]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/helper.c
ESP: Add it_shift parameter (Hervé Poussineau)
[mirror_qemu.git] / target-arm / helper.c
CommitLineData
b5ff1b31
FB
1#include <stdio.h>
2#include <stdlib.h>
3#include <string.h>
4
5#include "cpu.h"
6#include "exec-all.h"
9ee6e8bb 7#include "gdbstub.h"
b26eefb6 8#include "helpers.h"
9ee6e8bb
PB
9
10static uint32_t cortexa8_cp15_c0_c1[8] =
11{ 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
12
13static uint32_t cortexa8_cp15_c0_c2[8] =
14{ 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
15
16static uint32_t mpcore_cp15_c0_c1[8] =
17{ 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
18
19static uint32_t mpcore_cp15_c0_c2[8] =
20{ 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
21
22static uint32_t arm1136_cp15_c0_c1[8] =
23{ 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
24
25static uint32_t arm1136_cp15_c0_c2[8] =
26{ 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
b5ff1b31 27
aaed909a
FB
28static uint32_t cpu_arm_find_by_name(const char *name);
29
f3d6b95e
PB
30static inline void set_feature(CPUARMState *env, int feature)
31{
32 env->features |= 1u << feature;
33}
34
35static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
36{
37 env->cp15.c0_cpuid = id;
38 switch (id) {
39 case ARM_CPUID_ARM926:
40 set_feature(env, ARM_FEATURE_VFP);
41 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
c1713132 42 env->cp15.c0_cachetype = 0x1dd20d2;
610c3c8a 43 env->cp15.c1_sys = 0x00090078;
f3d6b95e 44 break;
ce819861
PB
45 case ARM_CPUID_ARM946:
46 set_feature(env, ARM_FEATURE_MPU);
47 env->cp15.c0_cachetype = 0x0f004006;
610c3c8a 48 env->cp15.c1_sys = 0x00000078;
ce819861 49 break;
f3d6b95e
PB
50 case ARM_CPUID_ARM1026:
51 set_feature(env, ARM_FEATURE_VFP);
52 set_feature(env, ARM_FEATURE_AUXCR);
53 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
c1713132 54 env->cp15.c0_cachetype = 0x1dd20d2;
610c3c8a 55 env->cp15.c1_sys = 0x00090078;
c1713132 56 break;
9ee6e8bb
PB
57 case ARM_CPUID_ARM1136:
58 set_feature(env, ARM_FEATURE_V6);
59 set_feature(env, ARM_FEATURE_VFP);
60 set_feature(env, ARM_FEATURE_AUXCR);
61 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
62 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
63 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
64 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
65 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
66 env->cp15.c0_cachetype = 0x1dd20d2;
67 break;
68 case ARM_CPUID_ARM11MPCORE:
69 set_feature(env, ARM_FEATURE_V6);
70 set_feature(env, ARM_FEATURE_V6K);
71 set_feature(env, ARM_FEATURE_VFP);
72 set_feature(env, ARM_FEATURE_AUXCR);
73 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
74 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
75 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
76 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
77 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
78 env->cp15.c0_cachetype = 0x1dd20d2;
79 break;
80 case ARM_CPUID_CORTEXA8:
81 set_feature(env, ARM_FEATURE_V6);
82 set_feature(env, ARM_FEATURE_V6K);
83 set_feature(env, ARM_FEATURE_V7);
84 set_feature(env, ARM_FEATURE_AUXCR);
85 set_feature(env, ARM_FEATURE_THUMB2);
86 set_feature(env, ARM_FEATURE_VFP);
87 set_feature(env, ARM_FEATURE_VFP3);
88 set_feature(env, ARM_FEATURE_NEON);
89 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
90 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
91 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
92 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
93 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
94 env->cp15.c0_cachetype = 0x1dd20d2;
95 break;
96 case ARM_CPUID_CORTEXM3:
97 set_feature(env, ARM_FEATURE_V6);
98 set_feature(env, ARM_FEATURE_THUMB2);
99 set_feature(env, ARM_FEATURE_V7);
100 set_feature(env, ARM_FEATURE_M);
101 set_feature(env, ARM_FEATURE_DIV);
102 break;
103 case ARM_CPUID_ANY: /* For userspace emulation. */
104 set_feature(env, ARM_FEATURE_V6);
105 set_feature(env, ARM_FEATURE_V6K);
106 set_feature(env, ARM_FEATURE_V7);
107 set_feature(env, ARM_FEATURE_THUMB2);
108 set_feature(env, ARM_FEATURE_VFP);
109 set_feature(env, ARM_FEATURE_VFP3);
110 set_feature(env, ARM_FEATURE_NEON);
111 set_feature(env, ARM_FEATURE_DIV);
112 break;
c3d2689d
AZ
113 case ARM_CPUID_TI915T:
114 case ARM_CPUID_TI925T:
115 set_feature(env, ARM_FEATURE_OMAPCP);
116 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
117 env->cp15.c0_cachetype = 0x5109149;
118 env->cp15.c1_sys = 0x00000070;
119 env->cp15.c15_i_max = 0x000;
120 env->cp15.c15_i_min = 0xff0;
121 break;
c1713132
AZ
122 case ARM_CPUID_PXA250:
123 case ARM_CPUID_PXA255:
124 case ARM_CPUID_PXA260:
125 case ARM_CPUID_PXA261:
126 case ARM_CPUID_PXA262:
127 set_feature(env, ARM_FEATURE_XSCALE);
128 /* JTAG_ID is ((id << 28) | 0x09265013) */
129 env->cp15.c0_cachetype = 0xd172172;
610c3c8a 130 env->cp15.c1_sys = 0x00000078;
c1713132
AZ
131 break;
132 case ARM_CPUID_PXA270_A0:
133 case ARM_CPUID_PXA270_A1:
134 case ARM_CPUID_PXA270_B0:
135 case ARM_CPUID_PXA270_B1:
136 case ARM_CPUID_PXA270_C0:
137 case ARM_CPUID_PXA270_C5:
138 set_feature(env, ARM_FEATURE_XSCALE);
139 /* JTAG_ID is ((id << 28) | 0x09265013) */
18c9b560
AZ
140 set_feature(env, ARM_FEATURE_IWMMXT);
141 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
c1713132 142 env->cp15.c0_cachetype = 0xd172172;
610c3c8a 143 env->cp15.c1_sys = 0x00000078;
f3d6b95e
PB
144 break;
145 default:
146 cpu_abort(env, "Bad CPU ID: %x\n", id);
147 break;
148 }
149}
150
40f137e1
PB
151void cpu_reset(CPUARMState *env)
152{
f3d6b95e
PB
153 uint32_t id;
154 id = env->cp15.c0_cpuid;
155 memset(env, 0, offsetof(CPUARMState, breakpoints));
156 if (id)
157 cpu_reset_model_id(env, id);
40f137e1
PB
158#if defined (CONFIG_USER_ONLY)
159 env->uncached_cpsr = ARM_CPU_MODE_USR;
160 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
161#else
162 /* SVC mode with interrupts disabled. */
163 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
9ee6e8bb
PB
164 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
165 clear at reset. */
166 if (IS_M(env))
167 env->uncached_cpsr &= ~CPSR_I;
40f137e1
PB
168 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
169#endif
170 env->regs[15] = 0;
f3d6b95e 171 tlb_flush(env, 1);
40f137e1
PB
172}
173
aaed909a 174CPUARMState *cpu_arm_init(const char *cpu_model)
40f137e1
PB
175{
176 CPUARMState *env;
aaed909a 177 uint32_t id;
b26eefb6 178 static int inited = 0;
40f137e1 179
aaed909a
FB
180 id = cpu_arm_find_by_name(cpu_model);
181 if (id == 0)
182 return NULL;
40f137e1
PB
183 env = qemu_mallocz(sizeof(CPUARMState));
184 if (!env)
185 return NULL;
186 cpu_exec_init(env);
b26eefb6
PB
187 if (!inited) {
188 inited = 1;
189 arm_translate_init();
190 }
191
01ba9816 192 env->cpu_model_str = cpu_model;
aaed909a 193 env->cp15.c0_cpuid = id;
40f137e1 194 cpu_reset(env);
40f137e1
PB
195 return env;
196}
197
3371d272
PB
198struct arm_cpu_t {
199 uint32_t id;
200 const char *name;
201};
202
203static const struct arm_cpu_t arm_cpu_names[] = {
204 { ARM_CPUID_ARM926, "arm926"},
ce819861 205 { ARM_CPUID_ARM946, "arm946"},
3371d272 206 { ARM_CPUID_ARM1026, "arm1026"},
9ee6e8bb
PB
207 { ARM_CPUID_ARM1136, "arm1136"},
208 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
209 { ARM_CPUID_CORTEXM3, "cortex-m3"},
210 { ARM_CPUID_CORTEXA8, "cortex-a8"},
c3d2689d 211 { ARM_CPUID_TI925T, "ti925t" },
c1713132
AZ
212 { ARM_CPUID_PXA250, "pxa250" },
213 { ARM_CPUID_PXA255, "pxa255" },
214 { ARM_CPUID_PXA260, "pxa260" },
215 { ARM_CPUID_PXA261, "pxa261" },
216 { ARM_CPUID_PXA262, "pxa262" },
217 { ARM_CPUID_PXA270, "pxa270" },
218 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
219 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
220 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
221 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
222 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
223 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
9ee6e8bb 224 { ARM_CPUID_ANY, "any"},
3371d272
PB
225 { 0, NULL}
226};
227
c732abe2 228void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
5adb4839
PB
229{
230 int i;
231
c732abe2 232 (*cpu_fprintf)(f, "Available CPUs:\n");
5adb4839 233 for (i = 0; arm_cpu_names[i].name; i++) {
c732abe2 234 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
5adb4839
PB
235 }
236}
237
aaed909a
FB
238/* return 0 if not found */
239static uint32_t cpu_arm_find_by_name(const char *name)
40f137e1 240{
3371d272
PB
241 int i;
242 uint32_t id;
243
244 id = 0;
3371d272
PB
245 for (i = 0; arm_cpu_names[i].name; i++) {
246 if (strcmp(name, arm_cpu_names[i].name) == 0) {
247 id = arm_cpu_names[i].id;
248 break;
249 }
250 }
aaed909a 251 return id;
40f137e1
PB
252}
253
254void cpu_arm_close(CPUARMState *env)
255{
256 free(env);
257}
258
2f4a40e5
AZ
259uint32_t cpsr_read(CPUARMState *env)
260{
261 int ZF;
6fbe23d5
PB
262 ZF = (env->ZF == 0);
263 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
264 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
265 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
266 | ((env->condexec_bits & 0xfc) << 8)
267 | (env->GE << 16);
268}
269
270void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
271{
2f4a40e5 272 if (mask & CPSR_NZCV) {
6fbe23d5
PB
273 env->ZF = (~val) & CPSR_Z;
274 env->NF = val;
2f4a40e5
AZ
275 env->CF = (val >> 29) & 1;
276 env->VF = (val << 3) & 0x80000000;
277 }
278 if (mask & CPSR_Q)
279 env->QF = ((val & CPSR_Q) != 0);
280 if (mask & CPSR_T)
281 env->thumb = ((val & CPSR_T) != 0);
282 if (mask & CPSR_IT_0_1) {
283 env->condexec_bits &= ~3;
284 env->condexec_bits |= (val >> 25) & 3;
285 }
286 if (mask & CPSR_IT_2_7) {
287 env->condexec_bits &= 3;
288 env->condexec_bits |= (val >> 8) & 0xfc;
289 }
290 if (mask & CPSR_GE) {
291 env->GE = (val >> 16) & 0xf;
292 }
293
294 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
295 switch_mode(env, val & CPSR_M);
296 }
297 mask &= ~CACHED_CPSR_BITS;
298 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
299}
300
b26eefb6
PB
301/* Sign/zero extend */
302uint32_t HELPER(sxtb16)(uint32_t x)
303{
304 uint32_t res;
305 res = (uint16_t)(int8_t)x;
306 res |= (uint32_t)(int8_t)(x >> 16) << 16;
307 return res;
308}
309
310uint32_t HELPER(uxtb16)(uint32_t x)
311{
312 uint32_t res;
313 res = (uint16_t)(uint8_t)x;
314 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
315 return res;
316}
317
f51bbbfe
PB
318uint32_t HELPER(clz)(uint32_t x)
319{
320 int count;
321 for (count = 32; x; count--)
322 x >>= 1;
323 return count;
324}
325
3670669c
PB
326int32_t HELPER(sdiv)(int32_t num, int32_t den)
327{
328 if (den == 0)
329 return 0;
330 return num / den;
331}
332
333uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
334{
335 if (den == 0)
336 return 0;
337 return num / den;
338}
339
340uint32_t HELPER(rbit)(uint32_t x)
341{
342 x = ((x & 0xff000000) >> 24)
343 | ((x & 0x00ff0000) >> 8)
344 | ((x & 0x0000ff00) << 8)
345 | ((x & 0x000000ff) << 24);
346 x = ((x & 0xf0f0f0f0) >> 4)
347 | ((x & 0x0f0f0f0f) << 4);
348 x = ((x & 0x88888888) >> 3)
349 | ((x & 0x44444444) >> 1)
350 | ((x & 0x22222222) << 1)
351 | ((x & 0x11111111) << 3);
352 return x;
353}
354
ad69471c
PB
355uint32_t HELPER(abs)(uint32_t x)
356{
357 return ((int32_t)x < 0) ? -x : x;
358}
359
5fafdf24 360#if defined(CONFIG_USER_ONLY)
b5ff1b31
FB
361
362void do_interrupt (CPUState *env)
363{
364 env->exception_index = -1;
365}
366
9ee6e8bb
PB
367/* Structure used to record exclusive memory locations. */
368typedef struct mmon_state {
369 struct mmon_state *next;
370 CPUARMState *cpu_env;
371 uint32_t addr;
372} mmon_state;
373
374/* Chain of current locks. */
375static mmon_state* mmon_head = NULL;
376
b5ff1b31 377int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
6ebbf390 378 int mmu_idx, int is_softmmu)
b5ff1b31
FB
379{
380 if (rw == 2) {
381 env->exception_index = EXCP_PREFETCH_ABORT;
382 env->cp15.c6_insn = address;
383 } else {
384 env->exception_index = EXCP_DATA_ABORT;
385 env->cp15.c6_data = address;
386 }
387 return 1;
388}
389
9ee6e8bb
PB
390static void allocate_mmon_state(CPUState *env)
391{
392 env->mmon_entry = malloc(sizeof (mmon_state));
393 if (!env->mmon_entry)
394 abort();
395 memset (env->mmon_entry, 0, sizeof (mmon_state));
396 env->mmon_entry->cpu_env = env;
397 mmon_head = env->mmon_entry;
398}
399
400/* Flush any monitor locks for the specified address. */
401static void flush_mmon(uint32_t addr)
402{
403 mmon_state *mon;
404
405 for (mon = mmon_head; mon; mon = mon->next)
406 {
407 if (mon->addr != addr)
408 continue;
409
410 mon->addr = 0;
411 break;
412 }
413}
414
415/* Mark an address for exclusive access. */
8f8e3aa4 416void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
9ee6e8bb
PB
417{
418 if (!env->mmon_entry)
419 allocate_mmon_state(env);
420 /* Clear any previous locks. */
421 flush_mmon(addr);
422 env->mmon_entry->addr = addr;
423}
424
425/* Test if an exclusive address is still exclusive. Returns zero
426 if the address is still exclusive. */
8f8e3aa4 427uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
9ee6e8bb
PB
428{
429 int res;
430
431 if (!env->mmon_entry)
432 return 1;
433 if (env->mmon_entry->addr == addr)
434 res = 0;
435 else
436 res = 1;
437 flush_mmon(addr);
438 return res;
439}
440
8f8e3aa4 441void HELPER(clrex)(CPUState *env)
9ee6e8bb
PB
442{
443 if (!(env->mmon_entry && env->mmon_entry->addr))
444 return;
445 flush_mmon(env->mmon_entry->addr);
446}
447
9b3c35e0 448target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
b5ff1b31
FB
449{
450 return addr;
451}
452
453/* These should probably raise undefined insn exceptions. */
8984bd2e 454void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
c1713132
AZ
455{
456 int op1 = (insn >> 8) & 0xf;
457 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
458 return;
459}
460
8984bd2e 461uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
c1713132
AZ
462{
463 int op1 = (insn >> 8) & 0xf;
464 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
465 return 0;
466}
467
8984bd2e 468void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
b5ff1b31
FB
469{
470 cpu_abort(env, "cp15 insn %08x\n", insn);
471}
472
8984bd2e 473uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
b5ff1b31
FB
474{
475 cpu_abort(env, "cp15 insn %08x\n", insn);
476 return 0;
477}
478
9ee6e8bb 479/* These should probably raise undefined insn exceptions. */
8984bd2e 480void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
481{
482 cpu_abort(env, "v7m_mrs %d\n", reg);
483}
484
8984bd2e 485uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
9ee6e8bb
PB
486{
487 cpu_abort(env, "v7m_mrs %d\n", reg);
488 return 0;
489}
490
b5ff1b31
FB
491void switch_mode(CPUState *env, int mode)
492{
493 if (mode != ARM_CPU_MODE_USR)
494 cpu_abort(env, "Tried to switch out of user mode\n");
495}
496
b0109805 497void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
9ee6e8bb
PB
498{
499 cpu_abort(env, "banked r13 write\n");
500}
501
b0109805 502uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
9ee6e8bb
PB
503{
504 cpu_abort(env, "banked r13 read\n");
505 return 0;
506}
507
b5ff1b31
FB
508#else
509
8e71621f
PB
510extern int semihosting_enabled;
511
b5ff1b31
FB
512/* Map CPU modes onto saved register banks. */
513static inline int bank_number (int mode)
514{
515 switch (mode) {
516 case ARM_CPU_MODE_USR:
517 case ARM_CPU_MODE_SYS:
518 return 0;
519 case ARM_CPU_MODE_SVC:
520 return 1;
521 case ARM_CPU_MODE_ABT:
522 return 2;
523 case ARM_CPU_MODE_UND:
524 return 3;
525 case ARM_CPU_MODE_IRQ:
526 return 4;
527 case ARM_CPU_MODE_FIQ:
528 return 5;
529 }
530 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
531 return -1;
532}
533
534void switch_mode(CPUState *env, int mode)
535{
536 int old_mode;
537 int i;
538
539 old_mode = env->uncached_cpsr & CPSR_M;
540 if (mode == old_mode)
541 return;
542
543 if (old_mode == ARM_CPU_MODE_FIQ) {
544 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 545 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
546 } else if (mode == ARM_CPU_MODE_FIQ) {
547 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 548 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
549 }
550
551 i = bank_number(old_mode);
552 env->banked_r13[i] = env->regs[13];
553 env->banked_r14[i] = env->regs[14];
554 env->banked_spsr[i] = env->spsr;
555
556 i = bank_number(mode);
557 env->regs[13] = env->banked_r13[i];
558 env->regs[14] = env->banked_r14[i];
559 env->spsr = env->banked_spsr[i];
560}
561
9ee6e8bb
PB
562static void v7m_push(CPUARMState *env, uint32_t val)
563{
564 env->regs[13] -= 4;
565 stl_phys(env->regs[13], val);
566}
567
568static uint32_t v7m_pop(CPUARMState *env)
569{
570 uint32_t val;
571 val = ldl_phys(env->regs[13]);
572 env->regs[13] += 4;
573 return val;
574}
575
576/* Switch to V7M main or process stack pointer. */
577static void switch_v7m_sp(CPUARMState *env, int process)
578{
579 uint32_t tmp;
580 if (env->v7m.current_sp != process) {
581 tmp = env->v7m.other_sp;
582 env->v7m.other_sp = env->regs[13];
583 env->regs[13] = tmp;
584 env->v7m.current_sp = process;
585 }
586}
587
588static void do_v7m_exception_exit(CPUARMState *env)
589{
590 uint32_t type;
591 uint32_t xpsr;
592
593 type = env->regs[15];
594 if (env->v7m.exception != 0)
595 armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
596
597 /* Switch to the target stack. */
598 switch_v7m_sp(env, (type & 4) != 0);
599 /* Pop registers. */
600 env->regs[0] = v7m_pop(env);
601 env->regs[1] = v7m_pop(env);
602 env->regs[2] = v7m_pop(env);
603 env->regs[3] = v7m_pop(env);
604 env->regs[12] = v7m_pop(env);
605 env->regs[14] = v7m_pop(env);
606 env->regs[15] = v7m_pop(env);
607 xpsr = v7m_pop(env);
608 xpsr_write(env, xpsr, 0xfffffdff);
609 /* Undo stack alignment. */
610 if (xpsr & 0x200)
611 env->regs[13] |= 4;
612 /* ??? The exception return type specifies Thread/Handler mode. However
613 this is also implied by the xPSR value. Not sure what to do
614 if there is a mismatch. */
615 /* ??? Likewise for mismatches between the CONTROL register and the stack
616 pointer. */
617}
618
619void do_interrupt_v7m(CPUARMState *env)
620{
621 uint32_t xpsr = xpsr_read(env);
622 uint32_t lr;
623 uint32_t addr;
624
625 lr = 0xfffffff1;
626 if (env->v7m.current_sp)
627 lr |= 4;
628 if (env->v7m.exception == 0)
629 lr |= 8;
630
631 /* For exceptions we just mark as pending on the NVIC, and let that
632 handle it. */
633 /* TODO: Need to escalate if the current priority is higher than the
634 one we're raising. */
635 switch (env->exception_index) {
636 case EXCP_UDEF:
637 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
638 return;
639 case EXCP_SWI:
640 env->regs[15] += 2;
641 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
642 return;
643 case EXCP_PREFETCH_ABORT:
644 case EXCP_DATA_ABORT:
645 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
646 return;
647 case EXCP_BKPT:
2ad207d4
PB
648 if (semihosting_enabled) {
649 int nr;
650 nr = lduw_code(env->regs[15]) & 0xff;
651 if (nr == 0xab) {
652 env->regs[15] += 2;
653 env->regs[0] = do_arm_semihosting(env);
654 return;
655 }
656 }
9ee6e8bb
PB
657 armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
658 return;
659 case EXCP_IRQ:
660 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
661 break;
662 case EXCP_EXCEPTION_EXIT:
663 do_v7m_exception_exit(env);
664 return;
665 default:
666 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
667 return; /* Never happens. Keep compiler happy. */
668 }
669
670 /* Align stack pointer. */
671 /* ??? Should only do this if Configuration Control Register
672 STACKALIGN bit is set. */
673 if (env->regs[13] & 4) {
674 env->regs[13] += 4;
675 xpsr |= 0x200;
676 }
677 /* Switch to the hander mode. */
678 v7m_push(env, xpsr);
679 v7m_push(env, env->regs[15]);
680 v7m_push(env, env->regs[14]);
681 v7m_push(env, env->regs[12]);
682 v7m_push(env, env->regs[3]);
683 v7m_push(env, env->regs[2]);
684 v7m_push(env, env->regs[1]);
685 v7m_push(env, env->regs[0]);
686 switch_v7m_sp(env, 0);
687 env->uncached_cpsr &= ~CPSR_IT;
688 env->regs[14] = lr;
689 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
690 env->regs[15] = addr & 0xfffffffe;
691 env->thumb = addr & 1;
692}
693
b5ff1b31
FB
694/* Handle a CPU exception. */
695void do_interrupt(CPUARMState *env)
696{
697 uint32_t addr;
698 uint32_t mask;
699 int new_mode;
700 uint32_t offset;
701
9ee6e8bb
PB
702 if (IS_M(env)) {
703 do_interrupt_v7m(env);
704 return;
705 }
b5ff1b31
FB
706 /* TODO: Vectored interrupt controller. */
707 switch (env->exception_index) {
708 case EXCP_UDEF:
709 new_mode = ARM_CPU_MODE_UND;
710 addr = 0x04;
711 mask = CPSR_I;
712 if (env->thumb)
713 offset = 2;
714 else
715 offset = 4;
716 break;
717 case EXCP_SWI:
8e71621f
PB
718 if (semihosting_enabled) {
719 /* Check for semihosting interrupt. */
720 if (env->thumb) {
721 mask = lduw_code(env->regs[15] - 2) & 0xff;
722 } else {
723 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
724 }
725 /* Only intercept calls from privileged modes, to provide some
726 semblance of security. */
727 if (((mask == 0x123456 && !env->thumb)
728 || (mask == 0xab && env->thumb))
729 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
730 env->regs[0] = do_arm_semihosting(env);
731 return;
732 }
733 }
b5ff1b31
FB
734 new_mode = ARM_CPU_MODE_SVC;
735 addr = 0x08;
736 mask = CPSR_I;
737 /* The PC already points to the next instructon. */
738 offset = 0;
739 break;
06c949e6 740 case EXCP_BKPT:
9ee6e8bb 741 /* See if this is a semihosting syscall. */
2ad207d4 742 if (env->thumb && semihosting_enabled) {
9ee6e8bb
PB
743 mask = lduw_code(env->regs[15]) & 0xff;
744 if (mask == 0xab
745 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
746 env->regs[15] += 2;
747 env->regs[0] = do_arm_semihosting(env);
748 return;
749 }
750 }
751 /* Fall through to prefetch abort. */
752 case EXCP_PREFETCH_ABORT:
b5ff1b31
FB
753 new_mode = ARM_CPU_MODE_ABT;
754 addr = 0x0c;
755 mask = CPSR_A | CPSR_I;
756 offset = 4;
757 break;
758 case EXCP_DATA_ABORT:
759 new_mode = ARM_CPU_MODE_ABT;
760 addr = 0x10;
761 mask = CPSR_A | CPSR_I;
762 offset = 8;
763 break;
764 case EXCP_IRQ:
765 new_mode = ARM_CPU_MODE_IRQ;
766 addr = 0x18;
767 /* Disable IRQ and imprecise data aborts. */
768 mask = CPSR_A | CPSR_I;
769 offset = 4;
770 break;
771 case EXCP_FIQ:
772 new_mode = ARM_CPU_MODE_FIQ;
773 addr = 0x1c;
774 /* Disable FIQ, IRQ and imprecise data aborts. */
775 mask = CPSR_A | CPSR_I | CPSR_F;
776 offset = 4;
777 break;
778 default:
779 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
780 return; /* Never happens. Keep compiler happy. */
781 }
782 /* High vectors. */
783 if (env->cp15.c1_sys & (1 << 13)) {
784 addr += 0xffff0000;
785 }
786 switch_mode (env, new_mode);
787 env->spsr = cpsr_read(env);
9ee6e8bb
PB
788 /* Clear IT bits. */
789 env->condexec_bits = 0;
6d7e6326 790 /* Switch to the new mode, and switch to Arm mode. */
b5ff1b31 791 /* ??? Thumb interrupt handlers not implemented. */
6d7e6326 792 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
b5ff1b31 793 env->uncached_cpsr |= mask;
6d7e6326 794 env->thumb = 0;
b5ff1b31
FB
795 env->regs[14] = env->regs[15] + offset;
796 env->regs[15] = addr;
797 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
798}
799
800/* Check section/page access permissions.
801 Returns the page protection flags, or zero if the access is not
802 permitted. */
803static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
804 int is_user)
805{
9ee6e8bb
PB
806 int prot_ro;
807
b5ff1b31
FB
808 if (domain == 3)
809 return PAGE_READ | PAGE_WRITE;
810
9ee6e8bb
PB
811 if (access_type == 1)
812 prot_ro = 0;
813 else
814 prot_ro = PAGE_READ;
815
b5ff1b31
FB
816 switch (ap) {
817 case 0:
78600320 818 if (access_type == 1)
b5ff1b31
FB
819 return 0;
820 switch ((env->cp15.c1_sys >> 8) & 3) {
821 case 1:
822 return is_user ? 0 : PAGE_READ;
823 case 2:
824 return PAGE_READ;
825 default:
826 return 0;
827 }
828 case 1:
829 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
830 case 2:
831 if (is_user)
9ee6e8bb 832 return prot_ro;
b5ff1b31
FB
833 else
834 return PAGE_READ | PAGE_WRITE;
835 case 3:
836 return PAGE_READ | PAGE_WRITE;
9ee6e8bb
PB
837 case 4: case 7: /* Reserved. */
838 return 0;
839 case 5:
840 return is_user ? 0 : prot_ro;
841 case 6:
842 return prot_ro;
b5ff1b31
FB
843 default:
844 abort();
845 }
846}
847
9ee6e8bb
PB
848static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
849 int is_user, uint32_t *phys_ptr, int *prot)
b5ff1b31
FB
850{
851 int code;
852 uint32_t table;
853 uint32_t desc;
854 int type;
855 int ap;
856 int domain;
857 uint32_t phys_addr;
858
9ee6e8bb
PB
859 /* Pagetable walk. */
860 /* Lookup l1 descriptor. */
861 if (address & env->cp15.c2_mask)
862 table = env->cp15.c2_base1;
863 else
864 table = env->cp15.c2_base0;
865 table = (table & 0xffffc000) | ((address >> 18) & 0x3ffc);
866 desc = ldl_phys(table);
867 type = (desc & 3);
868 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
869 if (type == 0) {
870 /* Secton translation fault. */
871 code = 5;
872 goto do_fault;
873 }
874 if (domain == 0 || domain == 2) {
875 if (type == 2)
876 code = 9; /* Section domain fault. */
877 else
878 code = 11; /* Page domain fault. */
879 goto do_fault;
880 }
881 if (type == 2) {
882 /* 1Mb section. */
883 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
884 ap = (desc >> 10) & 3;
885 code = 13;
886 } else {
887 /* Lookup l2 entry. */
888 if (type == 1) {
889 /* Coarse pagetable. */
890 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
891 } else {
892 /* Fine pagetable. */
893 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
894 }
895 desc = ldl_phys(table);
896 switch (desc & 3) {
897 case 0: /* Page translation fault. */
898 code = 7;
899 goto do_fault;
900 case 1: /* 64k page. */
901 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
902 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
ce819861 903 break;
9ee6e8bb
PB
904 case 2: /* 4k page. */
905 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
906 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
ce819861 907 break;
9ee6e8bb
PB
908 case 3: /* 1k page. */
909 if (type == 1) {
910 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
911 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
912 } else {
913 /* Page translation fault. */
914 code = 7;
915 goto do_fault;
916 }
917 } else {
918 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
919 }
920 ap = (desc >> 4) & 3;
ce819861
PB
921 break;
922 default:
9ee6e8bb
PB
923 /* Never happens, but compiler isn't smart enough to tell. */
924 abort();
ce819861 925 }
9ee6e8bb
PB
926 code = 15;
927 }
928 *prot = check_ap(env, ap, domain, access_type, is_user);
929 if (!*prot) {
930 /* Access permission fault. */
931 goto do_fault;
932 }
933 *phys_ptr = phys_addr;
934 return 0;
935do_fault:
936 return code | (domain << 4);
937}
938
939static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
940 int is_user, uint32_t *phys_ptr, int *prot)
941{
942 int code;
943 uint32_t table;
944 uint32_t desc;
945 uint32_t xn;
946 int type;
947 int ap;
948 int domain;
949 uint32_t phys_addr;
950
951 /* Pagetable walk. */
952 /* Lookup l1 descriptor. */
953 if (address & env->cp15.c2_mask)
954 table = env->cp15.c2_base1;
955 else
956 table = env->cp15.c2_base0;
957 table = (table & 0xffffc000) | ((address >> 18) & 0x3ffc);
958 desc = ldl_phys(table);
959 type = (desc & 3);
960 if (type == 0) {
961 /* Secton translation fault. */
962 code = 5;
963 domain = 0;
964 goto do_fault;
965 } else if (type == 2 && (desc & (1 << 18))) {
966 /* Supersection. */
967 domain = 0;
b5ff1b31 968 } else {
9ee6e8bb
PB
969 /* Section or page. */
970 domain = (desc >> 4) & 0x1e;
971 }
972 domain = (env->cp15.c3 >> domain) & 3;
973 if (domain == 0 || domain == 2) {
974 if (type == 2)
975 code = 9; /* Section domain fault. */
976 else
977 code = 11; /* Page domain fault. */
978 goto do_fault;
979 }
980 if (type == 2) {
981 if (desc & (1 << 18)) {
982 /* Supersection. */
983 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
b5ff1b31 984 } else {
9ee6e8bb
PB
985 /* Section. */
986 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
b5ff1b31 987 }
9ee6e8bb
PB
988 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
989 xn = desc & (1 << 4);
990 code = 13;
991 } else {
992 /* Lookup l2 entry. */
993 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
994 desc = ldl_phys(table);
995 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
996 switch (desc & 3) {
997 case 0: /* Page translation fault. */
998 code = 7;
b5ff1b31 999 goto do_fault;
9ee6e8bb
PB
1000 case 1: /* 64k page. */
1001 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1002 xn = desc & (1 << 15);
1003 break;
1004 case 2: case 3: /* 4k page. */
1005 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1006 xn = desc & 1;
1007 break;
1008 default:
1009 /* Never happens, but compiler isn't smart enough to tell. */
1010 abort();
b5ff1b31 1011 }
9ee6e8bb
PB
1012 code = 15;
1013 }
1014 if (xn && access_type == 2)
1015 goto do_fault;
1016
1017 *prot = check_ap(env, ap, domain, access_type, is_user);
1018 if (!*prot) {
1019 /* Access permission fault. */
1020 goto do_fault;
b5ff1b31 1021 }
9ee6e8bb 1022 *phys_ptr = phys_addr;
b5ff1b31
FB
1023 return 0;
1024do_fault:
1025 return code | (domain << 4);
1026}
1027
9ee6e8bb
PB
1028static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1029 int is_user, uint32_t *phys_ptr, int *prot)
1030{
1031 int n;
1032 uint32_t mask;
1033 uint32_t base;
1034
1035 *phys_ptr = address;
1036 for (n = 7; n >= 0; n--) {
1037 base = env->cp15.c6_region[n];
1038 if ((base & 1) == 0)
1039 continue;
1040 mask = 1 << ((base >> 1) & 0x1f);
1041 /* Keep this shift separate from the above to avoid an
1042 (undefined) << 32. */
1043 mask = (mask << 1) - 1;
1044 if (((base ^ address) & ~mask) == 0)
1045 break;
1046 }
1047 if (n < 0)
1048 return 2;
1049
1050 if (access_type == 2) {
1051 mask = env->cp15.c5_insn;
1052 } else {
1053 mask = env->cp15.c5_data;
1054 }
1055 mask = (mask >> (n * 4)) & 0xf;
1056 switch (mask) {
1057 case 0:
1058 return 1;
1059 case 1:
1060 if (is_user)
1061 return 1;
1062 *prot = PAGE_READ | PAGE_WRITE;
1063 break;
1064 case 2:
1065 *prot = PAGE_READ;
1066 if (!is_user)
1067 *prot |= PAGE_WRITE;
1068 break;
1069 case 3:
1070 *prot = PAGE_READ | PAGE_WRITE;
1071 break;
1072 case 5:
1073 if (is_user)
1074 return 1;
1075 *prot = PAGE_READ;
1076 break;
1077 case 6:
1078 *prot = PAGE_READ;
1079 break;
1080 default:
1081 /* Bad permission. */
1082 return 1;
1083 }
1084 return 0;
1085}
1086
1087static inline int get_phys_addr(CPUState *env, uint32_t address,
1088 int access_type, int is_user,
1089 uint32_t *phys_ptr, int *prot)
1090{
1091 /* Fast Context Switch Extension. */
1092 if (address < 0x02000000)
1093 address += env->cp15.c13_fcse;
1094
1095 if ((env->cp15.c1_sys & 1) == 0) {
1096 /* MMU/MPU disabled. */
1097 *phys_ptr = address;
1098 *prot = PAGE_READ | PAGE_WRITE;
1099 return 0;
1100 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1101 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1102 prot);
1103 } else if (env->cp15.c1_sys & (1 << 23)) {
1104 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1105 prot);
1106 } else {
1107 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1108 prot);
1109 }
1110}
1111
b5ff1b31 1112int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
6ebbf390 1113 int access_type, int mmu_idx, int is_softmmu)
b5ff1b31
FB
1114{
1115 uint32_t phys_addr;
1116 int prot;
6ebbf390 1117 int ret, is_user;
b5ff1b31 1118
6ebbf390 1119 is_user = mmu_idx == MMU_USER_IDX;
b5ff1b31
FB
1120 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1121 if (ret == 0) {
1122 /* Map a single [sub]page. */
1123 phys_addr &= ~(uint32_t)0x3ff;
1124 address &= ~(uint32_t)0x3ff;
6ebbf390 1125 return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
b5ff1b31
FB
1126 is_softmmu);
1127 }
1128
1129 if (access_type == 2) {
1130 env->cp15.c5_insn = ret;
1131 env->cp15.c6_insn = address;
1132 env->exception_index = EXCP_PREFETCH_ABORT;
1133 } else {
1134 env->cp15.c5_data = ret;
9ee6e8bb
PB
1135 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1136 env->cp15.c5_data |= (1 << 11);
b5ff1b31
FB
1137 env->cp15.c6_data = address;
1138 env->exception_index = EXCP_DATA_ABORT;
1139 }
1140 return 1;
1141}
1142
9b3c35e0 1143target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
b5ff1b31
FB
1144{
1145 uint32_t phys_addr;
1146 int prot;
1147 int ret;
1148
1149 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1150
1151 if (ret != 0)
1152 return -1;
1153
1154 return phys_addr;
1155}
1156
9ee6e8bb
PB
1157/* Not really implemented. Need to figure out a sane way of doing this.
1158 Maybe add generic watchpoint support and use that. */
1159
8f8e3aa4 1160void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
9ee6e8bb
PB
1161{
1162 env->mmon_addr = addr;
1163}
1164
8f8e3aa4 1165uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
9ee6e8bb
PB
1166{
1167 return (env->mmon_addr != addr);
1168}
1169
8f8e3aa4 1170void HELPER(clrex)(CPUState *env)
9ee6e8bb
PB
1171{
1172 env->mmon_addr = -1;
1173}
1174
8984bd2e 1175void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
c1713132
AZ
1176{
1177 int cp_num = (insn >> 8) & 0xf;
1178 int cp_info = (insn >> 5) & 7;
1179 int src = (insn >> 16) & 0xf;
1180 int operand = insn & 0xf;
1181
1182 if (env->cp[cp_num].cp_write)
1183 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1184 cp_info, src, operand, val);
1185}
1186
8984bd2e 1187uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
c1713132
AZ
1188{
1189 int cp_num = (insn >> 8) & 0xf;
1190 int cp_info = (insn >> 5) & 7;
1191 int dest = (insn >> 16) & 0xf;
1192 int operand = insn & 0xf;
1193
1194 if (env->cp[cp_num].cp_read)
1195 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1196 cp_info, dest, operand);
1197 return 0;
1198}
1199
ce819861
PB
1200/* Return basic MPU access permission bits. */
1201static uint32_t simple_mpu_ap_bits(uint32_t val)
1202{
1203 uint32_t ret;
1204 uint32_t mask;
1205 int i;
1206 ret = 0;
1207 mask = 3;
1208 for (i = 0; i < 16; i += 2) {
1209 ret |= (val >> i) & mask;
1210 mask <<= 2;
1211 }
1212 return ret;
1213}
1214
1215/* Pad basic MPU access permission bits to extended format. */
1216static uint32_t extended_mpu_ap_bits(uint32_t val)
1217{
1218 uint32_t ret;
1219 uint32_t mask;
1220 int i;
1221 ret = 0;
1222 mask = 3;
1223 for (i = 0; i < 16; i += 2) {
1224 ret |= (val & mask) << i;
1225 mask <<= 2;
1226 }
1227 return ret;
1228}
1229
8984bd2e 1230void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
b5ff1b31 1231{
9ee6e8bb
PB
1232 int op1;
1233 int op2;
1234 int crm;
b5ff1b31 1235
9ee6e8bb 1236 op1 = (insn >> 21) & 7;
b5ff1b31 1237 op2 = (insn >> 5) & 7;
ce819861 1238 crm = insn & 0xf;
b5ff1b31 1239 switch ((insn >> 16) & 0xf) {
9ee6e8bb
PB
1240 case 0:
1241 if (((insn >> 21) & 7) == 2) {
1242 /* ??? Select cache level. Ignore. */
1243 return;
1244 }
1245 /* ID codes. */
610c3c8a
AZ
1246 if (arm_feature(env, ARM_FEATURE_XSCALE))
1247 break;
c3d2689d
AZ
1248 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1249 break;
b5ff1b31
FB
1250 goto bad_reg;
1251 case 1: /* System configuration. */
c3d2689d
AZ
1252 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1253 op2 = 0;
b5ff1b31
FB
1254 switch (op2) {
1255 case 0:
ce819861 1256 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
c1713132 1257 env->cp15.c1_sys = val;
b5ff1b31
FB
1258 /* ??? Lots of these bits are not implemented. */
1259 /* This may enable/disable the MMU, so do a TLB flush. */
1260 tlb_flush(env, 1);
1261 break;
9ee6e8bb 1262 case 1: /* Auxiliary cotrol register. */
610c3c8a
AZ
1263 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1264 env->cp15.c1_xscaleauxcr = val;
c1713132 1265 break;
610c3c8a 1266 }
9ee6e8bb
PB
1267 /* Not implemented. */
1268 break;
b5ff1b31 1269 case 2:
610c3c8a
AZ
1270 if (arm_feature(env, ARM_FEATURE_XSCALE))
1271 goto bad_reg;
b5ff1b31
FB
1272 env->cp15.c1_coproc = val;
1273 /* ??? Is this safe when called from within a TB? */
1274 tb_flush(env);
c1713132 1275 break;
b5ff1b31
FB
1276 default:
1277 goto bad_reg;
1278 }
1279 break;
ce819861
PB
1280 case 2: /* MMU Page table control / MPU cache control. */
1281 if (arm_feature(env, ARM_FEATURE_MPU)) {
1282 switch (op2) {
1283 case 0:
1284 env->cp15.c2_data = val;
1285 break;
1286 case 1:
1287 env->cp15.c2_insn = val;
1288 break;
1289 default:
1290 goto bad_reg;
1291 }
1292 } else {
9ee6e8bb
PB
1293 switch (op2) {
1294 case 0:
1295 env->cp15.c2_base0 = val;
1296 break;
1297 case 1:
1298 env->cp15.c2_base1 = val;
1299 break;
1300 case 2:
1301 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1302 break;
1303 default:
1304 goto bad_reg;
1305 }
ce819861 1306 }
b5ff1b31 1307 break;
ce819861 1308 case 3: /* MMU Domain access control / MPU write buffer control. */
b5ff1b31 1309 env->cp15.c3 = val;
405ee3ad 1310 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
b5ff1b31
FB
1311 break;
1312 case 4: /* Reserved. */
1313 goto bad_reg;
ce819861 1314 case 5: /* MMU Fault status / MPU access permission. */
c3d2689d
AZ
1315 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1316 op2 = 0;
b5ff1b31
FB
1317 switch (op2) {
1318 case 0:
ce819861
PB
1319 if (arm_feature(env, ARM_FEATURE_MPU))
1320 val = extended_mpu_ap_bits(val);
b5ff1b31
FB
1321 env->cp15.c5_data = val;
1322 break;
1323 case 1:
ce819861
PB
1324 if (arm_feature(env, ARM_FEATURE_MPU))
1325 val = extended_mpu_ap_bits(val);
b5ff1b31
FB
1326 env->cp15.c5_insn = val;
1327 break;
ce819861
PB
1328 case 2:
1329 if (!arm_feature(env, ARM_FEATURE_MPU))
1330 goto bad_reg;
1331 env->cp15.c5_data = val;
b5ff1b31 1332 break;
ce819861
PB
1333 case 3:
1334 if (!arm_feature(env, ARM_FEATURE_MPU))
1335 goto bad_reg;
1336 env->cp15.c5_insn = val;
b5ff1b31
FB
1337 break;
1338 default:
1339 goto bad_reg;
1340 }
1341 break;
ce819861
PB
1342 case 6: /* MMU Fault address / MPU base/size. */
1343 if (arm_feature(env, ARM_FEATURE_MPU)) {
1344 if (crm >= 8)
1345 goto bad_reg;
1346 env->cp15.c6_region[crm] = val;
1347 } else {
c3d2689d
AZ
1348 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1349 op2 = 0;
ce819861
PB
1350 switch (op2) {
1351 case 0:
1352 env->cp15.c6_data = val;
1353 break;
9ee6e8bb
PB
1354 case 1: /* ??? This is WFAR on armv6 */
1355 case 2:
ce819861
PB
1356 env->cp15.c6_insn = val;
1357 break;
1358 default:
1359 goto bad_reg;
1360 }
1361 }
1362 break;
b5ff1b31 1363 case 7: /* Cache control. */
c3d2689d
AZ
1364 env->cp15.c15_i_max = 0x000;
1365 env->cp15.c15_i_min = 0xff0;
b5ff1b31 1366 /* No cache, so nothing to do. */
9ee6e8bb 1367 /* ??? MPCore has VA to PA translation functions. */
b5ff1b31
FB
1368 break;
1369 case 8: /* MMU TLB control. */
1370 switch (op2) {
1371 case 0: /* Invalidate all. */
1372 tlb_flush(env, 0);
1373 break;
1374 case 1: /* Invalidate single TLB entry. */
1375#if 0
1376 /* ??? This is wrong for large pages and sections. */
1377 /* As an ugly hack to make linux work we always flush a 4K
1378 pages. */
1379 val &= 0xfffff000;
1380 tlb_flush_page(env, val);
1381 tlb_flush_page(env, val + 0x400);
1382 tlb_flush_page(env, val + 0x800);
1383 tlb_flush_page(env, val + 0xc00);
1384#else
1385 tlb_flush(env, 1);
1386#endif
1387 break;
9ee6e8bb
PB
1388 case 2: /* Invalidate on ASID. */
1389 tlb_flush(env, val == 0);
1390 break;
1391 case 3: /* Invalidate single entry on MVA. */
1392 /* ??? This is like case 1, but ignores ASID. */
1393 tlb_flush(env, 1);
1394 break;
b5ff1b31
FB
1395 default:
1396 goto bad_reg;
1397 }
1398 break;
ce819861 1399 case 9:
c3d2689d
AZ
1400 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1401 break;
ce819861
PB
1402 switch (crm) {
1403 case 0: /* Cache lockdown. */
9ee6e8bb
PB
1404 switch (op1) {
1405 case 0: /* L1 cache. */
1406 switch (op2) {
1407 case 0:
1408 env->cp15.c9_data = val;
1409 break;
1410 case 1:
1411 env->cp15.c9_insn = val;
1412 break;
1413 default:
1414 goto bad_reg;
1415 }
1416 break;
1417 case 1: /* L2 cache. */
1418 /* Ignore writes to L2 lockdown/auxiliary registers. */
1419 break;
1420 default:
1421 goto bad_reg;
1422 }
1423 break;
ce819861
PB
1424 case 1: /* TCM memory region registers. */
1425 /* Not implemented. */
1426 goto bad_reg;
b5ff1b31
FB
1427 default:
1428 goto bad_reg;
1429 }
1430 break;
1431 case 10: /* MMU TLB lockdown. */
1432 /* ??? TLB lockdown not implemented. */
1433 break;
b5ff1b31
FB
1434 case 12: /* Reserved. */
1435 goto bad_reg;
1436 case 13: /* Process ID. */
1437 switch (op2) {
1438 case 0:
d07edbfa
PB
1439 /* Unlike real hardware the qemu TLB uses virtual addresses,
1440 not modified virtual addresses, so this causes a TLB flush.
1441 */
1442 if (env->cp15.c13_fcse != val)
1443 tlb_flush(env, 1);
1444 env->cp15.c13_fcse = val;
b5ff1b31
FB
1445 break;
1446 case 1:
d07edbfa 1447 /* This changes the ASID, so do a TLB flush. */
ce819861
PB
1448 if (env->cp15.c13_context != val
1449 && !arm_feature(env, ARM_FEATURE_MPU))
d07edbfa
PB
1450 tlb_flush(env, 0);
1451 env->cp15.c13_context = val;
b5ff1b31 1452 break;
9ee6e8bb
PB
1453 case 2:
1454 env->cp15.c13_tls1 = val;
1455 break;
1456 case 3:
1457 env->cp15.c13_tls2 = val;
1458 break;
1459 case 4:
1460 env->cp15.c13_tls3 = val;
1461 break;
b5ff1b31
FB
1462 default:
1463 goto bad_reg;
1464 }
1465 break;
1466 case 14: /* Reserved. */
1467 goto bad_reg;
1468 case 15: /* Implementation specific. */
c1713132 1469 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
ce819861 1470 if (op2 == 0 && crm == 1) {
2e23213f
AZ
1471 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1472 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1473 tb_flush(env);
1474 env->cp15.c15_cpar = val & 0x3fff;
1475 }
c1713132
AZ
1476 break;
1477 }
1478 goto bad_reg;
1479 }
c3d2689d
AZ
1480 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1481 switch (crm) {
1482 case 0:
1483 break;
1484 case 1: /* Set TI925T configuration. */
1485 env->cp15.c15_ticonfig = val & 0xe7;
1486 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1487 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1488 break;
1489 case 2: /* Set I_max. */
1490 env->cp15.c15_i_max = val;
1491 break;
1492 case 3: /* Set I_min. */
1493 env->cp15.c15_i_min = val;
1494 break;
1495 case 4: /* Set thread-ID. */
1496 env->cp15.c15_threadid = val & 0xffff;
1497 break;
1498 case 8: /* Wait-for-interrupt (deprecated). */
1499 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1500 break;
1501 default:
1502 goto bad_reg;
1503 }
1504 }
b5ff1b31
FB
1505 break;
1506 }
1507 return;
1508bad_reg:
1509 /* ??? For debugging only. Should raise illegal instruction exception. */
9ee6e8bb
PB
1510 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1511 (insn >> 16) & 0xf, crm, op1, op2);
b5ff1b31
FB
1512}
1513
8984bd2e 1514uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
b5ff1b31 1515{
9ee6e8bb
PB
1516 int op1;
1517 int op2;
1518 int crm;
b5ff1b31 1519
9ee6e8bb 1520 op1 = (insn >> 21) & 7;
b5ff1b31 1521 op2 = (insn >> 5) & 7;
c3d2689d 1522 crm = insn & 0xf;
b5ff1b31
FB
1523 switch ((insn >> 16) & 0xf) {
1524 case 0: /* ID codes. */
9ee6e8bb
PB
1525 switch (op1) {
1526 case 0:
1527 switch (crm) {
1528 case 0:
1529 switch (op2) {
1530 case 0: /* Device ID. */
1531 return env->cp15.c0_cpuid;
1532 case 1: /* Cache Type. */
1533 return env->cp15.c0_cachetype;
1534 case 2: /* TCM status. */
1535 return 0;
1536 case 3: /* TLB type register. */
1537 return 0; /* No lockable TLB entries. */
1538 case 5: /* CPU ID */
1539 return env->cpu_index;
1540 default:
1541 goto bad_reg;
1542 }
1543 case 1:
1544 if (!arm_feature(env, ARM_FEATURE_V6))
1545 goto bad_reg;
1546 return env->cp15.c0_c1[op2];
1547 case 2:
1548 if (!arm_feature(env, ARM_FEATURE_V6))
1549 goto bad_reg;
1550 return env->cp15.c0_c2[op2];
1551 case 3: case 4: case 5: case 6: case 7:
1552 return 0;
1553 default:
1554 goto bad_reg;
1555 }
1556 case 1:
1557 /* These registers aren't documented on arm11 cores. However
1558 Linux looks at them anyway. */
1559 if (!arm_feature(env, ARM_FEATURE_V6))
1560 goto bad_reg;
1561 if (crm != 0)
1562 goto bad_reg;
610c3c8a
AZ
1563 if (arm_feature(env, ARM_FEATURE_XSCALE))
1564 goto bad_reg;
b5ff1b31 1565 return 0;
9ee6e8bb
PB
1566 default:
1567 goto bad_reg;
b5ff1b31
FB
1568 }
1569 case 1: /* System configuration. */
c3d2689d
AZ
1570 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1571 op2 = 0;
b5ff1b31
FB
1572 switch (op2) {
1573 case 0: /* Control register. */
1574 return env->cp15.c1_sys;
1575 case 1: /* Auxiliary control register. */
c1713132 1576 if (arm_feature(env, ARM_FEATURE_XSCALE))
610c3c8a 1577 return env->cp15.c1_xscaleauxcr;
9ee6e8bb
PB
1578 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1579 goto bad_reg;
1580 switch (ARM_CPUID(env)) {
1581 case ARM_CPUID_ARM1026:
1582 return 1;
1583 case ARM_CPUID_ARM1136:
1584 return 7;
1585 case ARM_CPUID_ARM11MPCORE:
1586 return 1;
1587 case ARM_CPUID_CORTEXA8:
1588 return 0;
1589 default:
1590 goto bad_reg;
1591 }
b5ff1b31 1592 case 2: /* Coprocessor access register. */
610c3c8a
AZ
1593 if (arm_feature(env, ARM_FEATURE_XSCALE))
1594 goto bad_reg;
b5ff1b31
FB
1595 return env->cp15.c1_coproc;
1596 default:
1597 goto bad_reg;
1598 }
ce819861
PB
1599 case 2: /* MMU Page table control / MPU cache control. */
1600 if (arm_feature(env, ARM_FEATURE_MPU)) {
1601 switch (op2) {
1602 case 0:
1603 return env->cp15.c2_data;
1604 break;
1605 case 1:
1606 return env->cp15.c2_insn;
1607 break;
1608 default:
1609 goto bad_reg;
1610 }
1611 } else {
9ee6e8bb
PB
1612 switch (op2) {
1613 case 0:
1614 return env->cp15.c2_base0;
1615 case 1:
1616 return env->cp15.c2_base1;
1617 case 2:
1618 {
1619 int n;
1620 uint32_t mask;
1621 n = 0;
1622 mask = env->cp15.c2_mask;
1623 while (mask) {
1624 n++;
1625 mask <<= 1;
1626 }
1627 return n;
1628 }
1629 default:
1630 goto bad_reg;
1631 }
1632 }
ce819861 1633 case 3: /* MMU Domain access control / MPU write buffer control. */
b5ff1b31
FB
1634 return env->cp15.c3;
1635 case 4: /* Reserved. */
1636 goto bad_reg;
ce819861 1637 case 5: /* MMU Fault status / MPU access permission. */
c3d2689d
AZ
1638 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1639 op2 = 0;
b5ff1b31
FB
1640 switch (op2) {
1641 case 0:
ce819861
PB
1642 if (arm_feature(env, ARM_FEATURE_MPU))
1643 return simple_mpu_ap_bits(env->cp15.c5_data);
b5ff1b31
FB
1644 return env->cp15.c5_data;
1645 case 1:
ce819861
PB
1646 if (arm_feature(env, ARM_FEATURE_MPU))
1647 return simple_mpu_ap_bits(env->cp15.c5_data);
1648 return env->cp15.c5_insn;
1649 case 2:
1650 if (!arm_feature(env, ARM_FEATURE_MPU))
1651 goto bad_reg;
1652 return env->cp15.c5_data;
1653 case 3:
1654 if (!arm_feature(env, ARM_FEATURE_MPU))
1655 goto bad_reg;
b5ff1b31
FB
1656 return env->cp15.c5_insn;
1657 default:
1658 goto bad_reg;
1659 }
9ee6e8bb 1660 case 6: /* MMU Fault address. */
ce819861 1661 if (arm_feature(env, ARM_FEATURE_MPU)) {
9ee6e8bb 1662 if (crm >= 8)
ce819861 1663 goto bad_reg;
9ee6e8bb 1664 return env->cp15.c6_region[crm];
ce819861 1665 } else {
c3d2689d
AZ
1666 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1667 op2 = 0;
9ee6e8bb
PB
1668 switch (op2) {
1669 case 0:
1670 return env->cp15.c6_data;
1671 case 1:
1672 if (arm_feature(env, ARM_FEATURE_V6)) {
1673 /* Watchpoint Fault Adrress. */
1674 return 0; /* Not implemented. */
1675 } else {
1676 /* Instruction Fault Adrress. */
1677 /* Arm9 doesn't have an IFAR, but implementing it anyway
1678 shouldn't do any harm. */
1679 return env->cp15.c6_insn;
1680 }
1681 case 2:
1682 if (arm_feature(env, ARM_FEATURE_V6)) {
1683 /* Instruction Fault Adrress. */
1684 return env->cp15.c6_insn;
1685 } else {
1686 goto bad_reg;
1687 }
1688 default:
1689 goto bad_reg;
1690 }
b5ff1b31
FB
1691 }
1692 case 7: /* Cache control. */
6fbe23d5
PB
1693 /* FIXME: Should only clear Z flag if destination is r15. */
1694 env->ZF = 0;
b5ff1b31
FB
1695 return 0;
1696 case 8: /* MMU TLB control. */
1697 goto bad_reg;
1698 case 9: /* Cache lockdown. */
9ee6e8bb
PB
1699 switch (op1) {
1700 case 0: /* L1 cache. */
1701 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1702 return 0;
1703 switch (op2) {
1704 case 0:
1705 return env->cp15.c9_data;
1706 case 1:
1707 return env->cp15.c9_insn;
1708 default:
1709 goto bad_reg;
1710 }
1711 case 1: /* L2 cache */
1712 if (crm != 0)
1713 goto bad_reg;
1714 /* L2 Lockdown and Auxiliary control. */
c3d2689d 1715 return 0;
b5ff1b31
FB
1716 default:
1717 goto bad_reg;
1718 }
1719 case 10: /* MMU TLB lockdown. */
1720 /* ??? TLB lockdown not implemented. */
1721 return 0;
1722 case 11: /* TCM DMA control. */
1723 case 12: /* Reserved. */
1724 goto bad_reg;
1725 case 13: /* Process ID. */
1726 switch (op2) {
1727 case 0:
1728 return env->cp15.c13_fcse;
1729 case 1:
1730 return env->cp15.c13_context;
9ee6e8bb
PB
1731 case 2:
1732 return env->cp15.c13_tls1;
1733 case 3:
1734 return env->cp15.c13_tls2;
1735 case 4:
1736 return env->cp15.c13_tls3;
b5ff1b31
FB
1737 default:
1738 goto bad_reg;
1739 }
1740 case 14: /* Reserved. */
1741 goto bad_reg;
1742 case 15: /* Implementation specific. */
c1713132 1743 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
c3d2689d 1744 if (op2 == 0 && crm == 1)
c1713132
AZ
1745 return env->cp15.c15_cpar;
1746
1747 goto bad_reg;
1748 }
c3d2689d
AZ
1749 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1750 switch (crm) {
1751 case 0:
1752 return 0;
1753 case 1: /* Read TI925T configuration. */
1754 return env->cp15.c15_ticonfig;
1755 case 2: /* Read I_max. */
1756 return env->cp15.c15_i_max;
1757 case 3: /* Read I_min. */
1758 return env->cp15.c15_i_min;
1759 case 4: /* Read thread-ID. */
1760 return env->cp15.c15_threadid;
1761 case 8: /* TI925T_status */
1762 return 0;
1763 }
1764 goto bad_reg;
1765 }
b5ff1b31
FB
1766 return 0;
1767 }
1768bad_reg:
1769 /* ??? For debugging only. Should raise illegal instruction exception. */
9ee6e8bb
PB
1770 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1771 (insn >> 16) & 0xf, crm, op1, op2);
b5ff1b31
FB
1772 return 0;
1773}
1774
b0109805 1775void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
9ee6e8bb
PB
1776{
1777 env->banked_r13[bank_number(mode)] = val;
1778}
1779
b0109805 1780uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
9ee6e8bb
PB
1781{
1782 return env->banked_r13[bank_number(mode)];
1783}
1784
8984bd2e 1785uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
9ee6e8bb
PB
1786{
1787 switch (reg) {
1788 case 0: /* APSR */
1789 return xpsr_read(env) & 0xf8000000;
1790 case 1: /* IAPSR */
1791 return xpsr_read(env) & 0xf80001ff;
1792 case 2: /* EAPSR */
1793 return xpsr_read(env) & 0xff00fc00;
1794 case 3: /* xPSR */
1795 return xpsr_read(env) & 0xff00fdff;
1796 case 5: /* IPSR */
1797 return xpsr_read(env) & 0x000001ff;
1798 case 6: /* EPSR */
1799 return xpsr_read(env) & 0x0700fc00;
1800 case 7: /* IEPSR */
1801 return xpsr_read(env) & 0x0700edff;
1802 case 8: /* MSP */
1803 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1804 case 9: /* PSP */
1805 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1806 case 16: /* PRIMASK */
1807 return (env->uncached_cpsr & CPSR_I) != 0;
1808 case 17: /* FAULTMASK */
1809 return (env->uncached_cpsr & CPSR_F) != 0;
1810 case 18: /* BASEPRI */
1811 case 19: /* BASEPRI_MAX */
1812 return env->v7m.basepri;
1813 case 20: /* CONTROL */
1814 return env->v7m.control;
1815 default:
1816 /* ??? For debugging only. */
1817 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1818 return 0;
1819 }
1820}
1821
8984bd2e 1822void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
1823{
1824 switch (reg) {
1825 case 0: /* APSR */
1826 xpsr_write(env, val, 0xf8000000);
1827 break;
1828 case 1: /* IAPSR */
1829 xpsr_write(env, val, 0xf8000000);
1830 break;
1831 case 2: /* EAPSR */
1832 xpsr_write(env, val, 0xfe00fc00);
1833 break;
1834 case 3: /* xPSR */
1835 xpsr_write(env, val, 0xfe00fc00);
1836 break;
1837 case 5: /* IPSR */
1838 /* IPSR bits are readonly. */
1839 break;
1840 case 6: /* EPSR */
1841 xpsr_write(env, val, 0x0600fc00);
1842 break;
1843 case 7: /* IEPSR */
1844 xpsr_write(env, val, 0x0600fc00);
1845 break;
1846 case 8: /* MSP */
1847 if (env->v7m.current_sp)
1848 env->v7m.other_sp = val;
1849 else
1850 env->regs[13] = val;
1851 break;
1852 case 9: /* PSP */
1853 if (env->v7m.current_sp)
1854 env->regs[13] = val;
1855 else
1856 env->v7m.other_sp = val;
1857 break;
1858 case 16: /* PRIMASK */
1859 if (val & 1)
1860 env->uncached_cpsr |= CPSR_I;
1861 else
1862 env->uncached_cpsr &= ~CPSR_I;
1863 break;
1864 case 17: /* FAULTMASK */
1865 if (val & 1)
1866 env->uncached_cpsr |= CPSR_F;
1867 else
1868 env->uncached_cpsr &= ~CPSR_F;
1869 break;
1870 case 18: /* BASEPRI */
1871 env->v7m.basepri = val & 0xff;
1872 break;
1873 case 19: /* BASEPRI_MAX */
1874 val &= 0xff;
1875 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1876 env->v7m.basepri = val;
1877 break;
1878 case 20: /* CONTROL */
1879 env->v7m.control = val & 3;
1880 switch_v7m_sp(env, (val & 2) != 0);
1881 break;
1882 default:
1883 /* ??? For debugging only. */
1884 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1885 return;
1886 }
1887}
1888
c1713132
AZ
1889void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1890 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1891 void *opaque)
1892{
1893 if (cpnum < 0 || cpnum > 14) {
1894 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1895 return;
1896 }
1897
1898 env->cp[cpnum].cp_read = cp_read;
1899 env->cp[cpnum].cp_write = cp_write;
1900 env->cp[cpnum].opaque = opaque;
1901}
1902
b5ff1b31 1903#endif
6ddbc6e4
PB
1904
1905/* Note that signed overflow is undefined in C. The following routines are
1906 careful to use unsigned types where modulo arithmetic is required.
1907 Failure to do so _will_ break on newer gcc. */
1908
1909/* Signed saturating arithmetic. */
1910
1911/* Perform 16-bit signed satruating addition. */
1912static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1913{
1914 uint16_t res;
1915
1916 res = a + b;
1917 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
1918 if (a & 0x8000)
1919 res = 0x8000;
1920 else
1921 res = 0x7fff;
1922 }
1923 return res;
1924}
1925
1926/* Perform 8-bit signed satruating addition. */
1927static inline uint8_t add8_sat(uint8_t a, uint8_t b)
1928{
1929 uint8_t res;
1930
1931 res = a + b;
1932 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
1933 if (a & 0x80)
1934 res = 0x80;
1935 else
1936 res = 0x7f;
1937 }
1938 return res;
1939}
1940
1941/* Perform 16-bit signed satruating subtraction. */
1942static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
1943{
1944 uint16_t res;
1945
1946 res = a - b;
1947 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
1948 if (a & 0x8000)
1949 res = 0x8000;
1950 else
1951 res = 0x7fff;
1952 }
1953 return res;
1954}
1955
1956/* Perform 8-bit signed satruating subtraction. */
1957static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
1958{
1959 uint8_t res;
1960
1961 res = a - b;
1962 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
1963 if (a & 0x80)
1964 res = 0x80;
1965 else
1966 res = 0x7f;
1967 }
1968 return res;
1969}
1970
1971#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
1972#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
1973#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
1974#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
1975#define PFX q
1976
1977#include "op_addsub.h"
1978
1979/* Unsigned saturating arithmetic. */
1980static inline uint16_t add16_usat(uint16_t a, uint8_t b)
1981{
1982 uint16_t res;
1983 res = a + b;
1984 if (res < a)
1985 res = 0xffff;
1986 return res;
1987}
1988
1989static inline uint16_t sub16_usat(uint16_t a, uint8_t b)
1990{
1991 if (a < b)
1992 return a - b;
1993 else
1994 return 0;
1995}
1996
1997static inline uint8_t add8_usat(uint8_t a, uint8_t b)
1998{
1999 uint8_t res;
2000 res = a + b;
2001 if (res < a)
2002 res = 0xff;
2003 return res;
2004}
2005
2006static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2007{
2008 if (a < b)
2009 return a - b;
2010 else
2011 return 0;
2012}
2013
2014#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2015#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2016#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2017#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2018#define PFX uq
2019
2020#include "op_addsub.h"
2021
2022/* Signed modulo arithmetic. */
2023#define SARITH16(a, b, n, op) do { \
2024 int32_t sum; \
2025 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2026 RESULT(sum, n, 16); \
2027 if (sum >= 0) \
2028 ge |= 3 << (n * 2); \
2029 } while(0)
2030
2031#define SARITH8(a, b, n, op) do { \
2032 int32_t sum; \
2033 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2034 RESULT(sum, n, 8); \
2035 if (sum >= 0) \
2036 ge |= 1 << n; \
2037 } while(0)
2038
2039
2040#define ADD16(a, b, n) SARITH16(a, b, n, +)
2041#define SUB16(a, b, n) SARITH16(a, b, n, -)
2042#define ADD8(a, b, n) SARITH8(a, b, n, +)
2043#define SUB8(a, b, n) SARITH8(a, b, n, -)
2044#define PFX s
2045#define ARITH_GE
2046
2047#include "op_addsub.h"
2048
2049/* Unsigned modulo arithmetic. */
2050#define ADD16(a, b, n) do { \
2051 uint32_t sum; \
2052 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2053 RESULT(sum, n, 16); \
2054 if ((sum >> 16) == 0) \
2055 ge |= 3 << (n * 2); \
2056 } while(0)
2057
2058#define ADD8(a, b, n) do { \
2059 uint32_t sum; \
2060 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2061 RESULT(sum, n, 8); \
2062 if ((sum >> 8) == 0) \
2063 ge |= 3 << (n * 2); \
2064 } while(0)
2065
2066#define SUB16(a, b, n) do { \
2067 uint32_t sum; \
2068 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2069 RESULT(sum, n, 16); \
2070 if ((sum >> 16) == 0) \
2071 ge |= 3 << (n * 2); \
2072 } while(0)
2073
2074#define SUB8(a, b, n) do { \
2075 uint32_t sum; \
2076 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2077 RESULT(sum, n, 8); \
2078 if ((sum >> 8) == 0) \
2079 ge |= 3 << (n * 2); \
2080 } while(0)
2081
2082#define PFX u
2083#define ARITH_GE
2084
2085#include "op_addsub.h"
2086
2087/* Halved signed arithmetic. */
2088#define ADD16(a, b, n) \
2089 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2090#define SUB16(a, b, n) \
2091 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2092#define ADD8(a, b, n) \
2093 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2094#define SUB8(a, b, n) \
2095 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2096#define PFX sh
2097
2098#include "op_addsub.h"
2099
2100/* Halved unsigned arithmetic. */
2101#define ADD16(a, b, n) \
2102 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2103#define SUB16(a, b, n) \
2104 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2105#define ADD8(a, b, n) \
2106 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2107#define SUB8(a, b, n) \
2108 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2109#define PFX uh
2110
2111#include "op_addsub.h"
2112
2113static inline uint8_t do_usad(uint8_t a, uint8_t b)
2114{
2115 if (a > b)
2116 return a - b;
2117 else
2118 return b - a;
2119}
2120
2121/* Unsigned sum of absolute byte differences. */
2122uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2123{
2124 uint32_t sum;
2125 sum = do_usad(a, b);
2126 sum += do_usad(a >> 8, b >> 8);
2127 sum += do_usad(a >> 16, b >>16);
2128 sum += do_usad(a >> 24, b >> 24);
2129 return sum;
2130}
2131
2132/* For ARMv6 SEL instruction. */
2133uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2134{
2135 uint32_t mask;
2136
2137 mask = 0;
2138 if (flags & 1)
2139 mask |= 0xff;
2140 if (flags & 2)
2141 mask |= 0xff00;
2142 if (flags & 4)
2143 mask |= 0xff0000;
2144 if (flags & 8)
2145 mask |= 0xff000000;
2146 return (a & mask) | (b & ~mask);
2147}
2148
5e3f878a
PB
2149uint32_t HELPER(logicq_cc)(uint64_t val)
2150{
2151 return (val >> 32) | (val != 0);
2152}
4373f3ce
PB
2153
2154/* VFP support. We follow the convention used for VFP instrunctions:
2155 Single precition routines have a "s" suffix, double precision a
2156 "d" suffix. */
2157
2158/* Convert host exception flags to vfp form. */
2159static inline int vfp_exceptbits_from_host(int host_bits)
2160{
2161 int target_bits = 0;
2162
2163 if (host_bits & float_flag_invalid)
2164 target_bits |= 1;
2165 if (host_bits & float_flag_divbyzero)
2166 target_bits |= 2;
2167 if (host_bits & float_flag_overflow)
2168 target_bits |= 4;
2169 if (host_bits & float_flag_underflow)
2170 target_bits |= 8;
2171 if (host_bits & float_flag_inexact)
2172 target_bits |= 0x10;
2173 return target_bits;
2174}
2175
2176uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2177{
2178 int i;
2179 uint32_t fpscr;
2180
2181 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2182 | (env->vfp.vec_len << 16)
2183 | (env->vfp.vec_stride << 20);
2184 i = get_float_exception_flags(&env->vfp.fp_status);
2185 fpscr |= vfp_exceptbits_from_host(i);
2186 return fpscr;
2187}
2188
2189/* Convert vfp exception flags to target form. */
2190static inline int vfp_exceptbits_to_host(int target_bits)
2191{
2192 int host_bits = 0;
2193
2194 if (target_bits & 1)
2195 host_bits |= float_flag_invalid;
2196 if (target_bits & 2)
2197 host_bits |= float_flag_divbyzero;
2198 if (target_bits & 4)
2199 host_bits |= float_flag_overflow;
2200 if (target_bits & 8)
2201 host_bits |= float_flag_underflow;
2202 if (target_bits & 0x10)
2203 host_bits |= float_flag_inexact;
2204 return host_bits;
2205}
2206
2207void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2208{
2209 int i;
2210 uint32_t changed;
2211
2212 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2213 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2214 env->vfp.vec_len = (val >> 16) & 7;
2215 env->vfp.vec_stride = (val >> 20) & 3;
2216
2217 changed ^= val;
2218 if (changed & (3 << 22)) {
2219 i = (val >> 22) & 3;
2220 switch (i) {
2221 case 0:
2222 i = float_round_nearest_even;
2223 break;
2224 case 1:
2225 i = float_round_up;
2226 break;
2227 case 2:
2228 i = float_round_down;
2229 break;
2230 case 3:
2231 i = float_round_to_zero;
2232 break;
2233 }
2234 set_float_rounding_mode(i, &env->vfp.fp_status);
2235 }
2236
2237 i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2238 set_float_exception_flags(i, &env->vfp.fp_status);
2239 /* XXX: FZ and DN are not implemented. */
2240}
2241
2242#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2243
2244#define VFP_BINOP(name) \
2245float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2246{ \
2247 return float32_ ## name (a, b, &env->vfp.fp_status); \
2248} \
2249float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2250{ \
2251 return float64_ ## name (a, b, &env->vfp.fp_status); \
2252}
2253VFP_BINOP(add)
2254VFP_BINOP(sub)
2255VFP_BINOP(mul)
2256VFP_BINOP(div)
2257#undef VFP_BINOP
2258
2259float32 VFP_HELPER(neg, s)(float32 a)
2260{
2261 return float32_chs(a);
2262}
2263
2264float64 VFP_HELPER(neg, d)(float64 a)
2265{
2266 return float32_chs(a);
2267}
2268
2269float32 VFP_HELPER(abs, s)(float32 a)
2270{
2271 return float32_abs(a);
2272}
2273
2274float64 VFP_HELPER(abs, d)(float64 a)
2275{
2276 return float32_abs(a);
2277}
2278
2279float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2280{
2281 return float32_sqrt(a, &env->vfp.fp_status);
2282}
2283
2284float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2285{
2286 return float64_sqrt(a, &env->vfp.fp_status);
2287}
2288
2289/* XXX: check quiet/signaling case */
2290#define DO_VFP_cmp(p, type) \
2291void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2292{ \
2293 uint32_t flags; \
2294 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2295 case 0: flags = 0x6; break; \
2296 case -1: flags = 0x8; break; \
2297 case 1: flags = 0x2; break; \
2298 default: case 2: flags = 0x3; break; \
2299 } \
2300 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2301 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2302} \
2303void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2304{ \
2305 uint32_t flags; \
2306 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2307 case 0: flags = 0x6; break; \
2308 case -1: flags = 0x8; break; \
2309 case 1: flags = 0x2; break; \
2310 default: case 2: flags = 0x3; break; \
2311 } \
2312 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2313 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2314}
2315DO_VFP_cmp(s, float32)
2316DO_VFP_cmp(d, float64)
2317#undef DO_VFP_cmp
2318
2319/* Helper routines to perform bitwise copies between float and int. */
2320static inline float32 vfp_itos(uint32_t i)
2321{
2322 union {
2323 uint32_t i;
2324 float32 s;
2325 } v;
2326
2327 v.i = i;
2328 return v.s;
2329}
2330
2331static inline uint32_t vfp_stoi(float32 s)
2332{
2333 union {
2334 uint32_t i;
2335 float32 s;
2336 } v;
2337
2338 v.s = s;
2339 return v.i;
2340}
2341
2342static inline float64 vfp_itod(uint64_t i)
2343{
2344 union {
2345 uint64_t i;
2346 float64 d;
2347 } v;
2348
2349 v.i = i;
2350 return v.d;
2351}
2352
2353static inline uint64_t vfp_dtoi(float64 d)
2354{
2355 union {
2356 uint64_t i;
2357 float64 d;
2358 } v;
2359
2360 v.d = d;
2361 return v.i;
2362}
2363
2364/* Integer to float conversion. */
2365float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2366{
2367 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2368}
2369
2370float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2371{
2372 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2373}
2374
2375float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2376{
2377 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2378}
2379
2380float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2381{
2382 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2383}
2384
2385/* Float to integer conversion. */
2386float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2387{
2388 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2389}
2390
2391float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2392{
2393 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2394}
2395
2396float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2397{
2398 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2399}
2400
2401float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2402{
2403 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2404}
2405
2406float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2407{
2408 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2409}
2410
2411float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2412{
2413 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2414}
2415
2416float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2417{
2418 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2419}
2420
2421float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2422{
2423 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2424}
2425
2426/* floating point conversion */
2427float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2428{
2429 return float32_to_float64(x, &env->vfp.fp_status);
2430}
2431
2432float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2433{
2434 return float64_to_float32(x, &env->vfp.fp_status);
2435}
2436
2437/* VFP3 fixed point conversion. */
2438#define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2439ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2440{ \
2441 ftype tmp; \
2442 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2443 &env->vfp.fp_status); \
2444 return ftype##_scalbn(tmp, shift, &env->vfp.fp_status); \
2445} \
2446ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2447{ \
2448 ftype tmp; \
2449 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2450 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2451 &env->vfp.fp_status)); \
2452}
2453
2454VFP_CONV_FIX(sh, d, float64, int16, )
2455VFP_CONV_FIX(sl, d, float64, int32, )
2456VFP_CONV_FIX(uh, d, float64, uint16, u)
2457VFP_CONV_FIX(ul, d, float64, uint32, u)
2458VFP_CONV_FIX(sh, s, float32, int16, )
2459VFP_CONV_FIX(sl, s, float32, int32, )
2460VFP_CONV_FIX(uh, s, float32, uint16, u)
2461VFP_CONV_FIX(ul, s, float32, uint32, u)
2462#undef VFP_CONV_FIX
2463
2464float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2465{
2466 float_status *s = &env->vfp.fp_status;
2467 float32 two = int32_to_float32(2, s);
2468 return float32_sub(two, float32_mul(a, b, s), s);
2469}
2470
2471float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2472{
2473 float_status *s = &env->vfp.fp_status;
2474 float32 three = int32_to_float32(3, s);
2475 return float32_sub(three, float32_mul(a, b, s), s);
2476}
2477
8f8e3aa4
PB
2478/* NEON helpers. */
2479
4373f3ce
PB
2480/* TODO: The architecture specifies the value that the estimate functions
2481 should return. We return the exact reciprocal/root instead. */
2482float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2483{
2484 float_status *s = &env->vfp.fp_status;
2485 float32 one = int32_to_float32(1, s);
2486 return float32_div(one, a, s);
2487}
2488
2489float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2490{
2491 float_status *s = &env->vfp.fp_status;
2492 float32 one = int32_to_float32(1, s);
2493 return float32_div(one, float32_sqrt(a, s), s);
2494}
2495
2496uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2497{
2498 float_status *s = &env->vfp.fp_status;
2499 float32 tmp;
2500 tmp = int32_to_float32(a, s);
2501 tmp = float32_scalbn(tmp, -32, s);
2502 tmp = helper_recpe_f32(tmp, env);
2503 tmp = float32_scalbn(tmp, 31, s);
2504 return float32_to_int32(tmp, s);
2505}
2506
2507uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2508{
2509 float_status *s = &env->vfp.fp_status;
2510 float32 tmp;
2511 tmp = int32_to_float32(a, s);
2512 tmp = float32_scalbn(tmp, -32, s);
2513 tmp = helper_rsqrte_f32(tmp, env);
2514 tmp = float32_scalbn(tmp, 31, s);
2515 return float32_to_int32(tmp, s);
2516}