ||
508 | pstate_write(env, PSTATE_DAIF | PSTATE_MODE_EL1h); | |
509 | env->aarch64 = 1; | |
f151b123 | 510 | aarch64_restore_sp(env, 1); |
52e60cdd RH |
511 | |
512 | env->pc = addr; | |
513 | cs->interrupt_request |= CPU_INTERRUPT_EXITTB; | |
514 | } |