]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/helper.c
target-arm: correct cp15 c1_sys reset value for cortex-a8
[mirror_qemu.git] / target-arm / helper.c
CommitLineData
b5ff1b31
FB
1#include <stdio.h>
2#include <stdlib.h>
3#include <string.h>
4
5#include "cpu.h"
6#include "exec-all.h"
9ee6e8bb 7#include "gdbstub.h"
b26eefb6 8#include "helpers.h"
ca10f867 9#include "qemu-common.h"
7bbcb0af 10#include "host-utils.h"
4f78c9ad 11#if !defined(CONFIG_USER_ONLY)
983fe826 12#include "hw/loader.h"
4f78c9ad 13#endif
9ee6e8bb 14
10055562
PB
15static uint32_t cortexa9_cp15_c0_c1[8] =
16{ 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
17
18static uint32_t cortexa9_cp15_c0_c2[8] =
19{ 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
20
9ee6e8bb
PB
21static uint32_t cortexa8_cp15_c0_c1[8] =
22{ 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
23
24static uint32_t cortexa8_cp15_c0_c2[8] =
25{ 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
26
27static uint32_t mpcore_cp15_c0_c1[8] =
28{ 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
29
30static uint32_t mpcore_cp15_c0_c2[8] =
31{ 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
32
33static uint32_t arm1136_cp15_c0_c1[8] =
34{ 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
35
36static uint32_t arm1136_cp15_c0_c2[8] =
37{ 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
b5ff1b31 38
aaed909a
FB
39static uint32_t cpu_arm_find_by_name(const char *name);
40
f3d6b95e
PB
41static inline void set_feature(CPUARMState *env, int feature)
42{
43 env->features |= 1u << feature;
44}
45
46static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
47{
48 env->cp15.c0_cpuid = id;
49 switch (id) {
50 case ARM_CPUID_ARM926:
51 set_feature(env, ARM_FEATURE_VFP);
52 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
c1713132 53 env->cp15.c0_cachetype = 0x1dd20d2;
610c3c8a 54 env->cp15.c1_sys = 0x00090078;
f3d6b95e 55 break;
ce819861
PB
56 case ARM_CPUID_ARM946:
57 set_feature(env, ARM_FEATURE_MPU);
58 env->cp15.c0_cachetype = 0x0f004006;
610c3c8a 59 env->cp15.c1_sys = 0x00000078;
ce819861 60 break;
f3d6b95e
PB
61 case ARM_CPUID_ARM1026:
62 set_feature(env, ARM_FEATURE_VFP);
63 set_feature(env, ARM_FEATURE_AUXCR);
64 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
c1713132 65 env->cp15.c0_cachetype = 0x1dd20d2;
610c3c8a 66 env->cp15.c1_sys = 0x00090078;
c1713132 67 break;
827df9f3 68 case ARM_CPUID_ARM1136_R2:
9ee6e8bb
PB
69 case ARM_CPUID_ARM1136:
70 set_feature(env, ARM_FEATURE_V6);
71 set_feature(env, ARM_FEATURE_VFP);
72 set_feature(env, ARM_FEATURE_AUXCR);
73 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
74 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
75 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
76 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
22478e79 77 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
9ee6e8bb
PB
78 env->cp15.c0_cachetype = 0x1dd20d2;
79 break;
80 case ARM_CPUID_ARM11MPCORE:
81 set_feature(env, ARM_FEATURE_V6);
82 set_feature(env, ARM_FEATURE_V6K);
83 set_feature(env, ARM_FEATURE_VFP);
84 set_feature(env, ARM_FEATURE_AUXCR);
85 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
86 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
87 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
88 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
22478e79 89 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
9ee6e8bb
PB
90 env->cp15.c0_cachetype = 0x1dd20d2;
91 break;
92 case ARM_CPUID_CORTEXA8:
93 set_feature(env, ARM_FEATURE_V6);
94 set_feature(env, ARM_FEATURE_V6K);
95 set_feature(env, ARM_FEATURE_V7);
96 set_feature(env, ARM_FEATURE_AUXCR);
97 set_feature(env, ARM_FEATURE_THUMB2);
98 set_feature(env, ARM_FEATURE_VFP);
99 set_feature(env, ARM_FEATURE_VFP3);
100 set_feature(env, ARM_FEATURE_NEON);
fe1479c3 101 set_feature(env, ARM_FEATURE_THUMB2EE);
9ee6e8bb
PB
102 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
103 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
104 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
105 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
22478e79 106 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
a49ea279
PB
107 env->cp15.c0_cachetype = 0x82048004;
108 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
109 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
110 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
111 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
9c486ad6 112 env->cp15.c1_sys = 0x00c50078;
9ee6e8bb 113 break;
10055562
PB
114 case ARM_CPUID_CORTEXA9:
115 set_feature(env, ARM_FEATURE_V6);
116 set_feature(env, ARM_FEATURE_V6K);
117 set_feature(env, ARM_FEATURE_V7);
118 set_feature(env, ARM_FEATURE_AUXCR);
119 set_feature(env, ARM_FEATURE_THUMB2);
120 set_feature(env, ARM_FEATURE_VFP);
121 set_feature(env, ARM_FEATURE_VFP3);
122 set_feature(env, ARM_FEATURE_VFP_FP16);
123 set_feature(env, ARM_FEATURE_NEON);
124 set_feature(env, ARM_FEATURE_THUMB2EE);
125 env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
126 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
127 env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
128 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
129 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
130 env->cp15.c0_cachetype = 0x80038003;
131 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
132 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
133 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
134 break;
9ee6e8bb
PB
135 case ARM_CPUID_CORTEXM3:
136 set_feature(env, ARM_FEATURE_V6);
137 set_feature(env, ARM_FEATURE_THUMB2);
138 set_feature(env, ARM_FEATURE_V7);
139 set_feature(env, ARM_FEATURE_M);
140 set_feature(env, ARM_FEATURE_DIV);
141 break;
142 case ARM_CPUID_ANY: /* For userspace emulation. */
143 set_feature(env, ARM_FEATURE_V6);
144 set_feature(env, ARM_FEATURE_V6K);
145 set_feature(env, ARM_FEATURE_V7);
146 set_feature(env, ARM_FEATURE_THUMB2);
147 set_feature(env, ARM_FEATURE_VFP);
148 set_feature(env, ARM_FEATURE_VFP3);
60011498 149 set_feature(env, ARM_FEATURE_VFP_FP16);
9ee6e8bb 150 set_feature(env, ARM_FEATURE_NEON);
fe1479c3 151 set_feature(env, ARM_FEATURE_THUMB2EE);
9ee6e8bb
PB
152 set_feature(env, ARM_FEATURE_DIV);
153 break;
c3d2689d
AZ
154 case ARM_CPUID_TI915T:
155 case ARM_CPUID_TI925T:
156 set_feature(env, ARM_FEATURE_OMAPCP);
157 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
158 env->cp15.c0_cachetype = 0x5109149;
159 env->cp15.c1_sys = 0x00000070;
160 env->cp15.c15_i_max = 0x000;
161 env->cp15.c15_i_min = 0xff0;
162 break;
c1713132
AZ
163 case ARM_CPUID_PXA250:
164 case ARM_CPUID_PXA255:
165 case ARM_CPUID_PXA260:
166 case ARM_CPUID_PXA261:
167 case ARM_CPUID_PXA262:
168 set_feature(env, ARM_FEATURE_XSCALE);
169 /* JTAG_ID is ((id << 28) | 0x09265013) */
170 env->cp15.c0_cachetype = 0xd172172;
610c3c8a 171 env->cp15.c1_sys = 0x00000078;
c1713132
AZ
172 break;
173 case ARM_CPUID_PXA270_A0:
174 case ARM_CPUID_PXA270_A1:
175 case ARM_CPUID_PXA270_B0:
176 case ARM_CPUID_PXA270_B1:
177 case ARM_CPUID_PXA270_C0:
178 case ARM_CPUID_PXA270_C5:
179 set_feature(env, ARM_FEATURE_XSCALE);
180 /* JTAG_ID is ((id << 28) | 0x09265013) */
18c9b560
AZ
181 set_feature(env, ARM_FEATURE_IWMMXT);
182 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
c1713132 183 env->cp15.c0_cachetype = 0xd172172;
610c3c8a 184 env->cp15.c1_sys = 0x00000078;
f3d6b95e
PB
185 break;
186 default:
187 cpu_abort(env, "Bad CPU ID: %x\n", id);
188 break;
189 }
190}
191
40f137e1
PB
192void cpu_reset(CPUARMState *env)
193{
f3d6b95e 194 uint32_t id;
eca1bdf4
AL
195
196 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
197 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
198 log_cpu_state(env, 0);
199 }
200
f3d6b95e
PB
201 id = env->cp15.c0_cpuid;
202 memset(env, 0, offsetof(CPUARMState, breakpoints));
203 if (id)
204 cpu_reset_model_id(env, id);
40f137e1
PB
205#if defined (CONFIG_USER_ONLY)
206 env->uncached_cpsr = ARM_CPU_MODE_USR;
3a807dec 207 /* For user mode we must enable access to coprocessors */
40f137e1 208 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
3a807dec
PM
209 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
210 env->cp15.c15_cpar = 3;
211 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
212 env->cp15.c15_cpar = 1;
213 }
40f137e1
PB
214#else
215 /* SVC mode with interrupts disabled. */
216 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
9ee6e8bb 217 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
983fe826
PB
218 clear at reset. Initial SP and PC are loaded from ROM. */
219 if (IS_M(env)) {
220 uint32_t pc;
221 uint8_t *rom;
9ee6e8bb 222 env->uncached_cpsr &= ~CPSR_I;
983fe826
PB
223 rom = rom_ptr(0);
224 if (rom) {
225 /* We should really use ldl_phys here, in case the guest
226 modified flash and reset itself. However images
227 loaded via -kenrel have not been copied yet, so load the
228 values directly from there. */
229 env->regs[13] = ldl_p(rom);
230 pc = ldl_p(rom + 4);
231 env->thumb = pc & 1;
232 env->regs[15] = pc & ~1;
233 }
234 }
40f137e1 235 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
b2fa1797 236 env->cp15.c2_base_mask = 0xffffc000u;
40f137e1 237#endif
f3d6b95e 238 tlb_flush(env, 1);
40f137e1
PB
239}
240
56aebc89
PB
241static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
242{
243 int nregs;
244
245 /* VFP data registers are always little-endian. */
246 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
247 if (reg < nregs) {
248 stfq_le_p(buf, env->vfp.regs[reg]);
249 return 8;
250 }
251 if (arm_feature(env, ARM_FEATURE_NEON)) {
252 /* Aliases for Q regs. */
253 nregs += 16;
254 if (reg < nregs) {
255 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
256 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
257 return 16;
258 }
259 }
260 switch (reg - nregs) {
261 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
262 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
263 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
264 }
265 return 0;
266}
267
268static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
269{
270 int nregs;
271
272 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
273 if (reg < nregs) {
274 env->vfp.regs[reg] = ldfq_le_p(buf);
275 return 8;
276 }
277 if (arm_feature(env, ARM_FEATURE_NEON)) {
278 nregs += 16;
279 if (reg < nregs) {
280 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
281 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
282 return 16;
283 }
284 }
285 switch (reg - nregs) {
286 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
287 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 288 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
289 }
290 return 0;
291}
292
aaed909a 293CPUARMState *cpu_arm_init(const char *cpu_model)
40f137e1
PB
294{
295 CPUARMState *env;
aaed909a 296 uint32_t id;
b26eefb6 297 static int inited = 0;
40f137e1 298
aaed909a
FB
299 id = cpu_arm_find_by_name(cpu_model);
300 if (id == 0)
301 return NULL;
40f137e1 302 env = qemu_mallocz(sizeof(CPUARMState));
40f137e1 303 cpu_exec_init(env);
b26eefb6
PB
304 if (!inited) {
305 inited = 1;
306 arm_translate_init();
307 }
308
01ba9816 309 env->cpu_model_str = cpu_model;
aaed909a 310 env->cp15.c0_cpuid = id;
40f137e1 311 cpu_reset(env);
56aebc89
PB
312 if (arm_feature(env, ARM_FEATURE_NEON)) {
313 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
314 51, "arm-neon.xml", 0);
315 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
316 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
317 35, "arm-vfp3.xml", 0);
318 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
319 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
320 19, "arm-vfp.xml", 0);
321 }
0bf46a40 322 qemu_init_vcpu(env);
40f137e1
PB
323 return env;
324}
325
3371d272
PB
326struct arm_cpu_t {
327 uint32_t id;
328 const char *name;
329};
330
331static const struct arm_cpu_t arm_cpu_names[] = {
332 { ARM_CPUID_ARM926, "arm926"},
ce819861 333 { ARM_CPUID_ARM946, "arm946"},
3371d272 334 { ARM_CPUID_ARM1026, "arm1026"},
9ee6e8bb 335 { ARM_CPUID_ARM1136, "arm1136"},
827df9f3 336 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
9ee6e8bb
PB
337 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
338 { ARM_CPUID_CORTEXM3, "cortex-m3"},
339 { ARM_CPUID_CORTEXA8, "cortex-a8"},
10055562 340 { ARM_CPUID_CORTEXA9, "cortex-a9"},
c3d2689d 341 { ARM_CPUID_TI925T, "ti925t" },
c1713132
AZ
342 { ARM_CPUID_PXA250, "pxa250" },
343 { ARM_CPUID_PXA255, "pxa255" },
344 { ARM_CPUID_PXA260, "pxa260" },
345 { ARM_CPUID_PXA261, "pxa261" },
346 { ARM_CPUID_PXA262, "pxa262" },
347 { ARM_CPUID_PXA270, "pxa270" },
348 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
349 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
350 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
351 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
352 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
353 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
9ee6e8bb 354 { ARM_CPUID_ANY, "any"},
3371d272
PB
355 { 0, NULL}
356};
357
9a78eead 358void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5adb4839
PB
359{
360 int i;
361
c732abe2 362 (*cpu_fprintf)(f, "Available CPUs:\n");
5adb4839 363 for (i = 0; arm_cpu_names[i].name; i++) {
c732abe2 364 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
5adb4839
PB
365 }
366}
367
aaed909a
FB
368/* return 0 if not found */
369static uint32_t cpu_arm_find_by_name(const char *name)
40f137e1 370{
3371d272
PB
371 int i;
372 uint32_t id;
373
374 id = 0;
3371d272
PB
375 for (i = 0; arm_cpu_names[i].name; i++) {
376 if (strcmp(name, arm_cpu_names[i].name) == 0) {
377 id = arm_cpu_names[i].id;
378 break;
379 }
380 }
aaed909a 381 return id;
40f137e1
PB
382}
383
384void cpu_arm_close(CPUARMState *env)
385{
386 free(env);
387}
388
2f4a40e5
AZ
389uint32_t cpsr_read(CPUARMState *env)
390{
391 int ZF;
6fbe23d5
PB
392 ZF = (env->ZF == 0);
393 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
394 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
395 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
396 | ((env->condexec_bits & 0xfc) << 8)
397 | (env->GE << 16);
398}
399
400void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
401{
2f4a40e5 402 if (mask & CPSR_NZCV) {
6fbe23d5
PB
403 env->ZF = (~val) & CPSR_Z;
404 env->NF = val;
2f4a40e5
AZ
405 env->CF = (val >> 29) & 1;
406 env->VF = (val << 3) & 0x80000000;
407 }
408 if (mask & CPSR_Q)
409 env->QF = ((val & CPSR_Q) != 0);
410 if (mask & CPSR_T)
411 env->thumb = ((val & CPSR_T) != 0);
412 if (mask & CPSR_IT_0_1) {
413 env->condexec_bits &= ~3;
414 env->condexec_bits |= (val >> 25) & 3;
415 }
416 if (mask & CPSR_IT_2_7) {
417 env->condexec_bits &= 3;
418 env->condexec_bits |= (val >> 8) & 0xfc;
419 }
420 if (mask & CPSR_GE) {
421 env->GE = (val >> 16) & 0xf;
422 }
423
424 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
425 switch_mode(env, val & CPSR_M);
426 }
427 mask &= ~CACHED_CPSR_BITS;
428 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
429}
430
b26eefb6
PB
431/* Sign/zero extend */
432uint32_t HELPER(sxtb16)(uint32_t x)
433{
434 uint32_t res;
435 res = (uint16_t)(int8_t)x;
436 res |= (uint32_t)(int8_t)(x >> 16) << 16;
437 return res;
438}
439
440uint32_t HELPER(uxtb16)(uint32_t x)
441{
442 uint32_t res;
443 res = (uint16_t)(uint8_t)x;
444 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
445 return res;
446}
447
f51bbbfe
PB
448uint32_t HELPER(clz)(uint32_t x)
449{
7bbcb0af 450 return clz32(x);
f51bbbfe
PB
451}
452
3670669c
PB
453int32_t HELPER(sdiv)(int32_t num, int32_t den)
454{
455 if (den == 0)
456 return 0;
686eeb93
AJ
457 if (num == INT_MIN && den == -1)
458 return INT_MIN;
3670669c
PB
459 return num / den;
460}
461
462uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
463{
464 if (den == 0)
465 return 0;
466 return num / den;
467}
468
469uint32_t HELPER(rbit)(uint32_t x)
470{
471 x = ((x & 0xff000000) >> 24)
472 | ((x & 0x00ff0000) >> 8)
473 | ((x & 0x0000ff00) << 8)
474 | ((x & 0x000000ff) << 24);
475 x = ((x & 0xf0f0f0f0) >> 4)
476 | ((x & 0x0f0f0f0f) << 4);
477 x = ((x & 0x88888888) >> 3)
478 | ((x & 0x44444444) >> 1)
479 | ((x & 0x22222222) << 1)
480 | ((x & 0x11111111) << 3);
481 return x;
482}
483
ad69471c
PB
484uint32_t HELPER(abs)(uint32_t x)
485{
486 return ((int32_t)x < 0) ? -x : x;
487}
488
5fafdf24 489#if defined(CONFIG_USER_ONLY)
b5ff1b31
FB
490
491void do_interrupt (CPUState *env)
492{
493 env->exception_index = -1;
494}
495
496int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
6ebbf390 497 int mmu_idx, int is_softmmu)
b5ff1b31
FB
498{
499 if (rw == 2) {
500 env->exception_index = EXCP_PREFETCH_ABORT;
501 env->cp15.c6_insn = address;
502 } else {
503 env->exception_index = EXCP_DATA_ABORT;
504 env->cp15.c6_data = address;
505 }
506 return 1;
507}
508
b5ff1b31 509/* These should probably raise undefined insn exceptions. */
8984bd2e 510void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
c1713132
AZ
511{
512 int op1 = (insn >> 8) & 0xf;
513 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
514 return;
515}
516
8984bd2e 517uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
c1713132
AZ
518{
519 int op1 = (insn >> 8) & 0xf;
520 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
521 return 0;
522}
523
8984bd2e 524void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
b5ff1b31
FB
525{
526 cpu_abort(env, "cp15 insn %08x\n", insn);
527}
528
8984bd2e 529uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
b5ff1b31
FB
530{
531 cpu_abort(env, "cp15 insn %08x\n", insn);
b5ff1b31
FB
532}
533
9ee6e8bb 534/* These should probably raise undefined insn exceptions. */
8984bd2e 535void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
536{
537 cpu_abort(env, "v7m_mrs %d\n", reg);
538}
539
8984bd2e 540uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
9ee6e8bb
PB
541{
542 cpu_abort(env, "v7m_mrs %d\n", reg);
543 return 0;
544}
545
b5ff1b31
FB
546void switch_mode(CPUState *env, int mode)
547{
548 if (mode != ARM_CPU_MODE_USR)
549 cpu_abort(env, "Tried to switch out of user mode\n");
550}
551
b0109805 552void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
9ee6e8bb
PB
553{
554 cpu_abort(env, "banked r13 write\n");
555}
556
b0109805 557uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
9ee6e8bb
PB
558{
559 cpu_abort(env, "banked r13 read\n");
560 return 0;
561}
562
b5ff1b31
FB
563#else
564
8e71621f
PB
565extern int semihosting_enabled;
566
b5ff1b31
FB
567/* Map CPU modes onto saved register banks. */
568static inline int bank_number (int mode)
569{
570 switch (mode) {
571 case ARM_CPU_MODE_USR:
572 case ARM_CPU_MODE_SYS:
573 return 0;
574 case ARM_CPU_MODE_SVC:
575 return 1;
576 case ARM_CPU_MODE_ABT:
577 return 2;
578 case ARM_CPU_MODE_UND:
579 return 3;
580 case ARM_CPU_MODE_IRQ:
581 return 4;
582 case ARM_CPU_MODE_FIQ:
583 return 5;
584 }
585 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
586 return -1;
587}
588
589void switch_mode(CPUState *env, int mode)
590{
591 int old_mode;
592 int i;
593
594 old_mode = env->uncached_cpsr & CPSR_M;
595 if (mode == old_mode)
596 return;
597
598 if (old_mode == ARM_CPU_MODE_FIQ) {
599 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 600 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
601 } else if (mode == ARM_CPU_MODE_FIQ) {
602 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 603 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
604 }
605
606 i = bank_number(old_mode);
607 env->banked_r13[i] = env->regs[13];
608 env->banked_r14[i] = env->regs[14];
609 env->banked_spsr[i] = env->spsr;
610
611 i = bank_number(mode);
612 env->regs[13] = env->banked_r13[i];
613 env->regs[14] = env->banked_r14[i];
614 env->spsr = env->banked_spsr[i];
615}
616
9ee6e8bb
PB
617static void v7m_push(CPUARMState *env, uint32_t val)
618{
619 env->regs[13] -= 4;
620 stl_phys(env->regs[13], val);
621}
622
623static uint32_t v7m_pop(CPUARMState *env)
624{
625 uint32_t val;
626 val = ldl_phys(env->regs[13]);
627 env->regs[13] += 4;
628 return val;
629}
630
631/* Switch to V7M main or process stack pointer. */
632static void switch_v7m_sp(CPUARMState *env, int process)
633{
634 uint32_t tmp;
635 if (env->v7m.current_sp != process) {
636 tmp = env->v7m.other_sp;
637 env->v7m.other_sp = env->regs[13];
638 env->regs[13] = tmp;
639 env->v7m.current_sp = process;
640 }
641}
642
643static void do_v7m_exception_exit(CPUARMState *env)
644{
645 uint32_t type;
646 uint32_t xpsr;
647
648 type = env->regs[15];
649 if (env->v7m.exception != 0)
983fe826 650 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
9ee6e8bb
PB
651
652 /* Switch to the target stack. */
653 switch_v7m_sp(env, (type & 4) != 0);
654 /* Pop registers. */
655 env->regs[0] = v7m_pop(env);
656 env->regs[1] = v7m_pop(env);
657 env->regs[2] = v7m_pop(env);
658 env->regs[3] = v7m_pop(env);
659 env->regs[12] = v7m_pop(env);
660 env->regs[14] = v7m_pop(env);
661 env->regs[15] = v7m_pop(env);
662 xpsr = v7m_pop(env);
663 xpsr_write(env, xpsr, 0xfffffdff);
664 /* Undo stack alignment. */
665 if (xpsr & 0x200)
666 env->regs[13] |= 4;
667 /* ??? The exception return type specifies Thread/Handler mode. However
668 this is also implied by the xPSR value. Not sure what to do
669 if there is a mismatch. */
670 /* ??? Likewise for mismatches between the CONTROL register and the stack
671 pointer. */
672}
673
2b3ea315 674static void do_interrupt_v7m(CPUARMState *env)
9ee6e8bb
PB
675{
676 uint32_t xpsr = xpsr_read(env);
677 uint32_t lr;
678 uint32_t addr;
679
680 lr = 0xfffffff1;
681 if (env->v7m.current_sp)
682 lr |= 4;
683 if (env->v7m.exception == 0)
684 lr |= 8;
685
686 /* For exceptions we just mark as pending on the NVIC, and let that
687 handle it. */
688 /* TODO: Need to escalate if the current priority is higher than the
689 one we're raising. */
690 switch (env->exception_index) {
691 case EXCP_UDEF:
983fe826 692 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
9ee6e8bb
PB
693 return;
694 case EXCP_SWI:
695 env->regs[15] += 2;
983fe826 696 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
9ee6e8bb
PB
697 return;
698 case EXCP_PREFETCH_ABORT:
699 case EXCP_DATA_ABORT:
983fe826 700 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
9ee6e8bb
PB
701 return;
702 case EXCP_BKPT:
2ad207d4
PB
703 if (semihosting_enabled) {
704 int nr;
705 nr = lduw_code(env->regs[15]) & 0xff;
706 if (nr == 0xab) {
707 env->regs[15] += 2;
708 env->regs[0] = do_arm_semihosting(env);
709 return;
710 }
711 }
983fe826 712 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
9ee6e8bb
PB
713 return;
714 case EXCP_IRQ:
983fe826 715 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
9ee6e8bb
PB
716 break;
717 case EXCP_EXCEPTION_EXIT:
718 do_v7m_exception_exit(env);
719 return;
720 default:
721 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
722 return; /* Never happens. Keep compiler happy. */
723 }
724
725 /* Align stack pointer. */
726 /* ??? Should only do this if Configuration Control Register
727 STACKALIGN bit is set. */
728 if (env->regs[13] & 4) {
ab19b0ec 729 env->regs[13] -= 4;
9ee6e8bb
PB
730 xpsr |= 0x200;
731 }
6c95676b 732 /* Switch to the handler mode. */
9ee6e8bb
PB
733 v7m_push(env, xpsr);
734 v7m_push(env, env->regs[15]);
735 v7m_push(env, env->regs[14]);
736 v7m_push(env, env->regs[12]);
737 v7m_push(env, env->regs[3]);
738 v7m_push(env, env->regs[2]);
739 v7m_push(env, env->regs[1]);
740 v7m_push(env, env->regs[0]);
741 switch_v7m_sp(env, 0);
742 env->uncached_cpsr &= ~CPSR_IT;
743 env->regs[14] = lr;
744 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
745 env->regs[15] = addr & 0xfffffffe;
746 env->thumb = addr & 1;
747}
748
b5ff1b31
FB
749/* Handle a CPU exception. */
750void do_interrupt(CPUARMState *env)
751{
752 uint32_t addr;
753 uint32_t mask;
754 int new_mode;
755 uint32_t offset;
756
9ee6e8bb
PB
757 if (IS_M(env)) {
758 do_interrupt_v7m(env);
759 return;
760 }
b5ff1b31
FB
761 /* TODO: Vectored interrupt controller. */
762 switch (env->exception_index) {
763 case EXCP_UDEF:
764 new_mode = ARM_CPU_MODE_UND;
765 addr = 0x04;
766 mask = CPSR_I;
767 if (env->thumb)
768 offset = 2;
769 else
770 offset = 4;
771 break;
772 case EXCP_SWI:
8e71621f
PB
773 if (semihosting_enabled) {
774 /* Check for semihosting interrupt. */
775 if (env->thumb) {
776 mask = lduw_code(env->regs[15] - 2) & 0xff;
777 } else {
778 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
779 }
780 /* Only intercept calls from privileged modes, to provide some
781 semblance of security. */
782 if (((mask == 0x123456 && !env->thumb)
783 || (mask == 0xab && env->thumb))
784 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
785 env->regs[0] = do_arm_semihosting(env);
786 return;
787 }
788 }
b5ff1b31
FB
789 new_mode = ARM_CPU_MODE_SVC;
790 addr = 0x08;
791 mask = CPSR_I;
601d70b9 792 /* The PC already points to the next instruction. */
b5ff1b31
FB
793 offset = 0;
794 break;
06c949e6 795 case EXCP_BKPT:
9ee6e8bb 796 /* See if this is a semihosting syscall. */
2ad207d4 797 if (env->thumb && semihosting_enabled) {
9ee6e8bb
PB
798 mask = lduw_code(env->regs[15]) & 0xff;
799 if (mask == 0xab
800 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
801 env->regs[15] += 2;
802 env->regs[0] = do_arm_semihosting(env);
803 return;
804 }
805 }
806 /* Fall through to prefetch abort. */
807 case EXCP_PREFETCH_ABORT:
b5ff1b31
FB
808 new_mode = ARM_CPU_MODE_ABT;
809 addr = 0x0c;
810 mask = CPSR_A | CPSR_I;
811 offset = 4;
812 break;
813 case EXCP_DATA_ABORT:
814 new_mode = ARM_CPU_MODE_ABT;
815 addr = 0x10;
816 mask = CPSR_A | CPSR_I;
817 offset = 8;
818 break;
819 case EXCP_IRQ:
820 new_mode = ARM_CPU_MODE_IRQ;
821 addr = 0x18;
822 /* Disable IRQ and imprecise data aborts. */
823 mask = CPSR_A | CPSR_I;
824 offset = 4;
825 break;
826 case EXCP_FIQ:
827 new_mode = ARM_CPU_MODE_FIQ;
828 addr = 0x1c;
829 /* Disable FIQ, IRQ and imprecise data aborts. */
830 mask = CPSR_A | CPSR_I | CPSR_F;
831 offset = 4;
832 break;
833 default:
834 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
835 return; /* Never happens. Keep compiler happy. */
836 }
837 /* High vectors. */
838 if (env->cp15.c1_sys & (1 << 13)) {
839 addr += 0xffff0000;
840 }
841 switch_mode (env, new_mode);
842 env->spsr = cpsr_read(env);
9ee6e8bb
PB
843 /* Clear IT bits. */
844 env->condexec_bits = 0;
30a8cac1 845 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 846 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
b5ff1b31 847 env->uncached_cpsr |= mask;
30a8cac1 848 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
b5ff1b31
FB
849 env->regs[14] = env->regs[15] + offset;
850 env->regs[15] = addr;
851 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
852}
853
854/* Check section/page access permissions.
855 Returns the page protection flags, or zero if the access is not
856 permitted. */
857static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
858 int is_user)
859{
9ee6e8bb
PB
860 int prot_ro;
861
b5ff1b31
FB
862 if (domain == 3)
863 return PAGE_READ | PAGE_WRITE;
864
9ee6e8bb
PB
865 if (access_type == 1)
866 prot_ro = 0;
867 else
868 prot_ro = PAGE_READ;
869
b5ff1b31
FB
870 switch (ap) {
871 case 0:
78600320 872 if (access_type == 1)
b5ff1b31
FB
873 return 0;
874 switch ((env->cp15.c1_sys >> 8) & 3) {
875 case 1:
876 return is_user ? 0 : PAGE_READ;
877 case 2:
878 return PAGE_READ;
879 default:
880 return 0;
881 }
882 case 1:
883 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
884 case 2:
885 if (is_user)
9ee6e8bb 886 return prot_ro;
b5ff1b31
FB
887 else
888 return PAGE_READ | PAGE_WRITE;
889 case 3:
890 return PAGE_READ | PAGE_WRITE;
d4934d18 891 case 4: /* Reserved. */
9ee6e8bb
PB
892 return 0;
893 case 5:
894 return is_user ? 0 : prot_ro;
895 case 6:
896 return prot_ro;
d4934d18
PB
897 case 7:
898 if (!arm_feature (env, ARM_FEATURE_V7))
899 return 0;
900 return prot_ro;
b5ff1b31
FB
901 default:
902 abort();
903 }
904}
905
b2fa1797
PB
906static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
907{
908 uint32_t table;
909
910 if (address & env->cp15.c2_mask)
911 table = env->cp15.c2_base1 & 0xffffc000;
912 else
913 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
914
915 table |= (address >> 18) & 0x3ffc;
916 return table;
917}
918
9ee6e8bb 919static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
d4c430a8
PB
920 int is_user, uint32_t *phys_ptr, int *prot,
921 target_ulong *page_size)
b5ff1b31
FB
922{
923 int code;
924 uint32_t table;
925 uint32_t desc;
926 int type;
927 int ap;
928 int domain;
929 uint32_t phys_addr;
930
9ee6e8bb
PB
931 /* Pagetable walk. */
932 /* Lookup l1 descriptor. */
b2fa1797 933 table = get_level1_table_address(env, address);
9ee6e8bb
PB
934 desc = ldl_phys(table);
935 type = (desc & 3);
936 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
937 if (type == 0) {
601d70b9 938 /* Section translation fault. */
9ee6e8bb
PB
939 code = 5;
940 goto do_fault;
941 }
942 if (domain == 0 || domain == 2) {
943 if (type == 2)
944 code = 9; /* Section domain fault. */
945 else
946 code = 11; /* Page domain fault. */
947 goto do_fault;
948 }
949 if (type == 2) {
950 /* 1Mb section. */
951 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
952 ap = (desc >> 10) & 3;
953 code = 13;
d4c430a8 954 *page_size = 1024 * 1024;
9ee6e8bb
PB
955 } else {
956 /* Lookup l2 entry. */
957 if (type == 1) {
958 /* Coarse pagetable. */
959 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
960 } else {
961 /* Fine pagetable. */
962 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
963 }
964 desc = ldl_phys(table);
965 switch (desc & 3) {
966 case 0: /* Page translation fault. */
967 code = 7;
968 goto do_fault;
969 case 1: /* 64k page. */
970 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
971 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 972 *page_size = 0x10000;
ce819861 973 break;
9ee6e8bb
PB
974 case 2: /* 4k page. */
975 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
976 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 977 *page_size = 0x1000;
ce819861 978 break;
9ee6e8bb
PB
979 case 3: /* 1k page. */
980 if (type == 1) {
981 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
982 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
983 } else {
984 /* Page translation fault. */
985 code = 7;
986 goto do_fault;
987 }
988 } else {
989 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
990 }
991 ap = (desc >> 4) & 3;
d4c430a8 992 *page_size = 0x400;
ce819861
PB
993 break;
994 default:
9ee6e8bb
PB
995 /* Never happens, but compiler isn't smart enough to tell. */
996 abort();
ce819861 997 }
9ee6e8bb
PB
998 code = 15;
999 }
1000 *prot = check_ap(env, ap, domain, access_type, is_user);
1001 if (!*prot) {
1002 /* Access permission fault. */
1003 goto do_fault;
1004 }
3ad493fc 1005 *prot |= PAGE_EXEC;
9ee6e8bb
PB
1006 *phys_ptr = phys_addr;
1007 return 0;
1008do_fault:
1009 return code | (domain << 4);
1010}
1011
1012static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
d4c430a8
PB
1013 int is_user, uint32_t *phys_ptr, int *prot,
1014 target_ulong *page_size)
9ee6e8bb
PB
1015{
1016 int code;
1017 uint32_t table;
1018 uint32_t desc;
1019 uint32_t xn;
1020 int type;
1021 int ap;
1022 int domain;
1023 uint32_t phys_addr;
1024
1025 /* Pagetable walk. */
1026 /* Lookup l1 descriptor. */
b2fa1797 1027 table = get_level1_table_address(env, address);
9ee6e8bb
PB
1028 desc = ldl_phys(table);
1029 type = (desc & 3);
1030 if (type == 0) {
601d70b9 1031 /* Section translation fault. */
9ee6e8bb
PB
1032 code = 5;
1033 domain = 0;
1034 goto do_fault;
1035 } else if (type == 2 && (desc & (1 << 18))) {
1036 /* Supersection. */
1037 domain = 0;
b5ff1b31 1038 } else {
9ee6e8bb
PB
1039 /* Section or page. */
1040 domain = (desc >> 4) & 0x1e;
1041 }
1042 domain = (env->cp15.c3 >> domain) & 3;
1043 if (domain == 0 || domain == 2) {
1044 if (type == 2)
1045 code = 9; /* Section domain fault. */
1046 else
1047 code = 11; /* Page domain fault. */
1048 goto do_fault;
1049 }
1050 if (type == 2) {
1051 if (desc & (1 << 18)) {
1052 /* Supersection. */
1053 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
d4c430a8 1054 *page_size = 0x1000000;
b5ff1b31 1055 } else {
9ee6e8bb
PB
1056 /* Section. */
1057 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 1058 *page_size = 0x100000;
b5ff1b31 1059 }
9ee6e8bb
PB
1060 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1061 xn = desc & (1 << 4);
1062 code = 13;
1063 } else {
1064 /* Lookup l2 entry. */
1065 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1066 desc = ldl_phys(table);
1067 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1068 switch (desc & 3) {
1069 case 0: /* Page translation fault. */
1070 code = 7;
b5ff1b31 1071 goto do_fault;
9ee6e8bb
PB
1072 case 1: /* 64k page. */
1073 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1074 xn = desc & (1 << 15);
d4c430a8 1075 *page_size = 0x10000;
9ee6e8bb
PB
1076 break;
1077 case 2: case 3: /* 4k page. */
1078 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1079 xn = desc & 1;
d4c430a8 1080 *page_size = 0x1000;
9ee6e8bb
PB
1081 break;
1082 default:
1083 /* Never happens, but compiler isn't smart enough to tell. */
1084 abort();
b5ff1b31 1085 }
9ee6e8bb
PB
1086 code = 15;
1087 }
c0034328
JR
1088 if (domain == 3) {
1089 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1090 } else {
1091 if (xn && access_type == 2)
1092 goto do_fault;
9ee6e8bb 1093
c0034328
JR
1094 /* The simplified model uses AP[0] as an access control bit. */
1095 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1096 /* Access flag fault. */
1097 code = (code == 15) ? 6 : 3;
1098 goto do_fault;
1099 }
1100 *prot = check_ap(env, ap, domain, access_type, is_user);
1101 if (!*prot) {
1102 /* Access permission fault. */
1103 goto do_fault;
1104 }
1105 if (!xn) {
1106 *prot |= PAGE_EXEC;
1107 }
3ad493fc 1108 }
9ee6e8bb 1109 *phys_ptr = phys_addr;
b5ff1b31
FB
1110 return 0;
1111do_fault:
1112 return code | (domain << 4);
1113}
1114
9ee6e8bb
PB
1115static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1116 int is_user, uint32_t *phys_ptr, int *prot)
1117{
1118 int n;
1119 uint32_t mask;
1120 uint32_t base;
1121
1122 *phys_ptr = address;
1123 for (n = 7; n >= 0; n--) {
1124 base = env->cp15.c6_region[n];
1125 if ((base & 1) == 0)
1126 continue;
1127 mask = 1 << ((base >> 1) & 0x1f);
1128 /* Keep this shift separate from the above to avoid an
1129 (undefined) << 32. */
1130 mask = (mask << 1) - 1;
1131 if (((base ^ address) & ~mask) == 0)
1132 break;
1133 }
1134 if (n < 0)
1135 return 2;
1136
1137 if (access_type == 2) {
1138 mask = env->cp15.c5_insn;
1139 } else {
1140 mask = env->cp15.c5_data;
1141 }
1142 mask = (mask >> (n * 4)) & 0xf;
1143 switch (mask) {
1144 case 0:
1145 return 1;
1146 case 1:
1147 if (is_user)
1148 return 1;
1149 *prot = PAGE_READ | PAGE_WRITE;
1150 break;
1151 case 2:
1152 *prot = PAGE_READ;
1153 if (!is_user)
1154 *prot |= PAGE_WRITE;
1155 break;
1156 case 3:
1157 *prot = PAGE_READ | PAGE_WRITE;
1158 break;
1159 case 5:
1160 if (is_user)
1161 return 1;
1162 *prot = PAGE_READ;
1163 break;
1164 case 6:
1165 *prot = PAGE_READ;
1166 break;
1167 default:
1168 /* Bad permission. */
1169 return 1;
1170 }
3ad493fc 1171 *prot |= PAGE_EXEC;
9ee6e8bb
PB
1172 return 0;
1173}
1174
1175static inline int get_phys_addr(CPUState *env, uint32_t address,
1176 int access_type, int is_user,
d4c430a8
PB
1177 uint32_t *phys_ptr, int *prot,
1178 target_ulong *page_size)
9ee6e8bb
PB
1179{
1180 /* Fast Context Switch Extension. */
1181 if (address < 0x02000000)
1182 address += env->cp15.c13_fcse;
1183
1184 if ((env->cp15.c1_sys & 1) == 0) {
1185 /* MMU/MPU disabled. */
1186 *phys_ptr = address;
3ad493fc 1187 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 1188 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
1189 return 0;
1190 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
d4c430a8 1191 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
1192 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1193 prot);
1194 } else if (env->cp15.c1_sys & (1 << 23)) {
1195 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
d4c430a8 1196 prot, page_size);
9ee6e8bb
PB
1197 } else {
1198 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
d4c430a8 1199 prot, page_size);
9ee6e8bb
PB
1200 }
1201}
1202
b5ff1b31 1203int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
6ebbf390 1204 int access_type, int mmu_idx, int is_softmmu)
b5ff1b31
FB
1205{
1206 uint32_t phys_addr;
d4c430a8 1207 target_ulong page_size;
b5ff1b31 1208 int prot;
6ebbf390 1209 int ret, is_user;
b5ff1b31 1210
6ebbf390 1211 is_user = mmu_idx == MMU_USER_IDX;
d4c430a8
PB
1212 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1213 &page_size);
b5ff1b31
FB
1214 if (ret == 0) {
1215 /* Map a single [sub]page. */
1216 phys_addr &= ~(uint32_t)0x3ff;
1217 address &= ~(uint32_t)0x3ff;
3ad493fc 1218 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
d4c430a8 1219 return 0;
b5ff1b31
FB
1220 }
1221
1222 if (access_type == 2) {
1223 env->cp15.c5_insn = ret;
1224 env->cp15.c6_insn = address;
1225 env->exception_index = EXCP_PREFETCH_ABORT;
1226 } else {
1227 env->cp15.c5_data = ret;
9ee6e8bb
PB
1228 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1229 env->cp15.c5_data |= (1 << 11);
b5ff1b31
FB
1230 env->cp15.c6_data = address;
1231 env->exception_index = EXCP_DATA_ABORT;
1232 }
1233 return 1;
1234}
1235
c227f099 1236target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
b5ff1b31
FB
1237{
1238 uint32_t phys_addr;
d4c430a8 1239 target_ulong page_size;
b5ff1b31
FB
1240 int prot;
1241 int ret;
1242
d4c430a8 1243 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
b5ff1b31
FB
1244
1245 if (ret != 0)
1246 return -1;
1247
1248 return phys_addr;
1249}
1250
8984bd2e 1251void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
c1713132
AZ
1252{
1253 int cp_num = (insn >> 8) & 0xf;
1254 int cp_info = (insn >> 5) & 7;
1255 int src = (insn >> 16) & 0xf;
1256 int operand = insn & 0xf;
1257
1258 if (env->cp[cp_num].cp_write)
1259 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1260 cp_info, src, operand, val);
1261}
1262
8984bd2e 1263uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
c1713132
AZ
1264{
1265 int cp_num = (insn >> 8) & 0xf;
1266 int cp_info = (insn >> 5) & 7;
1267 int dest = (insn >> 16) & 0xf;
1268 int operand = insn & 0xf;
1269
1270 if (env->cp[cp_num].cp_read)
1271 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1272 cp_info, dest, operand);
1273 return 0;
1274}
1275
ce819861
PB
1276/* Return basic MPU access permission bits. */
1277static uint32_t simple_mpu_ap_bits(uint32_t val)
1278{
1279 uint32_t ret;
1280 uint32_t mask;
1281 int i;
1282 ret = 0;
1283 mask = 3;
1284 for (i = 0; i < 16; i += 2) {
1285 ret |= (val >> i) & mask;
1286 mask <<= 2;
1287 }
1288 return ret;
1289}
1290
1291/* Pad basic MPU access permission bits to extended format. */
1292static uint32_t extended_mpu_ap_bits(uint32_t val)
1293{
1294 uint32_t ret;
1295 uint32_t mask;
1296 int i;
1297 ret = 0;
1298 mask = 3;
1299 for (i = 0; i < 16; i += 2) {
1300 ret |= (val & mask) << i;
1301 mask <<= 2;
1302 }
1303 return ret;
1304}
1305
8984bd2e 1306void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
b5ff1b31 1307{
9ee6e8bb
PB
1308 int op1;
1309 int op2;
1310 int crm;
b5ff1b31 1311
9ee6e8bb 1312 op1 = (insn >> 21) & 7;
b5ff1b31 1313 op2 = (insn >> 5) & 7;
ce819861 1314 crm = insn & 0xf;
b5ff1b31 1315 switch ((insn >> 16) & 0xf) {
9ee6e8bb 1316 case 0:
9ee6e8bb 1317 /* ID codes. */
610c3c8a
AZ
1318 if (arm_feature(env, ARM_FEATURE_XSCALE))
1319 break;
c3d2689d
AZ
1320 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1321 break;
a49ea279
PB
1322 if (arm_feature(env, ARM_FEATURE_V7)
1323 && op1 == 2 && crm == 0 && op2 == 0) {
1324 env->cp15.c0_cssel = val & 0xf;
1325 break;
1326 }
b5ff1b31
FB
1327 goto bad_reg;
1328 case 1: /* System configuration. */
c3d2689d
AZ
1329 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1330 op2 = 0;
b5ff1b31
FB
1331 switch (op2) {
1332 case 0:
ce819861 1333 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
c1713132 1334 env->cp15.c1_sys = val;
b5ff1b31
FB
1335 /* ??? Lots of these bits are not implemented. */
1336 /* This may enable/disable the MMU, so do a TLB flush. */
1337 tlb_flush(env, 1);
1338 break;
9ee6e8bb 1339 case 1: /* Auxiliary cotrol register. */
610c3c8a
AZ
1340 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1341 env->cp15.c1_xscaleauxcr = val;
c1713132 1342 break;
610c3c8a 1343 }
9ee6e8bb
PB
1344 /* Not implemented. */
1345 break;
b5ff1b31 1346 case 2:
610c3c8a
AZ
1347 if (arm_feature(env, ARM_FEATURE_XSCALE))
1348 goto bad_reg;
4be27dbb
PB
1349 if (env->cp15.c1_coproc != val) {
1350 env->cp15.c1_coproc = val;
1351 /* ??? Is this safe when called from within a TB? */
1352 tb_flush(env);
1353 }
c1713132 1354 break;
b5ff1b31
FB
1355 default:
1356 goto bad_reg;
1357 }
1358 break;
ce819861
PB
1359 case 2: /* MMU Page table control / MPU cache control. */
1360 if (arm_feature(env, ARM_FEATURE_MPU)) {
1361 switch (op2) {
1362 case 0:
1363 env->cp15.c2_data = val;
1364 break;
1365 case 1:
1366 env->cp15.c2_insn = val;
1367 break;
1368 default:
1369 goto bad_reg;
1370 }
1371 } else {
9ee6e8bb
PB
1372 switch (op2) {
1373 case 0:
1374 env->cp15.c2_base0 = val;
1375 break;
1376 case 1:
1377 env->cp15.c2_base1 = val;
1378 break;
1379 case 2:
b2fa1797
PB
1380 val &= 7;
1381 env->cp15.c2_control = val;
9ee6e8bb 1382 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
b2fa1797 1383 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
9ee6e8bb
PB
1384 break;
1385 default:
1386 goto bad_reg;
1387 }
ce819861 1388 }
b5ff1b31 1389 break;
ce819861 1390 case 3: /* MMU Domain access control / MPU write buffer control. */
b5ff1b31 1391 env->cp15.c3 = val;
405ee3ad 1392 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
b5ff1b31
FB
1393 break;
1394 case 4: /* Reserved. */
1395 goto bad_reg;
ce819861 1396 case 5: /* MMU Fault status / MPU access permission. */
c3d2689d
AZ
1397 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1398 op2 = 0;
b5ff1b31
FB
1399 switch (op2) {
1400 case 0:
ce819861
PB
1401 if (arm_feature(env, ARM_FEATURE_MPU))
1402 val = extended_mpu_ap_bits(val);
b5ff1b31
FB
1403 env->cp15.c5_data = val;
1404 break;
1405 case 1:
ce819861
PB
1406 if (arm_feature(env, ARM_FEATURE_MPU))
1407 val = extended_mpu_ap_bits(val);
b5ff1b31
FB
1408 env->cp15.c5_insn = val;
1409 break;
ce819861
PB
1410 case 2:
1411 if (!arm_feature(env, ARM_FEATURE_MPU))
1412 goto bad_reg;
1413 env->cp15.c5_data = val;
b5ff1b31 1414 break;
ce819861
PB
1415 case 3:
1416 if (!arm_feature(env, ARM_FEATURE_MPU))
1417 goto bad_reg;
1418 env->cp15.c5_insn = val;
b5ff1b31
FB
1419 break;
1420 default:
1421 goto bad_reg;
1422 }
1423 break;
ce819861
PB
1424 case 6: /* MMU Fault address / MPU base/size. */
1425 if (arm_feature(env, ARM_FEATURE_MPU)) {
1426 if (crm >= 8)
1427 goto bad_reg;
1428 env->cp15.c6_region[crm] = val;
1429 } else {
c3d2689d
AZ
1430 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1431 op2 = 0;
ce819861
PB
1432 switch (op2) {
1433 case 0:
1434 env->cp15.c6_data = val;
1435 break;
9ee6e8bb
PB
1436 case 1: /* ??? This is WFAR on armv6 */
1437 case 2:
ce819861
PB
1438 env->cp15.c6_insn = val;
1439 break;
1440 default:
1441 goto bad_reg;
1442 }
1443 }
1444 break;
b5ff1b31 1445 case 7: /* Cache control. */
c3d2689d
AZ
1446 env->cp15.c15_i_max = 0x000;
1447 env->cp15.c15_i_min = 0xff0;
b5ff1b31 1448 /* No cache, so nothing to do. */
9ee6e8bb 1449 /* ??? MPCore has VA to PA translation functions. */
b5ff1b31
FB
1450 break;
1451 case 8: /* MMU TLB control. */
1452 switch (op2) {
1453 case 0: /* Invalidate all. */
1454 tlb_flush(env, 0);
1455 break;
1456 case 1: /* Invalidate single TLB entry. */
d4c430a8 1457 tlb_flush_page(env, val & TARGET_PAGE_MASK);
b5ff1b31 1458 break;
9ee6e8bb
PB
1459 case 2: /* Invalidate on ASID. */
1460 tlb_flush(env, val == 0);
1461 break;
1462 case 3: /* Invalidate single entry on MVA. */
1463 /* ??? This is like case 1, but ignores ASID. */
1464 tlb_flush(env, 1);
1465 break;
b5ff1b31
FB
1466 default:
1467 goto bad_reg;
1468 }
1469 break;
ce819861 1470 case 9:
c3d2689d
AZ
1471 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1472 break;
ce819861
PB
1473 switch (crm) {
1474 case 0: /* Cache lockdown. */
9ee6e8bb
PB
1475 switch (op1) {
1476 case 0: /* L1 cache. */
1477 switch (op2) {
1478 case 0:
1479 env->cp15.c9_data = val;
1480 break;
1481 case 1:
1482 env->cp15.c9_insn = val;
1483 break;
1484 default:
1485 goto bad_reg;
1486 }
1487 break;
1488 case 1: /* L2 cache. */
1489 /* Ignore writes to L2 lockdown/auxiliary registers. */
1490 break;
1491 default:
1492 goto bad_reg;
1493 }
1494 break;
ce819861
PB
1495 case 1: /* TCM memory region registers. */
1496 /* Not implemented. */
1497 goto bad_reg;
b5ff1b31
FB
1498 default:
1499 goto bad_reg;
1500 }
1501 break;
1502 case 10: /* MMU TLB lockdown. */
1503 /* ??? TLB lockdown not implemented. */
1504 break;
b5ff1b31
FB
1505 case 12: /* Reserved. */
1506 goto bad_reg;
1507 case 13: /* Process ID. */
1508 switch (op2) {
1509 case 0:
d07edbfa
PB
1510 /* Unlike real hardware the qemu TLB uses virtual addresses,
1511 not modified virtual addresses, so this causes a TLB flush.
1512 */
1513 if (env->cp15.c13_fcse != val)
1514 tlb_flush(env, 1);
1515 env->cp15.c13_fcse = val;
b5ff1b31
FB
1516 break;
1517 case 1:
d07edbfa 1518 /* This changes the ASID, so do a TLB flush. */
ce819861
PB
1519 if (env->cp15.c13_context != val
1520 && !arm_feature(env, ARM_FEATURE_MPU))
d07edbfa
PB
1521 tlb_flush(env, 0);
1522 env->cp15.c13_context = val;
b5ff1b31
FB
1523 break;
1524 default:
1525 goto bad_reg;
1526 }
1527 break;
1528 case 14: /* Reserved. */
1529 goto bad_reg;
1530 case 15: /* Implementation specific. */
c1713132 1531 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
ce819861 1532 if (op2 == 0 && crm == 1) {
2e23213f
AZ
1533 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1534 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1535 tb_flush(env);
1536 env->cp15.c15_cpar = val & 0x3fff;
1537 }
c1713132
AZ
1538 break;
1539 }
1540 goto bad_reg;
1541 }
c3d2689d
AZ
1542 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1543 switch (crm) {
1544 case 0:
1545 break;
1546 case 1: /* Set TI925T configuration. */
1547 env->cp15.c15_ticonfig = val & 0xe7;
1548 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1549 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1550 break;
1551 case 2: /* Set I_max. */
1552 env->cp15.c15_i_max = val;
1553 break;
1554 case 3: /* Set I_min. */
1555 env->cp15.c15_i_min = val;
1556 break;
1557 case 4: /* Set thread-ID. */
1558 env->cp15.c15_threadid = val & 0xffff;
1559 break;
1560 case 8: /* Wait-for-interrupt (deprecated). */
1561 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1562 break;
1563 default:
1564 goto bad_reg;
1565 }
1566 }
b5ff1b31
FB
1567 break;
1568 }
1569 return;
1570bad_reg:
1571 /* ??? For debugging only. Should raise illegal instruction exception. */
9ee6e8bb
PB
1572 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1573 (insn >> 16) & 0xf, crm, op1, op2);
b5ff1b31
FB
1574}
1575
8984bd2e 1576uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
b5ff1b31 1577{
9ee6e8bb
PB
1578 int op1;
1579 int op2;
1580 int crm;
b5ff1b31 1581
9ee6e8bb 1582 op1 = (insn >> 21) & 7;
b5ff1b31 1583 op2 = (insn >> 5) & 7;
c3d2689d 1584 crm = insn & 0xf;
b5ff1b31
FB
1585 switch ((insn >> 16) & 0xf) {
1586 case 0: /* ID codes. */
9ee6e8bb
PB
1587 switch (op1) {
1588 case 0:
1589 switch (crm) {
1590 case 0:
1591 switch (op2) {
1592 case 0: /* Device ID. */
1593 return env->cp15.c0_cpuid;
1594 case 1: /* Cache Type. */
1595 return env->cp15.c0_cachetype;
1596 case 2: /* TCM status. */
1597 return 0;
1598 case 3: /* TLB type register. */
1599 return 0; /* No lockable TLB entries. */
1600 case 5: /* CPU ID */
10055562
PB
1601 if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1602 return env->cpu_index | 0x80000900;
1603 } else {
1604 return env->cpu_index;
1605 }
9ee6e8bb
PB
1606 default:
1607 goto bad_reg;
1608 }
1609 case 1:
1610 if (!arm_feature(env, ARM_FEATURE_V6))
1611 goto bad_reg;
1612 return env->cp15.c0_c1[op2];
1613 case 2:
1614 if (!arm_feature(env, ARM_FEATURE_V6))
1615 goto bad_reg;
1616 return env->cp15.c0_c2[op2];
1617 case 3: case 4: case 5: case 6: case 7:
1618 return 0;
1619 default:
1620 goto bad_reg;
1621 }
1622 case 1:
1623 /* These registers aren't documented on arm11 cores. However
1624 Linux looks at them anyway. */
1625 if (!arm_feature(env, ARM_FEATURE_V6))
1626 goto bad_reg;
1627 if (crm != 0)
1628 goto bad_reg;
a49ea279
PB
1629 if (!arm_feature(env, ARM_FEATURE_V7))
1630 return 0;
1631
1632 switch (op2) {
1633 case 0:
1634 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1635 case 1:
1636 return env->cp15.c0_clid;
1637 case 7:
1638 return 0;
1639 }
1640 goto bad_reg;
1641 case 2:
1642 if (op2 != 0 || crm != 0)
610c3c8a 1643 goto bad_reg;
a49ea279 1644 return env->cp15.c0_cssel;
9ee6e8bb
PB
1645 default:
1646 goto bad_reg;
b5ff1b31
FB
1647 }
1648 case 1: /* System configuration. */
c3d2689d
AZ
1649 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1650 op2 = 0;
b5ff1b31
FB
1651 switch (op2) {
1652 case 0: /* Control register. */
1653 return env->cp15.c1_sys;
1654 case 1: /* Auxiliary control register. */
c1713132 1655 if (arm_feature(env, ARM_FEATURE_XSCALE))
610c3c8a 1656 return env->cp15.c1_xscaleauxcr;
9ee6e8bb
PB
1657 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1658 goto bad_reg;
1659 switch (ARM_CPUID(env)) {
1660 case ARM_CPUID_ARM1026:
1661 return 1;
1662 case ARM_CPUID_ARM1136:
827df9f3 1663 case ARM_CPUID_ARM1136_R2:
9ee6e8bb
PB
1664 return 7;
1665 case ARM_CPUID_ARM11MPCORE:
1666 return 1;
1667 case ARM_CPUID_CORTEXA8:
533d177a 1668 return 2;
10055562
PB
1669 case ARM_CPUID_CORTEXA9:
1670 return 0;
9ee6e8bb
PB
1671 default:
1672 goto bad_reg;
1673 }
b5ff1b31 1674 case 2: /* Coprocessor access register. */
610c3c8a
AZ
1675 if (arm_feature(env, ARM_FEATURE_XSCALE))
1676 goto bad_reg;
b5ff1b31
FB
1677 return env->cp15.c1_coproc;
1678 default:
1679 goto bad_reg;
1680 }
ce819861
PB
1681 case 2: /* MMU Page table control / MPU cache control. */
1682 if (arm_feature(env, ARM_FEATURE_MPU)) {
1683 switch (op2) {
1684 case 0:
1685 return env->cp15.c2_data;
1686 break;
1687 case 1:
1688 return env->cp15.c2_insn;
1689 break;
1690 default:
1691 goto bad_reg;
1692 }
1693 } else {
9ee6e8bb
PB
1694 switch (op2) {
1695 case 0:
1696 return env->cp15.c2_base0;
1697 case 1:
1698 return env->cp15.c2_base1;
1699 case 2:
b2fa1797 1700 return env->cp15.c2_control;
9ee6e8bb
PB
1701 default:
1702 goto bad_reg;
1703 }
1704 }
ce819861 1705 case 3: /* MMU Domain access control / MPU write buffer control. */
b5ff1b31
FB
1706 return env->cp15.c3;
1707 case 4: /* Reserved. */
1708 goto bad_reg;
ce819861 1709 case 5: /* MMU Fault status / MPU access permission. */
c3d2689d
AZ
1710 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1711 op2 = 0;
b5ff1b31
FB
1712 switch (op2) {
1713 case 0:
ce819861
PB
1714 if (arm_feature(env, ARM_FEATURE_MPU))
1715 return simple_mpu_ap_bits(env->cp15.c5_data);
b5ff1b31
FB
1716 return env->cp15.c5_data;
1717 case 1:
ce819861
PB
1718 if (arm_feature(env, ARM_FEATURE_MPU))
1719 return simple_mpu_ap_bits(env->cp15.c5_data);
1720 return env->cp15.c5_insn;
1721 case 2:
1722 if (!arm_feature(env, ARM_FEATURE_MPU))
1723 goto bad_reg;
1724 return env->cp15.c5_data;
1725 case 3:
1726 if (!arm_feature(env, ARM_FEATURE_MPU))
1727 goto bad_reg;
b5ff1b31
FB
1728 return env->cp15.c5_insn;
1729 default:
1730 goto bad_reg;
1731 }
9ee6e8bb 1732 case 6: /* MMU Fault address. */
ce819861 1733 if (arm_feature(env, ARM_FEATURE_MPU)) {
9ee6e8bb 1734 if (crm >= 8)
ce819861 1735 goto bad_reg;
9ee6e8bb 1736 return env->cp15.c6_region[crm];
ce819861 1737 } else {
c3d2689d
AZ
1738 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1739 op2 = 0;
9ee6e8bb
PB
1740 switch (op2) {
1741 case 0:
1742 return env->cp15.c6_data;
1743 case 1:
1744 if (arm_feature(env, ARM_FEATURE_V6)) {
1745 /* Watchpoint Fault Adrress. */
1746 return 0; /* Not implemented. */
1747 } else {
1748 /* Instruction Fault Adrress. */
1749 /* Arm9 doesn't have an IFAR, but implementing it anyway
1750 shouldn't do any harm. */
1751 return env->cp15.c6_insn;
1752 }
1753 case 2:
1754 if (arm_feature(env, ARM_FEATURE_V6)) {
1755 /* Instruction Fault Adrress. */
1756 return env->cp15.c6_insn;
1757 } else {
1758 goto bad_reg;
1759 }
1760 default:
1761 goto bad_reg;
1762 }
b5ff1b31
FB
1763 }
1764 case 7: /* Cache control. */
6fbe23d5
PB
1765 /* FIXME: Should only clear Z flag if destination is r15. */
1766 env->ZF = 0;
b5ff1b31
FB
1767 return 0;
1768 case 8: /* MMU TLB control. */
1769 goto bad_reg;
1770 case 9: /* Cache lockdown. */
9ee6e8bb
PB
1771 switch (op1) {
1772 case 0: /* L1 cache. */
1773 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1774 return 0;
1775 switch (op2) {
1776 case 0:
1777 return env->cp15.c9_data;
1778 case 1:
1779 return env->cp15.c9_insn;
1780 default:
1781 goto bad_reg;
1782 }
1783 case 1: /* L2 cache */
1784 if (crm != 0)
1785 goto bad_reg;
1786 /* L2 Lockdown and Auxiliary control. */
c3d2689d 1787 return 0;
b5ff1b31
FB
1788 default:
1789 goto bad_reg;
1790 }
1791 case 10: /* MMU TLB lockdown. */
1792 /* ??? TLB lockdown not implemented. */
1793 return 0;
1794 case 11: /* TCM DMA control. */
1795 case 12: /* Reserved. */
1796 goto bad_reg;
1797 case 13: /* Process ID. */
1798 switch (op2) {
1799 case 0:
1800 return env->cp15.c13_fcse;
1801 case 1:
1802 return env->cp15.c13_context;
1803 default:
1804 goto bad_reg;
1805 }
1806 case 14: /* Reserved. */
1807 goto bad_reg;
1808 case 15: /* Implementation specific. */
c1713132 1809 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
c3d2689d 1810 if (op2 == 0 && crm == 1)
c1713132
AZ
1811 return env->cp15.c15_cpar;
1812
1813 goto bad_reg;
1814 }
c3d2689d
AZ
1815 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1816 switch (crm) {
1817 case 0:
1818 return 0;
1819 case 1: /* Read TI925T configuration. */
1820 return env->cp15.c15_ticonfig;
1821 case 2: /* Read I_max. */
1822 return env->cp15.c15_i_max;
1823 case 3: /* Read I_min. */
1824 return env->cp15.c15_i_min;
1825 case 4: /* Read thread-ID. */
1826 return env->cp15.c15_threadid;
1827 case 8: /* TI925T_status */
1828 return 0;
1829 }
827df9f3
AZ
1830 /* TODO: Peripheral port remap register:
1831 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1832 * controller base address at $rn & ~0xfff and map size of
1833 * 0x200 << ($rn & 0xfff), when MMU is off. */
c3d2689d
AZ
1834 goto bad_reg;
1835 }
b5ff1b31
FB
1836 return 0;
1837 }
1838bad_reg:
1839 /* ??? For debugging only. Should raise illegal instruction exception. */
9ee6e8bb
PB
1840 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1841 (insn >> 16) & 0xf, crm, op1, op2);
b5ff1b31
FB
1842 return 0;
1843}
1844
b0109805 1845void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
9ee6e8bb
PB
1846{
1847 env->banked_r13[bank_number(mode)] = val;
1848}
1849
b0109805 1850uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
9ee6e8bb
PB
1851{
1852 return env->banked_r13[bank_number(mode)];
1853}
1854
8984bd2e 1855uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
9ee6e8bb
PB
1856{
1857 switch (reg) {
1858 case 0: /* APSR */
1859 return xpsr_read(env) & 0xf8000000;
1860 case 1: /* IAPSR */
1861 return xpsr_read(env) & 0xf80001ff;
1862 case 2: /* EAPSR */
1863 return xpsr_read(env) & 0xff00fc00;
1864 case 3: /* xPSR */
1865 return xpsr_read(env) & 0xff00fdff;
1866 case 5: /* IPSR */
1867 return xpsr_read(env) & 0x000001ff;
1868 case 6: /* EPSR */
1869 return xpsr_read(env) & 0x0700fc00;
1870 case 7: /* IEPSR */
1871 return xpsr_read(env) & 0x0700edff;
1872 case 8: /* MSP */
1873 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1874 case 9: /* PSP */
1875 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1876 case 16: /* PRIMASK */
1877 return (env->uncached_cpsr & CPSR_I) != 0;
1878 case 17: /* FAULTMASK */
1879 return (env->uncached_cpsr & CPSR_F) != 0;
1880 case 18: /* BASEPRI */
1881 case 19: /* BASEPRI_MAX */
1882 return env->v7m.basepri;
1883 case 20: /* CONTROL */
1884 return env->v7m.control;
1885 default:
1886 /* ??? For debugging only. */
1887 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1888 return 0;
1889 }
1890}
1891
8984bd2e 1892void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
1893{
1894 switch (reg) {
1895 case 0: /* APSR */
1896 xpsr_write(env, val, 0xf8000000);
1897 break;
1898 case 1: /* IAPSR */
1899 xpsr_write(env, val, 0xf8000000);
1900 break;
1901 case 2: /* EAPSR */
1902 xpsr_write(env, val, 0xfe00fc00);
1903 break;
1904 case 3: /* xPSR */
1905 xpsr_write(env, val, 0xfe00fc00);
1906 break;
1907 case 5: /* IPSR */
1908 /* IPSR bits are readonly. */
1909 break;
1910 case 6: /* EPSR */
1911 xpsr_write(env, val, 0x0600fc00);
1912 break;
1913 case 7: /* IEPSR */
1914 xpsr_write(env, val, 0x0600fc00);
1915 break;
1916 case 8: /* MSP */
1917 if (env->v7m.current_sp)
1918 env->v7m.other_sp = val;
1919 else
1920 env->regs[13] = val;
1921 break;
1922 case 9: /* PSP */
1923 if (env->v7m.current_sp)
1924 env->regs[13] = val;
1925 else
1926 env->v7m.other_sp = val;
1927 break;
1928 case 16: /* PRIMASK */
1929 if (val & 1)
1930 env->uncached_cpsr |= CPSR_I;
1931 else
1932 env->uncached_cpsr &= ~CPSR_I;
1933 break;
1934 case 17: /* FAULTMASK */
1935 if (val & 1)
1936 env->uncached_cpsr |= CPSR_F;
1937 else
1938 env->uncached_cpsr &= ~CPSR_F;
1939 break;
1940 case 18: /* BASEPRI */
1941 env->v7m.basepri = val & 0xff;
1942 break;
1943 case 19: /* BASEPRI_MAX */
1944 val &= 0xff;
1945 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1946 env->v7m.basepri = val;
1947 break;
1948 case 20: /* CONTROL */
1949 env->v7m.control = val & 3;
1950 switch_v7m_sp(env, (val & 2) != 0);
1951 break;
1952 default:
1953 /* ??? For debugging only. */
1954 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1955 return;
1956 }
1957}
1958
c1713132
AZ
1959void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1960 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1961 void *opaque)
1962{
1963 if (cpnum < 0 || cpnum > 14) {
1964 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1965 return;
1966 }
1967
1968 env->cp[cpnum].cp_read = cp_read;
1969 env->cp[cpnum].cp_write = cp_write;
1970 env->cp[cpnum].opaque = opaque;
1971}
1972
b5ff1b31 1973#endif
6ddbc6e4
PB
1974
1975/* Note that signed overflow is undefined in C. The following routines are
1976 careful to use unsigned types where modulo arithmetic is required.
1977 Failure to do so _will_ break on newer gcc. */
1978
1979/* Signed saturating arithmetic. */
1980
1654b2d6 1981/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
1982static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1983{
1984 uint16_t res;
1985
1986 res = a + b;
1987 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
1988 if (a & 0x8000)
1989 res = 0x8000;
1990 else
1991 res = 0x7fff;
1992 }
1993 return res;
1994}
1995
1654b2d6 1996/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
1997static inline uint8_t add8_sat(uint8_t a, uint8_t b)
1998{
1999 uint8_t res;
2000
2001 res = a + b;
2002 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2003 if (a & 0x80)
2004 res = 0x80;
2005 else
2006 res = 0x7f;
2007 }
2008 return res;
2009}
2010
1654b2d6 2011/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
2012static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2013{
2014 uint16_t res;
2015
2016 res = a - b;
2017 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2018 if (a & 0x8000)
2019 res = 0x8000;
2020 else
2021 res = 0x7fff;
2022 }
2023 return res;
2024}
2025
1654b2d6 2026/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
2027static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2028{
2029 uint8_t res;
2030
2031 res = a - b;
2032 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2033 if (a & 0x80)
2034 res = 0x80;
2035 else
2036 res = 0x7f;
2037 }
2038 return res;
2039}
2040
2041#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2042#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2043#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2044#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2045#define PFX q
2046
2047#include "op_addsub.h"
2048
2049/* Unsigned saturating arithmetic. */
460a09c1 2050static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
2051{
2052 uint16_t res;
2053 res = a + b;
2054 if (res < a)
2055 res = 0xffff;
2056 return res;
2057}
2058
460a09c1 2059static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 2060{
4c4fd3f8 2061 if (a > b)
6ddbc6e4
PB
2062 return a - b;
2063 else
2064 return 0;
2065}
2066
2067static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2068{
2069 uint8_t res;
2070 res = a + b;
2071 if (res < a)
2072 res = 0xff;
2073 return res;
2074}
2075
2076static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2077{
4c4fd3f8 2078 if (a > b)
6ddbc6e4
PB
2079 return a - b;
2080 else
2081 return 0;
2082}
2083
2084#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2085#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2086#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2087#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2088#define PFX uq
2089
2090#include "op_addsub.h"
2091
2092/* Signed modulo arithmetic. */
2093#define SARITH16(a, b, n, op) do { \
2094 int32_t sum; \
2095 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2096 RESULT(sum, n, 16); \
2097 if (sum >= 0) \
2098 ge |= 3 << (n * 2); \
2099 } while(0)
2100
2101#define SARITH8(a, b, n, op) do { \
2102 int32_t sum; \
2103 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2104 RESULT(sum, n, 8); \
2105 if (sum >= 0) \
2106 ge |= 1 << n; \
2107 } while(0)
2108
2109
2110#define ADD16(a, b, n) SARITH16(a, b, n, +)
2111#define SUB16(a, b, n) SARITH16(a, b, n, -)
2112#define ADD8(a, b, n) SARITH8(a, b, n, +)
2113#define SUB8(a, b, n) SARITH8(a, b, n, -)
2114#define PFX s
2115#define ARITH_GE
2116
2117#include "op_addsub.h"
2118
2119/* Unsigned modulo arithmetic. */
2120#define ADD16(a, b, n) do { \
2121 uint32_t sum; \
2122 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2123 RESULT(sum, n, 16); \
a87aa10b 2124 if ((sum >> 16) == 1) \
6ddbc6e4
PB
2125 ge |= 3 << (n * 2); \
2126 } while(0)
2127
2128#define ADD8(a, b, n) do { \
2129 uint32_t sum; \
2130 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2131 RESULT(sum, n, 8); \
a87aa10b
AZ
2132 if ((sum >> 8) == 1) \
2133 ge |= 1 << n; \
6ddbc6e4
PB
2134 } while(0)
2135
2136#define SUB16(a, b, n) do { \
2137 uint32_t sum; \
2138 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2139 RESULT(sum, n, 16); \
2140 if ((sum >> 16) == 0) \
2141 ge |= 3 << (n * 2); \
2142 } while(0)
2143
2144#define SUB8(a, b, n) do { \
2145 uint32_t sum; \
2146 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2147 RESULT(sum, n, 8); \
2148 if ((sum >> 8) == 0) \
a87aa10b 2149 ge |= 1 << n; \
6ddbc6e4
PB
2150 } while(0)
2151
2152#define PFX u
2153#define ARITH_GE
2154
2155#include "op_addsub.h"
2156
2157/* Halved signed arithmetic. */
2158#define ADD16(a, b, n) \
2159 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2160#define SUB16(a, b, n) \
2161 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2162#define ADD8(a, b, n) \
2163 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2164#define SUB8(a, b, n) \
2165 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2166#define PFX sh
2167
2168#include "op_addsub.h"
2169
2170/* Halved unsigned arithmetic. */
2171#define ADD16(a, b, n) \
2172 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2173#define SUB16(a, b, n) \
2174 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2175#define ADD8(a, b, n) \
2176 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2177#define SUB8(a, b, n) \
2178 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2179#define PFX uh
2180
2181#include "op_addsub.h"
2182
2183static inline uint8_t do_usad(uint8_t a, uint8_t b)
2184{
2185 if (a > b)
2186 return a - b;
2187 else
2188 return b - a;
2189}
2190
2191/* Unsigned sum of absolute byte differences. */
2192uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2193{
2194 uint32_t sum;
2195 sum = do_usad(a, b);
2196 sum += do_usad(a >> 8, b >> 8);
2197 sum += do_usad(a >> 16, b >>16);
2198 sum += do_usad(a >> 24, b >> 24);
2199 return sum;
2200}
2201
2202/* For ARMv6 SEL instruction. */
2203uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2204{
2205 uint32_t mask;
2206
2207 mask = 0;
2208 if (flags & 1)
2209 mask |= 0xff;
2210 if (flags & 2)
2211 mask |= 0xff00;
2212 if (flags & 4)
2213 mask |= 0xff0000;
2214 if (flags & 8)
2215 mask |= 0xff000000;
2216 return (a & mask) | (b & ~mask);
2217}
2218
5e3f878a
PB
2219uint32_t HELPER(logicq_cc)(uint64_t val)
2220{
2221 return (val >> 32) | (val != 0);
2222}
4373f3ce
PB
2223
2224/* VFP support. We follow the convention used for VFP instrunctions:
2225 Single precition routines have a "s" suffix, double precision a
2226 "d" suffix. */
2227
2228/* Convert host exception flags to vfp form. */
2229static inline int vfp_exceptbits_from_host(int host_bits)
2230{
2231 int target_bits = 0;
2232
2233 if (host_bits & float_flag_invalid)
2234 target_bits |= 1;
2235 if (host_bits & float_flag_divbyzero)
2236 target_bits |= 2;
2237 if (host_bits & float_flag_overflow)
2238 target_bits |= 4;
2239 if (host_bits & float_flag_underflow)
2240 target_bits |= 8;
2241 if (host_bits & float_flag_inexact)
2242 target_bits |= 0x10;
2243 return target_bits;
2244}
2245
2246uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2247{
2248 int i;
2249 uint32_t fpscr;
2250
2251 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2252 | (env->vfp.vec_len << 16)
2253 | (env->vfp.vec_stride << 20);
2254 i = get_float_exception_flags(&env->vfp.fp_status);
2255 fpscr |= vfp_exceptbits_from_host(i);
2256 return fpscr;
2257}
2258
01653295
PM
2259uint32_t vfp_get_fpscr(CPUState *env)
2260{
2261 return HELPER(vfp_get_fpscr)(env);
2262}
2263
4373f3ce
PB
2264/* Convert vfp exception flags to target form. */
2265static inline int vfp_exceptbits_to_host(int target_bits)
2266{
2267 int host_bits = 0;
2268
2269 if (target_bits & 1)
2270 host_bits |= float_flag_invalid;
2271 if (target_bits & 2)
2272 host_bits |= float_flag_divbyzero;
2273 if (target_bits & 4)
2274 host_bits |= float_flag_overflow;
2275 if (target_bits & 8)
2276 host_bits |= float_flag_underflow;
2277 if (target_bits & 0x10)
2278 host_bits |= float_flag_inexact;
2279 return host_bits;
2280}
2281
2282void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2283{
2284 int i;
2285 uint32_t changed;
2286
2287 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2288 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2289 env->vfp.vec_len = (val >> 16) & 7;
2290 env->vfp.vec_stride = (val >> 20) & 3;
2291
2292 changed ^= val;
2293 if (changed & (3 << 22)) {
2294 i = (val >> 22) & 3;
2295 switch (i) {
2296 case 0:
2297 i = float_round_nearest_even;
2298 break;
2299 case 1:
2300 i = float_round_up;
2301 break;
2302 case 2:
2303 i = float_round_down;
2304 break;
2305 case 3:
2306 i = float_round_to_zero;
2307 break;
2308 }
2309 set_float_rounding_mode(i, &env->vfp.fp_status);
2310 }
fe76d976
PB
2311 if (changed & (1 << 24))
2312 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
5c7908ed
PB
2313 if (changed & (1 << 25))
2314 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce
PB
2315
2316 i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2317 set_float_exception_flags(i, &env->vfp.fp_status);
4373f3ce
PB
2318}
2319
01653295
PM
2320void vfp_set_fpscr(CPUState *env, uint32_t val)
2321{
2322 HELPER(vfp_set_fpscr)(env, val);
2323}
2324
4373f3ce
PB
2325#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2326
2327#define VFP_BINOP(name) \
2328float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2329{ \
2330 return float32_ ## name (a, b, &env->vfp.fp_status); \
2331} \
2332float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2333{ \
2334 return float64_ ## name (a, b, &env->vfp.fp_status); \
2335}
2336VFP_BINOP(add)
2337VFP_BINOP(sub)
2338VFP_BINOP(mul)
2339VFP_BINOP(div)
2340#undef VFP_BINOP
2341
2342float32 VFP_HELPER(neg, s)(float32 a)
2343{
2344 return float32_chs(a);
2345}
2346
2347float64 VFP_HELPER(neg, d)(float64 a)
2348{
66230e0d 2349 return float64_chs(a);
4373f3ce
PB
2350}
2351
2352float32 VFP_HELPER(abs, s)(float32 a)
2353{
2354 return float32_abs(a);
2355}
2356
2357float64 VFP_HELPER(abs, d)(float64 a)
2358{
66230e0d 2359 return float64_abs(a);
4373f3ce
PB
2360}
2361
2362float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2363{
2364 return float32_sqrt(a, &env->vfp.fp_status);
2365}
2366
2367float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2368{
2369 return float64_sqrt(a, &env->vfp.fp_status);
2370}
2371
2372/* XXX: check quiet/signaling case */
2373#define DO_VFP_cmp(p, type) \
2374void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2375{ \
2376 uint32_t flags; \
2377 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2378 case 0: flags = 0x6; break; \
2379 case -1: flags = 0x8; break; \
2380 case 1: flags = 0x2; break; \
2381 default: case 2: flags = 0x3; break; \
2382 } \
2383 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2384 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2385} \
2386void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2387{ \
2388 uint32_t flags; \
2389 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2390 case 0: flags = 0x6; break; \
2391 case -1: flags = 0x8; break; \
2392 case 1: flags = 0x2; break; \
2393 default: case 2: flags = 0x3; break; \
2394 } \
2395 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2396 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2397}
2398DO_VFP_cmp(s, float32)
2399DO_VFP_cmp(d, float64)
2400#undef DO_VFP_cmp
2401
2402/* Helper routines to perform bitwise copies between float and int. */
2403static inline float32 vfp_itos(uint32_t i)
2404{
2405 union {
2406 uint32_t i;
2407 float32 s;
2408 } v;
2409
2410 v.i = i;
2411 return v.s;
2412}
2413
2414static inline uint32_t vfp_stoi(float32 s)
2415{
2416 union {
2417 uint32_t i;
2418 float32 s;
2419 } v;
2420
2421 v.s = s;
2422 return v.i;
2423}
2424
2425static inline float64 vfp_itod(uint64_t i)
2426{
2427 union {
2428 uint64_t i;
2429 float64 d;
2430 } v;
2431
2432 v.i = i;
2433 return v.d;
2434}
2435
2436static inline uint64_t vfp_dtoi(float64 d)
2437{
2438 union {
2439 uint64_t i;
2440 float64 d;
2441 } v;
2442
2443 v.d = d;
2444 return v.i;
2445}
2446
2447/* Integer to float conversion. */
2448float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2449{
2450 return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2451}
2452
2453float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2454{
2455 return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2456}
2457
2458float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2459{
2460 return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2461}
2462
2463float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2464{
2465 return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2466}
2467
2468/* Float to integer conversion. */
2469float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2470{
09d9487f
PM
2471 if (float32_is_any_nan(x)) {
2472 return float32_zero;
2473 }
4373f3ce
PB
2474 return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2475}
2476
2477float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2478{
09d9487f
PM
2479 if (float64_is_any_nan(x)) {
2480 return float32_zero;
2481 }
4373f3ce
PB
2482 return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2483}
2484
2485float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2486{
09d9487f
PM
2487 if (float32_is_any_nan(x)) {
2488 return float32_zero;
2489 }
4373f3ce
PB
2490 return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2491}
2492
2493float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2494{
09d9487f
PM
2495 if (float64_is_any_nan(x)) {
2496 return float32_zero;
2497 }
4373f3ce
PB
2498 return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2499}
2500
2501float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2502{
09d9487f
PM
2503 if (float32_is_any_nan(x)) {
2504 return float32_zero;
2505 }
4373f3ce
PB
2506 return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2507}
2508
2509float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2510{
09d9487f
PM
2511 if (float64_is_any_nan(x)) {
2512 return float32_zero;
2513 }
4373f3ce
PB
2514 return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2515}
2516
2517float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2518{
09d9487f
PM
2519 if (float32_is_any_nan(x)) {
2520 return float32_zero;
2521 }
4373f3ce
PB
2522 return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2523}
2524
2525float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2526{
09d9487f
PM
2527 if (float64_is_any_nan(x)) {
2528 return float32_zero;
2529 }
4373f3ce
PB
2530 return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2531}
2532
2533/* floating point conversion */
2534float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2535{
2d627737
PM
2536 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2537 /* ARM requires that S<->D conversion of any kind of NaN generates
2538 * a quiet NaN by forcing the most significant frac bit to 1.
2539 */
2540 return float64_maybe_silence_nan(r);
4373f3ce
PB
2541}
2542
2543float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2544{
2d627737
PM
2545 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2546 /* ARM requires that S<->D conversion of any kind of NaN generates
2547 * a quiet NaN by forcing the most significant frac bit to 1.
2548 */
2549 return float32_maybe_silence_nan(r);
4373f3ce
PB
2550}
2551
2552/* VFP3 fixed point conversion. */
2553#define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2554ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2555{ \
2556 ftype tmp; \
26a5e69a 2557 tmp = sign##int32_to_##ftype ((itype##_t)vfp_##p##toi(x), \
4373f3ce 2558 &env->vfp.fp_status); \
644ad806 2559 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
4373f3ce
PB
2560} \
2561ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2562{ \
2563 ftype tmp; \
09d9487f
PM
2564 if (ftype##_is_any_nan(x)) { \
2565 return ftype##_zero; \
2566 } \
4373f3ce 2567 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
72f24d15 2568 return vfp_ito##p(ftype##_to_##itype##_round_to_zero(tmp, \
4373f3ce
PB
2569 &env->vfp.fp_status)); \
2570}
2571
2572VFP_CONV_FIX(sh, d, float64, int16, )
2573VFP_CONV_FIX(sl, d, float64, int32, )
2574VFP_CONV_FIX(uh, d, float64, uint16, u)
2575VFP_CONV_FIX(ul, d, float64, uint32, u)
2576VFP_CONV_FIX(sh, s, float32, int16, )
2577VFP_CONV_FIX(sl, s, float32, int32, )
2578VFP_CONV_FIX(uh, s, float32, uint16, u)
2579VFP_CONV_FIX(ul, s, float32, uint32, u)
2580#undef VFP_CONV_FIX
2581
60011498
PB
2582/* Half precision conversions. */
2583float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2584{
2585 float_status *s = &env->vfp.fp_status;
2586 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2587 return float16_to_float32(a, ieee, s);
2588}
2589
2590uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2591{
2592 float_status *s = &env->vfp.fp_status;
2593 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2594 return float32_to_float16(a, ieee, s);
2595}
2596
4373f3ce
PB
2597float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2598{
2599 float_status *s = &env->vfp.fp_status;
2600 float32 two = int32_to_float32(2, s);
2601 return float32_sub(two, float32_mul(a, b, s), s);
2602}
2603
2604float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2605{
2606 float_status *s = &env->vfp.fp_status;
2607 float32 three = int32_to_float32(3, s);
2608 return float32_sub(three, float32_mul(a, b, s), s);
2609}
2610
8f8e3aa4
PB
2611/* NEON helpers. */
2612
4373f3ce
PB
2613/* TODO: The architecture specifies the value that the estimate functions
2614 should return. We return the exact reciprocal/root instead. */
2615float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2616{
2617 float_status *s = &env->vfp.fp_status;
2618 float32 one = int32_to_float32(1, s);
2619 return float32_div(one, a, s);
2620}
2621
2622float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2623{
2624 float_status *s = &env->vfp.fp_status;
2625 float32 one = int32_to_float32(1, s);
2626 return float32_div(one, float32_sqrt(a, s), s);
2627}
2628
2629uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2630{
2631 float_status *s = &env->vfp.fp_status;
2632 float32 tmp;
2633 tmp = int32_to_float32(a, s);
2634 tmp = float32_scalbn(tmp, -32, s);
2635 tmp = helper_recpe_f32(tmp, env);
2636 tmp = float32_scalbn(tmp, 31, s);
2637 return float32_to_int32(tmp, s);
2638}
2639
2640uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2641{
2642 float_status *s = &env->vfp.fp_status;
2643 float32 tmp;
2644 tmp = int32_to_float32(a, s);
2645 tmp = float32_scalbn(tmp, -32, s);
2646 tmp = helper_rsqrte_f32(tmp, env);
2647 tmp = float32_scalbn(tmp, 31, s);
2648 return float32_to_int32(tmp, s);
2649}
fe1479c3
PB
2650
2651void HELPER(set_teecr)(CPUState *env, uint32_t val)
2652{
2653 val &= 1;
2654 if (env->teecr != val) {
2655 env->teecr = val;
2656 tb_flush(env);
2657 }
2658}