]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/helper.c
cpu: Move jmp_env field from CPU_COMMON to CPUState
[mirror_qemu.git] / target-arm / helper.c
CommitLineData
b5ff1b31 1#include "cpu.h"
022c62cb 2#include "exec/gdbstub.h"
7b59220e 3#include "helper.h"
1de7afc9 4#include "qemu/host-utils.h"
78027bb6 5#include "sysemu/arch_init.h"
9c17d615 6#include "sysemu/sysemu.h"
1de7afc9 7#include "qemu/bitops.h"
eb0ecd5a
WN
8#include "qemu/crc32c.h"
9#include <zlib.h> /* For crc32 */
0b03bdfc 10
4a501606
PM
11#ifndef CONFIG_USER_ONLY
12static inline int get_phys_addr(CPUARMState *env, uint32_t address,
13 int access_type, int is_user,
a8170e5e 14 hwaddr *phys_ptr, int *prot,
4a501606 15 target_ulong *page_size);
7c2cb42b
AF
16
17/* Definitions for the PMCCNTR and PMCR registers */
18#define PMCRD 0x8
19#define PMCRC 0x4
20#define PMCRE 0x1
4a501606
PM
21#endif
22
0ecb72a5 23static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
24{
25 int nregs;
26
27 /* VFP data registers are always little-endian. */
28 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
29 if (reg < nregs) {
30 stfq_le_p(buf, env->vfp.regs[reg]);
31 return 8;
32 }
33 if (arm_feature(env, ARM_FEATURE_NEON)) {
34 /* Aliases for Q regs. */
35 nregs += 16;
36 if (reg < nregs) {
37 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
38 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
39 return 16;
40 }
41 }
42 switch (reg - nregs) {
43 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
44 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
45 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
46 }
47 return 0;
48}
49
0ecb72a5 50static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
51{
52 int nregs;
53
54 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
55 if (reg < nregs) {
56 env->vfp.regs[reg] = ldfq_le_p(buf);
57 return 8;
58 }
59 if (arm_feature(env, ARM_FEATURE_NEON)) {
60 nregs += 16;
61 if (reg < nregs) {
62 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
63 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
64 return 16;
65 }
66 }
67 switch (reg - nregs) {
68 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
69 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 70 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
71 }
72 return 0;
73}
74
6a669427
PM
75static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
76{
77 switch (reg) {
78 case 0 ... 31:
79 /* 128 bit FP register */
80 stfq_le_p(buf, env->vfp.regs[reg * 2]);
81 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
82 return 16;
83 case 32:
84 /* FPSR */
85 stl_p(buf, vfp_get_fpsr(env));
86 return 4;
87 case 33:
88 /* FPCR */
89 stl_p(buf, vfp_get_fpcr(env));
90 return 4;
91 default:
92 return 0;
93 }
94}
95
96static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
97{
98 switch (reg) {
99 case 0 ... 31:
100 /* 128 bit FP register */
101 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
102 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
103 return 16;
104 case 32:
105 /* FPSR */
106 vfp_set_fpsr(env, ldl_p(buf));
107 return 4;
108 case 33:
109 /* FPCR */
110 vfp_set_fpcr(env, ldl_p(buf));
111 return 4;
112 default:
113 return 0;
114 }
115}
116
c4241c7d 117static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 118{
67ed771d 119 if (cpreg_field_is_64bit(ri)) {
c4241c7d 120 return CPREG_FIELD64(env, ri);
22d9e1a9 121 } else {
c4241c7d 122 return CPREG_FIELD32(env, ri);
22d9e1a9 123 }
d4e6df63
PM
124}
125
c4241c7d
PM
126static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
127 uint64_t value)
d4e6df63 128{
67ed771d 129 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
130 CPREG_FIELD64(env, ri) = value;
131 } else {
132 CPREG_FIELD32(env, ri) = value;
133 }
d4e6df63
PM
134}
135
59a1c327 136static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 137{
59a1c327 138 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 139 if (ri->type & ARM_CP_CONST) {
59a1c327 140 return ri->resetvalue;
721fae12 141 } else if (ri->raw_readfn) {
59a1c327 142 return ri->raw_readfn(env, ri);
721fae12 143 } else if (ri->readfn) {
59a1c327 144 return ri->readfn(env, ri);
721fae12 145 } else {
59a1c327 146 return raw_read(env, ri);
721fae12 147 }
721fae12
PM
148}
149
59a1c327 150static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 151 uint64_t v)
721fae12
PM
152{
153 /* Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
154 * Note that constant registers are treated as write-ignored; the
155 * caller should check for success by whether a readback gives the
156 * value written.
157 */
158 if (ri->type & ARM_CP_CONST) {
59a1c327 159 return;
721fae12 160 } else if (ri->raw_writefn) {
c4241c7d 161 ri->raw_writefn(env, ri, v);
721fae12 162 } else if (ri->writefn) {
c4241c7d 163 ri->writefn(env, ri, v);
721fae12 164 } else {
afb2530f 165 raw_write(env, ri, v);
721fae12 166 }
721fae12
PM
167}
168
169bool write_cpustate_to_list(ARMCPU *cpu)
170{
171 /* Write the coprocessor state from cpu->env to the (index,value) list. */
172 int i;
173 bool ok = true;
174
175 for (i = 0; i < cpu->cpreg_array_len; i++) {
176 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
177 const ARMCPRegInfo *ri;
59a1c327 178
60322b39 179 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
180 if (!ri) {
181 ok = false;
182 continue;
183 }
184 if (ri->type & ARM_CP_NO_MIGRATE) {
185 continue;
186 }
59a1c327 187 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
721fae12
PM
188 }
189 return ok;
190}
191
192bool write_list_to_cpustate(ARMCPU *cpu)
193{
194 int i;
195 bool ok = true;
196
197 for (i = 0; i < cpu->cpreg_array_len; i++) {
198 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
199 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
200 const ARMCPRegInfo *ri;
201
60322b39 202 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
203 if (!ri) {
204 ok = false;
205 continue;
206 }
207 if (ri->type & ARM_CP_NO_MIGRATE) {
208 continue;
209 }
210 /* Write value and confirm it reads back as written
211 * (to catch read-only registers and partially read-only
212 * registers where the incoming migration value doesn't match)
213 */
59a1c327
PM
214 write_raw_cp_reg(&cpu->env, ri, v);
215 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
216 ok = false;
217 }
218 }
219 return ok;
220}
221
222static void add_cpreg_to_list(gpointer key, gpointer opaque)
223{
224 ARMCPU *cpu = opaque;
225 uint64_t regidx;
226 const ARMCPRegInfo *ri;
227
228 regidx = *(uint32_t *)key;
60322b39 229 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
230
231 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
232 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
233 /* The value array need not be initialized at this point */
234 cpu->cpreg_array_len++;
235 }
236}
237
238static void count_cpreg(gpointer key, gpointer opaque)
239{
240 ARMCPU *cpu = opaque;
241 uint64_t regidx;
242 const ARMCPRegInfo *ri;
243
244 regidx = *(uint32_t *)key;
60322b39 245 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
246
247 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
248 cpu->cpreg_array_len++;
249 }
250}
251
252static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
253{
cbf239b7
AR
254 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
255 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
721fae12 256
cbf239b7
AR
257 if (aidx > bidx) {
258 return 1;
259 }
260 if (aidx < bidx) {
261 return -1;
262 }
263 return 0;
721fae12
PM
264}
265
82a3a118
PM
266static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
267{
268 GList **plist = udata;
269
270 *plist = g_list_prepend(*plist, key);
271}
272
721fae12
PM
273void init_cpreg_list(ARMCPU *cpu)
274{
275 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
276 * Note that we require cpreg_tuples[] to be sorted by key ID.
277 */
82a3a118 278 GList *keys = NULL;
721fae12
PM
279 int arraylen;
280
82a3a118
PM
281 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
282
721fae12
PM
283 keys = g_list_sort(keys, cpreg_key_compare);
284
285 cpu->cpreg_array_len = 0;
286
287 g_list_foreach(keys, count_cpreg, cpu);
288
289 arraylen = cpu->cpreg_array_len;
290 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
291 cpu->cpreg_values = g_new(uint64_t, arraylen);
292 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
293 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
294 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
295 cpu->cpreg_array_len = 0;
296
297 g_list_foreach(keys, add_cpreg_to_list, cpu);
298
299 assert(cpu->cpreg_array_len == arraylen);
300
301 g_list_free(keys);
302}
303
c4241c7d 304static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c
PM
305{
306 env->cp15.c3 = value;
307 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
308}
309
c4241c7d 310static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b
PM
311{
312 if (env->cp15.c13_fcse != value) {
313 /* Unlike real hardware the qemu TLB uses virtual addresses,
314 * not modified virtual addresses, so this causes a TLB flush.
315 */
316 tlb_flush(env, 1);
317 env->cp15.c13_fcse = value;
318 }
08de207b 319}
c4241c7d
PM
320
321static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
322 uint64_t value)
08de207b
PM
323{
324 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
325 /* For VMSA (when not using the LPAE long descriptor page table
326 * format) this register includes the ASID, so do a TLB flush.
327 * For PMSA it is purely a process ID and no action is needed.
328 */
329 tlb_flush(env, 1);
330 }
331 env->cp15.c13_context = value;
08de207b
PM
332}
333
c4241c7d
PM
334static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
335 uint64_t value)
d929823f
PM
336{
337 /* Invalidate all (TLBIALL) */
338 tlb_flush(env, 1);
d929823f
PM
339}
340
c4241c7d
PM
341static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
342 uint64_t value)
d929823f
PM
343{
344 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
345 tlb_flush_page(env, value & TARGET_PAGE_MASK);
d929823f
PM
346}
347
c4241c7d
PM
348static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
349 uint64_t value)
d929823f
PM
350{
351 /* Invalidate by ASID (TLBIASID) */
352 tlb_flush(env, value == 0);
d929823f
PM
353}
354
c4241c7d
PM
355static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
356 uint64_t value)
d929823f
PM
357{
358 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
359 tlb_flush_page(env, value & TARGET_PAGE_MASK);
d929823f
PM
360}
361
e9aa6c21
PM
362static const ARMCPRegInfo cp_reginfo[] = {
363 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
364 * version" bits will read as a reserved value, which should cause
365 * Linux to not try to use the debug hardware.
366 */
367 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
368 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
c983fe6c
PM
369 /* MMU Domain access control / MPU write buffer control */
370 { .name = "DACR", .cp = 15,
371 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
372 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
d4e6df63 373 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
08de207b
PM
374 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
375 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
d4e6df63 376 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
08de207b 377 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
a4f0cec6 378 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context),
d4e6df63 379 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
4fdd17dd
PM
380 /* ??? This covers not just the impdef TLB lockdown registers but also
381 * some v7VMSA registers relating to TEX remap, so it is overly broad.
382 */
383 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
384 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
d929823f
PM
385 /* MMU TLB control. Note that the wildcarding means we cover not just
386 * the unified TLB ops but also the dside/iside/inner-shareable variants.
387 */
388 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
d4e6df63
PM
389 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
390 .type = ARM_CP_NO_MIGRATE },
d929823f 391 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
d4e6df63
PM
392 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
393 .type = ARM_CP_NO_MIGRATE },
d929823f 394 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
d4e6df63
PM
395 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
396 .type = ARM_CP_NO_MIGRATE },
d929823f 397 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
d4e6df63
PM
398 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
399 .type = ARM_CP_NO_MIGRATE },
c4804214
PM
400 /* Cache maintenance ops; some of this space may be overridden later. */
401 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
402 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
403 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
404 REGINFO_SENTINEL
405};
406
7d57f408
PM
407static const ARMCPRegInfo not_v6_cp_reginfo[] = {
408 /* Not all pre-v6 cores implemented this WFI, so this is slightly
409 * over-broad.
410 */
411 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
412 .access = PL1_W, .type = ARM_CP_WFI },
413 REGINFO_SENTINEL
414};
415
416static const ARMCPRegInfo not_v7_cp_reginfo[] = {
417 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
418 * is UNPREDICTABLE; we choose to NOP as most implementations do).
419 */
420 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
421 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
422 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
423 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
424 * OMAPCP will override this space.
425 */
426 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
427 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
428 .resetvalue = 0 },
429 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
430 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
431 .resetvalue = 0 },
776d4e5c
PM
432 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
433 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
d4e6df63
PM
434 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
435 .resetvalue = 0 },
7d57f408
PM
436 REGINFO_SENTINEL
437};
438
c4241c7d
PM
439static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
440 uint64_t value)
2771db27
PM
441{
442 if (env->cp15.c1_coproc != value) {
443 env->cp15.c1_coproc = value;
444 /* ??? Is this safe when called from within a TB? */
445 tb_flush(env);
446 }
2771db27
PM
447}
448
7d57f408
PM
449static const ARMCPRegInfo v6_cp_reginfo[] = {
450 /* prefetch by MVA in v6, NOP in v7 */
451 { .name = "MVA_prefetch",
452 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
453 .access = PL1_W, .type = ARM_CP_NOP },
454 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
455 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 456 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 457 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 458 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 459 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31
PM
460 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
461 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
462 .resetvalue = 0, },
463 /* Watchpoint Fault Address Register : should actually only be present
464 * for 1136, 1176, 11MPCore.
465 */
466 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
467 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8
PM
468 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
469 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
2771db27
PM
470 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
471 .resetvalue = 0, .writefn = cpacr_write },
7d57f408
PM
472 REGINFO_SENTINEL
473};
474
fcd25206 475static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
200ac0ef 476{
fcd25206
PM
477 /* Perfomance monitor registers user accessibility is controlled
478 * by PMUSERENR.
200ac0ef
PM
479 */
480 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
fcd25206 481 return CP_ACCESS_TRAP;
200ac0ef 482 }
fcd25206 483 return CP_ACCESS_OK;
200ac0ef
PM
484}
485
7c2cb42b 486#ifndef CONFIG_USER_ONLY
c4241c7d
PM
487static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
488 uint64_t value)
200ac0ef 489{
7c2cb42b
AF
490 /* Don't computer the number of ticks in user mode */
491 uint32_t temp_ticks;
492
493 temp_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
494 get_ticks_per_sec() / 1000000;
495
496 if (env->cp15.c9_pmcr & PMCRE) {
497 /* If the counter is enabled */
498 if (env->cp15.c9_pmcr & PMCRD) {
499 /* Increment once every 64 processor clock cycles */
500 env->cp15.c15_ccnt = (temp_ticks/64) - env->cp15.c15_ccnt;
501 } else {
502 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
503 }
504 }
505
506 if (value & PMCRC) {
507 /* The counter has been reset */
508 env->cp15.c15_ccnt = 0;
509 }
510
200ac0ef
PM
511 /* only the DP, X, D and E bits are writable */
512 env->cp15.c9_pmcr &= ~0x39;
513 env->cp15.c9_pmcr |= (value & 0x39);
7c2cb42b
AF
514
515 if (env->cp15.c9_pmcr & PMCRE) {
516 if (env->cp15.c9_pmcr & PMCRD) {
517 /* Increment once every 64 processor clock cycles */
518 temp_ticks /= 64;
519 }
520 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
521 }
522}
523
524static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
525{
526 uint32_t total_ticks;
527
528 if (!(env->cp15.c9_pmcr & PMCRE)) {
529 /* Counter is disabled, do not change value */
530 return env->cp15.c15_ccnt;
531 }
532
533 total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
534 get_ticks_per_sec() / 1000000;
535
536 if (env->cp15.c9_pmcr & PMCRD) {
537 /* Increment once every 64 processor clock cycles */
538 total_ticks /= 64;
539 }
540 return total_ticks - env->cp15.c15_ccnt;
541}
542
543static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
544 uint64_t value)
545{
546 uint32_t total_ticks;
547
548 if (!(env->cp15.c9_pmcr & PMCRE)) {
549 /* Counter is disabled, set the absolute value */
550 env->cp15.c15_ccnt = value;
551 return;
552 }
553
554 total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
555 get_ticks_per_sec() / 1000000;
556
557 if (env->cp15.c9_pmcr & PMCRD) {
558 /* Increment once every 64 processor clock cycles */
559 total_ticks /= 64;
560 }
561 env->cp15.c15_ccnt = total_ticks - value;
200ac0ef 562}
7c2cb42b 563#endif
200ac0ef 564
c4241c7d 565static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
566 uint64_t value)
567{
200ac0ef
PM
568 value &= (1 << 31);
569 env->cp15.c9_pmcnten |= value;
200ac0ef
PM
570}
571
c4241c7d
PM
572static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
573 uint64_t value)
200ac0ef 574{
200ac0ef
PM
575 value &= (1 << 31);
576 env->cp15.c9_pmcnten &= ~value;
200ac0ef
PM
577}
578
c4241c7d
PM
579static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
580 uint64_t value)
200ac0ef 581{
200ac0ef 582 env->cp15.c9_pmovsr &= ~value;
200ac0ef
PM
583}
584
c4241c7d
PM
585static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
586 uint64_t value)
200ac0ef 587{
200ac0ef 588 env->cp15.c9_pmxevtyper = value & 0xff;
200ac0ef
PM
589}
590
c4241c7d 591static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
592 uint64_t value)
593{
594 env->cp15.c9_pmuserenr = value & 1;
200ac0ef
PM
595}
596
c4241c7d
PM
597static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
598 uint64_t value)
200ac0ef
PM
599{
600 /* We have no event counters so only the C bit can be changed */
601 value &= (1 << 31);
602 env->cp15.c9_pminten |= value;
200ac0ef
PM
603}
604
c4241c7d
PM
605static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
606 uint64_t value)
200ac0ef
PM
607{
608 value &= (1 << 31);
609 env->cp15.c9_pminten &= ~value;
200ac0ef
PM
610}
611
c4241c7d
PM
612static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
613 uint64_t value)
8641136c 614{
a505d7fe
PM
615 /* Note that even though the AArch64 view of this register has bits
616 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
617 * architectural requirements for bits which are RES0 only in some
618 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
619 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
620 */
8641136c 621 env->cp15.c12_vbar = value & ~0x1Ful;
8641136c
NR
622}
623
c4241c7d 624static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c
PM
625{
626 ARMCPU *cpu = arm_env_get_cpu(env);
c4241c7d 627 return cpu->ccsidr[env->cp15.c0_cssel];
776d4e5c
PM
628}
629
c4241c7d
PM
630static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
631 uint64_t value)
776d4e5c
PM
632{
633 env->cp15.c0_cssel = value & 0xf;
776d4e5c
PM
634}
635
e9aa6c21
PM
636static const ARMCPRegInfo v7_cp_reginfo[] = {
637 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
638 * debug components
639 */
640 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
641 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
091fd17c 642 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
e9aa6c21 643 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7d57f408
PM
644 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
645 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
646 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
647 /* Performance monitors are implementation defined in v7,
648 * but with an ARM recommended set of registers, which we
649 * follow (although we don't actually implement any counters)
650 *
651 * Performance registers fall into three categories:
652 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
653 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
654 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
655 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
656 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
657 */
658 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
659 .access = PL0_RW, .resetvalue = 0,
660 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
661 .writefn = pmcntenset_write,
662 .accessfn = pmreg_access,
663 .raw_writefn = raw_write },
200ac0ef
PM
664 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
665 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
666 .accessfn = pmreg_access,
667 .writefn = pmcntenclr_write,
d4e6df63 668 .type = ARM_CP_NO_MIGRATE },
200ac0ef
PM
669 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
670 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
fcd25206
PM
671 .accessfn = pmreg_access,
672 .writefn = pmovsr_write,
673 .raw_writefn = raw_write },
674 /* Unimplemented so WI. */
200ac0ef 675 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
fcd25206 676 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
200ac0ef 677 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
fcd25206 678 * We choose to RAZ/WI.
200ac0ef
PM
679 */
680 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
fcd25206
PM
681 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
682 .accessfn = pmreg_access },
7c2cb42b 683#ifndef CONFIG_USER_ONLY
200ac0ef 684 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
7c2cb42b
AF
685 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
686 .readfn = pmccntr_read, .writefn = pmccntr_write,
fcd25206 687 .accessfn = pmreg_access },
7c2cb42b 688#endif
200ac0ef
PM
689 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
690 .access = PL0_RW,
691 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
fcd25206
PM
692 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
693 .raw_writefn = raw_write },
694 /* Unimplemented, RAZ/WI. */
200ac0ef 695 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
fcd25206
PM
696 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
697 .accessfn = pmreg_access },
200ac0ef
PM
698 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
699 .access = PL0_R | PL1_RW,
700 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
701 .resetvalue = 0,
d4e6df63 702 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef
PM
703 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
704 .access = PL1_RW,
705 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
706 .resetvalue = 0,
d4e6df63 707 .writefn = pmintenset_write, .raw_writefn = raw_write },
200ac0ef 708 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
d4e6df63 709 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
200ac0ef 710 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
d4e6df63 711 .resetvalue = 0, .writefn = pmintenclr_write, },
a505d7fe
PM
712 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
713 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8641136c
NR
714 .access = PL1_RW, .writefn = vbar_write,
715 .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
716 .resetvalue = 0 },
2771db27
PM
717 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
719 .resetvalue = 0, },
7da845b0
PM
720 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
721 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
d4e6df63 722 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
7da845b0
PM
723 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
724 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
776d4e5c
PM
725 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
726 .writefn = csselr_write, .resetvalue = 0 },
727 /* Auxiliary ID register: this actually has an IMPDEF value but for now
728 * just RAZ for all cores:
729 */
730 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
731 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427
PM
732 /* MAIR can just read-as-written because we don't implement caches
733 * and so don't need to care about memory attributes.
734 */
735 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
736 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
737 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1),
738 .resetvalue = 0 },
739 /* For non-long-descriptor page tables these are PRRR and NMRR;
740 * regardless they still act as reads-as-written for QEMU.
741 * The override is necessary because of the overly-broad TLB_LOCKDOWN
742 * definition.
743 */
744 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
745 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
746 .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1),
747 .resetfn = arm_cp_reset_ignore },
748 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
749 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
750 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1),
751 .resetfn = arm_cp_reset_ignore },
e9aa6c21
PM
752 REGINFO_SENTINEL
753};
754
c4241c7d
PM
755static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
756 uint64_t value)
c326b979
PM
757{
758 value &= 1;
759 env->teecr = value;
c326b979
PM
760}
761
c4241c7d 762static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
c326b979 763{
c326b979 764 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
92611c00 765 return CP_ACCESS_TRAP;
c326b979 766 }
92611c00 767 return CP_ACCESS_OK;
c326b979
PM
768}
769
770static const ARMCPRegInfo t2ee_cp_reginfo[] = {
771 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
772 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
773 .resetvalue = 0,
774 .writefn = teecr_write },
775 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
776 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 777 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
778 REGINFO_SENTINEL
779};
780
4d31c596 781static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
782 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
783 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
784 .access = PL0_RW,
785 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
4d31c596
PM
786 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
787 .access = PL0_RW,
e4fe830b
PM
788 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
789 .resetfn = arm_cp_reset_ignore },
790 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
791 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
792 .access = PL0_R|PL1_W,
793 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
4d31c596
PM
794 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
795 .access = PL0_R|PL1_W,
e4fe830b
PM
796 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
797 .resetfn = arm_cp_reset_ignore },
798 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
799 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 800 .access = PL1_RW,
e4fe830b 801 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
4d31c596
PM
802 REGINFO_SENTINEL
803};
804
55d284af
PM
805#ifndef CONFIG_USER_ONLY
806
00108f2d
PM
807static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
808{
809 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
810 if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
811 return CP_ACCESS_TRAP;
812 }
813 return CP_ACCESS_OK;
814}
815
816static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
817{
818 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
819 if (arm_current_pl(env) == 0 &&
820 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
821 return CP_ACCESS_TRAP;
822 }
823 return CP_ACCESS_OK;
824}
825
826static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
827{
828 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
829 * EL0[PV]TEN is zero.
830 */
831 if (arm_current_pl(env) == 0 &&
832 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
833 return CP_ACCESS_TRAP;
834 }
835 return CP_ACCESS_OK;
836}
837
838static CPAccessResult gt_pct_access(CPUARMState *env,
839 const ARMCPRegInfo *ri)
840{
841 return gt_counter_access(env, GTIMER_PHYS);
842}
843
844static CPAccessResult gt_vct_access(CPUARMState *env,
845 const ARMCPRegInfo *ri)
846{
847 return gt_counter_access(env, GTIMER_VIRT);
848}
849
850static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
851{
852 return gt_timer_access(env, GTIMER_PHYS);
853}
854
855static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
856{
857 return gt_timer_access(env, GTIMER_VIRT);
858}
859
55d284af
PM
860static uint64_t gt_get_countervalue(CPUARMState *env)
861{
bc72ad67 862 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
55d284af
PM
863}
864
865static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
866{
867 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
868
869 if (gt->ctl & 1) {
870 /* Timer enabled: calculate and set current ISTATUS, irq, and
871 * reset timer to when ISTATUS next has to change
872 */
873 uint64_t count = gt_get_countervalue(&cpu->env);
874 /* Note that this must be unsigned 64 bit arithmetic: */
875 int istatus = count >= gt->cval;
876 uint64_t nexttick;
877
878 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
879 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
880 (istatus && !(gt->ctl & 2)));
881 if (istatus) {
882 /* Next transition is when count rolls back over to zero */
883 nexttick = UINT64_MAX;
884 } else {
885 /* Next transition is when we hit cval */
886 nexttick = gt->cval;
887 }
888 /* Note that the desired next expiry time might be beyond the
889 * signed-64-bit range of a QEMUTimer -- in this case we just
890 * set the timer for as far in the future as possible. When the
891 * timer expires we will reset the timer for any remaining period.
892 */
893 if (nexttick > INT64_MAX / GTIMER_SCALE) {
894 nexttick = INT64_MAX / GTIMER_SCALE;
895 }
bc72ad67 896 timer_mod(cpu->gt_timer[timeridx], nexttick);
55d284af
PM
897 } else {
898 /* Timer disabled: ISTATUS and timer output always clear */
899 gt->ctl &= ~4;
900 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 901 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
902 }
903}
904
55d284af
PM
905static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
906{
907 ARMCPU *cpu = arm_env_get_cpu(env);
908 int timeridx = ri->opc1 & 1;
909
bc72ad67 910 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
911}
912
c4241c7d 913static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 914{
c4241c7d 915 return gt_get_countervalue(env);
55d284af
PM
916}
917
c4241c7d
PM
918static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
919 uint64_t value)
55d284af
PM
920{
921 int timeridx = ri->opc1 & 1;
922
923 env->cp15.c14_timer[timeridx].cval = value;
924 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af 925}
c4241c7d
PM
926
927static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af
PM
928{
929 int timeridx = ri->crm & 1;
930
c4241c7d
PM
931 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
932 gt_get_countervalue(env));
55d284af
PM
933}
934
c4241c7d
PM
935static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
936 uint64_t value)
55d284af
PM
937{
938 int timeridx = ri->crm & 1;
939
940 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
941 + sextract64(value, 0, 32);
942 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af
PM
943}
944
c4241c7d
PM
945static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
946 uint64_t value)
55d284af
PM
947{
948 ARMCPU *cpu = arm_env_get_cpu(env);
949 int timeridx = ri->crm & 1;
950 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
951
952 env->cp15.c14_timer[timeridx].ctl = value & 3;
953 if ((oldval ^ value) & 1) {
954 /* Enable toggled */
955 gt_recalc_timer(cpu, timeridx);
956 } else if ((oldval & value) & 2) {
957 /* IMASK toggled: don't need to recalculate,
958 * just set the interrupt line based on ISTATUS
959 */
960 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
961 (oldval & 4) && (value & 2));
962 }
55d284af
PM
963}
964
965void arm_gt_ptimer_cb(void *opaque)
966{
967 ARMCPU *cpu = opaque;
968
969 gt_recalc_timer(cpu, GTIMER_PHYS);
970}
971
972void arm_gt_vtimer_cb(void *opaque)
973{
974 ARMCPU *cpu = opaque;
975
976 gt_recalc_timer(cpu, GTIMER_VIRT);
977}
978
979static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
980 /* Note that CNTFRQ is purely reads-as-written for the benefit
981 * of software; writing it doesn't actually change the timer frequency.
982 * Our reset value matches the fixed frequency we implement the timer at.
983 */
984 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
a7adc4b7
PM
985 .type = ARM_CP_NO_MIGRATE,
986 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
987 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
988 .resetfn = arm_cp_reset_ignore,
989 },
990 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
991 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
992 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af
PM
993 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
994 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
55d284af
PM
995 },
996 /* overall control: mostly access permissions */
a7adc4b7
PM
997 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
998 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
999 .access = PL1_RW,
1000 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1001 .resetvalue = 0,
1002 },
1003 /* per-timer control */
1004 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
a7adc4b7
PM
1005 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1006 .accessfn = gt_ptimer_access,
1007 .fieldoffset = offsetoflow32(CPUARMState,
1008 cp15.c14_timer[GTIMER_PHYS].ctl),
1009 .resetfn = arm_cp_reset_ignore,
1010 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1011 },
1012 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1013 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
55d284af 1014 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1015 .accessfn = gt_ptimer_access,
55d284af
PM
1016 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1017 .resetvalue = 0,
00108f2d 1018 .writefn = gt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1019 },
1020 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
a7adc4b7
PM
1021 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1022 .accessfn = gt_vtimer_access,
1023 .fieldoffset = offsetoflow32(CPUARMState,
1024 cp15.c14_timer[GTIMER_VIRT].ctl),
1025 .resetfn = arm_cp_reset_ignore,
1026 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1027 },
1028 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1029 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
55d284af 1030 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1031 .accessfn = gt_vtimer_access,
55d284af
PM
1032 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1033 .resetvalue = 0,
00108f2d 1034 .writefn = gt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1035 },
1036 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1037 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1038 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1039 .accessfn = gt_ptimer_access,
55d284af
PM
1040 .readfn = gt_tval_read, .writefn = gt_tval_write,
1041 },
a7adc4b7
PM
1042 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1043 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1044 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1045 .readfn = gt_tval_read, .writefn = gt_tval_write,
1046 },
55d284af
PM
1047 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1048 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1049 .accessfn = gt_vtimer_access,
55d284af
PM
1050 .readfn = gt_tval_read, .writefn = gt_tval_write,
1051 },
a7adc4b7
PM
1052 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1053 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1054 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1055 .readfn = gt_tval_read, .writefn = gt_tval_write,
1056 },
55d284af
PM
1057 /* The counter itself */
1058 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1059 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
00108f2d 1060 .accessfn = gt_pct_access,
a7adc4b7
PM
1061 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1062 },
1063 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1064 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1065 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1066 .accessfn = gt_pct_access,
55d284af
PM
1067 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1068 },
1069 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1070 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
00108f2d 1071 .accessfn = gt_vct_access,
a7adc4b7
PM
1072 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1073 },
1074 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1075 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1076 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1077 .accessfn = gt_vct_access,
55d284af
PM
1078 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1079 },
1080 /* Comparison value, indicating when the timer goes off */
1081 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1082 .access = PL1_RW | PL0_R,
a7adc4b7 1083 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
55d284af 1084 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
a7adc4b7
PM
1085 .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
1086 .writefn = gt_cval_write, .raw_writefn = raw_write,
1087 },
1088 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1089 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1090 .access = PL1_RW | PL0_R,
1091 .type = ARM_CP_IO,
1092 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1093 .resetvalue = 0, .accessfn = gt_vtimer_access,
00108f2d 1094 .writefn = gt_cval_write, .raw_writefn = raw_write,
55d284af
PM
1095 },
1096 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1097 .access = PL1_RW | PL0_R,
a7adc4b7 1098 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
55d284af 1099 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
a7adc4b7
PM
1100 .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
1101 .writefn = gt_cval_write, .raw_writefn = raw_write,
1102 },
1103 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1104 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1105 .access = PL1_RW | PL0_R,
1106 .type = ARM_CP_IO,
1107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1108 .resetvalue = 0, .accessfn = gt_vtimer_access,
00108f2d 1109 .writefn = gt_cval_write, .raw_writefn = raw_write,
55d284af
PM
1110 },
1111 REGINFO_SENTINEL
1112};
1113
1114#else
1115/* In user-mode none of the generic timer registers are accessible,
bc72ad67 1116 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
55d284af
PM
1117 * so instead just don't register any of them.
1118 */
6cc7a3ae 1119static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
6cc7a3ae
PM
1120 REGINFO_SENTINEL
1121};
1122
55d284af
PM
1123#endif
1124
c4241c7d 1125static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 1126{
891a2fe7
PM
1127 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1128 env->cp15.c7_par = value;
1129 } else if (arm_feature(env, ARM_FEATURE_V7)) {
4a501606
PM
1130 env->cp15.c7_par = value & 0xfffff6ff;
1131 } else {
1132 env->cp15.c7_par = value & 0xfffff1ff;
1133 }
4a501606
PM
1134}
1135
1136#ifndef CONFIG_USER_ONLY
1137/* get_phys_addr() isn't present for user-mode-only targets */
702a9357
PM
1138
1139/* Return true if extended addresses are enabled, ie this is an
1140 * LPAE implementation and we are using the long-descriptor translation
1141 * table format because the TTBCR EAE bit is set.
1142 */
1143static inline bool extended_addresses_enabled(CPUARMState *env)
1144{
1145 return arm_feature(env, ARM_FEATURE_LPAE)
78dbbbe4 1146 && (env->cp15.c2_control & (1U << 31));
702a9357
PM
1147}
1148
92611c00
PM
1149static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1150{
1151 if (ri->opc2 & 4) {
1152 /* Other states are only available with TrustZone; in
1153 * a non-TZ implementation these registers don't exist
1154 * at all, which is an Uncategorized trap. This underdecoding
1155 * is safe because the reginfo is NO_MIGRATE.
1156 */
1157 return CP_ACCESS_TRAP_UNCATEGORIZED;
1158 }
1159 return CP_ACCESS_OK;
1160}
1161
c4241c7d 1162static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 1163{
a8170e5e 1164 hwaddr phys_addr;
4a501606
PM
1165 target_ulong page_size;
1166 int prot;
1167 int ret, is_user = ri->opc2 & 2;
1168 int access_type = ri->opc2 & 1;
1169
4a501606
PM
1170 ret = get_phys_addr(env, value, access_type, is_user,
1171 &phys_addr, &prot, &page_size);
702a9357
PM
1172 if (extended_addresses_enabled(env)) {
1173 /* ret is a DFSR/IFSR value for the long descriptor
1174 * translation table format, but with WnR always clear.
1175 * Convert it to a 64-bit PAR.
1176 */
1177 uint64_t par64 = (1 << 11); /* LPAE bit always set */
1178 if (ret == 0) {
1179 par64 |= phys_addr & ~0xfffULL;
1180 /* We don't set the ATTR or SH fields in the PAR. */
4a501606 1181 } else {
702a9357
PM
1182 par64 |= 1; /* F */
1183 par64 |= (ret & 0x3f) << 1; /* FS */
1184 /* Note that S2WLK and FSTAGE are always zero, because we don't
1185 * implement virtualization and therefore there can't be a stage 2
1186 * fault.
1187 */
4a501606 1188 }
702a9357
PM
1189 env->cp15.c7_par = par64;
1190 env->cp15.c7_par_hi = par64 >> 32;
4a501606 1191 } else {
702a9357
PM
1192 /* ret is a DFSR/IFSR value for the short descriptor
1193 * translation table format (with WnR always clear).
1194 * Convert it to a 32-bit PAR.
1195 */
1196 if (ret == 0) {
1197 /* We do not set any attribute bits in the PAR */
1198 if (page_size == (1 << 24)
1199 && arm_feature(env, ARM_FEATURE_V7)) {
1200 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1201 } else {
1202 env->cp15.c7_par = phys_addr & 0xfffff000;
1203 }
1204 } else {
775fda92
PM
1205 env->cp15.c7_par = ((ret & (1 << 10)) >> 5) |
1206 ((ret & (1 << 12)) >> 6) |
702a9357
PM
1207 ((ret & 0xf) << 1) | 1;
1208 }
1209 env->cp15.c7_par_hi = 0;
4a501606 1210 }
4a501606
PM
1211}
1212#endif
1213
1214static const ARMCPRegInfo vapa_cp_reginfo[] = {
1215 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1216 .access = PL1_RW, .resetvalue = 0,
1217 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
1218 .writefn = par_write },
1219#ifndef CONFIG_USER_ONLY
1220 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00
PM
1221 .access = PL1_W, .accessfn = ats_access,
1222 .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
4a501606
PM
1223#endif
1224 REGINFO_SENTINEL
1225};
1226
18032bec
PM
1227/* Return basic MPU access permission bits. */
1228static uint32_t simple_mpu_ap_bits(uint32_t val)
1229{
1230 uint32_t ret;
1231 uint32_t mask;
1232 int i;
1233 ret = 0;
1234 mask = 3;
1235 for (i = 0; i < 16; i += 2) {
1236 ret |= (val >> i) & mask;
1237 mask <<= 2;
1238 }
1239 return ret;
1240}
1241
1242/* Pad basic MPU access permission bits to extended format. */
1243static uint32_t extended_mpu_ap_bits(uint32_t val)
1244{
1245 uint32_t ret;
1246 uint32_t mask;
1247 int i;
1248 ret = 0;
1249 mask = 3;
1250 for (i = 0; i < 16; i += 2) {
1251 ret |= (val & mask) << i;
1252 mask <<= 2;
1253 }
1254 return ret;
1255}
1256
c4241c7d
PM
1257static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1258 uint64_t value)
18032bec
PM
1259{
1260 env->cp15.c5_data = extended_mpu_ap_bits(value);
18032bec
PM
1261}
1262
c4241c7d 1263static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 1264{
c4241c7d 1265 return simple_mpu_ap_bits(env->cp15.c5_data);
18032bec
PM
1266}
1267
c4241c7d
PM
1268static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1269 uint64_t value)
18032bec
PM
1270{
1271 env->cp15.c5_insn = extended_mpu_ap_bits(value);
18032bec
PM
1272}
1273
c4241c7d 1274static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 1275{
c4241c7d 1276 return simple_mpu_ap_bits(env->cp15.c5_insn);
18032bec
PM
1277}
1278
1279static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1280 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
d4e6df63 1281 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
18032bec
PM
1282 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
1283 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1284 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
d4e6df63 1285 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
18032bec
PM
1286 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
1287 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1288 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1289 .access = PL1_RW,
1290 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1291 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1292 .access = PL1_RW,
1293 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
ecce5c3c
PM
1294 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1295 .access = PL1_RW,
1296 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1297 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1298 .access = PL1_RW,
1299 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 1300 /* Protection region base and size registers */
e508a92b
PM
1301 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1302 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1303 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1304 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1305 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1306 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1307 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1308 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1309 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1310 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1311 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1312 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1313 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1314 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1315 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1316 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1317 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1318 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1319 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1320 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1321 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1322 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1323 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1324 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
1325 REGINFO_SENTINEL
1326};
1327
c4241c7d
PM
1328static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1329 uint64_t value)
ecce5c3c 1330{
2ebcebe2
PM
1331 int maskshift = extract32(value, 0, 3);
1332
74f1c6dd 1333 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
e42c4db3 1334 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
e42c4db3
PM
1335 } else {
1336 value &= 7;
1337 }
1338 /* Note that we always calculate c2_mask and c2_base_mask, but
1339 * they are only used for short-descriptor tables (ie if EAE is 0);
1340 * for long-descriptor tables the TTBCR fields are used differently
1341 * and the c2_mask and c2_base_mask values are meaningless.
1342 */
ecce5c3c 1343 env->cp15.c2_control = value;
2ebcebe2
PM
1344 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1345 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
ecce5c3c
PM
1346}
1347
c4241c7d
PM
1348static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1349 uint64_t value)
d4e6df63
PM
1350{
1351 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1352 /* With LPAE the TTBCR could result in a change of ASID
1353 * via the TTBCR.A1 bit, so do a TLB flush.
1354 */
1355 tlb_flush(env, 1);
1356 }
c4241c7d 1357 vmsa_ttbcr_raw_write(env, ri, value);
d4e6df63
PM
1358}
1359
ecce5c3c
PM
1360static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1361{
1362 env->cp15.c2_base_mask = 0xffffc000u;
1363 env->cp15.c2_control = 0;
1364 env->cp15.c2_mask = 0;
1365}
1366
cb2e37df
PM
1367static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1368 uint64_t value)
1369{
1370 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1371 tlb_flush(env, 1);
1372 env->cp15.c2_control = value;
1373}
1374
327ed10f
PM
1375static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1376 uint64_t value)
1377{
1378 /* 64 bit accesses to the TTBRs can change the ASID and so we
1379 * must flush the TLB.
1380 */
1381 if (cpreg_field_is_64bit(ri)) {
1382 tlb_flush(env, 1);
1383 }
1384 raw_write(env, ri, value);
1385}
1386
18032bec
PM
1387static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1388 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1389 .access = PL1_RW,
1390 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1391 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1392 .access = PL1_RW,
1393 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
327ed10f
PM
1394 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
1395 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1396 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1397 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1398 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
1399 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1400 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1401 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
cb2e37df
PM
1402 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
1403 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1404 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
1405 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
ecce5c3c 1406 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
cb2e37df
PM
1407 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1408 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write,
1409 .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
1410 .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) },
06d76f31
PM
1411 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1412 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
1413 .resetvalue = 0, },
18032bec
PM
1414 REGINFO_SENTINEL
1415};
1416
c4241c7d
PM
1417static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1418 uint64_t value)
1047b9d7
PM
1419{
1420 env->cp15.c15_ticonfig = value & 0xe7;
1421 /* The OS_TYPE bit in this register changes the reported CPUID! */
1422 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1423 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
1424}
1425
c4241c7d
PM
1426static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1427 uint64_t value)
1047b9d7
PM
1428{
1429 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
1430}
1431
c4241c7d
PM
1432static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1433 uint64_t value)
1047b9d7
PM
1434{
1435 /* Wait-for-interrupt (deprecated) */
c3affe56 1436 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1047b9d7
PM
1437}
1438
c4241c7d
PM
1439static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1440 uint64_t value)
c4804214
PM
1441{
1442 /* On OMAP there are registers indicating the max/min index of dcache lines
1443 * containing a dirty line; cache flush operations have to reset these.
1444 */
1445 env->cp15.c15_i_max = 0x000;
1446 env->cp15.c15_i_min = 0xff0;
c4804214
PM
1447}
1448
18032bec
PM
1449static const ARMCPRegInfo omap_cp_reginfo[] = {
1450 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1451 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1452 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1047b9d7
PM
1453 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1454 .access = PL1_RW, .type = ARM_CP_NOP },
1455 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1456 .access = PL1_RW,
1457 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1458 .writefn = omap_ticonfig_write },
1459 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1460 .access = PL1_RW,
1461 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1462 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1463 .access = PL1_RW, .resetvalue = 0xff0,
1464 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1465 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1466 .access = PL1_RW,
1467 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1468 .writefn = omap_threadid_write },
1469 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1470 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
d4e6df63 1471 .type = ARM_CP_NO_MIGRATE,
1047b9d7
PM
1472 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1473 /* TODO: Peripheral port remap register:
1474 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1475 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1476 * when MMU is off.
1477 */
c4804214 1478 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63
PM
1479 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1480 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
c4804214 1481 .writefn = omap_cachemaint_write },
34f90529
PM
1482 { .name = "C9", .cp = 15, .crn = 9,
1483 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1484 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
1485 REGINFO_SENTINEL
1486};
1487
c4241c7d
PM
1488static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1489 uint64_t value)
1047b9d7
PM
1490{
1491 value &= 0x3fff;
1492 if (env->cp15.c15_cpar != value) {
1493 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1494 tb_flush(env);
1495 env->cp15.c15_cpar = value;
1496 }
1047b9d7
PM
1497}
1498
1499static const ARMCPRegInfo xscale_cp_reginfo[] = {
1500 { .name = "XSCALE_CPAR",
1501 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1502 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1503 .writefn = xscale_cpar_write, },
2771db27
PM
1504 { .name = "XSCALE_AUXCR",
1505 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1506 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1507 .resetvalue = 0, },
1047b9d7
PM
1508 REGINFO_SENTINEL
1509};
1510
1511static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1512 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1513 * implementation of this implementation-defined space.
1514 * Ideally this should eventually disappear in favour of actually
1515 * implementing the correct behaviour for all cores.
1516 */
1517 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1518 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87
PC
1519 .access = PL1_RW,
1520 .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
d4e6df63 1521 .resetvalue = 0 },
18032bec
PM
1522 REGINFO_SENTINEL
1523};
1524
c4804214
PM
1525static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1526 /* Cache status: RAZ because we have no cache so it's always clean */
1527 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
d4e6df63
PM
1528 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1529 .resetvalue = 0 },
c4804214
PM
1530 REGINFO_SENTINEL
1531};
1532
1533static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1534 /* We never have a a block transfer operation in progress */
1535 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
d4e6df63
PM
1536 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1537 .resetvalue = 0 },
30b05bba
PM
1538 /* The cache ops themselves: these all NOP for QEMU */
1539 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1540 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1541 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1542 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1543 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1544 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1545 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1546 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1547 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1548 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1549 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1550 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
1551 REGINFO_SENTINEL
1552};
1553
1554static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1555 /* The cache test-and-clean instructions always return (1 << 30)
1556 * to indicate that there are no dirty cache lines.
1557 */
1558 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
d4e6df63
PM
1559 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1560 .resetvalue = (1 << 30) },
c4804214 1561 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
d4e6df63
PM
1562 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1563 .resetvalue = (1 << 30) },
c4804214
PM
1564 REGINFO_SENTINEL
1565};
1566
34f90529
PM
1567static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1568 /* Ignore ReadBuffer accesses */
1569 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1570 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63
PM
1571 .access = PL1_RW, .resetvalue = 0,
1572 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
34f90529
PM
1573 REGINFO_SENTINEL
1574};
1575
c4241c7d 1576static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
81bdde9d 1577{
55e5c285
AF
1578 CPUState *cs = CPU(arm_env_get_cpu(env));
1579 uint32_t mpidr = cs->cpu_index;
4b7fff2f
PM
1580 /* We don't support setting cluster ID ([8..11]) (known as Aff1
1581 * in later ARM ARM versions), or any of the higher affinity level fields,
81bdde9d
PM
1582 * so these bits always RAZ.
1583 */
1584 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 1585 mpidr |= (1U << 31);
81bdde9d
PM
1586 /* Cores which are uniprocessor (non-coherent)
1587 * but still implement the MP extensions set
1588 * bit 30. (For instance, A9UP.) However we do
1589 * not currently model any of those cores.
1590 */
1591 }
c4241c7d 1592 return mpidr;
81bdde9d
PM
1593}
1594
1595static const ARMCPRegInfo mpidr_cp_reginfo[] = {
4b7fff2f
PM
1596 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
1597 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
d4e6df63 1598 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
81bdde9d
PM
1599 REGINFO_SENTINEL
1600};
1601
c4241c7d 1602static uint64_t par64_read(CPUARMState *env, const ARMCPRegInfo *ri)
891a2fe7 1603{
c4241c7d 1604 return ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
891a2fe7
PM
1605}
1606
c4241c7d
PM
1607static void par64_write(CPUARMState *env, const ARMCPRegInfo *ri,
1608 uint64_t value)
891a2fe7
PM
1609{
1610 env->cp15.c7_par_hi = value >> 32;
1611 env->cp15.c7_par = value;
891a2fe7
PM
1612}
1613
1614static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1615{
1616 env->cp15.c7_par_hi = 0;
1617 env->cp15.c7_par = 0;
1618}
1619
7ac681cf 1620static const ARMCPRegInfo lpae_cp_reginfo[] = {
b90372ad 1621 /* NOP AMAIR0/1: the override is because these clash with the rather
7ac681cf
PM
1622 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1623 */
b0fe2427
PM
1624 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
1625 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
7ac681cf
PM
1626 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1627 .resetvalue = 0 },
b0fe2427 1628 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf
PM
1629 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1630 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1631 .resetvalue = 0 },
f9fc619a
PM
1632 /* 64 bit access versions of the (dummy) debug registers */
1633 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1634 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1635 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1636 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
891a2fe7
PM
1637 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1638 .access = PL1_RW, .type = ARM_CP_64BIT,
1639 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1640 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
327ed10f
PM
1641 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1642 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1643 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
891a2fe7 1644 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
327ed10f
PM
1645 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1646 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1647 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
7ac681cf
PM
1648 REGINFO_SENTINEL
1649};
1650
c4241c7d 1651static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 1652{
c4241c7d 1653 return vfp_get_fpcr(env);
b0d2b7d0
PM
1654}
1655
c4241c7d
PM
1656static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1657 uint64_t value)
b0d2b7d0
PM
1658{
1659 vfp_set_fpcr(env, value);
b0d2b7d0
PM
1660}
1661
c4241c7d 1662static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 1663{
c4241c7d 1664 return vfp_get_fpsr(env);
b0d2b7d0
PM
1665}
1666
c4241c7d
PM
1667static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1668 uint64_t value)
b0d2b7d0
PM
1669{
1670 vfp_set_fpsr(env, value);
b0d2b7d0
PM
1671}
1672
8af35c37
PM
1673static CPAccessResult aa64_cacheop_access(CPUARMState *env,
1674 const ARMCPRegInfo *ri)
1675{
1676 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
1677 * SCTLR_EL1.UCI is set.
1678 */
1679 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
1680 return CP_ACCESS_TRAP;
1681 }
1682 return CP_ACCESS_OK;
1683}
1684
168aa23b
PM
1685static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
1686 uint64_t value)
1687{
1688 /* Invalidate by VA (AArch64 version) */
1689 uint64_t pageaddr = value << 12;
1690 tlb_flush_page(env, pageaddr);
1691}
1692
1693static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694 uint64_t value)
1695{
1696 /* Invalidate by VA, all ASIDs (AArch64 version) */
1697 uint64_t pageaddr = value << 12;
1698 tlb_flush_page(env, pageaddr);
1699}
1700
1701static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1702 uint64_t value)
1703{
1704 /* Invalidate by ASID (AArch64 version) */
1705 int asid = extract64(value, 48, 16);
1706 tlb_flush(env, asid == 0);
1707}
1708
b0d2b7d0
PM
1709static const ARMCPRegInfo v8_cp_reginfo[] = {
1710 /* Minimal set of EL0-visible registers. This will need to be expanded
1711 * significantly for system emulation of AArch64 CPUs.
1712 */
1713 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
1714 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
1715 .access = PL0_RW, .type = ARM_CP_NZCV },
1716 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
1717 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
1718 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
1719 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
1720 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
1721 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
1722 /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use.
1723 * For system mode the DZP bit here will need to be computed, not constant.
1724 */
1725 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
1726 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
1727 .access = PL0_R, .type = ARM_CP_CONST,
1728 .resetvalue = 0x10 },
0eef9d98
PM
1729 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
1730 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
1731 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
1732 /* Cache ops: all NOPs since we don't emulate caches */
1733 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
1734 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
1735 .access = PL1_W, .type = ARM_CP_NOP },
1736 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
1737 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
1738 .access = PL1_W, .type = ARM_CP_NOP },
1739 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
1740 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
1741 .access = PL0_W, .type = ARM_CP_NOP,
1742 .accessfn = aa64_cacheop_access },
1743 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
1744 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
1745 .access = PL1_W, .type = ARM_CP_NOP },
1746 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
1747 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
1748 .access = PL1_W, .type = ARM_CP_NOP },
1749 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
1750 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
1751 .access = PL0_W, .type = ARM_CP_NOP,
1752 .accessfn = aa64_cacheop_access },
1753 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
1754 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
1755 .access = PL1_W, .type = ARM_CP_NOP },
1756 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
1757 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
1758 .access = PL0_W, .type = ARM_CP_NOP,
1759 .accessfn = aa64_cacheop_access },
1760 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
1761 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
1762 .access = PL0_W, .type = ARM_CP_NOP,
1763 .accessfn = aa64_cacheop_access },
1764 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
1765 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
1766 .access = PL1_W, .type = ARM_CP_NOP },
168aa23b
PM
1767 /* TLBI operations */
1768 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
1769 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1770 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1771 .writefn = tlbiall_write },
1772 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
1773 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1774 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1775 .writefn = tlbi_aa64_va_write },
1776 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
1777 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1778 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1779 .writefn = tlbi_aa64_asid_write },
1780 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
1781 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1782 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1783 .writefn = tlbi_aa64_vaa_write },
1784 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
1785 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 5,
1786 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1787 .writefn = tlbi_aa64_va_write },
1788 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
1789 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 7,
1790 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1791 .writefn = tlbi_aa64_vaa_write },
1792 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
1793 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1794 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1795 .writefn = tlbiall_write },
1796 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
1797 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1798 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1799 .writefn = tlbi_aa64_va_write },
1800 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
1801 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1802 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1803 .writefn = tlbi_aa64_asid_write },
1804 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
1805 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1806 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1807 .writefn = tlbi_aa64_vaa_write },
1808 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
1809 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 5,
1810 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1811 .writefn = tlbi_aa64_va_write },
1812 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
1813 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 7,
1814 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1815 .writefn = tlbi_aa64_vaa_write },
91e24069
PM
1816 /* Dummy implementation of monitor debug system control register:
1817 * we don't support debug.
1818 */
1819 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64,
1820 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
1821 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
cd5c11b8
PM
1822 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
1823 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64,
1824 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1825 .access = PL1_W, .type = ARM_CP_NOP },
b0d2b7d0
PM
1826 REGINFO_SENTINEL
1827};
1828
c4241c7d
PM
1829static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1830 uint64_t value)
2771db27
PM
1831{
1832 env->cp15.c1_sys = value;
1833 /* ??? Lots of these bits are not implemented. */
1834 /* This may enable/disable the MMU, so do a TLB flush. */
1835 tlb_flush(env, 1);
2771db27
PM
1836}
1837
7da845b0
PM
1838static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
1839{
1840 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
1841 * but the AArch32 CTR has its own reginfo struct)
1842 */
1843 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
1844 return CP_ACCESS_TRAP;
1845 }
1846 return CP_ACCESS_OK;
1847}
1848
0b45451e
PM
1849static void define_aarch64_debug_regs(ARMCPU *cpu)
1850{
1851 /* Define breakpoint and watchpoint registers. These do nothing
1852 * but read as written, for now.
1853 */
1854 int i;
1855
1856 for (i = 0; i < 16; i++) {
1857 ARMCPRegInfo dbgregs[] = {
1858 { .name = "DBGBVR", .state = ARM_CP_STATE_AA64,
1859 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1860 .access = PL1_RW,
1861 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) },
1862 { .name = "DBGBCR", .state = ARM_CP_STATE_AA64,
1863 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1864 .access = PL1_RW,
1865 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) },
1866 { .name = "DBGWVR", .state = ARM_CP_STATE_AA64,
1867 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1868 .access = PL1_RW,
1869 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) },
1870 { .name = "DBGWCR", .state = ARM_CP_STATE_AA64,
1871 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1872 .access = PL1_RW,
1873 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) },
1874 REGINFO_SENTINEL
1875 };
1876 define_arm_cp_regs(cpu, dbgregs);
1877 }
1878}
1879
2ceb98c0
PM
1880void register_cp_regs_for_features(ARMCPU *cpu)
1881{
1882 /* Register all the coprocessor registers based on feature bits */
1883 CPUARMState *env = &cpu->env;
1884 if (arm_feature(env, ARM_FEATURE_M)) {
1885 /* M profile has no coprocessor registers */
1886 return;
1887 }
1888
e9aa6c21 1889 define_arm_cp_regs(cpu, cp_reginfo);
7d57f408 1890 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
1891 /* The ID registers all have impdef reset values */
1892 ARMCPRegInfo v6_idregs[] = {
1893 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1894 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1895 .resetvalue = cpu->id_pfr0 },
1896 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1897 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1898 .resetvalue = cpu->id_pfr1 },
1899 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1900 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1901 .resetvalue = cpu->id_dfr0 },
1902 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1903 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1904 .resetvalue = cpu->id_afr0 },
1905 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1906 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1907 .resetvalue = cpu->id_mmfr0 },
1908 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1909 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1910 .resetvalue = cpu->id_mmfr1 },
1911 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1912 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1913 .resetvalue = cpu->id_mmfr2 },
1914 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1915 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1916 .resetvalue = cpu->id_mmfr3 },
1917 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1918 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1919 .resetvalue = cpu->id_isar0 },
1920 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1921 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1922 .resetvalue = cpu->id_isar1 },
1923 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1924 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1925 .resetvalue = cpu->id_isar2 },
1926 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1927 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1928 .resetvalue = cpu->id_isar3 },
1929 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1930 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1931 .resetvalue = cpu->id_isar4 },
1932 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1933 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1934 .resetvalue = cpu->id_isar5 },
1935 /* 6..7 are as yet unallocated and must RAZ */
1936 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1937 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1938 .resetvalue = 0 },
1939 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1940 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1941 .resetvalue = 0 },
1942 REGINFO_SENTINEL
1943 };
1944 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
1945 define_arm_cp_regs(cpu, v6_cp_reginfo);
1946 } else {
1947 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1948 }
4d31c596
PM
1949 if (arm_feature(env, ARM_FEATURE_V6K)) {
1950 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1951 }
e9aa6c21 1952 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef 1953 /* v7 performance monitor control register: same implementor
7c2cb42b
AF
1954 * field as main ID register, and we implement only the cycle
1955 * count register.
200ac0ef 1956 */
7c2cb42b 1957#ifndef CONFIG_USER_ONLY
200ac0ef
PM
1958 ARMCPRegInfo pmcr = {
1959 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1960 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1961 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
fcd25206
PM
1962 .accessfn = pmreg_access, .writefn = pmcr_write,
1963 .raw_writefn = raw_write,
200ac0ef 1964 };
7c2cb42b
AF
1965 define_one_arm_cp_reg(cpu, &pmcr);
1966#endif
776d4e5c 1967 ARMCPRegInfo clidr = {
7da845b0
PM
1968 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
1969 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
776d4e5c
PM
1970 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1971 };
776d4e5c 1972 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 1973 define_arm_cp_regs(cpu, v7_cp_reginfo);
7d57f408
PM
1974 } else {
1975 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 1976 }
b0d2b7d0 1977 if (arm_feature(env, ARM_FEATURE_V8)) {
e60cef86
PM
1978 /* AArch64 ID registers, which all have impdef reset values */
1979 ARMCPRegInfo v8_idregs[] = {
1980 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
1981 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
1982 .access = PL1_R, .type = ARM_CP_CONST,
1983 .resetvalue = cpu->id_aa64pfr0 },
1984 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
1985 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
1986 .access = PL1_R, .type = ARM_CP_CONST,
1987 .resetvalue = cpu->id_aa64pfr1},
1988 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
1989 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
1990 .access = PL1_R, .type = ARM_CP_CONST,
1991 .resetvalue = cpu->id_aa64dfr0 },
1992 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
1993 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
1994 .access = PL1_R, .type = ARM_CP_CONST,
1995 .resetvalue = cpu->id_aa64dfr1 },
1996 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
1997 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
1998 .access = PL1_R, .type = ARM_CP_CONST,
1999 .resetvalue = cpu->id_aa64afr0 },
2000 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
2001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
2002 .access = PL1_R, .type = ARM_CP_CONST,
2003 .resetvalue = cpu->id_aa64afr1 },
2004 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
2005 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
2006 .access = PL1_R, .type = ARM_CP_CONST,
2007 .resetvalue = cpu->id_aa64isar0 },
2008 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
2009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
2010 .access = PL1_R, .type = ARM_CP_CONST,
2011 .resetvalue = cpu->id_aa64isar1 },
2012 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
2013 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
2014 .access = PL1_R, .type = ARM_CP_CONST,
2015 .resetvalue = cpu->id_aa64mmfr0 },
2016 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
2017 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
2018 .access = PL1_R, .type = ARM_CP_CONST,
2019 .resetvalue = cpu->id_aa64mmfr1 },
2020 REGINFO_SENTINEL
2021 };
2022 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0 2023 define_arm_cp_regs(cpu, v8_cp_reginfo);
0b45451e 2024 define_aarch64_debug_regs(cpu);
b0d2b7d0 2025 }
18032bec
PM
2026 if (arm_feature(env, ARM_FEATURE_MPU)) {
2027 /* These are the MPU registers prior to PMSAv6. Any new
2028 * PMSA core later than the ARM946 will require that we
2029 * implement the PMSAv6 or PMSAv7 registers, which are
2030 * completely different.
2031 */
2032 assert(!arm_feature(env, ARM_FEATURE_V6));
2033 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
2034 } else {
2035 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
2036 }
c326b979
PM
2037 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
2038 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
2039 }
6cc7a3ae
PM
2040 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
2041 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
2042 }
4a501606
PM
2043 if (arm_feature(env, ARM_FEATURE_VAPA)) {
2044 define_arm_cp_regs(cpu, vapa_cp_reginfo);
2045 }
c4804214
PM
2046 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
2047 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
2048 }
2049 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
2050 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
2051 }
2052 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
2053 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
2054 }
18032bec
PM
2055 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2056 define_arm_cp_regs(cpu, omap_cp_reginfo);
2057 }
34f90529
PM
2058 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
2059 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
2060 }
1047b9d7
PM
2061 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2062 define_arm_cp_regs(cpu, xscale_cp_reginfo);
2063 }
2064 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
2065 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
2066 }
7ac681cf
PM
2067 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2068 define_arm_cp_regs(cpu, lpae_cp_reginfo);
2069 }
7884849c
PM
2070 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
2071 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
2072 * be read-only (ie write causes UNDEF exception).
2073 */
2074 {
2075 ARMCPRegInfo id_cp_reginfo[] = {
2076 /* Note that the MIDR isn't a simple constant register because
2077 * of the TI925 behaviour where writes to another register can
2078 * cause the MIDR value to change.
97ce8d61
PC
2079 *
2080 * Unimplemented registers in the c15 0 0 0 space default to
2081 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
2082 * and friends override accordingly.
7884849c
PM
2083 */
2084 { .name = "MIDR",
97ce8d61 2085 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 2086 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 2087 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
97ce8d61
PC
2088 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
2089 .type = ARM_CP_OVERRIDE },
cd4da631
PM
2090 { .name = "MIDR_EL1", .state = ARM_CP_STATE_AA64,
2091 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 0, .crm = 0,
2092 .access = PL1_R, .resetvalue = cpu->midr, .type = ARM_CP_CONST },
7884849c
PM
2093 { .name = "CTR",
2094 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
2095 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7da845b0
PM
2096 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
2097 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
2098 .access = PL0_R, .accessfn = ctr_el0_access,
2099 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7884849c
PM
2100 { .name = "TCMTR",
2101 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
2102 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2103 { .name = "TLBTR",
2104 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
2105 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2106 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
2107 { .name = "DUMMY",
2108 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
2109 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2110 { .name = "DUMMY",
2111 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
2112 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2113 { .name = "DUMMY",
2114 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
2115 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2116 { .name = "DUMMY",
2117 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
2118 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2119 { .name = "DUMMY",
2120 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
2121 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2122 REGINFO_SENTINEL
2123 };
2124 ARMCPRegInfo crn0_wi_reginfo = {
2125 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
2126 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
2127 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
2128 };
2129 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
2130 arm_feature(env, ARM_FEATURE_STRONGARM)) {
2131 ARMCPRegInfo *r;
2132 /* Register the blanket "writes ignored" value first to cover the
a703eda1
PC
2133 * whole space. Then update the specific ID registers to allow write
2134 * access, so that they ignore writes rather than causing them to
2135 * UNDEF.
7884849c
PM
2136 */
2137 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
2138 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
2139 r->access = PL1_RW;
7884849c 2140 }
7884849c 2141 }
a703eda1 2142 define_arm_cp_regs(cpu, id_cp_reginfo);
7884849c
PM
2143 }
2144
97ce8d61
PC
2145 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
2146 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
2147 }
2148
2771db27
PM
2149 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
2150 ARMCPRegInfo auxcr = {
2151 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
2152 .access = PL1_RW, .type = ARM_CP_CONST,
2153 .resetvalue = cpu->reset_auxcr
2154 };
2155 define_one_arm_cp_reg(cpu, &auxcr);
2156 }
2157
d8ba780b
PC
2158 if (arm_feature(env, ARM_FEATURE_CBAR)) {
2159 ARMCPRegInfo cbar = {
2160 .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
2161 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
2162 .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)
2163 };
2164 define_one_arm_cp_reg(cpu, &cbar);
2165 }
2166
2771db27
PM
2167 /* Generic registers whose values depend on the implementation */
2168 {
2169 ARMCPRegInfo sctlr = {
5ebafdf3
PM
2170 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
2171 .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2771db27 2172 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
d4e6df63
PM
2173 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
2174 .raw_writefn = raw_write,
2771db27
PM
2175 };
2176 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2177 /* Normally we would always end the TB on an SCTLR write, but Linux
2178 * arch/arm/mach-pxa/sleep.S expects two instructions following
2179 * an MMU enable to execute from cache. Imitate this behaviour.
2180 */
2181 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
2182 }
2183 define_one_arm_cp_reg(cpu, &sctlr);
2184 }
2ceb98c0
PM
2185}
2186
778c3a06 2187ARMCPU *cpu_arm_init(const char *cpu_model)
40f137e1 2188{
9262685b 2189 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
14969266
AF
2190}
2191
2192void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
2193{
22169d41 2194 CPUState *cs = CPU(cpu);
14969266
AF
2195 CPUARMState *env = &cpu->env;
2196
6a669427
PM
2197 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2198 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
2199 aarch64_fpu_gdb_set_reg,
2200 34, "aarch64-fpu.xml", 0);
2201 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
22169d41 2202 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
2203 51, "arm-neon.xml", 0);
2204 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
22169d41 2205 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
2206 35, "arm-vfp3.xml", 0);
2207 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
22169d41 2208 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
2209 19, "arm-vfp.xml", 0);
2210 }
40f137e1
PB
2211}
2212
777dc784
PM
2213/* Sort alphabetically by type name, except for "any". */
2214static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 2215{
777dc784
PM
2216 ObjectClass *class_a = (ObjectClass *)a;
2217 ObjectClass *class_b = (ObjectClass *)b;
2218 const char *name_a, *name_b;
5adb4839 2219
777dc784
PM
2220 name_a = object_class_get_name(class_a);
2221 name_b = object_class_get_name(class_b);
51492fd1 2222 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 2223 return 1;
51492fd1 2224 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
2225 return -1;
2226 } else {
2227 return strcmp(name_a, name_b);
5adb4839
PB
2228 }
2229}
2230
777dc784 2231static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 2232{
777dc784 2233 ObjectClass *oc = data;
92a31361 2234 CPUListState *s = user_data;
51492fd1
AF
2235 const char *typename;
2236 char *name;
3371d272 2237
51492fd1
AF
2238 typename = object_class_get_name(oc);
2239 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
777dc784 2240 (*s->cpu_fprintf)(s->file, " %s\n",
51492fd1
AF
2241 name);
2242 g_free(name);
777dc784
PM
2243}
2244
2245void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
2246{
92a31361 2247 CPUListState s = {
777dc784
PM
2248 .file = f,
2249 .cpu_fprintf = cpu_fprintf,
2250 };
2251 GSList *list;
2252
2253 list = object_class_get_list(TYPE_ARM_CPU, false);
2254 list = g_slist_sort(list, arm_cpu_list_compare);
2255 (*cpu_fprintf)(f, "Available CPUs:\n");
2256 g_slist_foreach(list, arm_cpu_list_entry, &s);
2257 g_slist_free(list);
a96c0514
PM
2258#ifdef CONFIG_KVM
2259 /* The 'host' CPU type is dynamically registered only if KVM is
2260 * enabled, so we have to special-case it here:
2261 */
2262 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
2263#endif
40f137e1
PB
2264}
2265
78027bb6
CR
2266static void arm_cpu_add_definition(gpointer data, gpointer user_data)
2267{
2268 ObjectClass *oc = data;
2269 CpuDefinitionInfoList **cpu_list = user_data;
2270 CpuDefinitionInfoList *entry;
2271 CpuDefinitionInfo *info;
2272 const char *typename;
2273
2274 typename = object_class_get_name(oc);
2275 info = g_malloc0(sizeof(*info));
2276 info->name = g_strndup(typename,
2277 strlen(typename) - strlen("-" TYPE_ARM_CPU));
2278
2279 entry = g_malloc0(sizeof(*entry));
2280 entry->value = info;
2281 entry->next = *cpu_list;
2282 *cpu_list = entry;
2283}
2284
2285CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
2286{
2287 CpuDefinitionInfoList *cpu_list = NULL;
2288 GSList *list;
2289
2290 list = object_class_get_list(TYPE_ARM_CPU, false);
2291 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
2292 g_slist_free(list);
2293
2294 return cpu_list;
2295}
2296
6e6efd61 2297static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
f5a0a5a5
PM
2298 void *opaque, int state,
2299 int crm, int opc1, int opc2)
6e6efd61
PM
2300{
2301 /* Private utility function for define_one_arm_cp_reg_with_opaque():
2302 * add a single reginfo struct to the hash table.
2303 */
2304 uint32_t *key = g_new(uint32_t, 1);
2305 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
2306 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
f5a0a5a5
PM
2307 if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
2308 /* The AArch32 view of a shared register sees the lower 32 bits
2309 * of a 64 bit backing field. It is not migratable as the AArch64
2310 * view handles that. AArch64 also handles reset.
2311 * We assume it is a cp15 register.
2312 */
2313 r2->cp = 15;
2314 r2->type |= ARM_CP_NO_MIGRATE;
2315 r2->resetfn = arm_cp_reset_ignore;
2316#ifdef HOST_WORDS_BIGENDIAN
2317 if (r2->fieldoffset) {
2318 r2->fieldoffset += sizeof(uint32_t);
2319 }
2320#endif
2321 }
2322 if (state == ARM_CP_STATE_AA64) {
2323 /* To allow abbreviation of ARMCPRegInfo
2324 * definitions, we treat cp == 0 as equivalent to
2325 * the value for "standard guest-visible sysreg".
2326 */
2327 if (r->cp == 0) {
2328 r2->cp = CP_REG_ARM64_SYSREG_CP;
2329 }
2330 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
2331 r2->opc0, opc1, opc2);
2332 } else {
2333 *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
2334 }
6e6efd61
PM
2335 if (opaque) {
2336 r2->opaque = opaque;
2337 }
67ed771d
PM
2338 /* reginfo passed to helpers is correct for the actual access,
2339 * and is never ARM_CP_STATE_BOTH:
2340 */
2341 r2->state = state;
6e6efd61
PM
2342 /* Make sure reginfo passed to helpers for wildcarded regs
2343 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
2344 */
2345 r2->crm = crm;
2346 r2->opc1 = opc1;
2347 r2->opc2 = opc2;
2348 /* By convention, for wildcarded registers only the first
2349 * entry is used for migration; the others are marked as
2350 * NO_MIGRATE so we don't try to transfer the register
2351 * multiple times. Special registers (ie NOP/WFI) are
2352 * never migratable.
2353 */
2354 if ((r->type & ARM_CP_SPECIAL) ||
2355 ((r->crm == CP_ANY) && crm != 0) ||
2356 ((r->opc1 == CP_ANY) && opc1 != 0) ||
2357 ((r->opc2 == CP_ANY) && opc2 != 0)) {
2358 r2->type |= ARM_CP_NO_MIGRATE;
2359 }
2360
2361 /* Overriding of an existing definition must be explicitly
2362 * requested.
2363 */
2364 if (!(r->type & ARM_CP_OVERRIDE)) {
2365 ARMCPRegInfo *oldreg;
2366 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
2367 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
2368 fprintf(stderr, "Register redefined: cp=%d %d bit "
2369 "crn=%d crm=%d opc1=%d opc2=%d, "
2370 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
2371 r2->crn, r2->crm, r2->opc1, r2->opc2,
2372 oldreg->name, r2->name);
2373 g_assert_not_reached();
2374 }
2375 }
2376 g_hash_table_insert(cpu->cp_regs, key, r2);
2377}
2378
2379
4b6a83fb
PM
2380void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2381 const ARMCPRegInfo *r, void *opaque)
2382{
2383 /* Define implementations of coprocessor registers.
2384 * We store these in a hashtable because typically
2385 * there are less than 150 registers in a space which
2386 * is 16*16*16*8*8 = 262144 in size.
2387 * Wildcarding is supported for the crm, opc1 and opc2 fields.
2388 * If a register is defined twice then the second definition is
2389 * used, so this can be used to define some generic registers and
2390 * then override them with implementation specific variations.
2391 * At least one of the original and the second definition should
2392 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
2393 * against accidental use.
f5a0a5a5
PM
2394 *
2395 * The state field defines whether the register is to be
2396 * visible in the AArch32 or AArch64 execution state. If the
2397 * state is set to ARM_CP_STATE_BOTH then we synthesise a
2398 * reginfo structure for the AArch32 view, which sees the lower
2399 * 32 bits of the 64 bit register.
2400 *
2401 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
2402 * be wildcarded. AArch64 registers are always considered to be 64
2403 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
2404 * the register, if any.
4b6a83fb 2405 */
f5a0a5a5 2406 int crm, opc1, opc2, state;
4b6a83fb
PM
2407 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
2408 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
2409 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
2410 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
2411 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
2412 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
2413 /* 64 bit registers have only CRm and Opc1 fields */
2414 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
2415 /* op0 only exists in the AArch64 encodings */
2416 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
2417 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
2418 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
2419 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
2420 * encodes a minimum access level for the register. We roll this
2421 * runtime check into our general permission check code, so check
2422 * here that the reginfo's specified permissions are strict enough
2423 * to encompass the generic architectural permission check.
2424 */
2425 if (r->state != ARM_CP_STATE_AA32) {
2426 int mask = 0;
2427 switch (r->opc1) {
2428 case 0: case 1: case 2:
2429 /* min_EL EL1 */
2430 mask = PL1_RW;
2431 break;
2432 case 3:
2433 /* min_EL EL0 */
2434 mask = PL0_RW;
2435 break;
2436 case 4:
2437 /* min_EL EL2 */
2438 mask = PL2_RW;
2439 break;
2440 case 5:
2441 /* unallocated encoding, so not possible */
2442 assert(false);
2443 break;
2444 case 6:
2445 /* min_EL EL3 */
2446 mask = PL3_RW;
2447 break;
2448 case 7:
2449 /* min_EL EL1, secure mode only (we don't check the latter) */
2450 mask = PL1_RW;
2451 break;
2452 default:
2453 /* broken reginfo with out-of-range opc1 */
2454 assert(false);
2455 break;
2456 }
2457 /* assert our permissions are not too lax (stricter is fine) */
2458 assert((r->access & ~mask) == 0);
2459 }
2460
4b6a83fb
PM
2461 /* Check that the register definition has enough info to handle
2462 * reads and writes if they are permitted.
2463 */
2464 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
2465 if (r->access & PL3_R) {
2466 assert(r->fieldoffset || r->readfn);
2467 }
2468 if (r->access & PL3_W) {
2469 assert(r->fieldoffset || r->writefn);
2470 }
2471 }
2472 /* Bad type field probably means missing sentinel at end of reg list */
2473 assert(cptype_valid(r->type));
2474 for (crm = crmmin; crm <= crmmax; crm++) {
2475 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
2476 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
2477 for (state = ARM_CP_STATE_AA32;
2478 state <= ARM_CP_STATE_AA64; state++) {
2479 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
2480 continue;
2481 }
2482 add_cpreg_to_hashtable(cpu, r, opaque, state,
2483 crm, opc1, opc2);
2484 }
4b6a83fb
PM
2485 }
2486 }
2487 }
2488}
2489
2490void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2491 const ARMCPRegInfo *regs, void *opaque)
2492{
2493 /* Define a whole list of registers */
2494 const ARMCPRegInfo *r;
2495 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
2496 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
2497 }
2498}
2499
60322b39 2500const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 2501{
60322b39 2502 return g_hash_table_lookup(cpregs, &encoded_cp);
4b6a83fb
PM
2503}
2504
c4241c7d
PM
2505void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2506 uint64_t value)
4b6a83fb
PM
2507{
2508 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
2509}
2510
c4241c7d 2511uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
2512{
2513 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
2514 return 0;
2515}
2516
f5a0a5a5
PM
2517void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
2518{
2519 /* Helper coprocessor reset function for do-nothing-on-reset registers */
2520}
2521
0ecb72a5 2522static int bad_mode_switch(CPUARMState *env, int mode)
37064a8b
PM
2523{
2524 /* Return true if it is not valid for us to switch to
2525 * this CPU mode (ie all the UNPREDICTABLE cases in
2526 * the ARM ARM CPSRWriteByInstr pseudocode).
2527 */
2528 switch (mode) {
2529 case ARM_CPU_MODE_USR:
2530 case ARM_CPU_MODE_SYS:
2531 case ARM_CPU_MODE_SVC:
2532 case ARM_CPU_MODE_ABT:
2533 case ARM_CPU_MODE_UND:
2534 case ARM_CPU_MODE_IRQ:
2535 case ARM_CPU_MODE_FIQ:
2536 return 0;
2537 default:
2538 return 1;
2539 }
2540}
2541
2f4a40e5
AZ
2542uint32_t cpsr_read(CPUARMState *env)
2543{
2544 int ZF;
6fbe23d5
PB
2545 ZF = (env->ZF == 0);
2546 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
2547 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
2548 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
2549 | ((env->condexec_bits & 0xfc) << 8)
af519934 2550 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
2551}
2552
2553void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
2554{
2f4a40e5 2555 if (mask & CPSR_NZCV) {
6fbe23d5
PB
2556 env->ZF = (~val) & CPSR_Z;
2557 env->NF = val;
2f4a40e5
AZ
2558 env->CF = (val >> 29) & 1;
2559 env->VF = (val << 3) & 0x80000000;
2560 }
2561 if (mask & CPSR_Q)
2562 env->QF = ((val & CPSR_Q) != 0);
2563 if (mask & CPSR_T)
2564 env->thumb = ((val & CPSR_T) != 0);
2565 if (mask & CPSR_IT_0_1) {
2566 env->condexec_bits &= ~3;
2567 env->condexec_bits |= (val >> 25) & 3;
2568 }
2569 if (mask & CPSR_IT_2_7) {
2570 env->condexec_bits &= 3;
2571 env->condexec_bits |= (val >> 8) & 0xfc;
2572 }
2573 if (mask & CPSR_GE) {
2574 env->GE = (val >> 16) & 0xf;
2575 }
2576
4cc35614
PM
2577 env->daif &= ~(CPSR_AIF & mask);
2578 env->daif |= val & CPSR_AIF & mask;
2579
2f4a40e5 2580 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
37064a8b
PM
2581 if (bad_mode_switch(env, val & CPSR_M)) {
2582 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2583 * We choose to ignore the attempt and leave the CPSR M field
2584 * untouched.
2585 */
2586 mask &= ~CPSR_M;
2587 } else {
2588 switch_mode(env, val & CPSR_M);
2589 }
2f4a40e5
AZ
2590 }
2591 mask &= ~CACHED_CPSR_BITS;
2592 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
2593}
2594
b26eefb6
PB
2595/* Sign/zero extend */
2596uint32_t HELPER(sxtb16)(uint32_t x)
2597{
2598 uint32_t res;
2599 res = (uint16_t)(int8_t)x;
2600 res |= (uint32_t)(int8_t)(x >> 16) << 16;
2601 return res;
2602}
2603
2604uint32_t HELPER(uxtb16)(uint32_t x)
2605{
2606 uint32_t res;
2607 res = (uint16_t)(uint8_t)x;
2608 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
2609 return res;
2610}
2611
f51bbbfe
PB
2612uint32_t HELPER(clz)(uint32_t x)
2613{
7bbcb0af 2614 return clz32(x);
f51bbbfe
PB
2615}
2616
3670669c
PB
2617int32_t HELPER(sdiv)(int32_t num, int32_t den)
2618{
2619 if (den == 0)
2620 return 0;
686eeb93
AJ
2621 if (num == INT_MIN && den == -1)
2622 return INT_MIN;
3670669c
PB
2623 return num / den;
2624}
2625
2626uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
2627{
2628 if (den == 0)
2629 return 0;
2630 return num / den;
2631}
2632
2633uint32_t HELPER(rbit)(uint32_t x)
2634{
2635 x = ((x & 0xff000000) >> 24)
2636 | ((x & 0x00ff0000) >> 8)
2637 | ((x & 0x0000ff00) << 8)
2638 | ((x & 0x000000ff) << 24);
2639 x = ((x & 0xf0f0f0f0) >> 4)
2640 | ((x & 0x0f0f0f0f) << 4);
2641 x = ((x & 0x88888888) >> 3)
2642 | ((x & 0x44444444) >> 1)
2643 | ((x & 0x22222222) << 1)
2644 | ((x & 0x11111111) << 3);
2645 return x;
2646}
2647
5fafdf24 2648#if defined(CONFIG_USER_ONLY)
b5ff1b31 2649
97a8ea5a 2650void arm_cpu_do_interrupt(CPUState *cs)
b5ff1b31 2651{
97a8ea5a
AF
2652 ARMCPU *cpu = ARM_CPU(cs);
2653 CPUARMState *env = &cpu->env;
2654
b5ff1b31
FB
2655 env->exception_index = -1;
2656}
2657
7510454e
AF
2658int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
2659 int mmu_idx)
b5ff1b31 2660{
7510454e
AF
2661 ARMCPU *cpu = ARM_CPU(cs);
2662 CPUARMState *env = &cpu->env;
2663
b5ff1b31
FB
2664 if (rw == 2) {
2665 env->exception_index = EXCP_PREFETCH_ABORT;
2666 env->cp15.c6_insn = address;
2667 } else {
2668 env->exception_index = EXCP_DATA_ABORT;
2669 env->cp15.c6_data = address;
2670 }
2671 return 1;
2672}
2673
9ee6e8bb 2674/* These should probably raise undefined insn exceptions. */
0ecb72a5 2675void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
2676{
2677 cpu_abort(env, "v7m_mrs %d\n", reg);
2678}
2679
0ecb72a5 2680uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb
PB
2681{
2682 cpu_abort(env, "v7m_mrs %d\n", reg);
2683 return 0;
2684}
2685
0ecb72a5 2686void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
2687{
2688 if (mode != ARM_CPU_MODE_USR)
2689 cpu_abort(env, "Tried to switch out of user mode\n");
2690}
2691
0ecb72a5 2692void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb
PB
2693{
2694 cpu_abort(env, "banked r13 write\n");
2695}
2696
0ecb72a5 2697uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb
PB
2698{
2699 cpu_abort(env, "banked r13 read\n");
2700 return 0;
2701}
2702
b5ff1b31
FB
2703#else
2704
2705/* Map CPU modes onto saved register banks. */
494b00c7 2706int bank_number(int mode)
b5ff1b31
FB
2707{
2708 switch (mode) {
2709 case ARM_CPU_MODE_USR:
2710 case ARM_CPU_MODE_SYS:
2711 return 0;
2712 case ARM_CPU_MODE_SVC:
2713 return 1;
2714 case ARM_CPU_MODE_ABT:
2715 return 2;
2716 case ARM_CPU_MODE_UND:
2717 return 3;
2718 case ARM_CPU_MODE_IRQ:
2719 return 4;
2720 case ARM_CPU_MODE_FIQ:
2721 return 5;
2722 }
f5206413 2723 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
b5ff1b31
FB
2724}
2725
0ecb72a5 2726void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
2727{
2728 int old_mode;
2729 int i;
2730
2731 old_mode = env->uncached_cpsr & CPSR_M;
2732 if (mode == old_mode)
2733 return;
2734
2735 if (old_mode == ARM_CPU_MODE_FIQ) {
2736 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 2737 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
2738 } else if (mode == ARM_CPU_MODE_FIQ) {
2739 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 2740 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
2741 }
2742
f5206413 2743 i = bank_number(old_mode);
b5ff1b31
FB
2744 env->banked_r13[i] = env->regs[13];
2745 env->banked_r14[i] = env->regs[14];
2746 env->banked_spsr[i] = env->spsr;
2747
f5206413 2748 i = bank_number(mode);
b5ff1b31
FB
2749 env->regs[13] = env->banked_r13[i];
2750 env->regs[14] = env->banked_r14[i];
2751 env->spsr = env->banked_spsr[i];
2752}
2753
9ee6e8bb
PB
2754static void v7m_push(CPUARMState *env, uint32_t val)
2755{
70d74660
AF
2756 CPUState *cs = CPU(arm_env_get_cpu(env));
2757
9ee6e8bb 2758 env->regs[13] -= 4;
ab1da857 2759 stl_phys(cs->as, env->regs[13], val);
9ee6e8bb
PB
2760}
2761
2762static uint32_t v7m_pop(CPUARMState *env)
2763{
70d74660 2764 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb 2765 uint32_t val;
70d74660 2766
fdfba1a2 2767 val = ldl_phys(cs->as, env->regs[13]);
9ee6e8bb
PB
2768 env->regs[13] += 4;
2769 return val;
2770}
2771
2772/* Switch to V7M main or process stack pointer. */
2773static void switch_v7m_sp(CPUARMState *env, int process)
2774{
2775 uint32_t tmp;
2776 if (env->v7m.current_sp != process) {
2777 tmp = env->v7m.other_sp;
2778 env->v7m.other_sp = env->regs[13];
2779 env->regs[13] = tmp;
2780 env->v7m.current_sp = process;
2781 }
2782}
2783
2784static void do_v7m_exception_exit(CPUARMState *env)
2785{
2786 uint32_t type;
2787 uint32_t xpsr;
2788
2789 type = env->regs[15];
2790 if (env->v7m.exception != 0)
983fe826 2791 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
9ee6e8bb
PB
2792
2793 /* Switch to the target stack. */
2794 switch_v7m_sp(env, (type & 4) != 0);
2795 /* Pop registers. */
2796 env->regs[0] = v7m_pop(env);
2797 env->regs[1] = v7m_pop(env);
2798 env->regs[2] = v7m_pop(env);
2799 env->regs[3] = v7m_pop(env);
2800 env->regs[12] = v7m_pop(env);
2801 env->regs[14] = v7m_pop(env);
2802 env->regs[15] = v7m_pop(env);
2803 xpsr = v7m_pop(env);
2804 xpsr_write(env, xpsr, 0xfffffdff);
2805 /* Undo stack alignment. */
2806 if (xpsr & 0x200)
2807 env->regs[13] |= 4;
2808 /* ??? The exception return type specifies Thread/Handler mode. However
2809 this is also implied by the xPSR value. Not sure what to do
2810 if there is a mismatch. */
2811 /* ??? Likewise for mismatches between the CONTROL register and the stack
2812 pointer. */
2813}
2814
3f1beaca
PM
2815/* Exception names for debug logging; note that not all of these
2816 * precisely correspond to architectural exceptions.
2817 */
2818static const char * const excnames[] = {
2819 [EXCP_UDEF] = "Undefined Instruction",
2820 [EXCP_SWI] = "SVC",
2821 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
2822 [EXCP_DATA_ABORT] = "Data Abort",
2823 [EXCP_IRQ] = "IRQ",
2824 [EXCP_FIQ] = "FIQ",
2825 [EXCP_BKPT] = "Breakpoint",
2826 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
2827 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
2828 [EXCP_STREX] = "QEMU intercept of STREX",
2829};
2830
2831static inline void arm_log_exception(int idx)
2832{
2833 if (qemu_loglevel_mask(CPU_LOG_INT)) {
2834 const char *exc = NULL;
2835
2836 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
2837 exc = excnames[idx];
2838 }
2839 if (!exc) {
2840 exc = "unknown";
2841 }
2842 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
2843 }
2844}
2845
e6f010cc 2846void arm_v7m_cpu_do_interrupt(CPUState *cs)
9ee6e8bb 2847{
e6f010cc
AF
2848 ARMCPU *cpu = ARM_CPU(cs);
2849 CPUARMState *env = &cpu->env;
9ee6e8bb
PB
2850 uint32_t xpsr = xpsr_read(env);
2851 uint32_t lr;
2852 uint32_t addr;
2853
3f1beaca
PM
2854 arm_log_exception(env->exception_index);
2855
9ee6e8bb
PB
2856 lr = 0xfffffff1;
2857 if (env->v7m.current_sp)
2858 lr |= 4;
2859 if (env->v7m.exception == 0)
2860 lr |= 8;
2861
2862 /* For exceptions we just mark as pending on the NVIC, and let that
2863 handle it. */
2864 /* TODO: Need to escalate if the current priority is higher than the
2865 one we're raising. */
2866 switch (env->exception_index) {
2867 case EXCP_UDEF:
983fe826 2868 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
9ee6e8bb
PB
2869 return;
2870 case EXCP_SWI:
314e2296 2871 /* The PC already points to the next instruction. */
983fe826 2872 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
9ee6e8bb
PB
2873 return;
2874 case EXCP_PREFETCH_ABORT:
2875 case EXCP_DATA_ABORT:
983fe826 2876 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
9ee6e8bb
PB
2877 return;
2878 case EXCP_BKPT:
2ad207d4
PB
2879 if (semihosting_enabled) {
2880 int nr;
d31dd73e 2881 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2ad207d4
PB
2882 if (nr == 0xab) {
2883 env->regs[15] += 2;
2884 env->regs[0] = do_arm_semihosting(env);
3f1beaca 2885 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2ad207d4
PB
2886 return;
2887 }
2888 }
983fe826 2889 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
9ee6e8bb
PB
2890 return;
2891 case EXCP_IRQ:
983fe826 2892 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
9ee6e8bb
PB
2893 break;
2894 case EXCP_EXCEPTION_EXIT:
2895 do_v7m_exception_exit(env);
2896 return;
2897 default:
2898 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2899 return; /* Never happens. Keep compiler happy. */
2900 }
2901
2902 /* Align stack pointer. */
2903 /* ??? Should only do this if Configuration Control Register
2904 STACKALIGN bit is set. */
2905 if (env->regs[13] & 4) {
ab19b0ec 2906 env->regs[13] -= 4;
9ee6e8bb
PB
2907 xpsr |= 0x200;
2908 }
6c95676b 2909 /* Switch to the handler mode. */
9ee6e8bb
PB
2910 v7m_push(env, xpsr);
2911 v7m_push(env, env->regs[15]);
2912 v7m_push(env, env->regs[14]);
2913 v7m_push(env, env->regs[12]);
2914 v7m_push(env, env->regs[3]);
2915 v7m_push(env, env->regs[2]);
2916 v7m_push(env, env->regs[1]);
2917 v7m_push(env, env->regs[0]);
2918 switch_v7m_sp(env, 0);
c98d174c
PM
2919 /* Clear IT bits */
2920 env->condexec_bits = 0;
9ee6e8bb 2921 env->regs[14] = lr;
fdfba1a2 2922 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
9ee6e8bb
PB
2923 env->regs[15] = addr & 0xfffffffe;
2924 env->thumb = addr & 1;
2925}
2926
b5ff1b31 2927/* Handle a CPU exception. */
97a8ea5a 2928void arm_cpu_do_interrupt(CPUState *cs)
b5ff1b31 2929{
97a8ea5a
AF
2930 ARMCPU *cpu = ARM_CPU(cs);
2931 CPUARMState *env = &cpu->env;
b5ff1b31
FB
2932 uint32_t addr;
2933 uint32_t mask;
2934 int new_mode;
2935 uint32_t offset;
2936
e6f010cc
AF
2937 assert(!IS_M(env));
2938
3f1beaca
PM
2939 arm_log_exception(env->exception_index);
2940
b5ff1b31
FB
2941 /* TODO: Vectored interrupt controller. */
2942 switch (env->exception_index) {
2943 case EXCP_UDEF:
2944 new_mode = ARM_CPU_MODE_UND;
2945 addr = 0x04;
2946 mask = CPSR_I;
2947 if (env->thumb)
2948 offset = 2;
2949 else
2950 offset = 4;
2951 break;
2952 case EXCP_SWI:
8e71621f
PB
2953 if (semihosting_enabled) {
2954 /* Check for semihosting interrupt. */
2955 if (env->thumb) {
d31dd73e
BS
2956 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2957 & 0xff;
8e71621f 2958 } else {
d31dd73e 2959 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
d8fd2954 2960 & 0xffffff;
8e71621f
PB
2961 }
2962 /* Only intercept calls from privileged modes, to provide some
2963 semblance of security. */
2964 if (((mask == 0x123456 && !env->thumb)
2965 || (mask == 0xab && env->thumb))
2966 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2967 env->regs[0] = do_arm_semihosting(env);
3f1beaca 2968 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
8e71621f
PB
2969 return;
2970 }
2971 }
b5ff1b31
FB
2972 new_mode = ARM_CPU_MODE_SVC;
2973 addr = 0x08;
2974 mask = CPSR_I;
601d70b9 2975 /* The PC already points to the next instruction. */
b5ff1b31
FB
2976 offset = 0;
2977 break;
06c949e6 2978 case EXCP_BKPT:
9ee6e8bb 2979 /* See if this is a semihosting syscall. */
2ad207d4 2980 if (env->thumb && semihosting_enabled) {
d31dd73e 2981 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
9ee6e8bb
PB
2982 if (mask == 0xab
2983 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2984 env->regs[15] += 2;
2985 env->regs[0] = do_arm_semihosting(env);
3f1beaca 2986 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
9ee6e8bb
PB
2987 return;
2988 }
2989 }
81c05daf 2990 env->cp15.c5_insn = 2;
9ee6e8bb
PB
2991 /* Fall through to prefetch abort. */
2992 case EXCP_PREFETCH_ABORT:
3f1beaca
PM
2993 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
2994 env->cp15.c5_insn, env->cp15.c6_insn);
b5ff1b31
FB
2995 new_mode = ARM_CPU_MODE_ABT;
2996 addr = 0x0c;
2997 mask = CPSR_A | CPSR_I;
2998 offset = 4;
2999 break;
3000 case EXCP_DATA_ABORT:
3f1beaca
PM
3001 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
3002 env->cp15.c5_data, env->cp15.c6_data);
b5ff1b31
FB
3003 new_mode = ARM_CPU_MODE_ABT;
3004 addr = 0x10;
3005 mask = CPSR_A | CPSR_I;
3006 offset = 8;
3007 break;
3008 case EXCP_IRQ:
3009 new_mode = ARM_CPU_MODE_IRQ;
3010 addr = 0x18;
3011 /* Disable IRQ and imprecise data aborts. */
3012 mask = CPSR_A | CPSR_I;
3013 offset = 4;
3014 break;
3015 case EXCP_FIQ:
3016 new_mode = ARM_CPU_MODE_FIQ;
3017 addr = 0x1c;
3018 /* Disable FIQ, IRQ and imprecise data aborts. */
3019 mask = CPSR_A | CPSR_I | CPSR_F;
3020 offset = 4;
3021 break;
3022 default:
3023 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
3024 return; /* Never happens. Keep compiler happy. */
3025 }
3026 /* High vectors. */
76e3e1bc 3027 if (env->cp15.c1_sys & SCTLR_V) {
8641136c 3028 /* when enabled, base address cannot be remapped. */
b5ff1b31 3029 addr += 0xffff0000;
8641136c
NR
3030 } else {
3031 /* ARM v7 architectures provide a vector base address register to remap
3032 * the interrupt vector table.
3033 * This register is only followed in non-monitor mode, and has a secure
3034 * and un-secure copy. Since the cpu is always in a un-secure operation
3035 * and is never in monitor mode this feature is always active.
3036 * Note: only bits 31:5 are valid.
3037 */
3038 addr += env->cp15.c12_vbar;
b5ff1b31
FB
3039 }
3040 switch_mode (env, new_mode);
3041 env->spsr = cpsr_read(env);
9ee6e8bb
PB
3042 /* Clear IT bits. */
3043 env->condexec_bits = 0;
30a8cac1 3044 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 3045 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
4cc35614 3046 env->daif |= mask;
be5e7a76
DES
3047 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
3048 * and we should just guard the thumb mode on V4 */
3049 if (arm_feature(env, ARM_FEATURE_V4T)) {
76e3e1bc 3050 env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
be5e7a76 3051 }
b5ff1b31
FB
3052 env->regs[14] = env->regs[15] + offset;
3053 env->regs[15] = addr;
259186a7 3054 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
b5ff1b31
FB
3055}
3056
3057/* Check section/page access permissions.
3058 Returns the page protection flags, or zero if the access is not
3059 permitted. */
0ecb72a5 3060static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
dd4ebc2e 3061 int access_type, int is_user)
b5ff1b31 3062{
9ee6e8bb
PB
3063 int prot_ro;
3064
dd4ebc2e 3065 if (domain_prot == 3) {
b5ff1b31 3066 return PAGE_READ | PAGE_WRITE;
dd4ebc2e 3067 }
b5ff1b31 3068
9ee6e8bb
PB
3069 if (access_type == 1)
3070 prot_ro = 0;
3071 else
3072 prot_ro = PAGE_READ;
3073
b5ff1b31
FB
3074 switch (ap) {
3075 case 0:
99f678a6
PM
3076 if (arm_feature(env, ARM_FEATURE_V7)) {
3077 return 0;
3078 }
78600320 3079 if (access_type == 1)
b5ff1b31 3080 return 0;
76e3e1bc
PM
3081 switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
3082 case SCTLR_S:
b5ff1b31 3083 return is_user ? 0 : PAGE_READ;
76e3e1bc 3084 case SCTLR_R:
b5ff1b31
FB
3085 return PAGE_READ;
3086 default:
3087 return 0;
3088 }
3089 case 1:
3090 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
3091 case 2:
3092 if (is_user)
9ee6e8bb 3093 return prot_ro;
b5ff1b31
FB
3094 else
3095 return PAGE_READ | PAGE_WRITE;
3096 case 3:
3097 return PAGE_READ | PAGE_WRITE;
d4934d18 3098 case 4: /* Reserved. */
9ee6e8bb
PB
3099 return 0;
3100 case 5:
3101 return is_user ? 0 : prot_ro;
3102 case 6:
3103 return prot_ro;
d4934d18 3104 case 7:
0ab06d83 3105 if (!arm_feature (env, ARM_FEATURE_V6K))
d4934d18
PB
3106 return 0;
3107 return prot_ro;
b5ff1b31
FB
3108 default:
3109 abort();
3110 }
3111}
3112
0ecb72a5 3113static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
b2fa1797
PB
3114{
3115 uint32_t table;
3116
3117 if (address & env->cp15.c2_mask)
327ed10f 3118 table = env->cp15.ttbr1_el1 & 0xffffc000;
b2fa1797 3119 else
327ed10f 3120 table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask;
b2fa1797
PB
3121
3122 table |= (address >> 18) & 0x3ffc;
3123 return table;
3124}
3125
0ecb72a5 3126static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
a8170e5e 3127 int is_user, hwaddr *phys_ptr,
77a71dd1 3128 int *prot, target_ulong *page_size)
b5ff1b31 3129{
70d74660 3130 CPUState *cs = CPU(arm_env_get_cpu(env));
b5ff1b31
FB
3131 int code;
3132 uint32_t table;
3133 uint32_t desc;
3134 int type;
3135 int ap;
3136 int domain;
dd4ebc2e 3137 int domain_prot;
a8170e5e 3138 hwaddr phys_addr;
b5ff1b31 3139
9ee6e8bb
PB
3140 /* Pagetable walk. */
3141 /* Lookup l1 descriptor. */
b2fa1797 3142 table = get_level1_table_address(env, address);
fdfba1a2 3143 desc = ldl_phys(cs->as, table);
9ee6e8bb 3144 type = (desc & 3);
dd4ebc2e
JCD
3145 domain = (desc >> 5) & 0x0f;
3146 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
9ee6e8bb 3147 if (type == 0) {
601d70b9 3148 /* Section translation fault. */
9ee6e8bb
PB
3149 code = 5;
3150 goto do_fault;
3151 }
dd4ebc2e 3152 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
3153 if (type == 2)
3154 code = 9; /* Section domain fault. */
3155 else
3156 code = 11; /* Page domain fault. */
3157 goto do_fault;
3158 }
3159 if (type == 2) {
3160 /* 1Mb section. */
3161 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
3162 ap = (desc >> 10) & 3;
3163 code = 13;
d4c430a8 3164 *page_size = 1024 * 1024;
9ee6e8bb
PB
3165 } else {
3166 /* Lookup l2 entry. */
3167 if (type == 1) {
3168 /* Coarse pagetable. */
3169 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3170 } else {
3171 /* Fine pagetable. */
3172 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
3173 }
fdfba1a2 3174 desc = ldl_phys(cs->as, table);
9ee6e8bb
PB
3175 switch (desc & 3) {
3176 case 0: /* Page translation fault. */
3177 code = 7;
3178 goto do_fault;
3179 case 1: /* 64k page. */
3180 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3181 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 3182 *page_size = 0x10000;
ce819861 3183 break;
9ee6e8bb
PB
3184 case 2: /* 4k page. */
3185 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
c10f7fc3 3186 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
d4c430a8 3187 *page_size = 0x1000;
ce819861 3188 break;
9ee6e8bb
PB
3189 case 3: /* 1k page. */
3190 if (type == 1) {
3191 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3192 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3193 } else {
3194 /* Page translation fault. */
3195 code = 7;
3196 goto do_fault;
3197 }
3198 } else {
3199 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
3200 }
3201 ap = (desc >> 4) & 3;
d4c430a8 3202 *page_size = 0x400;
ce819861
PB
3203 break;
3204 default:
9ee6e8bb
PB
3205 /* Never happens, but compiler isn't smart enough to tell. */
3206 abort();
ce819861 3207 }
9ee6e8bb
PB
3208 code = 15;
3209 }
dd4ebc2e 3210 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
9ee6e8bb
PB
3211 if (!*prot) {
3212 /* Access permission fault. */
3213 goto do_fault;
3214 }
3ad493fc 3215 *prot |= PAGE_EXEC;
9ee6e8bb
PB
3216 *phys_ptr = phys_addr;
3217 return 0;
3218do_fault:
3219 return code | (domain << 4);
3220}
3221
0ecb72a5 3222static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
a8170e5e 3223 int is_user, hwaddr *phys_ptr,
77a71dd1 3224 int *prot, target_ulong *page_size)
9ee6e8bb 3225{
70d74660 3226 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb
PB
3227 int code;
3228 uint32_t table;
3229 uint32_t desc;
3230 uint32_t xn;
de9b05b8 3231 uint32_t pxn = 0;
9ee6e8bb
PB
3232 int type;
3233 int ap;
de9b05b8 3234 int domain = 0;
dd4ebc2e 3235 int domain_prot;
a8170e5e 3236 hwaddr phys_addr;
9ee6e8bb
PB
3237
3238 /* Pagetable walk. */
3239 /* Lookup l1 descriptor. */
b2fa1797 3240 table = get_level1_table_address(env, address);
fdfba1a2 3241 desc = ldl_phys(cs->as, table);
9ee6e8bb 3242 type = (desc & 3);
de9b05b8
PM
3243 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
3244 /* Section translation fault, or attempt to use the encoding
3245 * which is Reserved on implementations without PXN.
3246 */
9ee6e8bb 3247 code = 5;
9ee6e8bb 3248 goto do_fault;
de9b05b8
PM
3249 }
3250 if ((type == 1) || !(desc & (1 << 18))) {
3251 /* Page or Section. */
dd4ebc2e 3252 domain = (desc >> 5) & 0x0f;
9ee6e8bb 3253 }
dd4ebc2e
JCD
3254 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
3255 if (domain_prot == 0 || domain_prot == 2) {
de9b05b8 3256 if (type != 1) {
9ee6e8bb 3257 code = 9; /* Section domain fault. */
de9b05b8 3258 } else {
9ee6e8bb 3259 code = 11; /* Page domain fault. */
de9b05b8 3260 }
9ee6e8bb
PB
3261 goto do_fault;
3262 }
de9b05b8 3263 if (type != 1) {
9ee6e8bb
PB
3264 if (desc & (1 << 18)) {
3265 /* Supersection. */
3266 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
d4c430a8 3267 *page_size = 0x1000000;
b5ff1b31 3268 } else {
9ee6e8bb
PB
3269 /* Section. */
3270 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 3271 *page_size = 0x100000;
b5ff1b31 3272 }
9ee6e8bb
PB
3273 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
3274 xn = desc & (1 << 4);
de9b05b8 3275 pxn = desc & 1;
9ee6e8bb
PB
3276 code = 13;
3277 } else {
de9b05b8
PM
3278 if (arm_feature(env, ARM_FEATURE_PXN)) {
3279 pxn = (desc >> 2) & 1;
3280 }
9ee6e8bb
PB
3281 /* Lookup l2 entry. */
3282 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
fdfba1a2 3283 desc = ldl_phys(cs->as, table);
9ee6e8bb
PB
3284 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
3285 switch (desc & 3) {
3286 case 0: /* Page translation fault. */
3287 code = 7;
b5ff1b31 3288 goto do_fault;
9ee6e8bb
PB
3289 case 1: /* 64k page. */
3290 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3291 xn = desc & (1 << 15);
d4c430a8 3292 *page_size = 0x10000;
9ee6e8bb
PB
3293 break;
3294 case 2: case 3: /* 4k page. */
3295 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3296 xn = desc & 1;
d4c430a8 3297 *page_size = 0x1000;
9ee6e8bb
PB
3298 break;
3299 default:
3300 /* Never happens, but compiler isn't smart enough to tell. */
3301 abort();
b5ff1b31 3302 }
9ee6e8bb
PB
3303 code = 15;
3304 }
dd4ebc2e 3305 if (domain_prot == 3) {
c0034328
JR
3306 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3307 } else {
de9b05b8
PM
3308 if (pxn && !is_user) {
3309 xn = 1;
3310 }
c0034328
JR
3311 if (xn && access_type == 2)
3312 goto do_fault;
9ee6e8bb 3313
c0034328 3314 /* The simplified model uses AP[0] as an access control bit. */
76e3e1bc 3315 if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
c0034328
JR
3316 /* Access flag fault. */
3317 code = (code == 15) ? 6 : 3;
3318 goto do_fault;
3319 }
dd4ebc2e 3320 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
c0034328
JR
3321 if (!*prot) {
3322 /* Access permission fault. */
3323 goto do_fault;
3324 }
3325 if (!xn) {
3326 *prot |= PAGE_EXEC;
3327 }
3ad493fc 3328 }
9ee6e8bb 3329 *phys_ptr = phys_addr;
b5ff1b31
FB
3330 return 0;
3331do_fault:
3332 return code | (domain << 4);
3333}
3334
3dde962f
PM
3335/* Fault type for long-descriptor MMU fault reporting; this corresponds
3336 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
3337 */
3338typedef enum {
3339 translation_fault = 1,
3340 access_fault = 2,
3341 permission_fault = 3,
3342} MMUFaultType;
3343
3344static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
3345 int access_type, int is_user,
a8170e5e 3346 hwaddr *phys_ptr, int *prot,
3dde962f
PM
3347 target_ulong *page_size_ptr)
3348{
70d74660 3349 CPUState *cs = CPU(arm_env_get_cpu(env));
3dde962f
PM
3350 /* Read an LPAE long-descriptor translation table. */
3351 MMUFaultType fault_type = translation_fault;
3352 uint32_t level = 1;
3353 uint32_t epd;
3354 uint32_t tsz;
3355 uint64_t ttbr;
3356 int ttbr_select;
3357 int n;
a8170e5e 3358 hwaddr descaddr;
3dde962f
PM
3359 uint32_t tableattrs;
3360 target_ulong page_size;
3361 uint32_t attrs;
3362
3363 /* Determine whether this address is in the region controlled by
3364 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
3365 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
3366 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
3367 */
3368 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
3369 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
3370 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
3371 /* there is a ttbr0 region and we are in it (high bits all zero) */
3372 ttbr_select = 0;
3373 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
3374 /* there is a ttbr1 region and we are in it (high bits all one) */
3375 ttbr_select = 1;
3376 } else if (!t0sz) {
3377 /* ttbr0 region is "everything not in the ttbr1 region" */
3378 ttbr_select = 0;
3379 } else if (!t1sz) {
3380 /* ttbr1 region is "everything not in the ttbr0 region" */
3381 ttbr_select = 1;
3382 } else {
3383 /* in the gap between the two regions, this is a Translation fault */
3384 fault_type = translation_fault;
3385 goto do_fault;
3386 }
3387
3388 /* Note that QEMU ignores shareability and cacheability attributes,
3389 * so we don't need to do anything with the SH, ORGN, IRGN fields
3390 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
3391 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
3392 * implement any ASID-like capability so we can ignore it (instead
3393 * we will always flush the TLB any time the ASID is changed).
3394 */
3395 if (ttbr_select == 0) {
327ed10f 3396 ttbr = env->cp15.ttbr0_el1;
3dde962f
PM
3397 epd = extract32(env->cp15.c2_control, 7, 1);
3398 tsz = t0sz;
3399 } else {
327ed10f 3400 ttbr = env->cp15.ttbr1_el1;
3dde962f
PM
3401 epd = extract32(env->cp15.c2_control, 23, 1);
3402 tsz = t1sz;
3403 }
3404
3405 if (epd) {
3406 /* Translation table walk disabled => Translation fault on TLB miss */
3407 goto do_fault;
3408 }
3409
3410 /* If the region is small enough we will skip straight to a 2nd level
3411 * lookup. This affects the number of bits of the address used in
3412 * combination with the TTBR to find the first descriptor. ('n' here
3413 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
3414 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
3415 */
3416 if (tsz > 1) {
3417 level = 2;
3418 n = 14 - tsz;
3419 } else {
3420 n = 5 - tsz;
3421 }
3422
3423 /* Clear the vaddr bits which aren't part of the within-region address,
3424 * so that we don't have to special case things when calculating the
3425 * first descriptor address.
3426 */
3427 address &= (0xffffffffU >> tsz);
3428
3429 /* Now we can extract the actual base address from the TTBR */
3430 descaddr = extract64(ttbr, 0, 40);
3431 descaddr &= ~((1ULL << n) - 1);
3432
3433 tableattrs = 0;
3434 for (;;) {
3435 uint64_t descriptor;
3436
3437 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2c17449b 3438 descriptor = ldq_phys(cs->as, descaddr);
3dde962f
PM
3439 if (!(descriptor & 1) ||
3440 (!(descriptor & 2) && (level == 3))) {
3441 /* Invalid, or the Reserved level 3 encoding */
3442 goto do_fault;
3443 }
3444 descaddr = descriptor & 0xfffffff000ULL;
3445
3446 if ((descriptor & 2) && (level < 3)) {
3447 /* Table entry. The top five bits are attributes which may
3448 * propagate down through lower levels of the table (and
3449 * which are all arranged so that 0 means "no effect", so
3450 * we can gather them up by ORing in the bits at each level).
3451 */
3452 tableattrs |= extract64(descriptor, 59, 5);
3453 level++;
3454 continue;
3455 }
3456 /* Block entry at level 1 or 2, or page entry at level 3.
3457 * These are basically the same thing, although the number
3458 * of bits we pull in from the vaddr varies.
3459 */
3460 page_size = (1 << (39 - (9 * level)));
3461 descaddr |= (address & (page_size - 1));
3462 /* Extract attributes from the descriptor and merge with table attrs */
3463 attrs = extract64(descriptor, 2, 10)
3464 | (extract64(descriptor, 52, 12) << 10);
3465 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
3466 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
3467 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
3468 * means "force PL1 access only", which means forcing AP[1] to 0.
3469 */
3470 if (extract32(tableattrs, 2, 1)) {
3471 attrs &= ~(1 << 4);
3472 }
3473 /* Since we're always in the Non-secure state, NSTable is ignored. */
3474 break;
3475 }
3476 /* Here descaddr is the final physical address, and attributes
3477 * are all in attrs.
3478 */
3479 fault_type = access_fault;
3480 if ((attrs & (1 << 8)) == 0) {
3481 /* Access flag */
3482 goto do_fault;
3483 }
3484 fault_type = permission_fault;
3485 if (is_user && !(attrs & (1 << 4))) {
3486 /* Unprivileged access not enabled */
3487 goto do_fault;
3488 }
3489 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3490 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
3491 /* XN or PXN */
3492 if (access_type == 2) {
3493 goto do_fault;
3494 }
3495 *prot &= ~PAGE_EXEC;
3496 }
3497 if (attrs & (1 << 5)) {
3498 /* Write access forbidden */
3499 if (access_type == 1) {
3500 goto do_fault;
3501 }
3502 *prot &= ~PAGE_WRITE;
3503 }
3504
3505 *phys_ptr = descaddr;
3506 *page_size_ptr = page_size;
3507 return 0;
3508
3509do_fault:
3510 /* Long-descriptor format IFSR/DFSR value */
3511 return (1 << 9) | (fault_type << 2) | level;
3512}
3513
77a71dd1
PM
3514static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
3515 int access_type, int is_user,
a8170e5e 3516 hwaddr *phys_ptr, int *prot)
9ee6e8bb
PB
3517{
3518 int n;
3519 uint32_t mask;
3520 uint32_t base;
3521
3522 *phys_ptr = address;
3523 for (n = 7; n >= 0; n--) {
3524 base = env->cp15.c6_region[n];
3525 if ((base & 1) == 0)
3526 continue;
3527 mask = 1 << ((base >> 1) & 0x1f);
3528 /* Keep this shift separate from the above to avoid an
3529 (undefined) << 32. */
3530 mask = (mask << 1) - 1;
3531 if (((base ^ address) & ~mask) == 0)
3532 break;
3533 }
3534 if (n < 0)
3535 return 2;
3536
3537 if (access_type == 2) {
3538 mask = env->cp15.c5_insn;
3539 } else {
3540 mask = env->cp15.c5_data;
3541 }
3542 mask = (mask >> (n * 4)) & 0xf;
3543 switch (mask) {
3544 case 0:
3545 return 1;
3546 case 1:
3547 if (is_user)
3548 return 1;
3549 *prot = PAGE_READ | PAGE_WRITE;
3550 break;
3551 case 2:
3552 *prot = PAGE_READ;
3553 if (!is_user)
3554 *prot |= PAGE_WRITE;
3555 break;
3556 case 3:
3557 *prot = PAGE_READ | PAGE_WRITE;
3558 break;
3559 case 5:
3560 if (is_user)
3561 return 1;
3562 *prot = PAGE_READ;
3563 break;
3564 case 6:
3565 *prot = PAGE_READ;
3566 break;
3567 default:
3568 /* Bad permission. */
3569 return 1;
3570 }
3ad493fc 3571 *prot |= PAGE_EXEC;
9ee6e8bb
PB
3572 return 0;
3573}
3574
702a9357
PM
3575/* get_phys_addr - get the physical address for this virtual address
3576 *
3577 * Find the physical address corresponding to the given virtual address,
3578 * by doing a translation table walk on MMU based systems or using the
3579 * MPU state on MPU based systems.
3580 *
3581 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3582 * prot and page_size are not filled in, and the return value provides
3583 * information on why the translation aborted, in the format of a
3584 * DFSR/IFSR fault register, with the following caveats:
3585 * * we honour the short vs long DFSR format differences.
3586 * * the WnR bit is never set (the caller must do this).
3587 * * for MPU based systems we don't bother to return a full FSR format
3588 * value.
3589 *
3590 * @env: CPUARMState
3591 * @address: virtual address to get physical address for
3592 * @access_type: 0 for read, 1 for write, 2 for execute
3593 * @is_user: 0 for privileged access, 1 for user
3594 * @phys_ptr: set to the physical address corresponding to the virtual address
3595 * @prot: set to the permissions for the page containing phys_ptr
3596 * @page_size: set to the size of the page containing phys_ptr
3597 */
0ecb72a5 3598static inline int get_phys_addr(CPUARMState *env, uint32_t address,
9ee6e8bb 3599 int access_type, int is_user,
a8170e5e 3600 hwaddr *phys_ptr, int *prot,
d4c430a8 3601 target_ulong *page_size)
9ee6e8bb
PB
3602{
3603 /* Fast Context Switch Extension. */
3604 if (address < 0x02000000)
3605 address += env->cp15.c13_fcse;
3606
76e3e1bc 3607 if ((env->cp15.c1_sys & SCTLR_M) == 0) {
9ee6e8bb
PB
3608 /* MMU/MPU disabled. */
3609 *phys_ptr = address;
3ad493fc 3610 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 3611 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
3612 return 0;
3613 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
d4c430a8 3614 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
3615 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
3616 prot);
3dde962f
PM
3617 } else if (extended_addresses_enabled(env)) {
3618 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
3619 prot, page_size);
76e3e1bc 3620 } else if (env->cp15.c1_sys & SCTLR_XP) {
9ee6e8bb 3621 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
d4c430a8 3622 prot, page_size);
9ee6e8bb
PB
3623 } else {
3624 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
d4c430a8 3625 prot, page_size);
9ee6e8bb
PB
3626 }
3627}
3628
7510454e
AF
3629int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
3630 int access_type, int mmu_idx)
b5ff1b31 3631{
7510454e
AF
3632 ARMCPU *cpu = ARM_CPU(cs);
3633 CPUARMState *env = &cpu->env;
a8170e5e 3634 hwaddr phys_addr;
d4c430a8 3635 target_ulong page_size;
b5ff1b31 3636 int prot;
6ebbf390 3637 int ret, is_user;
b5ff1b31 3638
6ebbf390 3639 is_user = mmu_idx == MMU_USER_IDX;
d4c430a8
PB
3640 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
3641 &page_size);
b5ff1b31
FB
3642 if (ret == 0) {
3643 /* Map a single [sub]page. */
a8170e5e 3644 phys_addr &= ~(hwaddr)0x3ff;
b5ff1b31 3645 address &= ~(uint32_t)0x3ff;
3ad493fc 3646 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
d4c430a8 3647 return 0;
b5ff1b31
FB
3648 }
3649
3650 if (access_type == 2) {
3651 env->cp15.c5_insn = ret;
3652 env->cp15.c6_insn = address;
3653 env->exception_index = EXCP_PREFETCH_ABORT;
3654 } else {
3655 env->cp15.c5_data = ret;
9ee6e8bb
PB
3656 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
3657 env->cp15.c5_data |= (1 << 11);
b5ff1b31
FB
3658 env->cp15.c6_data = address;
3659 env->exception_index = EXCP_DATA_ABORT;
3660 }
3661 return 1;
3662}
3663
00b941e5 3664hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
b5ff1b31 3665{
00b941e5 3666 ARMCPU *cpu = ARM_CPU(cs);
a8170e5e 3667 hwaddr phys_addr;
d4c430a8 3668 target_ulong page_size;
b5ff1b31
FB
3669 int prot;
3670 int ret;
3671
00b941e5 3672 ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
b5ff1b31 3673
00b941e5 3674 if (ret != 0) {
b5ff1b31 3675 return -1;
00b941e5 3676 }
b5ff1b31
FB
3677
3678 return phys_addr;
3679}
3680
0ecb72a5 3681void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
9ee6e8bb 3682{
39ea3d4e
PM
3683 if ((env->uncached_cpsr & CPSR_M) == mode) {
3684 env->regs[13] = val;
3685 } else {
f5206413 3686 env->banked_r13[bank_number(mode)] = val;
39ea3d4e 3687 }
9ee6e8bb
PB
3688}
3689
0ecb72a5 3690uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
9ee6e8bb 3691{
39ea3d4e
PM
3692 if ((env->uncached_cpsr & CPSR_M) == mode) {
3693 return env->regs[13];
3694 } else {
f5206413 3695 return env->banked_r13[bank_number(mode)];
39ea3d4e 3696 }
9ee6e8bb
PB
3697}
3698
0ecb72a5 3699uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb
PB
3700{
3701 switch (reg) {
3702 case 0: /* APSR */
3703 return xpsr_read(env) & 0xf8000000;
3704 case 1: /* IAPSR */
3705 return xpsr_read(env) & 0xf80001ff;
3706 case 2: /* EAPSR */
3707 return xpsr_read(env) & 0xff00fc00;
3708 case 3: /* xPSR */
3709 return xpsr_read(env) & 0xff00fdff;
3710 case 5: /* IPSR */
3711 return xpsr_read(env) & 0x000001ff;
3712 case 6: /* EPSR */
3713 return xpsr_read(env) & 0x0700fc00;
3714 case 7: /* IEPSR */
3715 return xpsr_read(env) & 0x0700edff;
3716 case 8: /* MSP */
3717 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
3718 case 9: /* PSP */
3719 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
3720 case 16: /* PRIMASK */
4cc35614 3721 return (env->daif & PSTATE_I) != 0;
82845826
SH
3722 case 17: /* BASEPRI */
3723 case 18: /* BASEPRI_MAX */
9ee6e8bb 3724 return env->v7m.basepri;
82845826 3725 case 19: /* FAULTMASK */
4cc35614 3726 return (env->daif & PSTATE_F) != 0;
9ee6e8bb
PB
3727 case 20: /* CONTROL */
3728 return env->v7m.control;
3729 default:
3730 /* ??? For debugging only. */
3731 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
3732 return 0;
3733 }
3734}
3735
0ecb72a5 3736void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
3737{
3738 switch (reg) {
3739 case 0: /* APSR */
3740 xpsr_write(env, val, 0xf8000000);
3741 break;
3742 case 1: /* IAPSR */
3743 xpsr_write(env, val, 0xf8000000);
3744 break;
3745 case 2: /* EAPSR */
3746 xpsr_write(env, val, 0xfe00fc00);
3747 break;
3748 case 3: /* xPSR */
3749 xpsr_write(env, val, 0xfe00fc00);
3750 break;
3751 case 5: /* IPSR */
3752 /* IPSR bits are readonly. */
3753 break;
3754 case 6: /* EPSR */
3755 xpsr_write(env, val, 0x0600fc00);
3756 break;
3757 case 7: /* IEPSR */
3758 xpsr_write(env, val, 0x0600fc00);
3759 break;
3760 case 8: /* MSP */
3761 if (env->v7m.current_sp)
3762 env->v7m.other_sp = val;
3763 else
3764 env->regs[13] = val;
3765 break;
3766 case 9: /* PSP */
3767 if (env->v7m.current_sp)
3768 env->regs[13] = val;
3769 else
3770 env->v7m.other_sp = val;
3771 break;
3772 case 16: /* PRIMASK */
4cc35614
PM
3773 if (val & 1) {
3774 env->daif |= PSTATE_I;
3775 } else {
3776 env->daif &= ~PSTATE_I;
3777 }
9ee6e8bb 3778 break;
82845826 3779 case 17: /* BASEPRI */
9ee6e8bb
PB
3780 env->v7m.basepri = val & 0xff;
3781 break;
82845826 3782 case 18: /* BASEPRI_MAX */
9ee6e8bb
PB
3783 val &= 0xff;
3784 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
3785 env->v7m.basepri = val;
3786 break;
82845826 3787 case 19: /* FAULTMASK */
4cc35614
PM
3788 if (val & 1) {
3789 env->daif |= PSTATE_F;
3790 } else {
3791 env->daif &= ~PSTATE_F;
3792 }
82845826 3793 break;
9ee6e8bb
PB
3794 case 20: /* CONTROL */
3795 env->v7m.control = val & 3;
3796 switch_v7m_sp(env, (val & 2) != 0);
3797 break;
3798 default:
3799 /* ??? For debugging only. */
3800 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
3801 return;
3802 }
3803}
3804
b5ff1b31 3805#endif
6ddbc6e4
PB
3806
3807/* Note that signed overflow is undefined in C. The following routines are
3808 careful to use unsigned types where modulo arithmetic is required.
3809 Failure to do so _will_ break on newer gcc. */
3810
3811/* Signed saturating arithmetic. */
3812
1654b2d6 3813/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
3814static inline uint16_t add16_sat(uint16_t a, uint16_t b)
3815{
3816 uint16_t res;
3817
3818 res = a + b;
3819 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
3820 if (a & 0x8000)
3821 res = 0x8000;
3822 else
3823 res = 0x7fff;
3824 }
3825 return res;
3826}
3827
1654b2d6 3828/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
3829static inline uint8_t add8_sat(uint8_t a, uint8_t b)
3830{
3831 uint8_t res;
3832
3833 res = a + b;
3834 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
3835 if (a & 0x80)
3836 res = 0x80;
3837 else
3838 res = 0x7f;
3839 }
3840 return res;
3841}
3842
1654b2d6 3843/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
3844static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
3845{
3846 uint16_t res;
3847
3848 res = a - b;
3849 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
3850 if (a & 0x8000)
3851 res = 0x8000;
3852 else
3853 res = 0x7fff;
3854 }
3855 return res;
3856}
3857
1654b2d6 3858/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
3859static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
3860{
3861 uint8_t res;
3862
3863 res = a - b;
3864 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
3865 if (a & 0x80)
3866 res = 0x80;
3867 else
3868 res = 0x7f;
3869 }
3870 return res;
3871}
3872
3873#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
3874#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
3875#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
3876#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
3877#define PFX q
3878
3879#include "op_addsub.h"
3880
3881/* Unsigned saturating arithmetic. */
460a09c1 3882static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
3883{
3884 uint16_t res;
3885 res = a + b;
3886 if (res < a)
3887 res = 0xffff;
3888 return res;
3889}
3890
460a09c1 3891static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 3892{
4c4fd3f8 3893 if (a > b)
6ddbc6e4
PB
3894 return a - b;
3895 else
3896 return 0;
3897}
3898
3899static inline uint8_t add8_usat(uint8_t a, uint8_t b)
3900{
3901 uint8_t res;
3902 res = a + b;
3903 if (res < a)
3904 res = 0xff;
3905 return res;
3906}
3907
3908static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
3909{
4c4fd3f8 3910 if (a > b)
6ddbc6e4
PB
3911 return a - b;
3912 else
3913 return 0;
3914}
3915
3916#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3917#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3918#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3919#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3920#define PFX uq
3921
3922#include "op_addsub.h"
3923
3924/* Signed modulo arithmetic. */
3925#define SARITH16(a, b, n, op) do { \
3926 int32_t sum; \
db6e2e65 3927 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
3928 RESULT(sum, n, 16); \
3929 if (sum >= 0) \
3930 ge |= 3 << (n * 2); \
3931 } while(0)
3932
3933#define SARITH8(a, b, n, op) do { \
3934 int32_t sum; \
db6e2e65 3935 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
3936 RESULT(sum, n, 8); \
3937 if (sum >= 0) \
3938 ge |= 1 << n; \
3939 } while(0)
3940
3941
3942#define ADD16(a, b, n) SARITH16(a, b, n, +)
3943#define SUB16(a, b, n) SARITH16(a, b, n, -)
3944#define ADD8(a, b, n) SARITH8(a, b, n, +)
3945#define SUB8(a, b, n) SARITH8(a, b, n, -)
3946#define PFX s
3947#define ARITH_GE
3948
3949#include "op_addsub.h"
3950
3951/* Unsigned modulo arithmetic. */
3952#define ADD16(a, b, n) do { \
3953 uint32_t sum; \
3954 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3955 RESULT(sum, n, 16); \
a87aa10b 3956 if ((sum >> 16) == 1) \
6ddbc6e4
PB
3957 ge |= 3 << (n * 2); \
3958 } while(0)
3959
3960#define ADD8(a, b, n) do { \
3961 uint32_t sum; \
3962 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3963 RESULT(sum, n, 8); \
a87aa10b
AZ
3964 if ((sum >> 8) == 1) \
3965 ge |= 1 << n; \
6ddbc6e4
PB
3966 } while(0)
3967
3968#define SUB16(a, b, n) do { \
3969 uint32_t sum; \
3970 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3971 RESULT(sum, n, 16); \
3972 if ((sum >> 16) == 0) \
3973 ge |= 3 << (n * 2); \
3974 } while(0)
3975
3976#define SUB8(a, b, n) do { \
3977 uint32_t sum; \
3978 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3979 RESULT(sum, n, 8); \
3980 if ((sum >> 8) == 0) \
a87aa10b 3981 ge |= 1 << n; \
6ddbc6e4
PB
3982 } while(0)
3983
3984#define PFX u
3985#define ARITH_GE
3986
3987#include "op_addsub.h"
3988
3989/* Halved signed arithmetic. */
3990#define ADD16(a, b, n) \
3991 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3992#define SUB16(a, b, n) \
3993 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3994#define ADD8(a, b, n) \
3995 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3996#define SUB8(a, b, n) \
3997 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3998#define PFX sh
3999
4000#include "op_addsub.h"
4001
4002/* Halved unsigned arithmetic. */
4003#define ADD16(a, b, n) \
4004 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4005#define SUB16(a, b, n) \
4006 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4007#define ADD8(a, b, n) \
4008 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4009#define SUB8(a, b, n) \
4010 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4011#define PFX uh
4012
4013#include "op_addsub.h"
4014
4015static inline uint8_t do_usad(uint8_t a, uint8_t b)
4016{
4017 if (a > b)
4018 return a - b;
4019 else
4020 return b - a;
4021}
4022
4023/* Unsigned sum of absolute byte differences. */
4024uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
4025{
4026 uint32_t sum;
4027 sum = do_usad(a, b);
4028 sum += do_usad(a >> 8, b >> 8);
4029 sum += do_usad(a >> 16, b >>16);
4030 sum += do_usad(a >> 24, b >> 24);
4031 return sum;
4032}
4033
4034/* For ARMv6 SEL instruction. */
4035uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
4036{
4037 uint32_t mask;
4038
4039 mask = 0;
4040 if (flags & 1)
4041 mask |= 0xff;
4042 if (flags & 2)
4043 mask |= 0xff00;
4044 if (flags & 4)
4045 mask |= 0xff0000;
4046 if (flags & 8)
4047 mask |= 0xff000000;
4048 return (a & mask) | (b & ~mask);
4049}
4050
b90372ad
PM
4051/* VFP support. We follow the convention used for VFP instructions:
4052 Single precision routines have a "s" suffix, double precision a
4373f3ce
PB
4053 "d" suffix. */
4054
4055/* Convert host exception flags to vfp form. */
4056static inline int vfp_exceptbits_from_host(int host_bits)
4057{
4058 int target_bits = 0;
4059
4060 if (host_bits & float_flag_invalid)
4061 target_bits |= 1;
4062 if (host_bits & float_flag_divbyzero)
4063 target_bits |= 2;
4064 if (host_bits & float_flag_overflow)
4065 target_bits |= 4;
36802b6b 4066 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
4067 target_bits |= 8;
4068 if (host_bits & float_flag_inexact)
4069 target_bits |= 0x10;
cecd8504
PM
4070 if (host_bits & float_flag_input_denormal)
4071 target_bits |= 0x80;
4373f3ce
PB
4072 return target_bits;
4073}
4074
0ecb72a5 4075uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
4076{
4077 int i;
4078 uint32_t fpscr;
4079
4080 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
4081 | (env->vfp.vec_len << 16)
4082 | (env->vfp.vec_stride << 20);
4083 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 4084 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
4085 fpscr |= vfp_exceptbits_from_host(i);
4086 return fpscr;
4087}
4088
0ecb72a5 4089uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
4090{
4091 return HELPER(vfp_get_fpscr)(env);
4092}
4093
4373f3ce
PB
4094/* Convert vfp exception flags to target form. */
4095static inline int vfp_exceptbits_to_host(int target_bits)
4096{
4097 int host_bits = 0;
4098
4099 if (target_bits & 1)
4100 host_bits |= float_flag_invalid;
4101 if (target_bits & 2)
4102 host_bits |= float_flag_divbyzero;
4103 if (target_bits & 4)
4104 host_bits |= float_flag_overflow;
4105 if (target_bits & 8)
4106 host_bits |= float_flag_underflow;
4107 if (target_bits & 0x10)
4108 host_bits |= float_flag_inexact;
cecd8504
PM
4109 if (target_bits & 0x80)
4110 host_bits |= float_flag_input_denormal;
4373f3ce
PB
4111 return host_bits;
4112}
4113
0ecb72a5 4114void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
4115{
4116 int i;
4117 uint32_t changed;
4118
4119 changed = env->vfp.xregs[ARM_VFP_FPSCR];
4120 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
4121 env->vfp.vec_len = (val >> 16) & 7;
4122 env->vfp.vec_stride = (val >> 20) & 3;
4123
4124 changed ^= val;
4125 if (changed & (3 << 22)) {
4126 i = (val >> 22) & 3;
4127 switch (i) {
4d3da0f3 4128 case FPROUNDING_TIEEVEN:
4373f3ce
PB
4129 i = float_round_nearest_even;
4130 break;
4d3da0f3 4131 case FPROUNDING_POSINF:
4373f3ce
PB
4132 i = float_round_up;
4133 break;
4d3da0f3 4134 case FPROUNDING_NEGINF:
4373f3ce
PB
4135 i = float_round_down;
4136 break;
4d3da0f3 4137 case FPROUNDING_ZERO:
4373f3ce
PB
4138 i = float_round_to_zero;
4139 break;
4140 }
4141 set_float_rounding_mode(i, &env->vfp.fp_status);
4142 }
cecd8504 4143 if (changed & (1 << 24)) {
fe76d976 4144 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
4145 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4146 }
5c7908ed
PB
4147 if (changed & (1 << 25))
4148 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 4149
b12c390b 4150 i = vfp_exceptbits_to_host(val);
4373f3ce 4151 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 4152 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
4153}
4154
0ecb72a5 4155void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
4156{
4157 HELPER(vfp_set_fpscr)(env, val);
4158}
4159
4373f3ce
PB
4160#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
4161
4162#define VFP_BINOP(name) \
ae1857ec 4163float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 4164{ \
ae1857ec
PM
4165 float_status *fpst = fpstp; \
4166 return float32_ ## name(a, b, fpst); \
4373f3ce 4167} \
ae1857ec 4168float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 4169{ \
ae1857ec
PM
4170 float_status *fpst = fpstp; \
4171 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
4172}
4173VFP_BINOP(add)
4174VFP_BINOP(sub)
4175VFP_BINOP(mul)
4176VFP_BINOP(div)
f71a2ae5
PM
4177VFP_BINOP(min)
4178VFP_BINOP(max)
4179VFP_BINOP(minnum)
4180VFP_BINOP(maxnum)
4373f3ce
PB
4181#undef VFP_BINOP
4182
4183float32 VFP_HELPER(neg, s)(float32 a)
4184{
4185 return float32_chs(a);
4186}
4187
4188float64 VFP_HELPER(neg, d)(float64 a)
4189{
66230e0d 4190 return float64_chs(a);
4373f3ce
PB
4191}
4192
4193float32 VFP_HELPER(abs, s)(float32 a)
4194{
4195 return float32_abs(a);
4196}
4197
4198float64 VFP_HELPER(abs, d)(float64 a)
4199{
66230e0d 4200 return float64_abs(a);
4373f3ce
PB
4201}
4202
0ecb72a5 4203float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
4204{
4205 return float32_sqrt(a, &env->vfp.fp_status);
4206}
4207
0ecb72a5 4208float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
4209{
4210 return float64_sqrt(a, &env->vfp.fp_status);
4211}
4212
4213/* XXX: check quiet/signaling case */
4214#define DO_VFP_cmp(p, type) \
0ecb72a5 4215void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
4216{ \
4217 uint32_t flags; \
4218 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
4219 case 0: flags = 0x6; break; \
4220 case -1: flags = 0x8; break; \
4221 case 1: flags = 0x2; break; \
4222 default: case 2: flags = 0x3; break; \
4223 } \
4224 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4225 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4226} \
0ecb72a5 4227void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
4228{ \
4229 uint32_t flags; \
4230 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
4231 case 0: flags = 0x6; break; \
4232 case -1: flags = 0x8; break; \
4233 case 1: flags = 0x2; break; \
4234 default: case 2: flags = 0x3; break; \
4235 } \
4236 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4237 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4238}
4239DO_VFP_cmp(s, float32)
4240DO_VFP_cmp(d, float64)
4241#undef DO_VFP_cmp
4242
5500b06c 4243/* Integer to float and float to integer conversions */
4373f3ce 4244
5500b06c
PM
4245#define CONV_ITOF(name, fsz, sign) \
4246 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
4247{ \
4248 float_status *fpst = fpstp; \
85836979 4249 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
4250}
4251
5500b06c
PM
4252#define CONV_FTOI(name, fsz, sign, round) \
4253uint32_t HELPER(name)(float##fsz x, void *fpstp) \
4254{ \
4255 float_status *fpst = fpstp; \
4256 if (float##fsz##_is_any_nan(x)) { \
4257 float_raise(float_flag_invalid, fpst); \
4258 return 0; \
4259 } \
4260 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
4261}
4262
5500b06c
PM
4263#define FLOAT_CONVS(name, p, fsz, sign) \
4264CONV_ITOF(vfp_##name##to##p, fsz, sign) \
4265CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
4266CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 4267
5500b06c
PM
4268FLOAT_CONVS(si, s, 32, )
4269FLOAT_CONVS(si, d, 64, )
4270FLOAT_CONVS(ui, s, 32, u)
4271FLOAT_CONVS(ui, d, 64, u)
4373f3ce 4272
5500b06c
PM
4273#undef CONV_ITOF
4274#undef CONV_FTOI
4275#undef FLOAT_CONVS
4373f3ce
PB
4276
4277/* floating point conversion */
0ecb72a5 4278float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 4279{
2d627737
PM
4280 float64 r = float32_to_float64(x, &env->vfp.fp_status);
4281 /* ARM requires that S<->D conversion of any kind of NaN generates
4282 * a quiet NaN by forcing the most significant frac bit to 1.
4283 */
4284 return float64_maybe_silence_nan(r);
4373f3ce
PB
4285}
4286
0ecb72a5 4287float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 4288{
2d627737
PM
4289 float32 r = float64_to_float32(x, &env->vfp.fp_status);
4290 /* ARM requires that S<->D conversion of any kind of NaN generates
4291 * a quiet NaN by forcing the most significant frac bit to 1.
4292 */
4293 return float32_maybe_silence_nan(r);
4373f3ce
PB
4294}
4295
4296/* VFP3 fixed point conversion. */
16d5b3ca 4297#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8ed697e8
WN
4298float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
4299 void *fpstp) \
4373f3ce 4300{ \
5500b06c 4301 float_status *fpst = fpstp; \
622465e1 4302 float##fsz tmp; \
8ed697e8 4303 tmp = itype##_to_##float##fsz(x, fpst); \
5500b06c 4304 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
16d5b3ca
WN
4305}
4306
abe66f70
PM
4307/* Notice that we want only input-denormal exception flags from the
4308 * scalbn operation: the other possible flags (overflow+inexact if
4309 * we overflow to infinity, output-denormal) aren't correct for the
4310 * complete scale-and-convert operation.
4311 */
16d5b3ca
WN
4312#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
4313uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
4314 uint32_t shift, \
4315 void *fpstp) \
4373f3ce 4316{ \
5500b06c 4317 float_status *fpst = fpstp; \
abe66f70 4318 int old_exc_flags = get_float_exception_flags(fpst); \
622465e1
PM
4319 float##fsz tmp; \
4320 if (float##fsz##_is_any_nan(x)) { \
5500b06c 4321 float_raise(float_flag_invalid, fpst); \
622465e1 4322 return 0; \
09d9487f 4323 } \
5500b06c 4324 tmp = float##fsz##_scalbn(x, shift, fpst); \
abe66f70
PM
4325 old_exc_flags |= get_float_exception_flags(fpst) \
4326 & float_flag_input_denormal; \
4327 set_float_exception_flags(old_exc_flags, fpst); \
16d5b3ca 4328 return float##fsz##_to_##itype##round(tmp, fpst); \
622465e1
PM
4329}
4330
16d5b3ca
WN
4331#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
4332VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3c6a074a
WN
4333VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
4334VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4335
4336#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
4337VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4338VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
16d5b3ca 4339
8ed697e8
WN
4340VFP_CONV_FIX(sh, d, 64, 64, int16)
4341VFP_CONV_FIX(sl, d, 64, 64, int32)
3c6a074a 4342VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8ed697e8
WN
4343VFP_CONV_FIX(uh, d, 64, 64, uint16)
4344VFP_CONV_FIX(ul, d, 64, 64, uint32)
3c6a074a 4345VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8ed697e8
WN
4346VFP_CONV_FIX(sh, s, 32, 32, int16)
4347VFP_CONV_FIX(sl, s, 32, 32, int32)
3c6a074a 4348VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8ed697e8
WN
4349VFP_CONV_FIX(uh, s, 32, 32, uint16)
4350VFP_CONV_FIX(ul, s, 32, 32, uint32)
3c6a074a 4351VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4373f3ce 4352#undef VFP_CONV_FIX
16d5b3ca
WN
4353#undef VFP_CONV_FIX_FLOAT
4354#undef VFP_CONV_FLOAT_FIX_ROUND
4373f3ce 4355
52a1f6a3
AG
4356/* Set the current fp rounding mode and return the old one.
4357 * The argument is a softfloat float_round_ value.
4358 */
4359uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
4360{
4361 float_status *fp_status = &env->vfp.fp_status;
4362
4363 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4364 set_float_rounding_mode(rmode, fp_status);
4365
4366 return prev_rmode;
4367}
4368
43630e58
WN
4369/* Set the current fp rounding mode in the standard fp status and return
4370 * the old one. This is for NEON instructions that need to change the
4371 * rounding mode but wish to use the standard FPSCR values for everything
4372 * else. Always set the rounding mode back to the correct value after
4373 * modifying it.
4374 * The argument is a softfloat float_round_ value.
4375 */
4376uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
4377{
4378 float_status *fp_status = &env->vfp.standard_fp_status;
4379
4380 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4381 set_float_rounding_mode(rmode, fp_status);
4382
4383 return prev_rmode;
4384}
4385
60011498 4386/* Half precision conversions. */
0ecb72a5 4387static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 4388{
60011498 4389 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
4390 float32 r = float16_to_float32(make_float16(a), ieee, s);
4391 if (ieee) {
4392 return float32_maybe_silence_nan(r);
4393 }
4394 return r;
60011498
PB
4395}
4396
0ecb72a5 4397static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 4398{
60011498 4399 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
4400 float16 r = float32_to_float16(a, ieee, s);
4401 if (ieee) {
4402 r = float16_maybe_silence_nan(r);
4403 }
4404 return float16_val(r);
60011498
PB
4405}
4406
0ecb72a5 4407float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
4408{
4409 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
4410}
4411
0ecb72a5 4412uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
4413{
4414 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
4415}
4416
0ecb72a5 4417float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
4418{
4419 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
4420}
4421
0ecb72a5 4422uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
4423{
4424 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
4425}
4426
8900aad2
PM
4427float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
4428{
4429 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4430 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
4431 if (ieee) {
4432 return float64_maybe_silence_nan(r);
4433 }
4434 return r;
4435}
4436
4437uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
4438{
4439 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4440 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
4441 if (ieee) {
4442 r = float16_maybe_silence_nan(r);
4443 }
4444 return float16_val(r);
4445}
4446
dda3ec49 4447#define float32_two make_float32(0x40000000)
6aae3df1
PM
4448#define float32_three make_float32(0x40400000)
4449#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 4450
0ecb72a5 4451float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 4452{
dda3ec49
PM
4453 float_status *s = &env->vfp.standard_fp_status;
4454 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
4455 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
4456 if (!(float32_is_zero(a) || float32_is_zero(b))) {
4457 float_raise(float_flag_input_denormal, s);
4458 }
dda3ec49
PM
4459 return float32_two;
4460 }
4461 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
4462}
4463
0ecb72a5 4464float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 4465{
71826966 4466 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
4467 float32 product;
4468 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
4469 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
4470 if (!(float32_is_zero(a) || float32_is_zero(b))) {
4471 float_raise(float_flag_input_denormal, s);
4472 }
6aae3df1 4473 return float32_one_point_five;
9ea62f57 4474 }
6aae3df1
PM
4475 product = float32_mul(a, b, s);
4476 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
4477}
4478
8f8e3aa4
PB
4479/* NEON helpers. */
4480
56bf4fe2
CL
4481/* Constants 256 and 512 are used in some helpers; we avoid relying on
4482 * int->float conversions at run-time. */
4483#define float64_256 make_float64(0x4070000000000000LL)
4484#define float64_512 make_float64(0x4080000000000000LL)
4485
fe0e4872
CL
4486/* The algorithm that must be used to calculate the estimate
4487 * is specified by the ARM ARM.
4488 */
0ecb72a5 4489static float64 recip_estimate(float64 a, CPUARMState *env)
fe0e4872 4490{
1146a817
PM
4491 /* These calculations mustn't set any fp exception flags,
4492 * so we use a local copy of the fp_status.
4493 */
4494 float_status dummy_status = env->vfp.standard_fp_status;
4495 float_status *s = &dummy_status;
fe0e4872
CL
4496 /* q = (int)(a * 512.0) */
4497 float64 q = float64_mul(float64_512, a, s);
4498 int64_t q_int = float64_to_int64_round_to_zero(q, s);
4499
4500 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
4501 q = int64_to_float64(q_int, s);
4502 q = float64_add(q, float64_half, s);
4503 q = float64_div(q, float64_512, s);
4504 q = float64_div(float64_one, q, s);
4505
4506 /* s = (int)(256.0 * r + 0.5) */
4507 q = float64_mul(q, float64_256, s);
4508 q = float64_add(q, float64_half, s);
4509 q_int = float64_to_int64_round_to_zero(q, s);
4510
4511 /* return (double)s / 256.0 */
4512 return float64_div(int64_to_float64(q_int, s), float64_256, s);
4513}
4514
0ecb72a5 4515float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
4373f3ce 4516{
fe0e4872
CL
4517 float_status *s = &env->vfp.standard_fp_status;
4518 float64 f64;
4519 uint32_t val32 = float32_val(a);
4520
4521 int result_exp;
4522 int a_exp = (val32 & 0x7f800000) >> 23;
4523 int sign = val32 & 0x80000000;
4524
4525 if (float32_is_any_nan(a)) {
4526 if (float32_is_signaling_nan(a)) {
4527 float_raise(float_flag_invalid, s);
4528 }
4529 return float32_default_nan;
4530 } else if (float32_is_infinity(a)) {
4531 return float32_set_sign(float32_zero, float32_is_neg(a));
4532 } else if (float32_is_zero_or_denormal(a)) {
43fe9bdb
PM
4533 if (!float32_is_zero(a)) {
4534 float_raise(float_flag_input_denormal, s);
4535 }
fe0e4872
CL
4536 float_raise(float_flag_divbyzero, s);
4537 return float32_set_sign(float32_infinity, float32_is_neg(a));
4538 } else if (a_exp >= 253) {
4539 float_raise(float_flag_underflow, s);
4540 return float32_set_sign(float32_zero, float32_is_neg(a));
4541 }
4542
4543 f64 = make_float64((0x3feULL << 52)
4544 | ((int64_t)(val32 & 0x7fffff) << 29));
4545
4546 result_exp = 253 - a_exp;
4547
4548 f64 = recip_estimate(f64, env);
4549
4550 val32 = sign
4551 | ((result_exp & 0xff) << 23)
4552 | ((float64_val(f64) >> 29) & 0x7fffff);
4553 return make_float32(val32);
4373f3ce
PB
4554}
4555
e07be5d2
CL
4556/* The algorithm that must be used to calculate the estimate
4557 * is specified by the ARM ARM.
4558 */
0ecb72a5 4559static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
e07be5d2 4560{
1146a817
PM
4561 /* These calculations mustn't set any fp exception flags,
4562 * so we use a local copy of the fp_status.
4563 */
4564 float_status dummy_status = env->vfp.standard_fp_status;
4565 float_status *s = &dummy_status;
e07be5d2
CL
4566 float64 q;
4567 int64_t q_int;
4568
4569 if (float64_lt(a, float64_half, s)) {
4570 /* range 0.25 <= a < 0.5 */
4571
4572 /* a in units of 1/512 rounded down */
4573 /* q0 = (int)(a * 512.0); */
4574 q = float64_mul(float64_512, a, s);
4575 q_int = float64_to_int64_round_to_zero(q, s);
4576
4577 /* reciprocal root r */
4578 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
4579 q = int64_to_float64(q_int, s);
4580 q = float64_add(q, float64_half, s);
4581 q = float64_div(q, float64_512, s);
4582 q = float64_sqrt(q, s);
4583 q = float64_div(float64_one, q, s);
4584 } else {
4585 /* range 0.5 <= a < 1.0 */
4586
4587 /* a in units of 1/256 rounded down */
4588 /* q1 = (int)(a * 256.0); */
4589 q = float64_mul(float64_256, a, s);
4590 int64_t q_int = float64_to_int64_round_to_zero(q, s);
4591
4592 /* reciprocal root r */
4593 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
4594 q = int64_to_float64(q_int, s);
4595 q = float64_add(q, float64_half, s);
4596 q = float64_div(q, float64_256, s);
4597 q = float64_sqrt(q, s);
4598 q = float64_div(float64_one, q, s);
4599 }
4600 /* r in units of 1/256 rounded to nearest */
4601 /* s = (int)(256.0 * r + 0.5); */
4602
4603 q = float64_mul(q, float64_256,s );
4604 q = float64_add(q, float64_half, s);
4605 q_int = float64_to_int64_round_to_zero(q, s);
4606
4607 /* return (double)s / 256.0;*/
4608 return float64_div(int64_to_float64(q_int, s), float64_256, s);
4609}
4610
0ecb72a5 4611float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
4373f3ce 4612{
e07be5d2
CL
4613 float_status *s = &env->vfp.standard_fp_status;
4614 int result_exp;
4615 float64 f64;
4616 uint32_t val;
4617 uint64_t val64;
4618
4619 val = float32_val(a);
4620
4621 if (float32_is_any_nan(a)) {
4622 if (float32_is_signaling_nan(a)) {
4623 float_raise(float_flag_invalid, s);
4624 }
4625 return float32_default_nan;
4626 } else if (float32_is_zero_or_denormal(a)) {
43fe9bdb
PM
4627 if (!float32_is_zero(a)) {
4628 float_raise(float_flag_input_denormal, s);
4629 }
e07be5d2
CL
4630 float_raise(float_flag_divbyzero, s);
4631 return float32_set_sign(float32_infinity, float32_is_neg(a));
4632 } else if (float32_is_neg(a)) {
4633 float_raise(float_flag_invalid, s);
4634 return float32_default_nan;
4635 } else if (float32_is_infinity(a)) {
4636 return float32_zero;
4637 }
4638
4639 /* Normalize to a double-precision value between 0.25 and 1.0,
4640 * preserving the parity of the exponent. */
4641 if ((val & 0x800000) == 0) {
4642 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4643 | (0x3feULL << 52)
4644 | ((uint64_t)(val & 0x7fffff) << 29));
4645 } else {
4646 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4647 | (0x3fdULL << 52)
4648 | ((uint64_t)(val & 0x7fffff) << 29));
4649 }
4650
4651 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
4652
4653 f64 = recip_sqrt_estimate(f64, env);
4654
4655 val64 = float64_val(f64);
4656
26cc6abf 4657 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
4658 | ((val64 >> 29) & 0x7fffff);
4659 return make_float32(val);
4373f3ce
PB
4660}
4661
0ecb72a5 4662uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
4373f3ce 4663{
fe0e4872
CL
4664 float64 f64;
4665
4666 if ((a & 0x80000000) == 0) {
4667 return 0xffffffff;
4668 }
4669
4670 f64 = make_float64((0x3feULL << 52)
4671 | ((int64_t)(a & 0x7fffffff) << 21));
4672
4673 f64 = recip_estimate (f64, env);
4674
4675 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
4676}
4677
0ecb72a5 4678uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
4373f3ce 4679{
e07be5d2
CL
4680 float64 f64;
4681
4682 if ((a & 0xc0000000) == 0) {
4683 return 0xffffffff;
4684 }
4685
4686 if (a & 0x80000000) {
4687 f64 = make_float64((0x3feULL << 52)
4688 | ((uint64_t)(a & 0x7fffffff) << 21));
4689 } else { /* bits 31-30 == '01' */
4690 f64 = make_float64((0x3fdULL << 52)
4691 | ((uint64_t)(a & 0x3fffffff) << 22));
4692 }
4693
4694 f64 = recip_sqrt_estimate(f64, env);
4695
4696 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 4697}
fe1479c3 4698
da97f52c
PM
4699/* VFPv4 fused multiply-accumulate */
4700float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
4701{
4702 float_status *fpst = fpstp;
4703 return float32_muladd(a, b, c, 0, fpst);
4704}
4705
4706float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
4707{
4708 float_status *fpst = fpstp;
4709 return float64_muladd(a, b, c, 0, fpst);
4710}
d9b0848d
PM
4711
4712/* ARMv8 round to integral */
4713float32 HELPER(rints_exact)(float32 x, void *fp_status)
4714{
4715 return float32_round_to_int(x, fp_status);
4716}
4717
4718float64 HELPER(rintd_exact)(float64 x, void *fp_status)
4719{
4720 return float64_round_to_int(x, fp_status);
4721}
4722
4723float32 HELPER(rints)(float32 x, void *fp_status)
4724{
4725 int old_flags = get_float_exception_flags(fp_status), new_flags;
4726 float32 ret;
4727
4728 ret = float32_round_to_int(x, fp_status);
4729
4730 /* Suppress any inexact exceptions the conversion produced */
4731 if (!(old_flags & float_flag_inexact)) {
4732 new_flags = get_float_exception_flags(fp_status);
4733 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
4734 }
4735
4736 return ret;
4737}
4738
4739float64 HELPER(rintd)(float64 x, void *fp_status)
4740{
4741 int old_flags = get_float_exception_flags(fp_status), new_flags;
4742 float64 ret;
4743
4744 ret = float64_round_to_int(x, fp_status);
4745
4746 new_flags = get_float_exception_flags(fp_status);
4747
4748 /* Suppress any inexact exceptions the conversion produced */
4749 if (!(old_flags & float_flag_inexact)) {
4750 new_flags = get_float_exception_flags(fp_status);
4751 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
4752 }
4753
4754 return ret;
4755}
9972da66
WN
4756
4757/* Convert ARM rounding mode to softfloat */
4758int arm_rmode_to_sf(int rmode)
4759{
4760 switch (rmode) {
4761 case FPROUNDING_TIEAWAY:
4762 rmode = float_round_ties_away;
4763 break;
4764 case FPROUNDING_ODD:
4765 /* FIXME: add support for TIEAWAY and ODD */
4766 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
4767 rmode);
4768 case FPROUNDING_TIEEVEN:
4769 default:
4770 rmode = float_round_nearest_even;
4771 break;
4772 case FPROUNDING_POSINF:
4773 rmode = float_round_up;
4774 break;
4775 case FPROUNDING_NEGINF:
4776 rmode = float_round_down;
4777 break;
4778 case FPROUNDING_ZERO:
4779 rmode = float_round_to_zero;
4780 break;
4781 }
4782 return rmode;
4783}
eb0ecd5a
WN
4784
4785static void crc_init_buffer(uint8_t *buf, uint32_t val, uint32_t bytes)
4786{
4787 memset(buf, 0, 4);
4788
4789 if (bytes == 1) {
4790 buf[0] = val & 0xff;
4791 } else if (bytes == 2) {
4792 buf[0] = val & 0xff;
4793 buf[1] = (val >> 8) & 0xff;
4794 } else {
4795 buf[0] = val & 0xff;
4796 buf[1] = (val >> 8) & 0xff;
4797 buf[2] = (val >> 16) & 0xff;
4798 buf[3] = (val >> 24) & 0xff;
4799 }
4800}
4801
4802uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
4803{
4804 uint8_t buf[4];
4805
4806 crc_init_buffer(buf, val, bytes);
4807
4808 /* zlib crc32 converts the accumulator and output to one's complement. */
4809 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
4810}
4811
4812uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
4813{
4814 uint8_t buf[4];
4815
4816 crc_init_buffer(buf, val, bytes);
4817
4818 /* Linux crc32c converts the output to one's complement. */
4819 return crc32c(acc, buf, bytes) ^ 0xffffffff;
4820}