]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/helper-a64.c
scripts: Add new clean-includes script to fix C include directives
[mirror_qemu.git] / target-arm / helper-a64.c
CommitLineData
d3e35a1f
AG
1/*
2 * AArch64 specific helpers
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "cpu.h"
21#include "exec/gdbstub.h"
2ef6175a 22#include "exec/helper-proto.h"
d3e35a1f
AG
23#include "qemu/host-utils.h"
24#include "sysemu/sysemu.h"
25#include "qemu/bitops.h"
52e60cdd 26#include "internals.h"
130f2e7d 27#include "qemu/crc32c.h"
34c45d53 28#include "sysemu/kvm.h"
130f2e7d 29#include <zlib.h> /* For crc32 */
8220e911
AG
30
31/* C2.4.7 Multiply and divide */
32/* special cases for 0 and LLONG_MIN are mandated by the standard */
33uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
34{
35 if (den == 0) {
36 return 0;
37 }
38 return num / den;
39}
40
41int64_t HELPER(sdiv64)(int64_t num, int64_t den)
42{
43 if (den == 0) {
44 return 0;
45 }
46 if (num == LLONG_MIN && den == -1) {
47 return LLONG_MIN;
48 }
49 return num / den;
50}
680ead21
CF
51
52uint64_t HELPER(clz64)(uint64_t x)
53{
54 return clz64(x);
55}
82e14b02 56
e80c5020
CF
57uint64_t HELPER(cls64)(uint64_t x)
58{
59 return clrsb64(x);
60}
61
62uint32_t HELPER(cls32)(uint32_t x)
63{
64 return clrsb32(x);
65}
66
b05c3068
AB
67uint32_t HELPER(clz32)(uint32_t x)
68{
69 return clz32(x);
70}
71
82e14b02
AG
72uint64_t HELPER(rbit64)(uint64_t x)
73{
42fedbca 74 return revbit64(x);
82e14b02 75}
da7dafe7
CF
76
77/* Convert a softfloat float_relation_ (as returned by
78 * the float*_compare functions) to the correct ARM
79 * NZCV flag state.
80 */
81static inline uint32_t float_rel_to_flags(int res)
82{
83 uint64_t flags;
84 switch (res) {
85 case float_relation_equal:
86 flags = PSTATE_Z | PSTATE_C;
87 break;
88 case float_relation_less:
89 flags = PSTATE_N;
90 break;
91 case float_relation_greater:
92 flags = PSTATE_C;
93 break;
94 case float_relation_unordered:
95 default:
96 flags = PSTATE_C | PSTATE_V;
97 break;
98 }
99 return flags;
100}
101
102uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
103{
104 return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
105}
106
107uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
108{
109 return float_rel_to_flags(float32_compare(x, y, fp_status));
110}
111
112uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
113{
114 return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
115}
116
117uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
118{
119 return float_rel_to_flags(float64_compare(x, y, fp_status));
120}
7c51048f 121
f5e51e7f
PM
122float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
123{
124 float_status *fpst = fpstp;
125
dabf0058
XH
126 a = float32_squash_input_denormal(a, fpst);
127 b = float32_squash_input_denormal(b, fpst);
128
f5e51e7f
PM
129 if ((float32_is_zero(a) && float32_is_infinity(b)) ||
130 (float32_is_infinity(a) && float32_is_zero(b))) {
131 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
132 return make_float32((1U << 30) |
133 ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
134 }
135 return float32_mul(a, b, fpst);
136}
137
138float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
139{
140 float_status *fpst = fpstp;
141
dabf0058
XH
142 a = float64_squash_input_denormal(a, fpst);
143 b = float64_squash_input_denormal(b, fpst);
144
f5e51e7f
PM
145 if ((float64_is_zero(a) && float64_is_infinity(b)) ||
146 (float64_is_infinity(a) && float64_is_zero(b))) {
147 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
148 return make_float64((1ULL << 62) |
149 ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
150 }
151 return float64_mul(a, b, fpst);
152}
153
7c51048f
MM
154uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
155 uint32_t rn, uint32_t numregs)
156{
157 /* Helper function for SIMD TBL and TBX. We have to do the table
158 * lookup part for the 64 bits worth of indices we're passed in.
159 * result is the initial results vector (either zeroes for TBL
160 * or some guest values for TBX), rn the register number where
161 * the table starts, and numregs the number of registers in the table.
162 * We return the results of the lookups.
163 */
164 int shift;
165
166 for (shift = 0; shift < 64; shift += 8) {
167 int index = extract64(indices, shift, 8);
168 if (index < 16 * numregs) {
169 /* Convert index (a byte offset into the virtual table
170 * which is a series of 128-bit vectors concatenated)
171 * into the correct vfp.regs[] element plus a bit offset
172 * into that element, bearing in mind that the table
173 * can wrap around from V31 to V0.
174 */
175 int elt = (rn * 2 + (index >> 3)) % 64;
176 int bitidx = (index & 7) * 8;
177 uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8);
178
179 result = deposit64(result, shift, 8, val);
180 }
181 }
182 return result;
183}
8908f4d1
AB
184
185/* 64bit/double versions of the neon float compare functions */
186uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
187{
188 float_status *fpst = fpstp;
189 return -float64_eq_quiet(a, b, fpst);
190}
191
192uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
193{
194 float_status *fpst = fpstp;
195 return -float64_le(b, a, fpst);
196}
197
198uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
199{
200 float_status *fpst = fpstp;
201 return -float64_lt(b, a, fpst);
202}
057d5f62
PM
203
204/* Reciprocal step and sqrt step. Note that unlike the A32/T32
205 * versions, these do a fully fused multiply-add or
206 * multiply-add-and-halve.
207 */
208#define float32_two make_float32(0x40000000)
209#define float32_three make_float32(0x40400000)
210#define float32_one_point_five make_float32(0x3fc00000)
211
212#define float64_two make_float64(0x4000000000000000ULL)
213#define float64_three make_float64(0x4008000000000000ULL)
214#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
215
216float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
217{
218 float_status *fpst = fpstp;
219
a8eb6e19
PM
220 a = float32_squash_input_denormal(a, fpst);
221 b = float32_squash_input_denormal(b, fpst);
222
057d5f62
PM
223 a = float32_chs(a);
224 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
225 (float32_is_infinity(b) && float32_is_zero(a))) {
226 return float32_two;
227 }
228 return float32_muladd(a, b, float32_two, 0, fpst);
229}
230
231float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
232{
233 float_status *fpst = fpstp;
234
a8eb6e19
PM
235 a = float64_squash_input_denormal(a, fpst);
236 b = float64_squash_input_denormal(b, fpst);
237
057d5f62
PM
238 a = float64_chs(a);
239 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
240 (float64_is_infinity(b) && float64_is_zero(a))) {
241 return float64_two;
242 }
243 return float64_muladd(a, b, float64_two, 0, fpst);
244}
245
246float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
247{
248 float_status *fpst = fpstp;
249
a8eb6e19
PM
250 a = float32_squash_input_denormal(a, fpst);
251 b = float32_squash_input_denormal(b, fpst);
252
057d5f62
PM
253 a = float32_chs(a);
254 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
255 (float32_is_infinity(b) && float32_is_zero(a))) {
256 return float32_one_point_five;
257 }
258 return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
259}
260
261float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
262{
263 float_status *fpst = fpstp;
264
a8eb6e19
PM
265 a = float64_squash_input_denormal(a, fpst);
266 b = float64_squash_input_denormal(b, fpst);
267
057d5f62
PM
268 a = float64_chs(a);
269 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
270 (float64_is_infinity(b) && float64_is_zero(a))) {
271 return float64_one_point_five;
272 }
273 return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
274}
6781fa11
PM
275
276/* Pairwise long add: add pairs of adjacent elements into
277 * double-width elements in the result (eg _s8 is an 8x8->16 op)
278 */
279uint64_t HELPER(neon_addlp_s8)(uint64_t a)
280{
281 uint64_t nsignmask = 0x0080008000800080ULL;
282 uint64_t wsignmask = 0x8000800080008000ULL;
283 uint64_t elementmask = 0x00ff00ff00ff00ffULL;
284 uint64_t tmp1, tmp2;
285 uint64_t res, signres;
286
287 /* Extract odd elements, sign extend each to a 16 bit field */
288 tmp1 = a & elementmask;
289 tmp1 ^= nsignmask;
290 tmp1 |= wsignmask;
291 tmp1 = (tmp1 - nsignmask) ^ wsignmask;
292 /* Ditto for the even elements */
293 tmp2 = (a >> 8) & elementmask;
294 tmp2 ^= nsignmask;
295 tmp2 |= wsignmask;
296 tmp2 = (tmp2 - nsignmask) ^ wsignmask;
297
298 /* calculate the result by summing bits 0..14, 16..22, etc,
299 * and then adjusting the sign bits 15, 23, etc manually.
300 * This ensures the addition can't overflow the 16 bit field.
301 */
302 signres = (tmp1 ^ tmp2) & wsignmask;
303 res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
304 res ^= signres;
305
306 return res;
307}
308
309uint64_t HELPER(neon_addlp_u8)(uint64_t a)
310{
311 uint64_t tmp;
312
313 tmp = a & 0x00ff00ff00ff00ffULL;
314 tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
315 return tmp;
316}
317
318uint64_t HELPER(neon_addlp_s16)(uint64_t a)
319{
320 int32_t reslo, reshi;
321
322 reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
323 reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
324
325 return (uint32_t)reslo | (((uint64_t)reshi) << 32);
326}
327
328uint64_t HELPER(neon_addlp_u16)(uint64_t a)
329{
330 uint64_t tmp;
331
332 tmp = a & 0x0000ffff0000ffffULL;
333 tmp += (a >> 16) & 0x0000ffff0000ffffULL;
334 return tmp;
335}
8f0c6758
AB
336
337/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
338float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
339{
340 float_status *fpst = fpstp;
341 uint32_t val32, sbit;
342 int32_t exp;
343
344 if (float32_is_any_nan(a)) {
345 float32 nan = a;
346 if (float32_is_signaling_nan(a)) {
347 float_raise(float_flag_invalid, fpst);
348 nan = float32_maybe_silence_nan(a);
349 }
350 if (fpst->default_nan_mode) {
351 nan = float32_default_nan;
352 }
353 return nan;
354 }
355
356 val32 = float32_val(a);
357 sbit = 0x80000000ULL & val32;
358 exp = extract32(val32, 23, 8);
359
360 if (exp == 0) {
361 return make_float32(sbit | (0xfe << 23));
362 } else {
363 return make_float32(sbit | (~exp & 0xff) << 23);
364 }
365}
366
367float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
368{
369 float_status *fpst = fpstp;
370 uint64_t val64, sbit;
371 int64_t exp;
372
373 if (float64_is_any_nan(a)) {
374 float64 nan = a;
375 if (float64_is_signaling_nan(a)) {
376 float_raise(float_flag_invalid, fpst);
377 nan = float64_maybe_silence_nan(a);
378 }
379 if (fpst->default_nan_mode) {
380 nan = float64_default_nan;
381 }
382 return nan;
383 }
384
385 val64 = float64_val(a);
386 sbit = 0x8000000000000000ULL & val64;
387 exp = extract64(float64_val(a), 52, 11);
388
389 if (exp == 0) {
390 return make_float64(sbit | (0x7feULL << 52));
391 } else {
392 return make_float64(sbit | (~exp & 0x7ffULL) << 52);
393 }
394}
5553955e
PM
395
396float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
397{
398 /* Von Neumann rounding is implemented by using round-to-zero
399 * and then setting the LSB of the result if Inexact was raised.
400 */
401 float32 r;
402 float_status *fpst = &env->vfp.fp_status;
403 float_status tstat = *fpst;
404 int exflags;
405
406 set_float_rounding_mode(float_round_to_zero, &tstat);
407 set_float_exception_flags(0, &tstat);
408 r = float64_to_float32(a, &tstat);
409 r = float32_maybe_silence_nan(r);
410 exflags = get_float_exception_flags(&tstat);
411 if (exflags & float_flag_inexact) {
412 r = make_float32(float32_val(r) | 1);
413 }
414 exflags |= get_float_exception_flags(fpst);
415 set_float_exception_flags(exflags, fpst);
416 return r;
417}
52e60cdd 418
130f2e7d
PM
419/* 64-bit versions of the CRC helpers. Note that although the operation
420 * (and the prototypes of crc32c() and crc32() mean that only the bottom
421 * 32 bits of the accumulator and result are used, we pass and return
422 * uint64_t for convenience of the generated code. Unlike the 32-bit
423 * instruction set versions, val may genuinely have 64 bits of data in it.
424 * The upper bytes of val (above the number specified by 'bytes') must have
425 * been zeroed out by the caller.
426 */
427uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
428{
429 uint8_t buf[8];
430
431 stq_le_p(buf, val);
432
433 /* zlib crc32 converts the accumulator and output to one's complement. */
434 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
435}
436
437uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
438{
439 uint8_t buf[8];
440
441 stq_le_p(buf, val);
442
443 /* Linux crc32c converts the output to one's complement. */
444 return crc32c(acc, buf, bytes) ^ 0xffffffff;
445}
446
0adf7d3c
RH
447#if !defined(CONFIG_USER_ONLY)
448
52e60cdd
RH
449/* Handle a CPU exception. */
450void aarch64_cpu_do_interrupt(CPUState *cs)
451{
452 ARMCPU *cpu = ARM_CPU(cs);
453 CPUARMState *env = &cpu->env;
012a906b 454 unsigned int new_el = env->exception.target_el;
9e729b57
EI
455 target_ulong addr = env->cp15.vbar_el[new_el];
456 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
52e60cdd 457
dcbff19b 458 if (arm_current_el(env) < new_el) {
52e60cdd
RH
459 if (env->aarch64) {
460 addr += 0x400;
461 } else {
462 addr += 0x600;
463 }
464 } else if (pstate_read(env) & PSTATE_SP) {
465 addr += 0x200;
466 }
467
468 arm_log_exception(cs->exception_index);
dbc29a86
EI
469 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
470 new_el);
52e60cdd
RH
471 if (qemu_loglevel_mask(CPU_LOG_INT)
472 && !excp_is_internal(cs->exception_index)) {
34c45d53
AB
473 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
474 env->exception.syndrome >> ARM_EL_EC_SHIFT,
52e60cdd
RH
475 env->exception.syndrome);
476 }
477
98128601
RH
478 if (arm_is_psci_call(cpu, cs->exception_index)) {
479 arm_handle_psci_call(cpu);
480 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
481 return;
482 }
483
52e60cdd
RH
484 switch (cs->exception_index) {
485 case EXCP_PREFETCH_ABORT:
486 case EXCP_DATA_ABORT:
2dd081ae 487 env->cp15.far_el[new_el] = env->exception.vaddress;
52e60cdd 488 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9e729b57 489 env->cp15.far_el[new_el]);
2dd081ae 490 /* fall through */
52e60cdd
RH
491 case EXCP_BKPT:
492 case EXCP_UDEF:
493 case EXCP_SWI:
35979d71 494 case EXCP_HVC:
607d98b8 495 case EXCP_HYP_TRAP:
e0d6e6a5 496 case EXCP_SMC:
2dd081ae 497 env->cp15.esr_el[new_el] = env->exception.syndrome;
52e60cdd
RH
498 break;
499 case EXCP_IRQ:
136e67e9 500 case EXCP_VIRQ:
52e60cdd
RH
501 addr += 0x80;
502 break;
503 case EXCP_FIQ:
136e67e9 504 case EXCP_VFIQ:
52e60cdd
RH
505 addr += 0x100;
506 break;
8012c84f
PM
507 case EXCP_SEMIHOST:
508 qemu_log_mask(CPU_LOG_INT,
509 "...handling as semihosting call 0x%" PRIx64 "\n",
510 env->xregs[0]);
511 env->xregs[0] = do_arm_semihosting(env);
512 return;
52e60cdd
RH
513 default:
514 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
515 }
516
517 if (is_a64(env)) {
9e729b57 518 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
dcbff19b 519 aarch64_save_sp(env, arm_current_el(env));
9e729b57 520 env->elr_el[new_el] = env->pc;
52e60cdd 521 } else {
7847f9ea 522 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
52e60cdd 523 if (!env->thumb) {
9e729b57 524 env->cp15.esr_el[new_el] |= 1 << 25;
52e60cdd 525 }
9e729b57 526 env->elr_el[new_el] = env->regs[15];
52e60cdd 527
ce02049d 528 aarch64_sync_32_to_64(env);
52e60cdd
RH
529
530 env->condexec_bits = 0;
531 }
b21ab1fc
SB
532 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
533 env->elr_el[new_el]);
52e60cdd 534
9e729b57 535 pstate_write(env, PSTATE_DAIF | new_mode);
52e60cdd 536 env->aarch64 = 1;
9e729b57 537 aarch64_restore_sp(env, new_el);
52e60cdd
RH
538
539 env->pc = addr;
34c45d53
AB
540
541 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
542 new_el, env->pc, pstate_read(env));
543
544 if (!kvm_enabled()) {
545 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
546 }
52e60cdd 547}
0adf7d3c 548#endif