]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/helper.c
Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-2.7-20160623' into staging
[mirror_qemu.git] / target-arm / helper.c
CommitLineData
74c21bd0 1#include "qemu/osdep.h"
b5ff1b31 2#include "cpu.h"
ccd38087 3#include "internals.h"
022c62cb 4#include "exec/gdbstub.h"
2ef6175a 5#include "exec/helper-proto.h"
1de7afc9 6#include "qemu/host-utils.h"
78027bb6 7#include "sysemu/arch_init.h"
9c17d615 8#include "sysemu/sysemu.h"
1de7afc9 9#include "qemu/bitops.h"
eb0ecd5a 10#include "qemu/crc32c.h"
63c91552 11#include "exec/exec-all.h"
f08b6170 12#include "exec/cpu_ldst.h"
1d854765 13#include "arm_ldst.h"
eb0ecd5a 14#include <zlib.h> /* For crc32 */
cfe67cef 15#include "exec/semihost.h"
f3a9b694 16#include "sysemu/kvm.h"
0b03bdfc 17
352c98e5
LV
18#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
19
4a501606 20#ifndef CONFIG_USER_ONLY
af51f566
EI
21static bool get_phys_addr(CPUARMState *env, target_ulong address,
22 int access_type, ARMMMUIdx mmu_idx,
23 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
24 target_ulong *page_size, uint32_t *fsr,
25 ARMMMUFaultInfo *fi);
7c2cb42b 26
37785977
EI
27static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
28 int access_type, ARMMMUIdx mmu_idx,
29 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
30 target_ulong *page_size_ptr, uint32_t *fsr,
31 ARMMMUFaultInfo *fi);
32
7c2cb42b
AF
33/* Definitions for the PMCCNTR and PMCR registers */
34#define PMCRD 0x8
35#define PMCRC 0x4
36#define PMCRE 0x1
4a501606
PM
37#endif
38
0ecb72a5 39static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
40{
41 int nregs;
42
43 /* VFP data registers are always little-endian. */
44 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
45 if (reg < nregs) {
46 stfq_le_p(buf, env->vfp.regs[reg]);
47 return 8;
48 }
49 if (arm_feature(env, ARM_FEATURE_NEON)) {
50 /* Aliases for Q regs. */
51 nregs += 16;
52 if (reg < nregs) {
53 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
54 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
55 return 16;
56 }
57 }
58 switch (reg - nregs) {
59 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
60 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
61 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
62 }
63 return 0;
64}
65
0ecb72a5 66static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
67{
68 int nregs;
69
70 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
71 if (reg < nregs) {
72 env->vfp.regs[reg] = ldfq_le_p(buf);
73 return 8;
74 }
75 if (arm_feature(env, ARM_FEATURE_NEON)) {
76 nregs += 16;
77 if (reg < nregs) {
78 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
79 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
80 return 16;
81 }
82 }
83 switch (reg - nregs) {
84 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
85 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 86 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
87 }
88 return 0;
89}
90
6a669427
PM
91static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
92{
93 switch (reg) {
94 case 0 ... 31:
95 /* 128 bit FP register */
96 stfq_le_p(buf, env->vfp.regs[reg * 2]);
97 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
98 return 16;
99 case 32:
100 /* FPSR */
101 stl_p(buf, vfp_get_fpsr(env));
102 return 4;
103 case 33:
104 /* FPCR */
105 stl_p(buf, vfp_get_fpcr(env));
106 return 4;
107 default:
108 return 0;
109 }
110}
111
112static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
113{
114 switch (reg) {
115 case 0 ... 31:
116 /* 128 bit FP register */
117 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
118 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
119 return 16;
120 case 32:
121 /* FPSR */
122 vfp_set_fpsr(env, ldl_p(buf));
123 return 4;
124 case 33:
125 /* FPCR */
126 vfp_set_fpcr(env, ldl_p(buf));
127 return 4;
128 default:
129 return 0;
130 }
131}
132
c4241c7d 133static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 134{
375421cc 135 assert(ri->fieldoffset);
67ed771d 136 if (cpreg_field_is_64bit(ri)) {
c4241c7d 137 return CPREG_FIELD64(env, ri);
22d9e1a9 138 } else {
c4241c7d 139 return CPREG_FIELD32(env, ri);
22d9e1a9 140 }
d4e6df63
PM
141}
142
c4241c7d
PM
143static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
144 uint64_t value)
d4e6df63 145{
375421cc 146 assert(ri->fieldoffset);
67ed771d 147 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
148 CPREG_FIELD64(env, ri) = value;
149 } else {
150 CPREG_FIELD32(env, ri) = value;
151 }
d4e6df63
PM
152}
153
11f136ee
FA
154static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
155{
156 return (char *)env + ri->fieldoffset;
157}
158
49a66191 159uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 160{
59a1c327 161 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 162 if (ri->type & ARM_CP_CONST) {
59a1c327 163 return ri->resetvalue;
721fae12 164 } else if (ri->raw_readfn) {
59a1c327 165 return ri->raw_readfn(env, ri);
721fae12 166 } else if (ri->readfn) {
59a1c327 167 return ri->readfn(env, ri);
721fae12 168 } else {
59a1c327 169 return raw_read(env, ri);
721fae12 170 }
721fae12
PM
171}
172
59a1c327 173static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 174 uint64_t v)
721fae12
PM
175{
176 /* Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
177 * Note that constant registers are treated as write-ignored; the
178 * caller should check for success by whether a readback gives the
179 * value written.
180 */
181 if (ri->type & ARM_CP_CONST) {
59a1c327 182 return;
721fae12 183 } else if (ri->raw_writefn) {
c4241c7d 184 ri->raw_writefn(env, ri, v);
721fae12 185 } else if (ri->writefn) {
c4241c7d 186 ri->writefn(env, ri, v);
721fae12 187 } else {
afb2530f 188 raw_write(env, ri, v);
721fae12 189 }
721fae12
PM
190}
191
375421cc
PM
192static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
193{
194 /* Return true if the regdef would cause an assertion if you called
195 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
196 * program bug for it not to have the NO_RAW flag).
197 * NB that returning false here doesn't necessarily mean that calling
198 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
199 * read/write access functions which are safe for raw use" from "has
200 * read/write access functions which have side effects but has forgotten
201 * to provide raw access functions".
202 * The tests here line up with the conditions in read/write_raw_cp_reg()
203 * and assertions in raw_read()/raw_write().
204 */
205 if ((ri->type & ARM_CP_CONST) ||
206 ri->fieldoffset ||
207 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
208 return false;
209 }
210 return true;
211}
212
721fae12
PM
213bool write_cpustate_to_list(ARMCPU *cpu)
214{
215 /* Write the coprocessor state from cpu->env to the (index,value) list. */
216 int i;
217 bool ok = true;
218
219 for (i = 0; i < cpu->cpreg_array_len; i++) {
220 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
221 const ARMCPRegInfo *ri;
59a1c327 222
60322b39 223 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
224 if (!ri) {
225 ok = false;
226 continue;
227 }
7a0e58fa 228 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
229 continue;
230 }
59a1c327 231 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
721fae12
PM
232 }
233 return ok;
234}
235
236bool write_list_to_cpustate(ARMCPU *cpu)
237{
238 int i;
239 bool ok = true;
240
241 for (i = 0; i < cpu->cpreg_array_len; i++) {
242 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
243 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
244 const ARMCPRegInfo *ri;
245
60322b39 246 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
247 if (!ri) {
248 ok = false;
249 continue;
250 }
7a0e58fa 251 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
252 continue;
253 }
254 /* Write value and confirm it reads back as written
255 * (to catch read-only registers and partially read-only
256 * registers where the incoming migration value doesn't match)
257 */
59a1c327
PM
258 write_raw_cp_reg(&cpu->env, ri, v);
259 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
260 ok = false;
261 }
262 }
263 return ok;
264}
265
266static void add_cpreg_to_list(gpointer key, gpointer opaque)
267{
268 ARMCPU *cpu = opaque;
269 uint64_t regidx;
270 const ARMCPRegInfo *ri;
271
272 regidx = *(uint32_t *)key;
60322b39 273 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 274
7a0e58fa 275 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
276 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
277 /* The value array need not be initialized at this point */
278 cpu->cpreg_array_len++;
279 }
280}
281
282static void count_cpreg(gpointer key, gpointer opaque)
283{
284 ARMCPU *cpu = opaque;
285 uint64_t regidx;
286 const ARMCPRegInfo *ri;
287
288 regidx = *(uint32_t *)key;
60322b39 289 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 290
7a0e58fa 291 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
292 cpu->cpreg_array_len++;
293 }
294}
295
296static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
297{
cbf239b7
AR
298 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
299 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
721fae12 300
cbf239b7
AR
301 if (aidx > bidx) {
302 return 1;
303 }
304 if (aidx < bidx) {
305 return -1;
306 }
307 return 0;
721fae12
PM
308}
309
310void init_cpreg_list(ARMCPU *cpu)
311{
312 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
313 * Note that we require cpreg_tuples[] to be sorted by key ID.
314 */
57b6d95e 315 GList *keys;
721fae12
PM
316 int arraylen;
317
57b6d95e 318 keys = g_hash_table_get_keys(cpu->cp_regs);
721fae12
PM
319 keys = g_list_sort(keys, cpreg_key_compare);
320
321 cpu->cpreg_array_len = 0;
322
323 g_list_foreach(keys, count_cpreg, cpu);
324
325 arraylen = cpu->cpreg_array_len;
326 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
327 cpu->cpreg_values = g_new(uint64_t, arraylen);
328 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
330 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
331 cpu->cpreg_array_len = 0;
332
333 g_list_foreach(keys, add_cpreg_to_list, cpu);
334
335 assert(cpu->cpreg_array_len == arraylen);
336
337 g_list_free(keys);
338}
339
68e9c2fe
EI
340/*
341 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
342 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
343 *
344 * access_el3_aa32ns: Used to check AArch32 register views.
345 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
346 */
347static CPAccessResult access_el3_aa32ns(CPUARMState *env,
3f208fd7
PM
348 const ARMCPRegInfo *ri,
349 bool isread)
68e9c2fe
EI
350{
351 bool secure = arm_is_secure_below_el3(env);
352
353 assert(!arm_el_is_aa64(env, 3));
354 if (secure) {
355 return CP_ACCESS_TRAP_UNCATEGORIZED;
356 }
357 return CP_ACCESS_OK;
358}
359
360static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
3f208fd7
PM
361 const ARMCPRegInfo *ri,
362 bool isread)
68e9c2fe
EI
363{
364 if (!arm_el_is_aa64(env, 3)) {
3f208fd7 365 return access_el3_aa32ns(env, ri, isread);
68e9c2fe
EI
366 }
367 return CP_ACCESS_OK;
368}
369
5513c3ab
PM
370/* Some secure-only AArch32 registers trap to EL3 if used from
371 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
372 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
373 * We assume that the .access field is set to PL1_RW.
374 */
375static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
3f208fd7
PM
376 const ARMCPRegInfo *ri,
377 bool isread)
5513c3ab
PM
378{
379 if (arm_current_el(env) == 3) {
380 return CP_ACCESS_OK;
381 }
382 if (arm_is_secure_below_el3(env)) {
383 return CP_ACCESS_TRAP_EL3;
384 }
385 /* This will be EL1 NS and EL2 NS, which just UNDEF */
386 return CP_ACCESS_TRAP_UNCATEGORIZED;
387}
388
187f678d
PM
389/* Check for traps to "powerdown debug" registers, which are controlled
390 * by MDCR.TDOSA
391 */
392static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
393 bool isread)
394{
395 int el = arm_current_el(env);
396
397 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
398 && !arm_is_secure_below_el3(env)) {
399 return CP_ACCESS_TRAP_EL2;
400 }
401 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
402 return CP_ACCESS_TRAP_EL3;
403 }
404 return CP_ACCESS_OK;
405}
406
91b0a238
PM
407/* Check for traps to "debug ROM" registers, which are controlled
408 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
409 */
410static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
411 bool isread)
412{
413 int el = arm_current_el(env);
414
415 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
416 && !arm_is_secure_below_el3(env)) {
417 return CP_ACCESS_TRAP_EL2;
418 }
419 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
420 return CP_ACCESS_TRAP_EL3;
421 }
422 return CP_ACCESS_OK;
423}
424
d6c8cf81
PM
425/* Check for traps to general debug registers, which are controlled
426 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
427 */
428static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
429 bool isread)
430{
431 int el = arm_current_el(env);
432
433 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
434 && !arm_is_secure_below_el3(env)) {
435 return CP_ACCESS_TRAP_EL2;
436 }
437 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
438 return CP_ACCESS_TRAP_EL3;
439 }
440 return CP_ACCESS_OK;
441}
442
1fce1ba9
PM
443/* Check for traps to performance monitor registers, which are controlled
444 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
445 */
446static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
447 bool isread)
448{
449 int el = arm_current_el(env);
450
451 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
452 && !arm_is_secure_below_el3(env)) {
453 return CP_ACCESS_TRAP_EL2;
454 }
455 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
456 return CP_ACCESS_TRAP_EL3;
457 }
458 return CP_ACCESS_OK;
459}
460
c4241c7d 461static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 462{
00c8cb0a
AF
463 ARMCPU *cpu = arm_env_get_cpu(env);
464
8d5c773e 465 raw_write(env, ri, value);
00c8cb0a 466 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
467}
468
c4241c7d 469static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 470{
00c8cb0a
AF
471 ARMCPU *cpu = arm_env_get_cpu(env);
472
8d5c773e 473 if (raw_read(env, ri) != value) {
08de207b
PM
474 /* Unlike real hardware the qemu TLB uses virtual addresses,
475 * not modified virtual addresses, so this causes a TLB flush.
476 */
00c8cb0a 477 tlb_flush(CPU(cpu), 1);
8d5c773e 478 raw_write(env, ri, value);
08de207b 479 }
08de207b 480}
c4241c7d
PM
481
482static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
483 uint64_t value)
08de207b 484{
00c8cb0a
AF
485 ARMCPU *cpu = arm_env_get_cpu(env);
486
8d5c773e 487 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
014406b5 488 && !extended_addresses_enabled(env)) {
08de207b
PM
489 /* For VMSA (when not using the LPAE long descriptor page table
490 * format) this register includes the ASID, so do a TLB flush.
491 * For PMSA it is purely a process ID and no action is needed.
492 */
00c8cb0a 493 tlb_flush(CPU(cpu), 1);
08de207b 494 }
8d5c773e 495 raw_write(env, ri, value);
08de207b
PM
496}
497
c4241c7d
PM
498static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
499 uint64_t value)
d929823f
PM
500{
501 /* Invalidate all (TLBIALL) */
00c8cb0a
AF
502 ARMCPU *cpu = arm_env_get_cpu(env);
503
504 tlb_flush(CPU(cpu), 1);
d929823f
PM
505}
506
c4241c7d
PM
507static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
508 uint64_t value)
d929823f
PM
509{
510 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
31b030d4
AF
511 ARMCPU *cpu = arm_env_get_cpu(env);
512
513 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
514}
515
c4241c7d
PM
516static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
517 uint64_t value)
d929823f
PM
518{
519 /* Invalidate by ASID (TLBIASID) */
00c8cb0a
AF
520 ARMCPU *cpu = arm_env_get_cpu(env);
521
522 tlb_flush(CPU(cpu), value == 0);
d929823f
PM
523}
524
c4241c7d
PM
525static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
526 uint64_t value)
d929823f
PM
527{
528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
31b030d4
AF
529 ARMCPU *cpu = arm_env_get_cpu(env);
530
531 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
532}
533
fa439fc5
PM
534/* IS variants of TLB operations must affect all cores */
535static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
536 uint64_t value)
537{
538 CPUState *other_cs;
539
540 CPU_FOREACH(other_cs) {
541 tlb_flush(other_cs, 1);
542 }
543}
544
545static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
546 uint64_t value)
547{
548 CPUState *other_cs;
549
550 CPU_FOREACH(other_cs) {
551 tlb_flush(other_cs, value == 0);
552 }
553}
554
555static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
556 uint64_t value)
557{
558 CPUState *other_cs;
559
560 CPU_FOREACH(other_cs) {
561 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
562 }
563}
564
565static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
566 uint64_t value)
567{
568 CPUState *other_cs;
569
570 CPU_FOREACH(other_cs) {
571 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
572 }
573}
574
e9aa6c21 575static const ARMCPRegInfo cp_reginfo[] = {
54bf36ed
FA
576 /* Define the secure and non-secure FCSE identifier CP registers
577 * separately because there is no secure bank in V8 (no _EL3). This allows
578 * the secure register to be properly reset and migrated. There is also no
579 * v8 EL1 version of the register so the non-secure instance stands alone.
580 */
581 { .name = "FCSEIDR(NS)",
582 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
583 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
584 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
585 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
586 { .name = "FCSEIDR(S)",
587 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
588 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
589 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
d4e6df63 590 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
54bf36ed
FA
591 /* Define the secure and non-secure context identifier CP registers
592 * separately because there is no secure bank in V8 (no _EL3). This allows
593 * the secure register to be properly reset and migrated. In the
594 * non-secure case, the 32-bit register will have reset and migration
595 * disabled during registration as it is handled by the 64-bit instance.
596 */
597 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
014406b5 598 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
54bf36ed
FA
599 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
600 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
601 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
602 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
603 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
604 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
605 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
d4e6df63 606 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
607 REGINFO_SENTINEL
608};
609
610static const ARMCPRegInfo not_v8_cp_reginfo[] = {
611 /* NB: Some of these registers exist in v8 but with more precise
612 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
613 */
614 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
615 { .name = "DACR",
616 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
617 .access = PL1_RW, .resetvalue = 0,
618 .writefn = dacr_write, .raw_writefn = raw_write,
619 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
620 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a903c449
EI
621 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
622 * For v6 and v5, these mappings are overly broad.
4fdd17dd 623 */
a903c449
EI
624 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
625 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
626 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
627 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
628 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
629 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
630 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
4fdd17dd 631 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
632 /* Cache maintenance ops; some of this space may be overridden later. */
633 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
634 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
635 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
636 REGINFO_SENTINEL
637};
638
7d57f408
PM
639static const ARMCPRegInfo not_v6_cp_reginfo[] = {
640 /* Not all pre-v6 cores implemented this WFI, so this is slightly
641 * over-broad.
642 */
643 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
644 .access = PL1_W, .type = ARM_CP_WFI },
645 REGINFO_SENTINEL
646};
647
648static const ARMCPRegInfo not_v7_cp_reginfo[] = {
649 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
650 * is UNPREDICTABLE; we choose to NOP as most implementations do).
651 */
652 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
653 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
654 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
655 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
656 * OMAPCP will override this space.
657 */
658 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
659 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
660 .resetvalue = 0 },
661 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
662 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
663 .resetvalue = 0 },
776d4e5c
PM
664 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
665 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
7a0e58fa 666 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 667 .resetvalue = 0 },
50300698
PM
668 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
669 * implementing it as RAZ means the "debug architecture version" bits
670 * will read as a reserved value, which should cause Linux to not try
671 * to use the debug hardware.
672 */
673 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
674 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
995939a6
PM
675 /* MMU TLB control. Note that the wildcarding means we cover not just
676 * the unified TLB ops but also the dside/iside/inner-shareable variants.
677 */
678 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
679 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
7a0e58fa 680 .type = ARM_CP_NO_RAW },
995939a6
PM
681 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
682 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
7a0e58fa 683 .type = ARM_CP_NO_RAW },
995939a6
PM
684 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
685 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
7a0e58fa 686 .type = ARM_CP_NO_RAW },
995939a6
PM
687 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
688 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
7a0e58fa 689 .type = ARM_CP_NO_RAW },
a903c449
EI
690 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
691 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
692 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
693 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
7d57f408
PM
694 REGINFO_SENTINEL
695};
696
c4241c7d
PM
697static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
698 uint64_t value)
2771db27 699{
f0aff255
FA
700 uint32_t mask = 0;
701
702 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
703 if (!arm_feature(env, ARM_FEATURE_V8)) {
704 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
705 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
706 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
707 */
708 if (arm_feature(env, ARM_FEATURE_VFP)) {
709 /* VFP coprocessor: cp10 & cp11 [23:20] */
710 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
711
712 if (!arm_feature(env, ARM_FEATURE_NEON)) {
713 /* ASEDIS [31] bit is RAO/WI */
714 value |= (1 << 31);
715 }
716
717 /* VFPv3 and upwards with NEON implement 32 double precision
718 * registers (D0-D31).
719 */
720 if (!arm_feature(env, ARM_FEATURE_NEON) ||
721 !arm_feature(env, ARM_FEATURE_VFP3)) {
722 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
723 value |= (1 << 30);
724 }
725 }
726 value &= mask;
2771db27 727 }
7ebd5f2e 728 env->cp15.cpacr_el1 = value;
2771db27
PM
729}
730
3f208fd7
PM
731static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
732 bool isread)
c6f19164
GB
733{
734 if (arm_feature(env, ARM_FEATURE_V8)) {
735 /* Check if CPACR accesses are to be trapped to EL2 */
736 if (arm_current_el(env) == 1 &&
737 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
738 return CP_ACCESS_TRAP_EL2;
739 /* Check if CPACR accesses are to be trapped to EL3 */
740 } else if (arm_current_el(env) < 3 &&
741 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
742 return CP_ACCESS_TRAP_EL3;
743 }
744 }
745
746 return CP_ACCESS_OK;
747}
748
3f208fd7
PM
749static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
750 bool isread)
c6f19164
GB
751{
752 /* Check if CPTR accesses are set to trap to EL3 */
753 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
754 return CP_ACCESS_TRAP_EL3;
755 }
756
757 return CP_ACCESS_OK;
758}
759
7d57f408
PM
760static const ARMCPRegInfo v6_cp_reginfo[] = {
761 /* prefetch by MVA in v6, NOP in v7 */
762 { .name = "MVA_prefetch",
763 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
764 .access = PL1_W, .type = ARM_CP_NOP },
6df99dec
SS
765 /* We need to break the TB after ISB to execute self-modifying code
766 * correctly and also to take any pending interrupts immediately.
767 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
768 */
7d57f408 769 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
6df99dec 770 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
091fd17c 771 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 772 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 773 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 774 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 775 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
6cd8a264 776 .access = PL1_RW,
b848ce2b
FA
777 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
778 offsetof(CPUARMState, cp15.ifar_ns) },
06d76f31
PM
779 .resetvalue = 0, },
780 /* Watchpoint Fault Address Register : should actually only be present
781 * for 1136, 1176, 11MPCore.
782 */
783 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
784 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8 785 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
c6f19164 786 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
7ebd5f2e 787 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
2771db27 788 .resetvalue = 0, .writefn = cpacr_write },
7d57f408
PM
789 REGINFO_SENTINEL
790};
791
3f208fd7
PM
792static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
793 bool isread)
200ac0ef 794{
3b163b01 795 /* Performance monitor registers user accessibility is controlled
1fce1ba9
PM
796 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
797 * trapping to EL2 or EL3 for other accesses.
200ac0ef 798 */
1fce1ba9
PM
799 int el = arm_current_el(env);
800
801 if (el == 0 && !env->cp15.c9_pmuserenr) {
fcd25206 802 return CP_ACCESS_TRAP;
200ac0ef 803 }
1fce1ba9
PM
804 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
805 && !arm_is_secure_below_el3(env)) {
806 return CP_ACCESS_TRAP_EL2;
807 }
808 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
809 return CP_ACCESS_TRAP_EL3;
810 }
811
fcd25206 812 return CP_ACCESS_OK;
200ac0ef
PM
813}
814
7c2cb42b 815#ifndef CONFIG_USER_ONLY
87124fde
AF
816
817static inline bool arm_ccnt_enabled(CPUARMState *env)
818{
819 /* This does not support checking PMCCFILTR_EL0 register */
820
821 if (!(env->cp15.c9_pmcr & PMCRE)) {
822 return false;
823 }
824
825 return true;
826}
827
ec7b4ce4
AF
828void pmccntr_sync(CPUARMState *env)
829{
830 uint64_t temp_ticks;
831
352c98e5
LV
832 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
833 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
ec7b4ce4
AF
834
835 if (env->cp15.c9_pmcr & PMCRD) {
836 /* Increment once every 64 processor clock cycles */
837 temp_ticks /= 64;
838 }
839
840 if (arm_ccnt_enabled(env)) {
841 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
842 }
843}
844
c4241c7d
PM
845static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
846 uint64_t value)
200ac0ef 847{
942a155b 848 pmccntr_sync(env);
7c2cb42b
AF
849
850 if (value & PMCRC) {
851 /* The counter has been reset */
852 env->cp15.c15_ccnt = 0;
853 }
854
200ac0ef
PM
855 /* only the DP, X, D and E bits are writable */
856 env->cp15.c9_pmcr &= ~0x39;
857 env->cp15.c9_pmcr |= (value & 0x39);
7c2cb42b 858
942a155b 859 pmccntr_sync(env);
7c2cb42b
AF
860}
861
862static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
863{
c92c0687 864 uint64_t total_ticks;
7c2cb42b 865
942a155b 866 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
867 /* Counter is disabled, do not change value */
868 return env->cp15.c15_ccnt;
869 }
870
352c98e5
LV
871 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
872 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
873
874 if (env->cp15.c9_pmcr & PMCRD) {
875 /* Increment once every 64 processor clock cycles */
876 total_ticks /= 64;
877 }
878 return total_ticks - env->cp15.c15_ccnt;
879}
880
881static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
882 uint64_t value)
883{
c92c0687 884 uint64_t total_ticks;
7c2cb42b 885
942a155b 886 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
887 /* Counter is disabled, set the absolute value */
888 env->cp15.c15_ccnt = value;
889 return;
890 }
891
352c98e5
LV
892 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
893 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
894
895 if (env->cp15.c9_pmcr & PMCRD) {
896 /* Increment once every 64 processor clock cycles */
897 total_ticks /= 64;
898 }
899 env->cp15.c15_ccnt = total_ticks - value;
200ac0ef 900}
421c7ebd
PC
901
902static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
903 uint64_t value)
904{
905 uint64_t cur_val = pmccntr_read(env, NULL);
906
907 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
908}
909
ec7b4ce4
AF
910#else /* CONFIG_USER_ONLY */
911
912void pmccntr_sync(CPUARMState *env)
913{
914}
915
7c2cb42b 916#endif
200ac0ef 917
0614601c
AF
918static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
919 uint64_t value)
920{
921 pmccntr_sync(env);
922 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
923 pmccntr_sync(env);
924}
925
c4241c7d 926static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
927 uint64_t value)
928{
200ac0ef
PM
929 value &= (1 << 31);
930 env->cp15.c9_pmcnten |= value;
200ac0ef
PM
931}
932
c4241c7d
PM
933static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
934 uint64_t value)
200ac0ef 935{
200ac0ef
PM
936 value &= (1 << 31);
937 env->cp15.c9_pmcnten &= ~value;
200ac0ef
PM
938}
939
c4241c7d
PM
940static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
941 uint64_t value)
200ac0ef 942{
200ac0ef 943 env->cp15.c9_pmovsr &= ~value;
200ac0ef
PM
944}
945
c4241c7d
PM
946static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
947 uint64_t value)
200ac0ef 948{
200ac0ef 949 env->cp15.c9_pmxevtyper = value & 0xff;
200ac0ef
PM
950}
951
c4241c7d 952static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
953 uint64_t value)
954{
955 env->cp15.c9_pmuserenr = value & 1;
200ac0ef
PM
956}
957
c4241c7d
PM
958static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
959 uint64_t value)
200ac0ef
PM
960{
961 /* We have no event counters so only the C bit can be changed */
962 value &= (1 << 31);
963 env->cp15.c9_pminten |= value;
200ac0ef
PM
964}
965
c4241c7d
PM
966static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
967 uint64_t value)
200ac0ef
PM
968{
969 value &= (1 << 31);
970 env->cp15.c9_pminten &= ~value;
200ac0ef
PM
971}
972
c4241c7d
PM
973static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
974 uint64_t value)
8641136c 975{
a505d7fe
PM
976 /* Note that even though the AArch64 view of this register has bits
977 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
978 * architectural requirements for bits which are RES0 only in some
979 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
980 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
981 */
855ea66d 982 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
983}
984
64e0e2de
EI
985static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
986{
987 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
988 * For bits that vary between AArch32/64, code needs to check the
989 * current execution mode before directly using the feature bit.
990 */
991 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
992
993 if (!arm_feature(env, ARM_FEATURE_EL2)) {
994 valid_mask &= ~SCR_HCE;
995
996 /* On ARMv7, SMD (or SCD as it is called in v7) is only
997 * supported if EL2 exists. The bit is UNK/SBZP when
998 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
999 * when EL2 is unavailable.
4eb27640 1000 * On ARMv8, this bit is always available.
64e0e2de 1001 */
4eb27640
GB
1002 if (arm_feature(env, ARM_FEATURE_V7) &&
1003 !arm_feature(env, ARM_FEATURE_V8)) {
64e0e2de
EI
1004 valid_mask &= ~SCR_SMD;
1005 }
1006 }
1007
1008 /* Clear all-context RES0 bits. */
1009 value &= valid_mask;
1010 raw_write(env, ri, value);
1011}
1012
c4241c7d 1013static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c
PM
1014{
1015 ARMCPU *cpu = arm_env_get_cpu(env);
b85a1fd6
FA
1016
1017 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1018 * bank
1019 */
1020 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1021 ri->secure & ARM_CP_SECSTATE_S);
1022
1023 return cpu->ccsidr[index];
776d4e5c
PM
1024}
1025
c4241c7d
PM
1026static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1027 uint64_t value)
776d4e5c 1028{
8d5c773e 1029 raw_write(env, ri, value & 0xf);
776d4e5c
PM
1030}
1031
1090b9c6
PM
1032static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1033{
1034 CPUState *cs = ENV_GET_CPU(env);
1035 uint64_t ret = 0;
1036
1037 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1038 ret |= CPSR_I;
1039 }
1040 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1041 ret |= CPSR_F;
1042 }
1043 /* External aborts are not possible in QEMU so A bit is always clear */
1044 return ret;
1045}
1046
e9aa6c21 1047static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
1048 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1049 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1050 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
1051 /* Performance monitors are implementation defined in v7,
1052 * but with an ARM recommended set of registers, which we
1053 * follow (although we don't actually implement any counters)
1054 *
1055 * Performance registers fall into three categories:
1056 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1057 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1058 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1059 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1060 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1061 */
1062 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
7a0e58fa 1063 .access = PL0_RW, .type = ARM_CP_ALIAS,
8521466b 1064 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1065 .writefn = pmcntenset_write,
1066 .accessfn = pmreg_access,
1067 .raw_writefn = raw_write },
8521466b
AF
1068 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1069 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1070 .access = PL0_RW, .accessfn = pmreg_access,
1071 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1072 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 1073 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
1074 .access = PL0_RW,
1075 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1076 .accessfn = pmreg_access,
1077 .writefn = pmcntenclr_write,
7a0e58fa 1078 .type = ARM_CP_ALIAS },
8521466b
AF
1079 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1080 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1081 .access = PL0_RW, .accessfn = pmreg_access,
7a0e58fa 1082 .type = ARM_CP_ALIAS,
8521466b
AF
1083 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1084 .writefn = pmcntenclr_write },
200ac0ef
PM
1085 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1086 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
fcd25206
PM
1087 .accessfn = pmreg_access,
1088 .writefn = pmovsr_write,
1089 .raw_writefn = raw_write },
978364f1
AF
1090 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1091 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1092 .access = PL0_RW, .accessfn = pmreg_access,
1093 .type = ARM_CP_ALIAS,
1094 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1095 .writefn = pmovsr_write,
1096 .raw_writefn = raw_write },
fcd25206 1097 /* Unimplemented so WI. */
200ac0ef 1098 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
fcd25206 1099 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
200ac0ef 1100 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
fcd25206 1101 * We choose to RAZ/WI.
200ac0ef
PM
1102 */
1103 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
fcd25206
PM
1104 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1105 .accessfn = pmreg_access },
7c2cb42b 1106#ifndef CONFIG_USER_ONLY
200ac0ef 1107 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
7c2cb42b 1108 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
421c7ebd 1109 .readfn = pmccntr_read, .writefn = pmccntr_write32,
fcd25206 1110 .accessfn = pmreg_access },
8521466b
AF
1111 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1112 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1113 .access = PL0_RW, .accessfn = pmreg_access,
1114 .type = ARM_CP_IO,
1115 .readfn = pmccntr_read, .writefn = pmccntr_write, },
7c2cb42b 1116#endif
8521466b
AF
1117 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1118 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
0614601c 1119 .writefn = pmccfiltr_write,
8521466b
AF
1120 .access = PL0_RW, .accessfn = pmreg_access,
1121 .type = ARM_CP_IO,
1122 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1123 .resetvalue = 0, },
200ac0ef
PM
1124 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1125 .access = PL0_RW,
1126 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
fcd25206
PM
1127 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
1128 .raw_writefn = raw_write },
1129 /* Unimplemented, RAZ/WI. */
200ac0ef 1130 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
fcd25206
PM
1131 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1132 .accessfn = pmreg_access },
200ac0ef 1133 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1fce1ba9 1134 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
200ac0ef
PM
1135 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1136 .resetvalue = 0,
d4e6df63 1137 .writefn = pmuserenr_write, .raw_writefn = raw_write },
8a83ffc2
AF
1138 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1139 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1fce1ba9 1140 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
8a83ffc2
AF
1141 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1142 .resetvalue = 0,
1143 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef 1144 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1fce1ba9 1145 .access = PL1_RW, .accessfn = access_tpm,
200ac0ef
PM
1146 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1147 .resetvalue = 0,
d4e6df63 1148 .writefn = pmintenset_write, .raw_writefn = raw_write },
200ac0ef 1149 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1fce1ba9 1150 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
200ac0ef 1151 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
b061a82b 1152 .writefn = pmintenclr_write, },
978364f1
AF
1153 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1154 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1fce1ba9 1155 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
978364f1
AF
1156 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1157 .writefn = pmintenclr_write },
a505d7fe
PM
1158 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
1159 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8641136c 1160 .access = PL1_RW, .writefn = vbar_write,
fb6c91ba
GB
1161 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
1162 offsetof(CPUARMState, cp15.vbar_ns) },
8641136c 1163 .resetvalue = 0 },
7da845b0
PM
1164 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1165 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
7a0e58fa 1166 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
7da845b0
PM
1167 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1168 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
b85a1fd6
FA
1169 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1170 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1171 offsetof(CPUARMState, cp15.csselr_ns) } },
776d4e5c
PM
1172 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1173 * just RAZ for all cores:
1174 */
0ff644a7
PM
1175 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1176 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
776d4e5c 1177 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
f32cdad5
PM
1178 /* Auxiliary fault status registers: these also are IMPDEF, and we
1179 * choose to RAZ/WI for all cores.
1180 */
1181 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1182 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1183 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1184 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1185 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1186 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427
PM
1187 /* MAIR can just read-as-written because we don't implement caches
1188 * and so don't need to care about memory attributes.
1189 */
1190 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1191 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
be693c87 1192 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
b0fe2427 1193 .resetvalue = 0 },
4cfb8ad8
PM
1194 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1195 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1196 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1197 .resetvalue = 0 },
b0fe2427
PM
1198 /* For non-long-descriptor page tables these are PRRR and NMRR;
1199 * regardless they still act as reads-as-written for QEMU.
b0fe2427 1200 */
1281f8e3 1201 /* MAIR0/1 are defined separately from their 64-bit counterpart which
be693c87
GB
1202 * allows them to assign the correct fieldoffset based on the endianness
1203 * handled in the field definitions.
1204 */
a903c449 1205 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
b0fe2427 1206 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
be693c87
GB
1207 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1208 offsetof(CPUARMState, cp15.mair0_ns) },
b0fe2427 1209 .resetfn = arm_cp_reset_ignore },
a903c449 1210 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
b0fe2427 1211 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
be693c87
GB
1212 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1213 offsetof(CPUARMState, cp15.mair1_ns) },
b0fe2427 1214 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
1215 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1216 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
7a0e58fa 1217 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
995939a6
PM
1218 /* 32 bit ITLB invalidates */
1219 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
7a0e58fa 1220 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1221 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7a0e58fa 1222 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1223 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
7a0e58fa 1224 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1225 /* 32 bit DTLB invalidates */
1226 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
7a0e58fa 1227 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1228 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7a0e58fa 1229 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1230 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
7a0e58fa 1231 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1232 /* 32 bit TLB invalidates */
1233 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 1234 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1235 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 1236 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1237 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 1238 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6 1239 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 1240 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
995939a6
PM
1241 REGINFO_SENTINEL
1242};
1243
1244static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1245 /* 32 bit TLB invalidates, Inner Shareable */
1246 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 1247 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
995939a6 1248 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 1249 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
995939a6 1250 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 1251 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1252 .writefn = tlbiasid_is_write },
995939a6 1253 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 1254 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1255 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
1256 REGINFO_SENTINEL
1257};
1258
c4241c7d
PM
1259static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1260 uint64_t value)
c326b979
PM
1261{
1262 value &= 1;
1263 env->teecr = value;
c326b979
PM
1264}
1265
3f208fd7
PM
1266static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1267 bool isread)
c326b979 1268{
dcbff19b 1269 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 1270 return CP_ACCESS_TRAP;
c326b979 1271 }
92611c00 1272 return CP_ACCESS_OK;
c326b979
PM
1273}
1274
1275static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1276 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1277 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1278 .resetvalue = 0,
1279 .writefn = teecr_write },
1280 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1281 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 1282 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
1283 REGINFO_SENTINEL
1284};
1285
4d31c596 1286static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
1287 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1288 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1289 .access = PL0_RW,
54bf36ed 1290 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
4d31c596
PM
1291 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1292 .access = PL0_RW,
54bf36ed
FA
1293 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1294 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
e4fe830b
PM
1295 .resetfn = arm_cp_reset_ignore },
1296 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1297 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1298 .access = PL0_R|PL1_W,
54bf36ed
FA
1299 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1300 .resetvalue = 0},
4d31c596
PM
1301 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1302 .access = PL0_R|PL1_W,
54bf36ed
FA
1303 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1304 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
e4fe830b 1305 .resetfn = arm_cp_reset_ignore },
54bf36ed 1306 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
e4fe830b 1307 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 1308 .access = PL1_RW,
54bf36ed
FA
1309 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1310 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1311 .access = PL1_RW,
1312 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1313 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1314 .resetvalue = 0 },
4d31c596
PM
1315 REGINFO_SENTINEL
1316};
1317
55d284af
PM
1318#ifndef CONFIG_USER_ONLY
1319
3f208fd7
PM
1320static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1321 bool isread)
00108f2d 1322{
75502672
PM
1323 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1324 * Writable only at the highest implemented exception level.
1325 */
1326 int el = arm_current_el(env);
1327
1328 switch (el) {
1329 case 0:
1330 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1331 return CP_ACCESS_TRAP;
1332 }
1333 break;
1334 case 1:
1335 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1336 arm_is_secure_below_el3(env)) {
1337 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1338 return CP_ACCESS_TRAP_UNCATEGORIZED;
1339 }
1340 break;
1341 case 2:
1342 case 3:
1343 break;
00108f2d 1344 }
75502672
PM
1345
1346 if (!isread && el < arm_highest_el(env)) {
1347 return CP_ACCESS_TRAP_UNCATEGORIZED;
1348 }
1349
00108f2d
PM
1350 return CP_ACCESS_OK;
1351}
1352
3f208fd7
PM
1353static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1354 bool isread)
00108f2d 1355{
0b6440af
EI
1356 unsigned int cur_el = arm_current_el(env);
1357 bool secure = arm_is_secure(env);
1358
00108f2d 1359 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
0b6440af 1360 if (cur_el == 0 &&
00108f2d
PM
1361 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1362 return CP_ACCESS_TRAP;
1363 }
0b6440af
EI
1364
1365 if (arm_feature(env, ARM_FEATURE_EL2) &&
1366 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1367 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1368 return CP_ACCESS_TRAP_EL2;
1369 }
00108f2d
PM
1370 return CP_ACCESS_OK;
1371}
1372
3f208fd7
PM
1373static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1374 bool isread)
00108f2d 1375{
0b6440af
EI
1376 unsigned int cur_el = arm_current_el(env);
1377 bool secure = arm_is_secure(env);
1378
00108f2d
PM
1379 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1380 * EL0[PV]TEN is zero.
1381 */
0b6440af 1382 if (cur_el == 0 &&
00108f2d
PM
1383 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1384 return CP_ACCESS_TRAP;
1385 }
0b6440af
EI
1386
1387 if (arm_feature(env, ARM_FEATURE_EL2) &&
1388 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1389 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1390 return CP_ACCESS_TRAP_EL2;
1391 }
00108f2d
PM
1392 return CP_ACCESS_OK;
1393}
1394
1395static CPAccessResult gt_pct_access(CPUARMState *env,
3f208fd7
PM
1396 const ARMCPRegInfo *ri,
1397 bool isread)
00108f2d 1398{
3f208fd7 1399 return gt_counter_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1400}
1401
1402static CPAccessResult gt_vct_access(CPUARMState *env,
3f208fd7
PM
1403 const ARMCPRegInfo *ri,
1404 bool isread)
00108f2d 1405{
3f208fd7 1406 return gt_counter_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1407}
1408
3f208fd7
PM
1409static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1410 bool isread)
00108f2d 1411{
3f208fd7 1412 return gt_timer_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1413}
1414
3f208fd7
PM
1415static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1416 bool isread)
00108f2d 1417{
3f208fd7 1418 return gt_timer_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1419}
1420
b4d3978c 1421static CPAccessResult gt_stimer_access(CPUARMState *env,
3f208fd7
PM
1422 const ARMCPRegInfo *ri,
1423 bool isread)
b4d3978c
PM
1424{
1425 /* The AArch64 register view of the secure physical timer is
1426 * always accessible from EL3, and configurably accessible from
1427 * Secure EL1.
1428 */
1429 switch (arm_current_el(env)) {
1430 case 1:
1431 if (!arm_is_secure(env)) {
1432 return CP_ACCESS_TRAP;
1433 }
1434 if (!(env->cp15.scr_el3 & SCR_ST)) {
1435 return CP_ACCESS_TRAP_EL3;
1436 }
1437 return CP_ACCESS_OK;
1438 case 0:
1439 case 2:
1440 return CP_ACCESS_TRAP;
1441 case 3:
1442 return CP_ACCESS_OK;
1443 default:
1444 g_assert_not_reached();
1445 }
1446}
1447
55d284af
PM
1448static uint64_t gt_get_countervalue(CPUARMState *env)
1449{
bc72ad67 1450 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
55d284af
PM
1451}
1452
1453static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1454{
1455 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1456
1457 if (gt->ctl & 1) {
1458 /* Timer enabled: calculate and set current ISTATUS, irq, and
1459 * reset timer to when ISTATUS next has to change
1460 */
edac4d8a
EI
1461 uint64_t offset = timeridx == GTIMER_VIRT ?
1462 cpu->env.cp15.cntvoff_el2 : 0;
55d284af
PM
1463 uint64_t count = gt_get_countervalue(&cpu->env);
1464 /* Note that this must be unsigned 64 bit arithmetic: */
edac4d8a 1465 int istatus = count - offset >= gt->cval;
55d284af
PM
1466 uint64_t nexttick;
1467
1468 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1469 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1470 (istatus && !(gt->ctl & 2)));
1471 if (istatus) {
1472 /* Next transition is when count rolls back over to zero */
1473 nexttick = UINT64_MAX;
1474 } else {
1475 /* Next transition is when we hit cval */
edac4d8a 1476 nexttick = gt->cval + offset;
55d284af
PM
1477 }
1478 /* Note that the desired next expiry time might be beyond the
1479 * signed-64-bit range of a QEMUTimer -- in this case we just
1480 * set the timer for as far in the future as possible. When the
1481 * timer expires we will reset the timer for any remaining period.
1482 */
1483 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1484 nexttick = INT64_MAX / GTIMER_SCALE;
1485 }
bc72ad67 1486 timer_mod(cpu->gt_timer[timeridx], nexttick);
55d284af
PM
1487 } else {
1488 /* Timer disabled: ISTATUS and timer output always clear */
1489 gt->ctl &= ~4;
1490 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 1491 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1492 }
1493}
1494
0e3eca4c
EI
1495static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1496 int timeridx)
55d284af
PM
1497{
1498 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af 1499
bc72ad67 1500 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1501}
1502
c4241c7d 1503static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 1504{
c4241c7d 1505 return gt_get_countervalue(env);
55d284af
PM
1506}
1507
edac4d8a
EI
1508static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1509{
1510 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1511}
1512
c4241c7d 1513static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1514 int timeridx,
c4241c7d 1515 uint64_t value)
55d284af 1516{
55d284af
PM
1517 env->cp15.c14_timer[timeridx].cval = value;
1518 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af 1519}
c4241c7d 1520
0e3eca4c
EI
1521static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1522 int timeridx)
55d284af 1523{
edac4d8a 1524 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1525
c4241c7d 1526 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
edac4d8a 1527 (gt_get_countervalue(env) - offset));
55d284af
PM
1528}
1529
c4241c7d 1530static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1531 int timeridx,
c4241c7d 1532 uint64_t value)
55d284af 1533{
edac4d8a 1534 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1535
edac4d8a 1536 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
18084b2f 1537 sextract64(value, 0, 32);
55d284af 1538 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af
PM
1539}
1540
c4241c7d 1541static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1542 int timeridx,
c4241c7d 1543 uint64_t value)
55d284af
PM
1544{
1545 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af
PM
1546 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1547
d3afacc7 1548 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
1549 if ((oldval ^ value) & 1) {
1550 /* Enable toggled */
1551 gt_recalc_timer(cpu, timeridx);
d3afacc7 1552 } else if ((oldval ^ value) & 2) {
55d284af
PM
1553 /* IMASK toggled: don't need to recalculate,
1554 * just set the interrupt line based on ISTATUS
1555 */
1556 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
d3afacc7 1557 (oldval & 4) && !(value & 2));
55d284af 1558 }
55d284af
PM
1559}
1560
0e3eca4c
EI
1561static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1562{
1563 gt_timer_reset(env, ri, GTIMER_PHYS);
1564}
1565
1566static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1567 uint64_t value)
1568{
1569 gt_cval_write(env, ri, GTIMER_PHYS, value);
1570}
1571
1572static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1573{
1574 return gt_tval_read(env, ri, GTIMER_PHYS);
1575}
1576
1577static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1578 uint64_t value)
1579{
1580 gt_tval_write(env, ri, GTIMER_PHYS, value);
1581}
1582
1583static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1584 uint64_t value)
1585{
1586 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1587}
1588
1589static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1590{
1591 gt_timer_reset(env, ri, GTIMER_VIRT);
1592}
1593
1594static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1595 uint64_t value)
1596{
1597 gt_cval_write(env, ri, GTIMER_VIRT, value);
1598}
1599
1600static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1601{
1602 return gt_tval_read(env, ri, GTIMER_VIRT);
1603}
1604
1605static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1606 uint64_t value)
1607{
1608 gt_tval_write(env, ri, GTIMER_VIRT, value);
1609}
1610
1611static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1612 uint64_t value)
1613{
1614 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1615}
1616
edac4d8a
EI
1617static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1618 uint64_t value)
1619{
1620 ARMCPU *cpu = arm_env_get_cpu(env);
1621
1622 raw_write(env, ri, value);
1623 gt_recalc_timer(cpu, GTIMER_VIRT);
1624}
1625
b0e66d95
EI
1626static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1627{
1628 gt_timer_reset(env, ri, GTIMER_HYP);
1629}
1630
1631static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1632 uint64_t value)
1633{
1634 gt_cval_write(env, ri, GTIMER_HYP, value);
1635}
1636
1637static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1638{
1639 return gt_tval_read(env, ri, GTIMER_HYP);
1640}
1641
1642static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1643 uint64_t value)
1644{
1645 gt_tval_write(env, ri, GTIMER_HYP, value);
1646}
1647
1648static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1649 uint64_t value)
1650{
1651 gt_ctl_write(env, ri, GTIMER_HYP, value);
1652}
1653
b4d3978c
PM
1654static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1655{
1656 gt_timer_reset(env, ri, GTIMER_SEC);
1657}
1658
1659static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1660 uint64_t value)
1661{
1662 gt_cval_write(env, ri, GTIMER_SEC, value);
1663}
1664
1665static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1666{
1667 return gt_tval_read(env, ri, GTIMER_SEC);
1668}
1669
1670static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1671 uint64_t value)
1672{
1673 gt_tval_write(env, ri, GTIMER_SEC, value);
1674}
1675
1676static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1677 uint64_t value)
1678{
1679 gt_ctl_write(env, ri, GTIMER_SEC, value);
1680}
1681
55d284af
PM
1682void arm_gt_ptimer_cb(void *opaque)
1683{
1684 ARMCPU *cpu = opaque;
1685
1686 gt_recalc_timer(cpu, GTIMER_PHYS);
1687}
1688
1689void arm_gt_vtimer_cb(void *opaque)
1690{
1691 ARMCPU *cpu = opaque;
1692
1693 gt_recalc_timer(cpu, GTIMER_VIRT);
1694}
1695
b0e66d95
EI
1696void arm_gt_htimer_cb(void *opaque)
1697{
1698 ARMCPU *cpu = opaque;
1699
1700 gt_recalc_timer(cpu, GTIMER_HYP);
1701}
1702
b4d3978c
PM
1703void arm_gt_stimer_cb(void *opaque)
1704{
1705 ARMCPU *cpu = opaque;
1706
1707 gt_recalc_timer(cpu, GTIMER_SEC);
1708}
1709
55d284af
PM
1710static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1711 /* Note that CNTFRQ is purely reads-as-written for the benefit
1712 * of software; writing it doesn't actually change the timer frequency.
1713 * Our reset value matches the fixed frequency we implement the timer at.
1714 */
1715 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 1716 .type = ARM_CP_ALIAS,
a7adc4b7
PM
1717 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1718 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
a7adc4b7
PM
1719 },
1720 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1721 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1722 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af
PM
1723 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1724 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
55d284af
PM
1725 },
1726 /* overall control: mostly access permissions */
a7adc4b7
PM
1727 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1728 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
1729 .access = PL1_RW,
1730 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1731 .resetvalue = 0,
1732 },
1733 /* per-timer control */
1734 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
9ff9dd3c 1735 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1736 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1737 .accessfn = gt_ptimer_access,
1738 .fieldoffset = offsetoflow32(CPUARMState,
1739 cp15.c14_timer[GTIMER_PHYS].ctl),
0e3eca4c 1740 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
a7adc4b7 1741 },
9ff9dd3c
PM
1742 { .name = "CNTP_CTL(S)",
1743 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1744 .secure = ARM_CP_SECSTATE_S,
1745 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1746 .accessfn = gt_ptimer_access,
1747 .fieldoffset = offsetoflow32(CPUARMState,
1748 cp15.c14_timer[GTIMER_SEC].ctl),
1749 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1750 },
a7adc4b7
PM
1751 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1752 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
55d284af 1753 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1754 .accessfn = gt_ptimer_access,
55d284af
PM
1755 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1756 .resetvalue = 0,
0e3eca4c 1757 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1758 },
1759 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
7a0e58fa 1760 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1761 .accessfn = gt_vtimer_access,
1762 .fieldoffset = offsetoflow32(CPUARMState,
1763 cp15.c14_timer[GTIMER_VIRT].ctl),
0e3eca4c 1764 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
a7adc4b7
PM
1765 },
1766 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1767 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
55d284af 1768 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1769 .accessfn = gt_vtimer_access,
55d284af
PM
1770 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1771 .resetvalue = 0,
0e3eca4c 1772 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1773 },
1774 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1775 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
9ff9dd3c 1776 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1777 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1778 .accessfn = gt_ptimer_access,
0e3eca4c 1779 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
55d284af 1780 },
9ff9dd3c
PM
1781 { .name = "CNTP_TVAL(S)",
1782 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1783 .secure = ARM_CP_SECSTATE_S,
1784 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1785 .accessfn = gt_ptimer_access,
1786 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1787 },
a7adc4b7
PM
1788 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1789 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
7a0e58fa 1790 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
1791 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1792 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
a7adc4b7 1793 },
55d284af 1794 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
7a0e58fa 1795 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1796 .accessfn = gt_vtimer_access,
0e3eca4c 1797 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
55d284af 1798 },
a7adc4b7
PM
1799 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1800 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
7a0e58fa 1801 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
1802 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1803 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
a7adc4b7 1804 },
55d284af
PM
1805 /* The counter itself */
1806 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
7a0e58fa 1807 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 1808 .accessfn = gt_pct_access,
a7adc4b7
PM
1809 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1810 },
1811 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1812 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
7a0e58fa 1813 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 1814 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
55d284af
PM
1815 },
1816 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
7a0e58fa 1817 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 1818 .accessfn = gt_vct_access,
edac4d8a 1819 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
a7adc4b7
PM
1820 },
1821 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1822 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
7a0e58fa 1823 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 1824 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
55d284af
PM
1825 },
1826 /* Comparison value, indicating when the timer goes off */
1827 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 1828 .secure = ARM_CP_SECSTATE_NS,
55d284af 1829 .access = PL1_RW | PL0_R,
7a0e58fa 1830 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 1831 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
b061a82b 1832 .accessfn = gt_ptimer_access,
0e3eca4c 1833 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
a7adc4b7 1834 },
9ff9dd3c
PM
1835 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1836 .secure = ARM_CP_SECSTATE_S,
1837 .access = PL1_RW | PL0_R,
1838 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1839 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1840 .accessfn = gt_ptimer_access,
1841 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1842 },
a7adc4b7
PM
1843 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1844 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1845 .access = PL1_RW | PL0_R,
1846 .type = ARM_CP_IO,
1847 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
12cde08a 1848 .resetvalue = 0, .accessfn = gt_ptimer_access,
0e3eca4c 1849 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
55d284af
PM
1850 },
1851 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1852 .access = PL1_RW | PL0_R,
7a0e58fa 1853 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 1854 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
b061a82b 1855 .accessfn = gt_vtimer_access,
0e3eca4c 1856 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
a7adc4b7
PM
1857 },
1858 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1859 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1860 .access = PL1_RW | PL0_R,
1861 .type = ARM_CP_IO,
1862 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1863 .resetvalue = 0, .accessfn = gt_vtimer_access,
0e3eca4c 1864 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
55d284af 1865 },
b4d3978c
PM
1866 /* Secure timer -- this is actually restricted to only EL3
1867 * and configurably Secure-EL1 via the accessfn.
1868 */
1869 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1870 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1871 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1872 .accessfn = gt_stimer_access,
1873 .readfn = gt_sec_tval_read,
1874 .writefn = gt_sec_tval_write,
1875 .resetfn = gt_sec_timer_reset,
1876 },
1877 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1878 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1879 .type = ARM_CP_IO, .access = PL1_RW,
1880 .accessfn = gt_stimer_access,
1881 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1882 .resetvalue = 0,
1883 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1884 },
1885 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1886 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1887 .type = ARM_CP_IO, .access = PL1_RW,
1888 .accessfn = gt_stimer_access,
1889 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1890 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1891 },
55d284af
PM
1892 REGINFO_SENTINEL
1893};
1894
1895#else
1896/* In user-mode none of the generic timer registers are accessible,
bc72ad67 1897 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
55d284af
PM
1898 * so instead just don't register any of them.
1899 */
6cc7a3ae 1900static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
6cc7a3ae
PM
1901 REGINFO_SENTINEL
1902};
1903
55d284af
PM
1904#endif
1905
c4241c7d 1906static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 1907{
891a2fe7 1908 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 1909 raw_write(env, ri, value);
891a2fe7 1910 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 1911 raw_write(env, ri, value & 0xfffff6ff);
4a501606 1912 } else {
8d5c773e 1913 raw_write(env, ri, value & 0xfffff1ff);
4a501606 1914 }
4a501606
PM
1915}
1916
1917#ifndef CONFIG_USER_ONLY
1918/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 1919
3f208fd7
PM
1920static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
1921 bool isread)
92611c00
PM
1922{
1923 if (ri->opc2 & 4) {
87562e4f
PM
1924 /* The ATS12NSO* operations must trap to EL3 if executed in
1925 * Secure EL1 (which can only happen if EL3 is AArch64).
1926 * They are simply UNDEF if executed from NS EL1.
1927 * They function normally from EL2 or EL3.
92611c00 1928 */
87562e4f
PM
1929 if (arm_current_el(env) == 1) {
1930 if (arm_is_secure_below_el3(env)) {
1931 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
1932 }
1933 return CP_ACCESS_TRAP_UNCATEGORIZED;
1934 }
92611c00
PM
1935 }
1936 return CP_ACCESS_OK;
1937}
1938
060e8a48 1939static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
d3649702 1940 int access_type, ARMMMUIdx mmu_idx)
4a501606 1941{
a8170e5e 1942 hwaddr phys_addr;
4a501606
PM
1943 target_ulong page_size;
1944 int prot;
b7cc4e82
PC
1945 uint32_t fsr;
1946 bool ret;
01c097f7 1947 uint64_t par64;
8bf5b6a9 1948 MemTxAttrs attrs = {};
e14b5a23 1949 ARMMMUFaultInfo fi = {};
4a501606 1950
d3649702 1951 ret = get_phys_addr(env, value, access_type, mmu_idx,
e14b5a23 1952 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
702a9357 1953 if (extended_addresses_enabled(env)) {
b7cc4e82 1954 /* fsr is a DFSR/IFSR value for the long descriptor
702a9357
PM
1955 * translation table format, but with WnR always clear.
1956 * Convert it to a 64-bit PAR.
1957 */
01c097f7 1958 par64 = (1 << 11); /* LPAE bit always set */
b7cc4e82 1959 if (!ret) {
702a9357 1960 par64 |= phys_addr & ~0xfffULL;
8bf5b6a9
PM
1961 if (!attrs.secure) {
1962 par64 |= (1 << 9); /* NS */
1963 }
702a9357 1964 /* We don't set the ATTR or SH fields in the PAR. */
4a501606 1965 } else {
702a9357 1966 par64 |= 1; /* F */
b7cc4e82 1967 par64 |= (fsr & 0x3f) << 1; /* FS */
702a9357
PM
1968 /* Note that S2WLK and FSTAGE are always zero, because we don't
1969 * implement virtualization and therefore there can't be a stage 2
1970 * fault.
1971 */
4a501606
PM
1972 }
1973 } else {
b7cc4e82 1974 /* fsr is a DFSR/IFSR value for the short descriptor
702a9357
PM
1975 * translation table format (with WnR always clear).
1976 * Convert it to a 32-bit PAR.
1977 */
b7cc4e82 1978 if (!ret) {
702a9357
PM
1979 /* We do not set any attribute bits in the PAR */
1980 if (page_size == (1 << 24)
1981 && arm_feature(env, ARM_FEATURE_V7)) {
01c097f7 1982 par64 = (phys_addr & 0xff000000) | (1 << 1);
702a9357 1983 } else {
01c097f7 1984 par64 = phys_addr & 0xfffff000;
702a9357 1985 }
8bf5b6a9
PM
1986 if (!attrs.secure) {
1987 par64 |= (1 << 9); /* NS */
1988 }
702a9357 1989 } else {
b7cc4e82
PC
1990 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
1991 ((fsr & 0xf) << 1) | 1;
702a9357 1992 }
4a501606 1993 }
060e8a48
PM
1994 return par64;
1995}
1996
1997static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1998{
060e8a48
PM
1999 int access_type = ri->opc2 & 1;
2000 uint64_t par64;
d3649702
PM
2001 ARMMMUIdx mmu_idx;
2002 int el = arm_current_el(env);
2003 bool secure = arm_is_secure_below_el3(env);
060e8a48 2004
d3649702
PM
2005 switch (ri->opc2 & 6) {
2006 case 0:
2007 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2008 switch (el) {
2009 case 3:
2010 mmu_idx = ARMMMUIdx_S1E3;
2011 break;
2012 case 2:
2013 mmu_idx = ARMMMUIdx_S1NSE1;
2014 break;
2015 case 1:
2016 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2017 break;
2018 default:
2019 g_assert_not_reached();
2020 }
2021 break;
2022 case 2:
2023 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2024 switch (el) {
2025 case 3:
2026 mmu_idx = ARMMMUIdx_S1SE0;
2027 break;
2028 case 2:
2029 mmu_idx = ARMMMUIdx_S1NSE0;
2030 break;
2031 case 1:
2032 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2033 break;
2034 default:
2035 g_assert_not_reached();
2036 }
2037 break;
2038 case 4:
2039 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2040 mmu_idx = ARMMMUIdx_S12NSE1;
2041 break;
2042 case 6:
2043 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2044 mmu_idx = ARMMMUIdx_S12NSE0;
2045 break;
2046 default:
2047 g_assert_not_reached();
2048 }
2049
2050 par64 = do_ats_write(env, value, access_type, mmu_idx);
01c097f7
FA
2051
2052 A32_BANKED_CURRENT_REG_SET(env, par, par64);
4a501606 2053}
060e8a48 2054
14db7fe0
PM
2055static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2056 uint64_t value)
2057{
2058 int access_type = ri->opc2 & 1;
2059 uint64_t par64;
2060
2061 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2062
2063 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2064}
2065
3f208fd7
PM
2066static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2067 bool isread)
2a47df95
PM
2068{
2069 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2070 return CP_ACCESS_TRAP;
2071 }
2072 return CP_ACCESS_OK;
2073}
2074
060e8a48
PM
2075static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2076 uint64_t value)
2077{
060e8a48 2078 int access_type = ri->opc2 & 1;
d3649702
PM
2079 ARMMMUIdx mmu_idx;
2080 int secure = arm_is_secure_below_el3(env);
2081
2082 switch (ri->opc2 & 6) {
2083 case 0:
2084 switch (ri->opc1) {
2085 case 0: /* AT S1E1R, AT S1E1W */
2086 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2087 break;
2088 case 4: /* AT S1E2R, AT S1E2W */
2089 mmu_idx = ARMMMUIdx_S1E2;
2090 break;
2091 case 6: /* AT S1E3R, AT S1E3W */
2092 mmu_idx = ARMMMUIdx_S1E3;
2093 break;
2094 default:
2095 g_assert_not_reached();
2096 }
2097 break;
2098 case 2: /* AT S1E0R, AT S1E0W */
2099 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2100 break;
2101 case 4: /* AT S12E1R, AT S12E1W */
2a47df95 2102 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
d3649702
PM
2103 break;
2104 case 6: /* AT S12E0R, AT S12E0W */
2a47df95 2105 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
d3649702
PM
2106 break;
2107 default:
2108 g_assert_not_reached();
2109 }
060e8a48 2110
d3649702 2111 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
060e8a48 2112}
4a501606
PM
2113#endif
2114
2115static const ARMCPRegInfo vapa_cp_reginfo[] = {
2116 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2117 .access = PL1_RW, .resetvalue = 0,
01c097f7
FA
2118 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2119 offsetoflow32(CPUARMState, cp15.par_ns) },
4a501606
PM
2120 .writefn = par_write },
2121#ifndef CONFIG_USER_ONLY
87562e4f 2122 /* This underdecoding is safe because the reginfo is NO_RAW. */
4a501606 2123 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00 2124 .access = PL1_W, .accessfn = ats_access,
7a0e58fa 2125 .writefn = ats_write, .type = ARM_CP_NO_RAW },
4a501606
PM
2126#endif
2127 REGINFO_SENTINEL
2128};
2129
18032bec
PM
2130/* Return basic MPU access permission bits. */
2131static uint32_t simple_mpu_ap_bits(uint32_t val)
2132{
2133 uint32_t ret;
2134 uint32_t mask;
2135 int i;
2136 ret = 0;
2137 mask = 3;
2138 for (i = 0; i < 16; i += 2) {
2139 ret |= (val >> i) & mask;
2140 mask <<= 2;
2141 }
2142 return ret;
2143}
2144
2145/* Pad basic MPU access permission bits to extended format. */
2146static uint32_t extended_mpu_ap_bits(uint32_t val)
2147{
2148 uint32_t ret;
2149 uint32_t mask;
2150 int i;
2151 ret = 0;
2152 mask = 3;
2153 for (i = 0; i < 16; i += 2) {
2154 ret |= (val & mask) << i;
2155 mask <<= 2;
2156 }
2157 return ret;
2158}
2159
c4241c7d
PM
2160static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2161 uint64_t value)
18032bec 2162{
7e09797c 2163 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
2164}
2165
c4241c7d 2166static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2167{
7e09797c 2168 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
2169}
2170
c4241c7d
PM
2171static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2172 uint64_t value)
18032bec 2173{
7e09797c 2174 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
2175}
2176
c4241c7d 2177static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2178{
7e09797c 2179 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
2180}
2181
6cb0b013
PC
2182static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2183{
2184 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2185
2186 if (!u32p) {
2187 return 0;
2188 }
2189
2190 u32p += env->cp15.c6_rgnr;
2191 return *u32p;
2192}
2193
2194static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2195 uint64_t value)
2196{
2197 ARMCPU *cpu = arm_env_get_cpu(env);
2198 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2199
2200 if (!u32p) {
2201 return;
2202 }
2203
2204 u32p += env->cp15.c6_rgnr;
2205 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2206 *u32p = value;
2207}
2208
2209static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2210{
2211 ARMCPU *cpu = arm_env_get_cpu(env);
2212 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2213
2214 if (!u32p) {
2215 return;
2216 }
2217
2218 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2219}
2220
2221static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2222 uint64_t value)
2223{
2224 ARMCPU *cpu = arm_env_get_cpu(env);
2225 uint32_t nrgs = cpu->pmsav7_dregion;
2226
2227 if (value >= nrgs) {
2228 qemu_log_mask(LOG_GUEST_ERROR,
2229 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2230 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2231 return;
2232 }
2233
2234 raw_write(env, ri, value);
2235}
2236
2237static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2238 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2239 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2240 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2241 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2242 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2243 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2244 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2245 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2246 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2247 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2248 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2249 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2250 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2251 .access = PL1_RW,
2252 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2253 .writefn = pmsav7_rgnr_write },
2254 REGINFO_SENTINEL
2255};
2256
18032bec
PM
2257static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2258 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2259 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2260 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
18032bec
PM
2261 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2262 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
7a0e58fa 2263 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2264 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
18032bec
PM
2265 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2266 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2267 .access = PL1_RW,
7e09797c
PM
2268 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2269 .resetvalue = 0, },
18032bec
PM
2270 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2271 .access = PL1_RW,
7e09797c
PM
2272 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2273 .resetvalue = 0, },
ecce5c3c
PM
2274 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2275 .access = PL1_RW,
2276 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2277 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2278 .access = PL1_RW,
2279 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 2280 /* Protection region base and size registers */
e508a92b
PM
2281 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2282 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2283 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2284 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2285 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2286 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2287 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2288 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2289 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2290 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2291 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2292 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2293 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2294 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2295 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2296 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2297 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2298 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2299 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2300 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2301 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2302 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2303 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2304 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
2305 REGINFO_SENTINEL
2306};
2307
c4241c7d
PM
2308static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2309 uint64_t value)
ecce5c3c 2310{
11f136ee 2311 TCR *tcr = raw_ptr(env, ri);
2ebcebe2
PM
2312 int maskshift = extract32(value, 0, 3);
2313
e389be16
FA
2314 if (!arm_feature(env, ARM_FEATURE_V8)) {
2315 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2316 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2317 * using Long-desciptor translation table format */
2318 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2319 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2320 /* In an implementation that includes the Security Extensions
2321 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2322 * Short-descriptor translation table format.
2323 */
2324 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2325 } else {
2326 value &= TTBCR_N;
2327 }
e42c4db3 2328 }
e389be16 2329
b6af0975 2330 /* Update the masks corresponding to the TCR bank being written
11f136ee 2331 * Note that we always calculate mask and base_mask, but
e42c4db3 2332 * they are only used for short-descriptor tables (ie if EAE is 0);
11f136ee
FA
2333 * for long-descriptor tables the TCR fields are used differently
2334 * and the mask and base_mask values are meaningless.
e42c4db3 2335 */
11f136ee
FA
2336 tcr->raw_tcr = value;
2337 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2338 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
ecce5c3c
PM
2339}
2340
c4241c7d
PM
2341static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2342 uint64_t value)
d4e6df63 2343{
00c8cb0a
AF
2344 ARMCPU *cpu = arm_env_get_cpu(env);
2345
d4e6df63
PM
2346 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2347 /* With LPAE the TTBCR could result in a change of ASID
2348 * via the TTBCR.A1 bit, so do a TLB flush.
2349 */
00c8cb0a 2350 tlb_flush(CPU(cpu), 1);
d4e6df63 2351 }
c4241c7d 2352 vmsa_ttbcr_raw_write(env, ri, value);
d4e6df63
PM
2353}
2354
ecce5c3c
PM
2355static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2356{
11f136ee
FA
2357 TCR *tcr = raw_ptr(env, ri);
2358
2359 /* Reset both the TCR as well as the masks corresponding to the bank of
2360 * the TCR being reset.
2361 */
2362 tcr->raw_tcr = 0;
2363 tcr->mask = 0;
2364 tcr->base_mask = 0xffffc000u;
ecce5c3c
PM
2365}
2366
cb2e37df
PM
2367static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2368 uint64_t value)
2369{
00c8cb0a 2370 ARMCPU *cpu = arm_env_get_cpu(env);
11f136ee 2371 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 2372
cb2e37df 2373 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
00c8cb0a 2374 tlb_flush(CPU(cpu), 1);
11f136ee 2375 tcr->raw_tcr = value;
cb2e37df
PM
2376}
2377
327ed10f
PM
2378static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2379 uint64_t value)
2380{
2381 /* 64 bit accesses to the TTBRs can change the ASID and so we
2382 * must flush the TLB.
2383 */
2384 if (cpreg_field_is_64bit(ri)) {
00c8cb0a
AF
2385 ARMCPU *cpu = arm_env_get_cpu(env);
2386
2387 tlb_flush(CPU(cpu), 1);
327ed10f
PM
2388 }
2389 raw_write(env, ri, value);
2390}
2391
b698e9cf
EI
2392static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2393 uint64_t value)
2394{
2395 ARMCPU *cpu = arm_env_get_cpu(env);
2396 CPUState *cs = CPU(cpu);
2397
2398 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2399 if (raw_read(env, ri) != value) {
2400 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2401 ARMMMUIdx_S2NS, -1);
2402 raw_write(env, ri, value);
2403 }
2404}
2405
8e5d75c9 2406static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
18032bec 2407 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2408 .access = PL1_RW, .type = ARM_CP_ALIAS,
4a7e2d73 2409 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
b061a82b 2410 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
18032bec 2411 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
88ca1c2d
FA
2412 .access = PL1_RW, .resetvalue = 0,
2413 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2414 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
8e5d75c9
PC
2415 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2416 .access = PL1_RW, .resetvalue = 0,
2417 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2418 offsetof(CPUARMState, cp15.dfar_ns) } },
2419 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2420 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2421 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2422 .resetvalue = 0, },
2423 REGINFO_SENTINEL
2424};
2425
2426static const ARMCPRegInfo vmsa_cp_reginfo[] = {
6cd8a264
RH
2427 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2428 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2429 .access = PL1_RW,
d81c519c 2430 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f 2431 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2432 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2433 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2434 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2435 offsetof(CPUARMState, cp15.ttbr0_ns) } },
327ed10f 2436 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2437 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2438 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2439 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2440 offsetof(CPUARMState, cp15.ttbr1_ns) } },
cb2e37df
PM
2441 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2442 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2443 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2444 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
11f136ee 2445 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
cb2e37df 2446 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
7a0e58fa 2447 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
b061a82b 2448 .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee
FA
2449 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2450 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
18032bec
PM
2451 REGINFO_SENTINEL
2452};
2453
c4241c7d
PM
2454static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2455 uint64_t value)
1047b9d7
PM
2456{
2457 env->cp15.c15_ticonfig = value & 0xe7;
2458 /* The OS_TYPE bit in this register changes the reported CPUID! */
2459 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2460 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
2461}
2462
c4241c7d
PM
2463static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2464 uint64_t value)
1047b9d7
PM
2465{
2466 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
2467}
2468
c4241c7d
PM
2469static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2470 uint64_t value)
1047b9d7
PM
2471{
2472 /* Wait-for-interrupt (deprecated) */
c3affe56 2473 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1047b9d7
PM
2474}
2475
c4241c7d
PM
2476static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2477 uint64_t value)
c4804214
PM
2478{
2479 /* On OMAP there are registers indicating the max/min index of dcache lines
2480 * containing a dirty line; cache flush operations have to reset these.
2481 */
2482 env->cp15.c15_i_max = 0x000;
2483 env->cp15.c15_i_min = 0xff0;
c4804214
PM
2484}
2485
18032bec
PM
2486static const ARMCPRegInfo omap_cp_reginfo[] = {
2487 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2488 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 2489 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 2490 .resetvalue = 0, },
1047b9d7
PM
2491 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2492 .access = PL1_RW, .type = ARM_CP_NOP },
2493 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2494 .access = PL1_RW,
2495 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2496 .writefn = omap_ticonfig_write },
2497 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2498 .access = PL1_RW,
2499 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2500 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2501 .access = PL1_RW, .resetvalue = 0xff0,
2502 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2503 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2504 .access = PL1_RW,
2505 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2506 .writefn = omap_threadid_write },
2507 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2508 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
7a0e58fa 2509 .type = ARM_CP_NO_RAW,
1047b9d7
PM
2510 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2511 /* TODO: Peripheral port remap register:
2512 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2513 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2514 * when MMU is off.
2515 */
c4804214 2516 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63 2517 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
7a0e58fa 2518 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
c4804214 2519 .writefn = omap_cachemaint_write },
34f90529
PM
2520 { .name = "C9", .cp = 15, .crn = 9,
2521 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2522 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
2523 REGINFO_SENTINEL
2524};
2525
c4241c7d
PM
2526static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2527 uint64_t value)
1047b9d7 2528{
c0f4af17 2529 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
2530}
2531
2532static const ARMCPRegInfo xscale_cp_reginfo[] = {
2533 { .name = "XSCALE_CPAR",
2534 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2535 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2536 .writefn = xscale_cpar_write, },
2771db27
PM
2537 { .name = "XSCALE_AUXCR",
2538 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2539 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2540 .resetvalue = 0, },
3b771579
PM
2541 /* XScale specific cache-lockdown: since we have no cache we NOP these
2542 * and hope the guest does not really rely on cache behaviour.
2543 */
2544 { .name = "XSCALE_LOCK_ICACHE_LINE",
2545 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2546 .access = PL1_W, .type = ARM_CP_NOP },
2547 { .name = "XSCALE_UNLOCK_ICACHE",
2548 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2549 .access = PL1_W, .type = ARM_CP_NOP },
2550 { .name = "XSCALE_DCACHE_LOCK",
2551 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2552 .access = PL1_RW, .type = ARM_CP_NOP },
2553 { .name = "XSCALE_UNLOCK_DCACHE",
2554 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2555 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
2556 REGINFO_SENTINEL
2557};
2558
2559static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2560 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2561 * implementation of this implementation-defined space.
2562 * Ideally this should eventually disappear in favour of actually
2563 * implementing the correct behaviour for all cores.
2564 */
2565 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2566 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87 2567 .access = PL1_RW,
7a0e58fa 2568 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
d4e6df63 2569 .resetvalue = 0 },
18032bec
PM
2570 REGINFO_SENTINEL
2571};
2572
c4804214
PM
2573static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2574 /* Cache status: RAZ because we have no cache so it's always clean */
2575 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
7a0e58fa 2576 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2577 .resetvalue = 0 },
c4804214
PM
2578 REGINFO_SENTINEL
2579};
2580
2581static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2582 /* We never have a a block transfer operation in progress */
2583 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
7a0e58fa 2584 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2585 .resetvalue = 0 },
30b05bba
PM
2586 /* The cache ops themselves: these all NOP for QEMU */
2587 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2588 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2589 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2590 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2591 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2592 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2593 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2594 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2595 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2596 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2597 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2598 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
2599 REGINFO_SENTINEL
2600};
2601
2602static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2603 /* The cache test-and-clean instructions always return (1 << 30)
2604 * to indicate that there are no dirty cache lines.
2605 */
2606 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
7a0e58fa 2607 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2608 .resetvalue = (1 << 30) },
c4804214 2609 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
7a0e58fa 2610 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2611 .resetvalue = (1 << 30) },
c4804214
PM
2612 REGINFO_SENTINEL
2613};
2614
34f90529
PM
2615static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2616 /* Ignore ReadBuffer accesses */
2617 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2618 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63 2619 .access = PL1_RW, .resetvalue = 0,
7a0e58fa 2620 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
34f90529
PM
2621 REGINFO_SENTINEL
2622};
2623
731de9e6
EI
2624static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2625{
2626 ARMCPU *cpu = arm_env_get_cpu(env);
2627 unsigned int cur_el = arm_current_el(env);
2628 bool secure = arm_is_secure(env);
2629
2630 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2631 return env->cp15.vpidr_el2;
2632 }
2633 return raw_read(env, ri);
2634}
2635
06a7e647 2636static uint64_t mpidr_read_val(CPUARMState *env)
81bdde9d 2637{
eb5e1d3c
PF
2638 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2639 uint64_t mpidr = cpu->mp_affinity;
2640
81bdde9d 2641 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 2642 mpidr |= (1U << 31);
81bdde9d
PM
2643 /* Cores which are uniprocessor (non-coherent)
2644 * but still implement the MP extensions set
a8e81b31 2645 * bit 30. (For instance, Cortex-R5).
81bdde9d 2646 */
a8e81b31
PC
2647 if (cpu->mp_is_up) {
2648 mpidr |= (1u << 30);
2649 }
81bdde9d 2650 }
c4241c7d 2651 return mpidr;
81bdde9d
PM
2652}
2653
06a7e647
EI
2654static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2655{
f0d574d6
EI
2656 unsigned int cur_el = arm_current_el(env);
2657 bool secure = arm_is_secure(env);
2658
2659 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2660 return env->cp15.vmpidr_el2;
2661 }
06a7e647
EI
2662 return mpidr_read_val(env);
2663}
2664
81bdde9d 2665static const ARMCPRegInfo mpidr_cp_reginfo[] = {
4b7fff2f
PM
2666 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2667 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7a0e58fa 2668 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
81bdde9d
PM
2669 REGINFO_SENTINEL
2670};
2671
7ac681cf 2672static const ARMCPRegInfo lpae_cp_reginfo[] = {
a903c449 2673 /* NOP AMAIR0/1 */
b0fe2427
PM
2674 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2675 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
a903c449 2676 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2677 .resetvalue = 0 },
b0fe2427 2678 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf 2679 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
a903c449 2680 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2681 .resetvalue = 0 },
891a2fe7 2682 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
01c097f7
FA
2683 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2684 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2685 offsetof(CPUARMState, cp15.par_ns)} },
891a2fe7 2686 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
7a0e58fa 2687 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2688 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2689 offsetof(CPUARMState, cp15.ttbr0_ns) },
b061a82b 2690 .writefn = vmsa_ttbr_write, },
891a2fe7 2691 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
7a0e58fa 2692 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2693 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2694 offsetof(CPUARMState, cp15.ttbr1_ns) },
b061a82b 2695 .writefn = vmsa_ttbr_write, },
7ac681cf
PM
2696 REGINFO_SENTINEL
2697};
2698
c4241c7d 2699static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2700{
c4241c7d 2701 return vfp_get_fpcr(env);
b0d2b7d0
PM
2702}
2703
c4241c7d
PM
2704static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2705 uint64_t value)
b0d2b7d0
PM
2706{
2707 vfp_set_fpcr(env, value);
b0d2b7d0
PM
2708}
2709
c4241c7d 2710static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2711{
c4241c7d 2712 return vfp_get_fpsr(env);
b0d2b7d0
PM
2713}
2714
c4241c7d
PM
2715static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2716 uint64_t value)
b0d2b7d0
PM
2717{
2718 vfp_set_fpsr(env, value);
b0d2b7d0
PM
2719}
2720
3f208fd7
PM
2721static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2722 bool isread)
c2b820fe 2723{
137feaa9 2724 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
c2b820fe
PM
2725 return CP_ACCESS_TRAP;
2726 }
2727 return CP_ACCESS_OK;
2728}
2729
2730static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2731 uint64_t value)
2732{
2733 env->daif = value & PSTATE_DAIF;
2734}
2735
8af35c37 2736static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3f208fd7
PM
2737 const ARMCPRegInfo *ri,
2738 bool isread)
8af35c37
PM
2739{
2740 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2741 * SCTLR_EL1.UCI is set.
2742 */
137feaa9 2743 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
8af35c37
PM
2744 return CP_ACCESS_TRAP;
2745 }
2746 return CP_ACCESS_OK;
2747}
2748
dbb1fb27
AB
2749/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2750 * Page D4-1736 (DDI0487A.b)
2751 */
2752
fd3ed969
PM
2753static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2754 uint64_t value)
168aa23b 2755{
31b030d4 2756 ARMCPU *cpu = arm_env_get_cpu(env);
fd3ed969 2757 CPUState *cs = CPU(cpu);
dbb1fb27 2758
fd3ed969
PM
2759 if (arm_is_secure_below_el3(env)) {
2760 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2761 } else {
2762 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2763 }
168aa23b
PM
2764}
2765
fd3ed969
PM
2766static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2767 uint64_t value)
168aa23b 2768{
fd3ed969
PM
2769 bool sec = arm_is_secure_below_el3(env);
2770 CPUState *other_cs;
dbb1fb27 2771
fd3ed969
PM
2772 CPU_FOREACH(other_cs) {
2773 if (sec) {
2774 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2775 } else {
2776 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2777 ARMMMUIdx_S12NSE0, -1);
2778 }
2779 }
168aa23b
PM
2780}
2781
fd3ed969
PM
2782static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2783 uint64_t value)
168aa23b 2784{
fd3ed969
PM
2785 /* Note that the 'ALL' scope must invalidate both stage 1 and
2786 * stage 2 translations, whereas most other scopes only invalidate
2787 * stage 1 translations.
2788 */
00c8cb0a 2789 ARMCPU *cpu = arm_env_get_cpu(env);
fd3ed969
PM
2790 CPUState *cs = CPU(cpu);
2791
2792 if (arm_is_secure_below_el3(env)) {
2793 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2794 } else {
2795 if (arm_feature(env, ARM_FEATURE_EL2)) {
2796 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2797 ARMMMUIdx_S2NS, -1);
2798 } else {
2799 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2800 }
2801 }
168aa23b
PM
2802}
2803
fd3ed969 2804static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
fa439fc5
PM
2805 uint64_t value)
2806{
fd3ed969
PM
2807 ARMCPU *cpu = arm_env_get_cpu(env);
2808 CPUState *cs = CPU(cpu);
2809
2810 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2811}
2812
43efaa33
PM
2813static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2814 uint64_t value)
2815{
2816 ARMCPU *cpu = arm_env_get_cpu(env);
2817 CPUState *cs = CPU(cpu);
2818
2819 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2820}
2821
fd3ed969
PM
2822static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2823 uint64_t value)
2824{
2825 /* Note that the 'ALL' scope must invalidate both stage 1 and
2826 * stage 2 translations, whereas most other scopes only invalidate
2827 * stage 1 translations.
2828 */
2829 bool sec = arm_is_secure_below_el3(env);
2830 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
fa439fc5 2831 CPUState *other_cs;
fa439fc5
PM
2832
2833 CPU_FOREACH(other_cs) {
fd3ed969
PM
2834 if (sec) {
2835 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2836 } else if (has_el2) {
2837 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2838 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2839 } else {
2840 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2841 ARMMMUIdx_S12NSE0, -1);
2842 }
fa439fc5
PM
2843 }
2844}
2845
2bfb9d75
PM
2846static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2847 uint64_t value)
2848{
2849 CPUState *other_cs;
2850
2851 CPU_FOREACH(other_cs) {
2852 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2853 }
2854}
2855
43efaa33
PM
2856static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2857 uint64_t value)
2858{
2859 CPUState *other_cs;
2860
2861 CPU_FOREACH(other_cs) {
2862 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2863 }
2864}
2865
fd3ed969
PM
2866static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2867 uint64_t value)
2868{
2869 /* Invalidate by VA, EL1&0 (AArch64 version).
2870 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2871 * since we don't support flush-for-specific-ASID-only or
2872 * flush-last-level-only.
2873 */
2874 ARMCPU *cpu = arm_env_get_cpu(env);
2875 CPUState *cs = CPU(cpu);
2876 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2877
2878 if (arm_is_secure_below_el3(env)) {
2879 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2880 ARMMMUIdx_S1SE0, -1);
2881 } else {
2882 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2883 ARMMMUIdx_S12NSE0, -1);
2884 }
2885}
2886
2887static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2888 uint64_t value)
fa439fc5 2889{
fd3ed969
PM
2890 /* Invalidate by VA, EL2
2891 * Currently handles both VAE2 and VALE2, since we don't support
2892 * flush-last-level-only.
2893 */
2894 ARMCPU *cpu = arm_env_get_cpu(env);
2895 CPUState *cs = CPU(cpu);
2896 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2897
2898 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
2899}
2900
43efaa33
PM
2901static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2902 uint64_t value)
2903{
2904 /* Invalidate by VA, EL3
2905 * Currently handles both VAE3 and VALE3, since we don't support
2906 * flush-last-level-only.
2907 */
2908 ARMCPU *cpu = arm_env_get_cpu(env);
2909 CPUState *cs = CPU(cpu);
2910 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2911
2912 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
2913}
2914
fd3ed969
PM
2915static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916 uint64_t value)
2917{
2918 bool sec = arm_is_secure_below_el3(env);
fa439fc5
PM
2919 CPUState *other_cs;
2920 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2921
2922 CPU_FOREACH(other_cs) {
fd3ed969
PM
2923 if (sec) {
2924 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
2925 ARMMMUIdx_S1SE0, -1);
2926 } else {
2927 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
2928 ARMMMUIdx_S12NSE0, -1);
2929 }
fa439fc5
PM
2930 }
2931}
2932
fd3ed969
PM
2933static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2934 uint64_t value)
fa439fc5
PM
2935{
2936 CPUState *other_cs;
fd3ed969 2937 uint64_t pageaddr = sextract64(value << 12, 0, 56);
fa439fc5
PM
2938
2939 CPU_FOREACH(other_cs) {
fd3ed969 2940 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
fa439fc5
PM
2941 }
2942}
2943
43efaa33
PM
2944static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2945 uint64_t value)
2946{
2947 CPUState *other_cs;
2948 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2949
2950 CPU_FOREACH(other_cs) {
2951 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
2952 }
2953}
2954
cea66e91
PM
2955static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2956 uint64_t value)
2957{
2958 /* Invalidate by IPA. This has to invalidate any structures that
2959 * contain only stage 2 translation information, but does not need
2960 * to apply to structures that contain combined stage 1 and stage 2
2961 * translation information.
2962 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2963 */
2964 ARMCPU *cpu = arm_env_get_cpu(env);
2965 CPUState *cs = CPU(cpu);
2966 uint64_t pageaddr;
2967
2968 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2969 return;
2970 }
2971
2972 pageaddr = sextract64(value << 12, 0, 48);
2973
2974 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
2975}
2976
2977static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2978 uint64_t value)
2979{
2980 CPUState *other_cs;
2981 uint64_t pageaddr;
2982
2983 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2984 return;
2985 }
2986
2987 pageaddr = sextract64(value << 12, 0, 48);
2988
2989 CPU_FOREACH(other_cs) {
2990 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
2991 }
2992}
2993
3f208fd7
PM
2994static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
2995 bool isread)
aca3f40b
PM
2996{
2997 /* We don't implement EL2, so the only control on DC ZVA is the
2998 * bit in the SCTLR which can prohibit access for EL0.
2999 */
137feaa9 3000 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
aca3f40b
PM
3001 return CP_ACCESS_TRAP;
3002 }
3003 return CP_ACCESS_OK;
3004}
3005
3006static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3007{
3008 ARMCPU *cpu = arm_env_get_cpu(env);
3009 int dzp_bit = 1 << 4;
3010
3011 /* DZP indicates whether DC ZVA access is allowed */
3f208fd7 3012 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
aca3f40b
PM
3013 dzp_bit = 0;
3014 }
3015 return cpu->dcz_blocksize | dzp_bit;
3016}
3017
3f208fd7
PM
3018static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3019 bool isread)
f502cfc2 3020{
cdcf1405 3021 if (!(env->pstate & PSTATE_SP)) {
f502cfc2
PM
3022 /* Access to SP_EL0 is undefined if it's being used as
3023 * the stack pointer.
3024 */
3025 return CP_ACCESS_TRAP_UNCATEGORIZED;
3026 }
3027 return CP_ACCESS_OK;
3028}
3029
3030static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3031{
3032 return env->pstate & PSTATE_SP;
3033}
3034
3035static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3036{
3037 update_spsel(env, val);
3038}
3039
137feaa9
FA
3040static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3041 uint64_t value)
3042{
3043 ARMCPU *cpu = arm_env_get_cpu(env);
3044
3045 if (raw_read(env, ri) == value) {
3046 /* Skip the TLB flush if nothing actually changed; Linux likes
3047 * to do a lot of pointless SCTLR writes.
3048 */
3049 return;
3050 }
3051
3052 raw_write(env, ri, value);
3053 /* ??? Lots of these bits are not implemented. */
3054 /* This may enable/disable the MMU, so do a TLB flush. */
3055 tlb_flush(CPU(cpu), 1);
3056}
3057
3f208fd7
PM
3058static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3059 bool isread)
03fbf20f
PM
3060{
3061 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
f2cae609 3062 return CP_ACCESS_TRAP_FP_EL2;
03fbf20f
PM
3063 }
3064 if (env->cp15.cptr_el[3] & CPTR_TFP) {
f2cae609 3065 return CP_ACCESS_TRAP_FP_EL3;
03fbf20f
PM
3066 }
3067 return CP_ACCESS_OK;
3068}
3069
a8d64e73
PM
3070static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3071 uint64_t value)
3072{
3073 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3074}
3075
b0d2b7d0
PM
3076static const ARMCPRegInfo v8_cp_reginfo[] = {
3077 /* Minimal set of EL0-visible registers. This will need to be expanded
3078 * significantly for system emulation of AArch64 CPUs.
3079 */
3080 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3081 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3082 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
3083 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3084 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
7a0e58fa 3085 .type = ARM_CP_NO_RAW,
c2b820fe
PM
3086 .access = PL0_RW, .accessfn = aa64_daif_access,
3087 .fieldoffset = offsetof(CPUARMState, daif),
3088 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
3089 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3090 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3091 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3092 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3093 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3094 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
3095 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3096 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
7a0e58fa 3097 .access = PL0_R, .type = ARM_CP_NO_RAW,
aca3f40b
PM
3098 .readfn = aa64_dczid_read },
3099 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3100 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3101 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3102#ifndef CONFIG_USER_ONLY
3103 /* Avoid overhead of an access check that always passes in user-mode */
3104 .accessfn = aa64_zva_access,
3105#endif
3106 },
0eef9d98
PM
3107 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3108 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3109 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
3110 /* Cache ops: all NOPs since we don't emulate caches */
3111 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3112 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3113 .access = PL1_W, .type = ARM_CP_NOP },
3114 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3115 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3116 .access = PL1_W, .type = ARM_CP_NOP },
3117 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3118 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3119 .access = PL0_W, .type = ARM_CP_NOP,
3120 .accessfn = aa64_cacheop_access },
3121 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3122 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3123 .access = PL1_W, .type = ARM_CP_NOP },
3124 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3125 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3126 .access = PL1_W, .type = ARM_CP_NOP },
3127 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3128 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3129 .access = PL0_W, .type = ARM_CP_NOP,
3130 .accessfn = aa64_cacheop_access },
3131 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3132 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3133 .access = PL1_W, .type = ARM_CP_NOP },
3134 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3135 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3136 .access = PL0_W, .type = ARM_CP_NOP,
3137 .accessfn = aa64_cacheop_access },
3138 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3139 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3140 .access = PL0_W, .type = ARM_CP_NOP,
3141 .accessfn = aa64_cacheop_access },
3142 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3143 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3144 .access = PL1_W, .type = ARM_CP_NOP },
168aa23b
PM
3145 /* TLBI operations */
3146 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3147 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 3148 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3149 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3150 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3151 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 3152 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3153 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3154 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3155 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 3156 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3157 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3158 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3159 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 3160 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3161 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3162 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3163 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3164 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3165 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3166 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3167 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3168 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3169 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3170 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3171 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 3172 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3173 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3174 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3175 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 3176 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3177 .writefn = tlbi_aa64_vae1_write },
168aa23b 3178 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3179 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 3180 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3181 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3182 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3183 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 3184 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3185 .writefn = tlbi_aa64_vae1_write },
168aa23b 3186 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3187 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3188 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3189 .writefn = tlbi_aa64_vae1_write },
168aa23b 3190 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3191 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3192 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3193 .writefn = tlbi_aa64_vae1_write },
cea66e91
PM
3194 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3195 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3196 .access = PL2_W, .type = ARM_CP_NO_RAW,
3197 .writefn = tlbi_aa64_ipas2e1is_write },
3198 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3199 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3200 .access = PL2_W, .type = ARM_CP_NO_RAW,
3201 .writefn = tlbi_aa64_ipas2e1is_write },
83ddf975
PM
3202 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3203 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3204 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3205 .writefn = tlbi_aa64_alle1is_write },
43efaa33
PM
3206 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3207 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3208 .access = PL2_W, .type = ARM_CP_NO_RAW,
3209 .writefn = tlbi_aa64_alle1is_write },
cea66e91
PM
3210 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3211 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3212 .access = PL2_W, .type = ARM_CP_NO_RAW,
3213 .writefn = tlbi_aa64_ipas2e1_write },
3214 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3215 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3216 .access = PL2_W, .type = ARM_CP_NO_RAW,
3217 .writefn = tlbi_aa64_ipas2e1_write },
83ddf975
PM
3218 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3219 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3220 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3221 .writefn = tlbi_aa64_alle1_write },
43efaa33
PM
3222 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3223 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3224 .access = PL2_W, .type = ARM_CP_NO_RAW,
3225 .writefn = tlbi_aa64_alle1is_write },
19525524
PM
3226#ifndef CONFIG_USER_ONLY
3227 /* 64 bit address translation operations */
3228 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3229 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
060e8a48 3230 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3231 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3232 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
060e8a48 3233 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3234 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3235 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
060e8a48 3236 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3237 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3238 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
060e8a48 3239 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2a47df95 3240 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
7a379c7e 3241 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
2a47df95
PM
3242 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3243 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
7a379c7e 3244 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
2a47df95
PM
3245 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3246 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
7a379c7e 3247 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
2a47df95
PM
3248 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3249 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
7a379c7e 3250 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
2a47df95
PM
3251 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3252 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3253 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3254 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3255 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3256 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3257 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3258 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
c96fc9b5
EI
3259 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3260 .type = ARM_CP_ALIAS,
3261 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3262 .access = PL1_RW, .resetvalue = 0,
3263 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3264 .writefn = par_write },
19525524 3265#endif
995939a6 3266 /* TLB invalidate last level of translation table walk */
9449fdf6 3267 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3268 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
9449fdf6 3269 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3270 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 3271 .writefn = tlbimvaa_is_write },
9449fdf6 3272 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3273 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
9449fdf6 3274 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3275 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
9449fdf6
PM
3276 /* 32 bit cache operations */
3277 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3278 .type = ARM_CP_NOP, .access = PL1_W },
3279 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3280 .type = ARM_CP_NOP, .access = PL1_W },
3281 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3282 .type = ARM_CP_NOP, .access = PL1_W },
3283 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3284 .type = ARM_CP_NOP, .access = PL1_W },
3285 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3286 .type = ARM_CP_NOP, .access = PL1_W },
3287 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3288 .type = ARM_CP_NOP, .access = PL1_W },
3289 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3290 .type = ARM_CP_NOP, .access = PL1_W },
3291 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3292 .type = ARM_CP_NOP, .access = PL1_W },
3293 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3294 .type = ARM_CP_NOP, .access = PL1_W },
3295 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3296 .type = ARM_CP_NOP, .access = PL1_W },
3297 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3298 .type = ARM_CP_NOP, .access = PL1_W },
3299 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3300 .type = ARM_CP_NOP, .access = PL1_W },
3301 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3302 .type = ARM_CP_NOP, .access = PL1_W },
3303 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
3304 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3305 .access = PL1_RW, .resetvalue = 0,
3306 .writefn = dacr_write, .raw_writefn = raw_write,
3307 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3308 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a0618a19 3309 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3310 .type = ARM_CP_ALIAS,
a0618a19 3311 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
3312 .access = PL1_RW,
3313 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9 3314 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3315 .type = ARM_CP_ALIAS,
a65f1de9 3316 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3317 .access = PL1_RW,
3318 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
f502cfc2
PM
3319 /* We rely on the access checks not allowing the guest to write to the
3320 * state field when SPSel indicates that it's being used as the stack
3321 * pointer.
3322 */
3323 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3324 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3325 .access = PL1_RW, .accessfn = sp_el0_access,
7a0e58fa 3326 .type = ARM_CP_ALIAS,
f502cfc2 3327 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
884b4dee
GB
3328 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3329 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3330 .access = PL2_RW, .type = ARM_CP_ALIAS,
884b4dee 3331 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
f502cfc2
PM
3332 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3333 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
7a0e58fa 3334 .type = ARM_CP_NO_RAW,
f502cfc2 3335 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
03fbf20f
PM
3336 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3337 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3338 .type = ARM_CP_ALIAS,
3339 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3340 .access = PL2_RW, .accessfn = fpexc32_access },
6a43e0b6
PM
3341 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3342 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3343 .access = PL2_RW, .resetvalue = 0,
3344 .writefn = dacr_write, .raw_writefn = raw_write,
3345 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3346 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3347 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3348 .access = PL2_RW, .resetvalue = 0,
3349 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3350 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3351 .type = ARM_CP_ALIAS,
3352 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3353 .access = PL2_RW,
3354 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3355 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3356 .type = ARM_CP_ALIAS,
3357 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3358 .access = PL2_RW,
3359 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3360 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3361 .type = ARM_CP_ALIAS,
3362 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3363 .access = PL2_RW,
3364 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3365 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3366 .type = ARM_CP_ALIAS,
3367 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3368 .access = PL2_RW,
3369 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
a8d64e73
PM
3370 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3371 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3372 .resetvalue = 0,
3373 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3374 { .name = "SDCR", .type = ARM_CP_ALIAS,
3375 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3376 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3377 .writefn = sdcr_write,
3378 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
b0d2b7d0
PM
3379 REGINFO_SENTINEL
3380};
3381
d42e3c26 3382/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4771cd01 3383static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
d42e3c26
EI
3384 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3385 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3386 .access = PL2_RW,
3387 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
f149e3e8 3388 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3389 .type = ARM_CP_NO_RAW,
f149e3e8
EI
3390 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3391 .access = PL2_RW,
3392 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
c6f19164
GB
3393 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3394 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3395 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
95f949ac
EI
3396 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3397 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3398 .access = PL2_RW, .type = ARM_CP_CONST,
3399 .resetvalue = 0 },
3400 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3401 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3402 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2179ef95
PM
3403 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3404 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3405 .access = PL2_RW, .type = ARM_CP_CONST,
3406 .resetvalue = 0 },
3407 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3408 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3409 .access = PL2_RW, .type = ARM_CP_CONST,
3410 .resetvalue = 0 },
37cd6c24
PM
3411 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3412 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3413 .access = PL2_RW, .type = ARM_CP_CONST,
3414 .resetvalue = 0 },
3415 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3416 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3417 .access = PL2_RW, .type = ARM_CP_CONST,
3418 .resetvalue = 0 },
06ec4c8c
EI
3419 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3420 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3421 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68e9c2fe
EI
3422 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3423 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3424 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3425 .type = ARM_CP_CONST, .resetvalue = 0 },
b698e9cf
EI
3426 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3427 .cp = 15, .opc1 = 6, .crm = 2,
3428 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3429 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3430 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3431 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3432 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b9cb5323
EI
3433 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3434 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3435 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
ff05f37b
EI
3436 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3437 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3438 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
a57633c0
EI
3439 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3440 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3441 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3442 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3443 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3444 .resetvalue = 0 },
0b6440af
EI
3445 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3446 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3447 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
edac4d8a
EI
3448 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3449 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3450 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3451 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3452 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3453 .resetvalue = 0 },
b0e66d95
EI
3454 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3455 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3456 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3457 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3458 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3459 .resetvalue = 0 },
3460 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3461 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3462 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3463 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3464 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3465 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
14cc7b54
SF
3466 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3467 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
d6c8cf81
PM
3468 .access = PL2_RW, .accessfn = access_tda,
3469 .type = ARM_CP_CONST, .resetvalue = 0 },
59e05530
EI
3470 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3471 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3472 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3473 .type = ARM_CP_CONST, .resetvalue = 0 },
2a5a9abd
AF
3474 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3475 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3476 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
d42e3c26
EI
3477 REGINFO_SENTINEL
3478};
3479
f149e3e8
EI
3480static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3481{
3482 ARMCPU *cpu = arm_env_get_cpu(env);
3483 uint64_t valid_mask = HCR_MASK;
3484
3485 if (arm_feature(env, ARM_FEATURE_EL3)) {
3486 valid_mask &= ~HCR_HCD;
3487 } else {
3488 valid_mask &= ~HCR_TSC;
3489 }
3490
3491 /* Clear RES0 bits. */
3492 value &= valid_mask;
3493
3494 /* These bits change the MMU setup:
3495 * HCR_VM enables stage 2 translation
3496 * HCR_PTW forbids certain page-table setups
3497 * HCR_DC Disables stage1 and enables stage2 translation
3498 */
3499 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3500 tlb_flush(CPU(cpu), 1);
3501 }
3502 raw_write(env, ri, value);
3503}
3504
4771cd01 3505static const ARMCPRegInfo el2_cp_reginfo[] = {
f149e3e8
EI
3506 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3507 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3508 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3509 .writefn = hcr_write },
3b685ba7 3510 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3511 .type = ARM_CP_ALIAS,
3b685ba7
EI
3512 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3513 .access = PL2_RW,
3514 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
f2c30f42 3515 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
3516 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3517 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
63b60551
EI
3518 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3519 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3520 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3b685ba7 3521 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3522 .type = ARM_CP_ALIAS,
3b685ba7 3523 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3524 .access = PL2_RW,
3525 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
d42e3c26
EI
3526 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3527 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3528 .access = PL2_RW, .writefn = vbar_write,
3529 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3530 .resetvalue = 0 },
884b4dee
GB
3531 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3532 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3533 .access = PL3_RW, .type = ARM_CP_ALIAS,
884b4dee 3534 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
c6f19164
GB
3535 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3536 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3537 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3538 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
95f949ac
EI
3539 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3540 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3541 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3542 .resetvalue = 0 },
3543 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3544 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3545 .access = PL2_RW, .type = ARM_CP_ALIAS,
3546 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2179ef95
PM
3547 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3548 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3549 .access = PL2_RW, .type = ARM_CP_CONST,
3550 .resetvalue = 0 },
3551 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3552 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3553 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3554 .access = PL2_RW, .type = ARM_CP_CONST,
3555 .resetvalue = 0 },
37cd6c24
PM
3556 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3557 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3558 .access = PL2_RW, .type = ARM_CP_CONST,
3559 .resetvalue = 0 },
3560 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3561 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3562 .access = PL2_RW, .type = ARM_CP_CONST,
3563 .resetvalue = 0 },
06ec4c8c
EI
3564 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3565 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
3566 .access = PL2_RW,
3567 /* no .writefn needed as this can't cause an ASID change;
3568 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3569 */
06ec4c8c 3570 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
68e9c2fe
EI
3571 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3572 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112 3573 .type = ARM_CP_ALIAS,
68e9c2fe
EI
3574 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3575 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3576 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3577 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
bf06c112
PM
3578 .access = PL2_RW,
3579 /* no .writefn needed as this can't cause an ASID change;
3580 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3581 */
68e9c2fe 3582 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
b698e9cf
EI
3583 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3584 .cp = 15, .opc1 = 6, .crm = 2,
3585 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3586 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3587 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3588 .writefn = vttbr_write },
3589 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3590 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3591 .access = PL2_RW, .writefn = vttbr_write,
3592 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
b9cb5323
EI
3593 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3594 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3595 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3596 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
ff05f37b
EI
3597 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3598 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3599 .access = PL2_RW, .resetvalue = 0,
3600 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
a57633c0
EI
3601 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3602 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3603 .access = PL2_RW, .resetvalue = 0,
3604 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3605 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3606 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
a57633c0 3607 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
51da9014
EI
3608 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3609 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3610 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3611 .writefn = tlbi_aa64_alle2_write },
8742d49d
EI
3612 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3613 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3614 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3615 .writefn = tlbi_aa64_vae2_write },
2bfb9d75
PM
3616 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3617 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3618 .access = PL2_W, .type = ARM_CP_NO_RAW,
3619 .writefn = tlbi_aa64_vae2_write },
3620 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3621 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3622 .access = PL2_W, .type = ARM_CP_NO_RAW,
3623 .writefn = tlbi_aa64_alle2is_write },
8742d49d
EI
3624 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3625 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3626 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3627 .writefn = tlbi_aa64_vae2is_write },
2bfb9d75
PM
3628 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3629 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3630 .access = PL2_W, .type = ARM_CP_NO_RAW,
3631 .writefn = tlbi_aa64_vae2is_write },
edac4d8a 3632#ifndef CONFIG_USER_ONLY
2a47df95
PM
3633 /* Unlike the other EL2-related AT operations, these must
3634 * UNDEF from EL3 if EL2 is not implemented, which is why we
3635 * define them here rather than with the rest of the AT ops.
3636 */
3637 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3638 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3639 .access = PL2_W, .accessfn = at_s1e2_access,
3640 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3641 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3642 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3643 .access = PL2_W, .accessfn = at_s1e2_access,
3644 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
14db7fe0
PM
3645 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3646 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3647 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3648 * to behave as if SCR.NS was 1.
3649 */
3650 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3651 .access = PL2_W,
3652 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3653 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3654 .access = PL2_W,
3655 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
0b6440af
EI
3656 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3657 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3658 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3659 * reset values as IMPDEF. We choose to reset to 3 to comply with
3660 * both ARMv7 and ARMv8.
3661 */
3662 .access = PL2_RW, .resetvalue = 3,
3663 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
edac4d8a
EI
3664 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3665 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3666 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3667 .writefn = gt_cntvoff_write,
3668 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3669 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3670 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3671 .writefn = gt_cntvoff_write,
3672 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
b0e66d95
EI
3673 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3674 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3675 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3676 .type = ARM_CP_IO, .access = PL2_RW,
3677 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3678 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3679 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3680 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3681 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3682 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3683 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
d44ec156 3684 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
b0e66d95
EI
3685 .resetfn = gt_hyp_timer_reset,
3686 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3687 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3688 .type = ARM_CP_IO,
3689 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3690 .access = PL2_RW,
3691 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3692 .resetvalue = 0,
3693 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
edac4d8a 3694#endif
14cc7b54
SF
3695 /* The only field of MDCR_EL2 that has a defined architectural reset value
3696 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3697 * don't impelment any PMU event counters, so using zero as a reset
3698 * value for MDCR_EL2 is okay
3699 */
3700 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3701 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3702 .access = PL2_RW, .resetvalue = 0,
3703 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
59e05530
EI
3704 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3705 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3706 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3707 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3708 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3709 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3710 .access = PL2_RW,
3711 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
2a5a9abd
AF
3712 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3713 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3714 .access = PL2_RW,
3715 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3b685ba7
EI
3716 REGINFO_SENTINEL
3717};
3718
2f027fc5
PM
3719static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3720 bool isread)
3721{
3722 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3723 * At Secure EL1 it traps to EL3.
3724 */
3725 if (arm_current_el(env) == 3) {
3726 return CP_ACCESS_OK;
3727 }
3728 if (arm_is_secure_below_el3(env)) {
3729 return CP_ACCESS_TRAP_EL3;
3730 }
3731 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3732 if (isread) {
3733 return CP_ACCESS_OK;
3734 }
3735 return CP_ACCESS_TRAP_UNCATEGORIZED;
3736}
3737
60fb1a87
GB
3738static const ARMCPRegInfo el3_cp_reginfo[] = {
3739 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3740 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3741 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3742 .resetvalue = 0, .writefn = scr_write },
7a0e58fa 3743 { .name = "SCR", .type = ARM_CP_ALIAS,
60fb1a87 3744 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
efe4a274
PM
3745 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3746 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
b061a82b 3747 .writefn = scr_write },
60fb1a87
GB
3748 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3749 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3750 .access = PL3_RW, .resetvalue = 0,
3751 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3752 { .name = "SDER",
3753 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3754 .access = PL3_RW, .resetvalue = 0,
3755 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
60fb1a87 3756 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
efe4a274
PM
3757 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3758 .writefn = vbar_write, .resetvalue = 0,
60fb1a87 3759 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
7dd8c9af
FA
3760 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3761 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3762 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3763 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
11f136ee
FA
3764 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3765 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6459b94c
PM
3766 .access = PL3_RW,
3767 /* no .writefn needed as this can't cause an ASID change;
811595a2
PM
3768 * we must provide a .raw_writefn and .resetfn because we handle
3769 * reset and migration for the AArch32 TTBCR(S), which might be
3770 * using mask and base_mask.
6459b94c 3771 */
811595a2 3772 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee 3773 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
81547d66 3774 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 3775 .type = ARM_CP_ALIAS,
81547d66
EI
3776 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3777 .access = PL3_RW,
3778 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42 3779 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
f2c30f42
EI
3780 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3781 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
3782 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3783 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3784 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66 3785 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 3786 .type = ARM_CP_ALIAS,
81547d66 3787 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3788 .access = PL3_RW,
3789 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
a1ba125c
EI
3790 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3791 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3792 .access = PL3_RW, .writefn = vbar_write,
3793 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3794 .resetvalue = 0 },
c6f19164
GB
3795 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3796 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3797 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3798 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4cfb8ad8
PM
3799 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3800 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3801 .access = PL3_RW, .resetvalue = 0,
3802 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
2179ef95
PM
3803 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3804 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3805 .access = PL3_RW, .type = ARM_CP_CONST,
3806 .resetvalue = 0 },
37cd6c24
PM
3807 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3808 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3809 .access = PL3_RW, .type = ARM_CP_CONST,
3810 .resetvalue = 0 },
3811 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3812 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3813 .access = PL3_RW, .type = ARM_CP_CONST,
3814 .resetvalue = 0 },
43efaa33
PM
3815 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3816 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3817 .access = PL3_W, .type = ARM_CP_NO_RAW,
3818 .writefn = tlbi_aa64_alle3is_write },
3819 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3820 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3821 .access = PL3_W, .type = ARM_CP_NO_RAW,
3822 .writefn = tlbi_aa64_vae3is_write },
3823 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3824 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3825 .access = PL3_W, .type = ARM_CP_NO_RAW,
3826 .writefn = tlbi_aa64_vae3is_write },
3827 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3828 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3829 .access = PL3_W, .type = ARM_CP_NO_RAW,
3830 .writefn = tlbi_aa64_alle3_write },
3831 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3832 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3833 .access = PL3_W, .type = ARM_CP_NO_RAW,
3834 .writefn = tlbi_aa64_vae3_write },
3835 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3836 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3837 .access = PL3_W, .type = ARM_CP_NO_RAW,
3838 .writefn = tlbi_aa64_vae3_write },
0f1a3b24
FA
3839 REGINFO_SENTINEL
3840};
3841
3f208fd7
PM
3842static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3843 bool isread)
7da845b0
PM
3844{
3845 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3846 * but the AArch32 CTR has its own reginfo struct)
3847 */
137feaa9 3848 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7da845b0
PM
3849 return CP_ACCESS_TRAP;
3850 }
3851 return CP_ACCESS_OK;
3852}
3853
1424ca8d
DM
3854static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3855 uint64_t value)
3856{
3857 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3858 * read via a bit in OSLSR_EL1.
3859 */
3860 int oslock;
3861
3862 if (ri->state == ARM_CP_STATE_AA32) {
3863 oslock = (value == 0xC5ACCE55);
3864 } else {
3865 oslock = value & 1;
3866 }
3867
3868 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
3869}
3870
50300698 3871static const ARMCPRegInfo debug_cp_reginfo[] = {
50300698 3872 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
10aae104
PM
3873 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3874 * unlike DBGDRAR it is never accessible from EL0.
3875 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3876 * accessor.
50300698
PM
3877 */
3878 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
3879 .access = PL0_R, .accessfn = access_tdra,
3880 .type = ARM_CP_CONST, .resetvalue = 0 },
10aae104
PM
3881 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
3882 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
91b0a238
PM
3883 .access = PL1_R, .accessfn = access_tdra,
3884 .type = ARM_CP_CONST, .resetvalue = 0 },
50300698 3885 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
3886 .access = PL0_R, .accessfn = access_tdra,
3887 .type = ARM_CP_CONST, .resetvalue = 0 },
17a9eb53 3888 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
10aae104
PM
3889 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
3890 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
d6c8cf81 3891 .access = PL1_RW, .accessfn = access_tda,
0e5e8935
PM
3892 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
3893 .resetvalue = 0 },
5e8b12ff
PM
3894 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3895 * We don't implement the configurable EL0 access.
3896 */
3897 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
3898 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7a0e58fa 3899 .type = ARM_CP_ALIAS,
d6c8cf81 3900 .access = PL1_R, .accessfn = access_tda,
b061a82b 3901 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
10aae104
PM
3902 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
3903 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1424ca8d 3904 .access = PL1_W, .type = ARM_CP_NO_RAW,
187f678d 3905 .accessfn = access_tdosa,
1424ca8d
DM
3906 .writefn = oslar_write },
3907 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
3908 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
3909 .access = PL1_R, .resetvalue = 10,
187f678d 3910 .accessfn = access_tdosa,
1424ca8d 3911 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5e8b12ff
PM
3912 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3913 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
3914 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
187f678d
PM
3915 .access = PL1_RW, .accessfn = access_tdosa,
3916 .type = ARM_CP_NOP },
5e8b12ff
PM
3917 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3918 * implement vector catch debug events yet.
3919 */
3920 { .name = "DBGVCR",
3921 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
d6c8cf81
PM
3922 .access = PL1_RW, .accessfn = access_tda,
3923 .type = ARM_CP_NOP },
50300698
PM
3924 REGINFO_SENTINEL
3925};
3926
3927static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
3928 /* 64 bit access versions of the (dummy) debug registers */
3929 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
3930 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3931 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
3932 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3933 REGINFO_SENTINEL
3934};
3935
9ee98ce8
PM
3936void hw_watchpoint_update(ARMCPU *cpu, int n)
3937{
3938 CPUARMState *env = &cpu->env;
3939 vaddr len = 0;
3940 vaddr wvr = env->cp15.dbgwvr[n];
3941 uint64_t wcr = env->cp15.dbgwcr[n];
3942 int mask;
3943 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
3944
3945 if (env->cpu_watchpoint[n]) {
3946 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
3947 env->cpu_watchpoint[n] = NULL;
3948 }
3949
3950 if (!extract64(wcr, 0, 1)) {
3951 /* E bit clear : watchpoint disabled */
3952 return;
3953 }
3954
3955 switch (extract64(wcr, 3, 2)) {
3956 case 0:
3957 /* LSC 00 is reserved and must behave as if the wp is disabled */
3958 return;
3959 case 1:
3960 flags |= BP_MEM_READ;
3961 break;
3962 case 2:
3963 flags |= BP_MEM_WRITE;
3964 break;
3965 case 3:
3966 flags |= BP_MEM_ACCESS;
3967 break;
3968 }
3969
3970 /* Attempts to use both MASK and BAS fields simultaneously are
3971 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3972 * thus generating a watchpoint for every byte in the masked region.
3973 */
3974 mask = extract64(wcr, 24, 4);
3975 if (mask == 1 || mask == 2) {
3976 /* Reserved values of MASK; we must act as if the mask value was
3977 * some non-reserved value, or as if the watchpoint were disabled.
3978 * We choose the latter.
3979 */
3980 return;
3981 } else if (mask) {
3982 /* Watchpoint covers an aligned area up to 2GB in size */
3983 len = 1ULL << mask;
3984 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3985 * whether the watchpoint fires when the unmasked bits match; we opt
3986 * to generate the exceptions.
3987 */
3988 wvr &= ~(len - 1);
3989 } else {
3990 /* Watchpoint covers bytes defined by the byte address select bits */
3991 int bas = extract64(wcr, 5, 8);
3992 int basstart;
3993
3994 if (bas == 0) {
3995 /* This must act as if the watchpoint is disabled */
3996 return;
3997 }
3998
3999 if (extract64(wvr, 2, 1)) {
4000 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4001 * ignored, and BAS[3:0] define which bytes to watch.
4002 */
4003 bas &= 0xf;
4004 }
4005 /* The BAS bits are supposed to be programmed to indicate a contiguous
4006 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4007 * we fire for each byte in the word/doubleword addressed by the WVR.
4008 * We choose to ignore any non-zero bits after the first range of 1s.
4009 */
4010 basstart = ctz32(bas);
4011 len = cto32(bas >> basstart);
4012 wvr += basstart;
4013 }
4014
4015 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4016 &env->cpu_watchpoint[n]);
4017}
4018
4019void hw_watchpoint_update_all(ARMCPU *cpu)
4020{
4021 int i;
4022 CPUARMState *env = &cpu->env;
4023
4024 /* Completely clear out existing QEMU watchpoints and our array, to
4025 * avoid possible stale entries following migration load.
4026 */
4027 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4028 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4029
4030 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4031 hw_watchpoint_update(cpu, i);
4032 }
4033}
4034
4035static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4036 uint64_t value)
4037{
4038 ARMCPU *cpu = arm_env_get_cpu(env);
4039 int i = ri->crm;
4040
4041 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4042 * register reads and behaves as if values written are sign extended.
4043 * Bits [1:0] are RES0.
4044 */
4045 value = sextract64(value, 0, 49) & ~3ULL;
4046
4047 raw_write(env, ri, value);
4048 hw_watchpoint_update(cpu, i);
4049}
4050
4051static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4052 uint64_t value)
4053{
4054 ARMCPU *cpu = arm_env_get_cpu(env);
4055 int i = ri->crm;
4056
4057 raw_write(env, ri, value);
4058 hw_watchpoint_update(cpu, i);
4059}
4060
46747d15
PM
4061void hw_breakpoint_update(ARMCPU *cpu, int n)
4062{
4063 CPUARMState *env = &cpu->env;
4064 uint64_t bvr = env->cp15.dbgbvr[n];
4065 uint64_t bcr = env->cp15.dbgbcr[n];
4066 vaddr addr;
4067 int bt;
4068 int flags = BP_CPU;
4069
4070 if (env->cpu_breakpoint[n]) {
4071 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4072 env->cpu_breakpoint[n] = NULL;
4073 }
4074
4075 if (!extract64(bcr, 0, 1)) {
4076 /* E bit clear : watchpoint disabled */
4077 return;
4078 }
4079
4080 bt = extract64(bcr, 20, 4);
4081
4082 switch (bt) {
4083 case 4: /* unlinked address mismatch (reserved if AArch64) */
4084 case 5: /* linked address mismatch (reserved if AArch64) */
4085 qemu_log_mask(LOG_UNIMP,
4086 "arm: address mismatch breakpoint types not implemented");
4087 return;
4088 case 0: /* unlinked address match */
4089 case 1: /* linked address match */
4090 {
4091 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4092 * we behave as if the register was sign extended. Bits [1:0] are
4093 * RES0. The BAS field is used to allow setting breakpoints on 16
4094 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4095 * a bp will fire if the addresses covered by the bp and the addresses
4096 * covered by the insn overlap but the insn doesn't start at the
4097 * start of the bp address range. We choose to require the insn and
4098 * the bp to have the same address. The constraints on writing to
4099 * BAS enforced in dbgbcr_write mean we have only four cases:
4100 * 0b0000 => no breakpoint
4101 * 0b0011 => breakpoint on addr
4102 * 0b1100 => breakpoint on addr + 2
4103 * 0b1111 => breakpoint on addr
4104 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4105 */
4106 int bas = extract64(bcr, 5, 4);
4107 addr = sextract64(bvr, 0, 49) & ~3ULL;
4108 if (bas == 0) {
4109 return;
4110 }
4111 if (bas == 0xc) {
4112 addr += 2;
4113 }
4114 break;
4115 }
4116 case 2: /* unlinked context ID match */
4117 case 8: /* unlinked VMID match (reserved if no EL2) */
4118 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4119 qemu_log_mask(LOG_UNIMP,
4120 "arm: unlinked context breakpoint types not implemented");
4121 return;
4122 case 9: /* linked VMID match (reserved if no EL2) */
4123 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4124 case 3: /* linked context ID match */
4125 default:
4126 /* We must generate no events for Linked context matches (unless
4127 * they are linked to by some other bp/wp, which is handled in
4128 * updates for the linking bp/wp). We choose to also generate no events
4129 * for reserved values.
4130 */
4131 return;
4132 }
4133
4134 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4135}
4136
4137void hw_breakpoint_update_all(ARMCPU *cpu)
4138{
4139 int i;
4140 CPUARMState *env = &cpu->env;
4141
4142 /* Completely clear out existing QEMU breakpoints and our array, to
4143 * avoid possible stale entries following migration load.
4144 */
4145 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4146 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4147
4148 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4149 hw_breakpoint_update(cpu, i);
4150 }
4151}
4152
4153static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4154 uint64_t value)
4155{
4156 ARMCPU *cpu = arm_env_get_cpu(env);
4157 int i = ri->crm;
4158
4159 raw_write(env, ri, value);
4160 hw_breakpoint_update(cpu, i);
4161}
4162
4163static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4164 uint64_t value)
4165{
4166 ARMCPU *cpu = arm_env_get_cpu(env);
4167 int i = ri->crm;
4168
4169 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4170 * copy of BAS[0].
4171 */
4172 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4173 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4174
4175 raw_write(env, ri, value);
4176 hw_breakpoint_update(cpu, i);
4177}
4178
50300698 4179static void define_debug_regs(ARMCPU *cpu)
0b45451e 4180{
50300698
PM
4181 /* Define v7 and v8 architectural debug registers.
4182 * These are just dummy implementations for now.
0b45451e
PM
4183 */
4184 int i;
3ff6fc91 4185 int wrps, brps, ctx_cmps;
48eb3ae6
PM
4186 ARMCPRegInfo dbgdidr = {
4187 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
d6c8cf81
PM
4188 .access = PL0_R, .accessfn = access_tda,
4189 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
48eb3ae6
PM
4190 };
4191
3ff6fc91 4192 /* Note that all these register fields hold "number of Xs minus 1". */
48eb3ae6
PM
4193 brps = extract32(cpu->dbgdidr, 24, 4);
4194 wrps = extract32(cpu->dbgdidr, 28, 4);
3ff6fc91
PM
4195 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4196
4197 assert(ctx_cmps <= brps);
48eb3ae6
PM
4198
4199 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4200 * of the debug registers such as number of breakpoints;
4201 * check that if they both exist then they agree.
4202 */
4203 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4204 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4205 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3ff6fc91 4206 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
48eb3ae6 4207 }
0b45451e 4208
48eb3ae6 4209 define_one_arm_cp_reg(cpu, &dbgdidr);
50300698
PM
4210 define_arm_cp_regs(cpu, debug_cp_reginfo);
4211
4212 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4213 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4214 }
4215
48eb3ae6 4216 for (i = 0; i < brps + 1; i++) {
0b45451e 4217 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4218 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4219 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
d6c8cf81 4220 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4221 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4222 .writefn = dbgbvr_write, .raw_writefn = raw_write
4223 },
10aae104
PM
4224 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4225 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
d6c8cf81 4226 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4227 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4228 .writefn = dbgbcr_write, .raw_writefn = raw_write
4229 },
48eb3ae6
PM
4230 REGINFO_SENTINEL
4231 };
4232 define_arm_cp_regs(cpu, dbgregs);
4233 }
4234
4235 for (i = 0; i < wrps + 1; i++) {
4236 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4237 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4238 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
d6c8cf81 4239 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4240 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4241 .writefn = dbgwvr_write, .raw_writefn = raw_write
4242 },
10aae104
PM
4243 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4244 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
d6c8cf81 4245 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4246 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4247 .writefn = dbgwcr_write, .raw_writefn = raw_write
4248 },
4249 REGINFO_SENTINEL
0b45451e
PM
4250 };
4251 define_arm_cp_regs(cpu, dbgregs);
4252 }
4253}
4254
2ceb98c0
PM
4255void register_cp_regs_for_features(ARMCPU *cpu)
4256{
4257 /* Register all the coprocessor registers based on feature bits */
4258 CPUARMState *env = &cpu->env;
4259 if (arm_feature(env, ARM_FEATURE_M)) {
4260 /* M profile has no coprocessor registers */
4261 return;
4262 }
4263
e9aa6c21 4264 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6
PM
4265 if (!arm_feature(env, ARM_FEATURE_V8)) {
4266 /* Must go early as it is full of wildcards that may be
4267 * overridden by later definitions.
4268 */
4269 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4270 }
4271
7d57f408 4272 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
4273 /* The ID registers all have impdef reset values */
4274 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
4275 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4276 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4277 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4278 .resetvalue = cpu->id_pfr0 },
0ff644a7
PM
4279 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4280 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4281 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4282 .resetvalue = cpu->id_pfr1 },
0ff644a7
PM
4283 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4284 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4285 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4286 .resetvalue = cpu->id_dfr0 },
0ff644a7
PM
4287 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4289 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4290 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
4291 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4292 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4293 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4294 .resetvalue = cpu->id_mmfr0 },
0ff644a7
PM
4295 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4296 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4297 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4298 .resetvalue = cpu->id_mmfr1 },
0ff644a7
PM
4299 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4300 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4301 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4302 .resetvalue = cpu->id_mmfr2 },
0ff644a7
PM
4303 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4304 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4305 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4306 .resetvalue = cpu->id_mmfr3 },
0ff644a7
PM
4307 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4308 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4309 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4310 .resetvalue = cpu->id_isar0 },
0ff644a7
PM
4311 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4312 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4313 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4314 .resetvalue = cpu->id_isar1 },
0ff644a7
PM
4315 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4316 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4317 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4318 .resetvalue = cpu->id_isar2 },
0ff644a7
PM
4319 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4320 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4321 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4322 .resetvalue = cpu->id_isar3 },
0ff644a7
PM
4323 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4324 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4325 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4326 .resetvalue = cpu->id_isar4 },
0ff644a7
PM
4327 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4328 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4329 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4330 .resetvalue = cpu->id_isar5 },
e20d84c1
PM
4331 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4332 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4333 .access = PL1_R, .type = ARM_CP_CONST,
4334 .resetvalue = cpu->id_mmfr4 },
4335 /* 7 is as yet unallocated and must RAZ */
4336 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4337 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4338 .access = PL1_R, .type = ARM_CP_CONST,
8515a092
PM
4339 .resetvalue = 0 },
4340 REGINFO_SENTINEL
4341 };
4342 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
4343 define_arm_cp_regs(cpu, v6_cp_reginfo);
4344 } else {
4345 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4346 }
4d31c596
PM
4347 if (arm_feature(env, ARM_FEATURE_V6K)) {
4348 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4349 }
5e5cf9e3
PC
4350 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4351 !arm_feature(env, ARM_FEATURE_MPU)) {
995939a6
PM
4352 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4353 }
e9aa6c21 4354 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef 4355 /* v7 performance monitor control register: same implementor
7c2cb42b
AF
4356 * field as main ID register, and we implement only the cycle
4357 * count register.
200ac0ef 4358 */
7c2cb42b 4359#ifndef CONFIG_USER_ONLY
200ac0ef
PM
4360 ARMCPRegInfo pmcr = {
4361 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
8521466b 4362 .access = PL0_RW,
7a0e58fa 4363 .type = ARM_CP_IO | ARM_CP_ALIAS,
8521466b 4364 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
fcd25206
PM
4365 .accessfn = pmreg_access, .writefn = pmcr_write,
4366 .raw_writefn = raw_write,
200ac0ef 4367 };
8521466b
AF
4368 ARMCPRegInfo pmcr64 = {
4369 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4370 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4371 .access = PL0_RW, .accessfn = pmreg_access,
4372 .type = ARM_CP_IO,
4373 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4374 .resetvalue = cpu->midr & 0xff000000,
4375 .writefn = pmcr_write, .raw_writefn = raw_write,
4376 };
7c2cb42b 4377 define_one_arm_cp_reg(cpu, &pmcr);
8521466b 4378 define_one_arm_cp_reg(cpu, &pmcr64);
7c2cb42b 4379#endif
776d4e5c 4380 ARMCPRegInfo clidr = {
7da845b0
PM
4381 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4382 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
776d4e5c
PM
4383 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4384 };
776d4e5c 4385 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 4386 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 4387 define_debug_regs(cpu);
7d57f408
PM
4388 } else {
4389 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 4390 }
b0d2b7d0 4391 if (arm_feature(env, ARM_FEATURE_V8)) {
e20d84c1
PM
4392 /* AArch64 ID registers, which all have impdef reset values.
4393 * Note that within the ID register ranges the unused slots
4394 * must all RAZ, not UNDEF; future architecture versions may
4395 * define new registers here.
4396 */
e60cef86
PM
4397 ARMCPRegInfo v8_idregs[] = {
4398 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4399 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4400 .access = PL1_R, .type = ARM_CP_CONST,
4401 .resetvalue = cpu->id_aa64pfr0 },
4402 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4403 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4404 .access = PL1_R, .type = ARM_CP_CONST,
4405 .resetvalue = cpu->id_aa64pfr1},
e20d84c1
PM
4406 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4407 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4408 .access = PL1_R, .type = ARM_CP_CONST,
4409 .resetvalue = 0 },
4410 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4411 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4412 .access = PL1_R, .type = ARM_CP_CONST,
4413 .resetvalue = 0 },
4414 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4415 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4416 .access = PL1_R, .type = ARM_CP_CONST,
4417 .resetvalue = 0 },
4418 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4419 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4420 .access = PL1_R, .type = ARM_CP_CONST,
4421 .resetvalue = 0 },
4422 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4423 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4424 .access = PL1_R, .type = ARM_CP_CONST,
4425 .resetvalue = 0 },
4426 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4427 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4428 .access = PL1_R, .type = ARM_CP_CONST,
4429 .resetvalue = 0 },
e60cef86
PM
4430 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4431 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4432 .access = PL1_R, .type = ARM_CP_CONST,
5d831be2 4433 /* We mask out the PMUVer field, because we don't currently
9225d739
PM
4434 * implement the PMU. Not advertising it prevents the guest
4435 * from trying to use it and getting UNDEFs on registers we
4436 * don't implement.
4437 */
4438 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
e60cef86
PM
4439 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4440 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4441 .access = PL1_R, .type = ARM_CP_CONST,
4442 .resetvalue = cpu->id_aa64dfr1 },
e20d84c1
PM
4443 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4444 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4445 .access = PL1_R, .type = ARM_CP_CONST,
4446 .resetvalue = 0 },
4447 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4448 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4449 .access = PL1_R, .type = ARM_CP_CONST,
4450 .resetvalue = 0 },
e60cef86
PM
4451 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4452 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4453 .access = PL1_R, .type = ARM_CP_CONST,
4454 .resetvalue = cpu->id_aa64afr0 },
4455 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4456 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4457 .access = PL1_R, .type = ARM_CP_CONST,
4458 .resetvalue = cpu->id_aa64afr1 },
e20d84c1
PM
4459 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4460 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4461 .access = PL1_R, .type = ARM_CP_CONST,
4462 .resetvalue = 0 },
4463 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4464 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4465 .access = PL1_R, .type = ARM_CP_CONST,
4466 .resetvalue = 0 },
e60cef86
PM
4467 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4468 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4469 .access = PL1_R, .type = ARM_CP_CONST,
4470 .resetvalue = cpu->id_aa64isar0 },
4471 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4472 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4473 .access = PL1_R, .type = ARM_CP_CONST,
4474 .resetvalue = cpu->id_aa64isar1 },
e20d84c1
PM
4475 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4476 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4477 .access = PL1_R, .type = ARM_CP_CONST,
4478 .resetvalue = 0 },
4479 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4480 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4481 .access = PL1_R, .type = ARM_CP_CONST,
4482 .resetvalue = 0 },
4483 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4484 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4485 .access = PL1_R, .type = ARM_CP_CONST,
4486 .resetvalue = 0 },
4487 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4488 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4489 .access = PL1_R, .type = ARM_CP_CONST,
4490 .resetvalue = 0 },
4491 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4492 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4493 .access = PL1_R, .type = ARM_CP_CONST,
4494 .resetvalue = 0 },
4495 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4496 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4497 .access = PL1_R, .type = ARM_CP_CONST,
4498 .resetvalue = 0 },
e60cef86
PM
4499 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4500 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4501 .access = PL1_R, .type = ARM_CP_CONST,
4502 .resetvalue = cpu->id_aa64mmfr0 },
4503 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4504 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4505 .access = PL1_R, .type = ARM_CP_CONST,
4506 .resetvalue = cpu->id_aa64mmfr1 },
e20d84c1
PM
4507 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4508 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4509 .access = PL1_R, .type = ARM_CP_CONST,
4510 .resetvalue = 0 },
4511 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4512 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4513 .access = PL1_R, .type = ARM_CP_CONST,
4514 .resetvalue = 0 },
4515 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4516 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4517 .access = PL1_R, .type = ARM_CP_CONST,
4518 .resetvalue = 0 },
4519 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4520 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4521 .access = PL1_R, .type = ARM_CP_CONST,
4522 .resetvalue = 0 },
4523 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4524 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4525 .access = PL1_R, .type = ARM_CP_CONST,
4526 .resetvalue = 0 },
4527 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4528 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4529 .access = PL1_R, .type = ARM_CP_CONST,
4530 .resetvalue = 0 },
a50c0f51
PM
4531 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4532 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4533 .access = PL1_R, .type = ARM_CP_CONST,
4534 .resetvalue = cpu->mvfr0 },
4535 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4536 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4537 .access = PL1_R, .type = ARM_CP_CONST,
4538 .resetvalue = cpu->mvfr1 },
4539 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4541 .access = PL1_R, .type = ARM_CP_CONST,
4542 .resetvalue = cpu->mvfr2 },
e20d84c1
PM
4543 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4544 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4545 .access = PL1_R, .type = ARM_CP_CONST,
4546 .resetvalue = 0 },
4547 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4548 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4549 .access = PL1_R, .type = ARM_CP_CONST,
4550 .resetvalue = 0 },
4551 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4552 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4553 .access = PL1_R, .type = ARM_CP_CONST,
4554 .resetvalue = 0 },
4555 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4557 .access = PL1_R, .type = ARM_CP_CONST,
4558 .resetvalue = 0 },
4559 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4561 .access = PL1_R, .type = ARM_CP_CONST,
4562 .resetvalue = 0 },
4054bfa9
AF
4563 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4564 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4565 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4566 .resetvalue = cpu->pmceid0 },
4567 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4568 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4569 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4570 .resetvalue = cpu->pmceid0 },
4571 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4572 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4573 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4574 .resetvalue = cpu->pmceid1 },
4575 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4576 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4577 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4578 .resetvalue = cpu->pmceid1 },
e60cef86
PM
4579 REGINFO_SENTINEL
4580 };
be8e8128
GB
4581 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4582 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4583 !arm_feature(env, ARM_FEATURE_EL2)) {
4584 ARMCPRegInfo rvbar = {
4585 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4586 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4587 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4588 };
4589 define_one_arm_cp_reg(cpu, &rvbar);
4590 }
e60cef86 4591 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0
PM
4592 define_arm_cp_regs(cpu, v8_cp_reginfo);
4593 }
3b685ba7 4594 if (arm_feature(env, ARM_FEATURE_EL2)) {
f0d574d6 4595 uint64_t vmpidr_def = mpidr_read_val(env);
731de9e6
EI
4596 ARMCPRegInfo vpidr_regs[] = {
4597 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4598 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4599 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4600 .resetvalue = cpu->midr,
4601 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4602 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4603 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4604 .access = PL2_RW, .resetvalue = cpu->midr,
4605 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4606 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4607 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4608 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4609 .resetvalue = vmpidr_def,
4610 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4611 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4612 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4613 .access = PL2_RW,
4614 .resetvalue = vmpidr_def,
4615 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
731de9e6
EI
4616 REGINFO_SENTINEL
4617 };
4618 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4619 define_arm_cp_regs(cpu, el2_cp_reginfo);
be8e8128
GB
4620 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4621 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4622 ARMCPRegInfo rvbar = {
4623 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4624 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4625 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4626 };
4627 define_one_arm_cp_reg(cpu, &rvbar);
4628 }
d42e3c26
EI
4629 } else {
4630 /* If EL2 is missing but higher ELs are enabled, we need to
4631 * register the no_el2 reginfos.
4632 */
4633 if (arm_feature(env, ARM_FEATURE_EL3)) {
f0d574d6
EI
4634 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4635 * of MIDR_EL1 and MPIDR_EL1.
731de9e6
EI
4636 */
4637 ARMCPRegInfo vpidr_regs[] = {
4638 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4639 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4640 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4641 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4642 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4643 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4644 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4645 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4646 .type = ARM_CP_NO_RAW,
4647 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
731de9e6
EI
4648 REGINFO_SENTINEL
4649 };
4650 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4651 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
d42e3c26 4652 }
3b685ba7 4653 }
81547d66 4654 if (arm_feature(env, ARM_FEATURE_EL3)) {
0f1a3b24 4655 define_arm_cp_regs(cpu, el3_cp_reginfo);
e24fdd23
PM
4656 ARMCPRegInfo el3_regs[] = {
4657 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4658 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4659 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4660 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4661 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4662 .access = PL3_RW,
4663 .raw_writefn = raw_write, .writefn = sctlr_write,
4664 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4665 .resetvalue = cpu->reset_sctlr },
4666 REGINFO_SENTINEL
be8e8128 4667 };
e24fdd23
PM
4668
4669 define_arm_cp_regs(cpu, el3_regs);
81547d66 4670 }
2f027fc5
PM
4671 /* The behaviour of NSACR is sufficiently various that we don't
4672 * try to describe it in a single reginfo:
4673 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4674 * reads as constant 0xc00 from NS EL1 and NS EL2
4675 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4676 * if v7 without EL3, register doesn't exist
4677 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4678 */
4679 if (arm_feature(env, ARM_FEATURE_EL3)) {
4680 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4681 ARMCPRegInfo nsacr = {
4682 .name = "NSACR", .type = ARM_CP_CONST,
4683 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4684 .access = PL1_RW, .accessfn = nsacr_access,
4685 .resetvalue = 0xc00
4686 };
4687 define_one_arm_cp_reg(cpu, &nsacr);
4688 } else {
4689 ARMCPRegInfo nsacr = {
4690 .name = "NSACR",
4691 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4692 .access = PL3_RW | PL1_R,
4693 .resetvalue = 0,
4694 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4695 };
4696 define_one_arm_cp_reg(cpu, &nsacr);
4697 }
4698 } else {
4699 if (arm_feature(env, ARM_FEATURE_V8)) {
4700 ARMCPRegInfo nsacr = {
4701 .name = "NSACR", .type = ARM_CP_CONST,
4702 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4703 .access = PL1_R,
4704 .resetvalue = 0xc00
4705 };
4706 define_one_arm_cp_reg(cpu, &nsacr);
4707 }
4708 }
4709
18032bec 4710 if (arm_feature(env, ARM_FEATURE_MPU)) {
6cb0b013
PC
4711 if (arm_feature(env, ARM_FEATURE_V6)) {
4712 /* PMSAv6 not implemented */
4713 assert(arm_feature(env, ARM_FEATURE_V7));
4714 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4715 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4716 } else {
4717 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4718 }
18032bec 4719 } else {
8e5d75c9 4720 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
18032bec
PM
4721 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4722 }
c326b979
PM
4723 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4724 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4725 }
6cc7a3ae
PM
4726 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4727 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4728 }
4a501606
PM
4729 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4730 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4731 }
c4804214
PM
4732 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4733 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4734 }
4735 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4736 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4737 }
4738 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4739 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4740 }
18032bec
PM
4741 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4742 define_arm_cp_regs(cpu, omap_cp_reginfo);
4743 }
34f90529
PM
4744 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4745 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4746 }
1047b9d7
PM
4747 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4748 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4749 }
4750 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4751 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4752 }
7ac681cf
PM
4753 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4754 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4755 }
7884849c
PM
4756 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4757 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4758 * be read-only (ie write causes UNDEF exception).
4759 */
4760 {
00a29f3d
PM
4761 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4762 /* Pre-v8 MIDR space.
4763 * Note that the MIDR isn't a simple constant register because
7884849c
PM
4764 * of the TI925 behaviour where writes to another register can
4765 * cause the MIDR value to change.
97ce8d61
PC
4766 *
4767 * Unimplemented registers in the c15 0 0 0 space default to
4768 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4769 * and friends override accordingly.
7884849c
PM
4770 */
4771 { .name = "MIDR",
97ce8d61 4772 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 4773 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 4774 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
731de9e6 4775 .readfn = midr_read,
97ce8d61
PC
4776 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4777 .type = ARM_CP_OVERRIDE },
7884849c
PM
4778 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4779 { .name = "DUMMY",
4780 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4781 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4782 { .name = "DUMMY",
4783 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4784 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4785 { .name = "DUMMY",
4786 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4787 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4788 { .name = "DUMMY",
4789 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4790 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4791 { .name = "DUMMY",
4792 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4793 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4794 REGINFO_SENTINEL
4795 };
00a29f3d 4796 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
00a29f3d
PM
4797 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
731de9e6
EI
4799 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4800 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4801 .readfn = midr_read },
ac00c79f
SF
4802 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4803 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4804 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4805 .access = PL1_R, .resetvalue = cpu->midr },
4806 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4807 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4808 .access = PL1_R, .resetvalue = cpu->midr },
00a29f3d
PM
4809 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
13b72b2b 4811 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
00a29f3d
PM
4812 REGINFO_SENTINEL
4813 };
4814 ARMCPRegInfo id_cp_reginfo[] = {
4815 /* These are common to v8 and pre-v8 */
4816 { .name = "CTR",
4817 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4818 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4819 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4820 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4821 .access = PL0_R, .accessfn = ctr_el0_access,
4822 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4823 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4824 { .name = "TCMTR",
4825 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4826 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
00a29f3d
PM
4827 REGINFO_SENTINEL
4828 };
8085ce63
PC
4829 /* TLBTR is specific to VMSA */
4830 ARMCPRegInfo id_tlbtr_reginfo = {
4831 .name = "TLBTR",
4832 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4833 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4834 };
3281af81
PC
4835 /* MPUIR is specific to PMSA V6+ */
4836 ARMCPRegInfo id_mpuir_reginfo = {
4837 .name = "MPUIR",
4838 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4839 .access = PL1_R, .type = ARM_CP_CONST,
4840 .resetvalue = cpu->pmsav7_dregion << 8
4841 };
7884849c
PM
4842 ARMCPRegInfo crn0_wi_reginfo = {
4843 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
4844 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
4845 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
4846 };
4847 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
4848 arm_feature(env, ARM_FEATURE_STRONGARM)) {
4849 ARMCPRegInfo *r;
4850 /* Register the blanket "writes ignored" value first to cover the
a703eda1
PC
4851 * whole space. Then update the specific ID registers to allow write
4852 * access, so that they ignore writes rather than causing them to
4853 * UNDEF.
7884849c
PM
4854 */
4855 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
00a29f3d
PM
4856 for (r = id_pre_v8_midr_cp_reginfo;
4857 r->type != ARM_CP_SENTINEL; r++) {
4858 r->access = PL1_RW;
4859 }
7884849c
PM
4860 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
4861 r->access = PL1_RW;
7884849c 4862 }
8085ce63 4863 id_tlbtr_reginfo.access = PL1_RW;
3281af81 4864 id_tlbtr_reginfo.access = PL1_RW;
7884849c 4865 }
00a29f3d
PM
4866 if (arm_feature(env, ARM_FEATURE_V8)) {
4867 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
4868 } else {
4869 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
4870 }
a703eda1 4871 define_arm_cp_regs(cpu, id_cp_reginfo);
8085ce63
PC
4872 if (!arm_feature(env, ARM_FEATURE_MPU)) {
4873 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3281af81
PC
4874 } else if (arm_feature(env, ARM_FEATURE_V7)) {
4875 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8085ce63 4876 }
7884849c
PM
4877 }
4878
97ce8d61
PC
4879 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
4880 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
4881 }
4882
2771db27 4883 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
834a6c69
PM
4884 ARMCPRegInfo auxcr_reginfo[] = {
4885 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
4886 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
4887 .access = PL1_RW, .type = ARM_CP_CONST,
4888 .resetvalue = cpu->reset_auxcr },
4889 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
4890 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
4891 .access = PL2_RW, .type = ARM_CP_CONST,
4892 .resetvalue = 0 },
4893 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
4894 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
4895 .access = PL3_RW, .type = ARM_CP_CONST,
4896 .resetvalue = 0 },
4897 REGINFO_SENTINEL
2771db27 4898 };
834a6c69 4899 define_arm_cp_regs(cpu, auxcr_reginfo);
2771db27
PM
4900 }
4901
d8ba780b 4902 if (arm_feature(env, ARM_FEATURE_CBAR)) {
f318cec6
PM
4903 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4904 /* 32 bit view is [31:18] 0...0 [43:32]. */
4905 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
4906 | extract64(cpu->reset_cbar, 32, 12);
4907 ARMCPRegInfo cbar_reginfo[] = {
4908 { .name = "CBAR",
4909 .type = ARM_CP_CONST,
4910 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4911 .access = PL1_R, .resetvalue = cpu->reset_cbar },
4912 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
4913 .type = ARM_CP_CONST,
4914 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
4915 .access = PL1_R, .resetvalue = cbar32 },
4916 REGINFO_SENTINEL
4917 };
4918 /* We don't implement a r/w 64 bit CBAR currently */
4919 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
4920 define_arm_cp_regs(cpu, cbar_reginfo);
4921 } else {
4922 ARMCPRegInfo cbar = {
4923 .name = "CBAR",
4924 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4925 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
4926 .fieldoffset = offsetof(CPUARMState,
4927 cp15.c15_config_base_address)
4928 };
4929 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
4930 cbar.access = PL1_R;
4931 cbar.fieldoffset = 0;
4932 cbar.type = ARM_CP_CONST;
4933 }
4934 define_one_arm_cp_reg(cpu, &cbar);
4935 }
d8ba780b
PC
4936 }
4937
2771db27
PM
4938 /* Generic registers whose values depend on the implementation */
4939 {
4940 ARMCPRegInfo sctlr = {
5ebafdf3 4941 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
137feaa9
FA
4942 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4943 .access = PL1_RW,
4944 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
4945 offsetof(CPUARMState, cp15.sctlr_ns) },
d4e6df63
PM
4946 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
4947 .raw_writefn = raw_write,
2771db27
PM
4948 };
4949 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4950 /* Normally we would always end the TB on an SCTLR write, but Linux
4951 * arch/arm/mach-pxa/sleep.S expects two instructions following
4952 * an MMU enable to execute from cache. Imitate this behaviour.
4953 */
4954 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
4955 }
4956 define_one_arm_cp_reg(cpu, &sctlr);
4957 }
2ceb98c0
PM
4958}
4959
778c3a06 4960ARMCPU *cpu_arm_init(const char *cpu_model)
40f137e1 4961{
9262685b 4962 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
14969266
AF
4963}
4964
4965void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
4966{
22169d41 4967 CPUState *cs = CPU(cpu);
14969266
AF
4968 CPUARMState *env = &cpu->env;
4969
6a669427
PM
4970 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4971 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
4972 aarch64_fpu_gdb_set_reg,
4973 34, "aarch64-fpu.xml", 0);
4974 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
22169d41 4975 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
4976 51, "arm-neon.xml", 0);
4977 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
22169d41 4978 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
4979 35, "arm-vfp3.xml", 0);
4980 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
22169d41 4981 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
4982 19, "arm-vfp.xml", 0);
4983 }
40f137e1
PB
4984}
4985
777dc784
PM
4986/* Sort alphabetically by type name, except for "any". */
4987static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 4988{
777dc784
PM
4989 ObjectClass *class_a = (ObjectClass *)a;
4990 ObjectClass *class_b = (ObjectClass *)b;
4991 const char *name_a, *name_b;
5adb4839 4992
777dc784
PM
4993 name_a = object_class_get_name(class_a);
4994 name_b = object_class_get_name(class_b);
51492fd1 4995 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 4996 return 1;
51492fd1 4997 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
4998 return -1;
4999 } else {
5000 return strcmp(name_a, name_b);
5adb4839
PB
5001 }
5002}
5003
777dc784 5004static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 5005{
777dc784 5006 ObjectClass *oc = data;
92a31361 5007 CPUListState *s = user_data;
51492fd1
AF
5008 const char *typename;
5009 char *name;
3371d272 5010
51492fd1
AF
5011 typename = object_class_get_name(oc);
5012 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
777dc784 5013 (*s->cpu_fprintf)(s->file, " %s\n",
51492fd1
AF
5014 name);
5015 g_free(name);
777dc784
PM
5016}
5017
5018void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5019{
92a31361 5020 CPUListState s = {
777dc784
PM
5021 .file = f,
5022 .cpu_fprintf = cpu_fprintf,
5023 };
5024 GSList *list;
5025
5026 list = object_class_get_list(TYPE_ARM_CPU, false);
5027 list = g_slist_sort(list, arm_cpu_list_compare);
5028 (*cpu_fprintf)(f, "Available CPUs:\n");
5029 g_slist_foreach(list, arm_cpu_list_entry, &s);
5030 g_slist_free(list);
a96c0514
PM
5031#ifdef CONFIG_KVM
5032 /* The 'host' CPU type is dynamically registered only if KVM is
5033 * enabled, so we have to special-case it here:
5034 */
5035 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5036#endif
40f137e1
PB
5037}
5038
78027bb6
CR
5039static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5040{
5041 ObjectClass *oc = data;
5042 CpuDefinitionInfoList **cpu_list = user_data;
5043 CpuDefinitionInfoList *entry;
5044 CpuDefinitionInfo *info;
5045 const char *typename;
5046
5047 typename = object_class_get_name(oc);
5048 info = g_malloc0(sizeof(*info));
5049 info->name = g_strndup(typename,
5050 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5051
5052 entry = g_malloc0(sizeof(*entry));
5053 entry->value = info;
5054 entry->next = *cpu_list;
5055 *cpu_list = entry;
5056}
5057
5058CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5059{
5060 CpuDefinitionInfoList *cpu_list = NULL;
5061 GSList *list;
5062
5063 list = object_class_get_list(TYPE_ARM_CPU, false);
5064 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5065 g_slist_free(list);
5066
5067 return cpu_list;
5068}
5069
6e6efd61 5070static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
51a79b03 5071 void *opaque, int state, int secstate,
f5a0a5a5 5072 int crm, int opc1, int opc2)
6e6efd61
PM
5073{
5074 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5075 * add a single reginfo struct to the hash table.
5076 */
5077 uint32_t *key = g_new(uint32_t, 1);
5078 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5079 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3f3c82a5
FA
5080 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5081
5082 /* Reset the secure state to the specific incoming state. This is
5083 * necessary as the register may have been defined with both states.
5084 */
5085 r2->secure = secstate;
5086
5087 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5088 /* Register is banked (using both entries in array).
5089 * Overwriting fieldoffset as the array is only used to define
5090 * banked registers but later only fieldoffset is used.
f5a0a5a5 5091 */
3f3c82a5
FA
5092 r2->fieldoffset = r->bank_fieldoffsets[ns];
5093 }
5094
5095 if (state == ARM_CP_STATE_AA32) {
5096 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5097 /* If the register is banked then we don't need to migrate or
5098 * reset the 32-bit instance in certain cases:
5099 *
5100 * 1) If the register has both 32-bit and 64-bit instances then we
5101 * can count on the 64-bit instance taking care of the
5102 * non-secure bank.
5103 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5104 * taking care of the secure bank. This requires that separate
5105 * 32 and 64-bit definitions are provided.
5106 */
5107 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5108 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7a0e58fa 5109 r2->type |= ARM_CP_ALIAS;
3f3c82a5
FA
5110 }
5111 } else if ((secstate != r->secure) && !ns) {
5112 /* The register is not banked so we only want to allow migration of
5113 * the non-secure instance.
5114 */
7a0e58fa 5115 r2->type |= ARM_CP_ALIAS;
58a1d8ce 5116 }
3f3c82a5
FA
5117
5118 if (r->state == ARM_CP_STATE_BOTH) {
5119 /* We assume it is a cp15 register if the .cp field is left unset.
5120 */
5121 if (r2->cp == 0) {
5122 r2->cp = 15;
5123 }
5124
f5a0a5a5 5125#ifdef HOST_WORDS_BIGENDIAN
3f3c82a5
FA
5126 if (r2->fieldoffset) {
5127 r2->fieldoffset += sizeof(uint32_t);
5128 }
f5a0a5a5 5129#endif
3f3c82a5 5130 }
f5a0a5a5
PM
5131 }
5132 if (state == ARM_CP_STATE_AA64) {
5133 /* To allow abbreviation of ARMCPRegInfo
5134 * definitions, we treat cp == 0 as equivalent to
5135 * the value for "standard guest-visible sysreg".
58a1d8ce
PM
5136 * STATE_BOTH definitions are also always "standard
5137 * sysreg" in their AArch64 view (the .cp value may
5138 * be non-zero for the benefit of the AArch32 view).
f5a0a5a5 5139 */
58a1d8ce 5140 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
f5a0a5a5
PM
5141 r2->cp = CP_REG_ARM64_SYSREG_CP;
5142 }
5143 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5144 r2->opc0, opc1, opc2);
5145 } else {
51a79b03 5146 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
f5a0a5a5 5147 }
6e6efd61
PM
5148 if (opaque) {
5149 r2->opaque = opaque;
5150 }
67ed771d
PM
5151 /* reginfo passed to helpers is correct for the actual access,
5152 * and is never ARM_CP_STATE_BOTH:
5153 */
5154 r2->state = state;
6e6efd61
PM
5155 /* Make sure reginfo passed to helpers for wildcarded regs
5156 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5157 */
5158 r2->crm = crm;
5159 r2->opc1 = opc1;
5160 r2->opc2 = opc2;
5161 /* By convention, for wildcarded registers only the first
5162 * entry is used for migration; the others are marked as
7a0e58fa 5163 * ALIAS so we don't try to transfer the register
6e6efd61 5164 * multiple times. Special registers (ie NOP/WFI) are
7a0e58fa 5165 * never migratable and not even raw-accessible.
6e6efd61 5166 */
7a0e58fa
PM
5167 if ((r->type & ARM_CP_SPECIAL)) {
5168 r2->type |= ARM_CP_NO_RAW;
5169 }
5170 if (((r->crm == CP_ANY) && crm != 0) ||
6e6efd61
PM
5171 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5172 ((r->opc2 == CP_ANY) && opc2 != 0)) {
7a0e58fa 5173 r2->type |= ARM_CP_ALIAS;
6e6efd61
PM
5174 }
5175
375421cc
PM
5176 /* Check that raw accesses are either forbidden or handled. Note that
5177 * we can't assert this earlier because the setup of fieldoffset for
5178 * banked registers has to be done first.
5179 */
5180 if (!(r2->type & ARM_CP_NO_RAW)) {
5181 assert(!raw_accessors_invalid(r2));
5182 }
5183
6e6efd61
PM
5184 /* Overriding of an existing definition must be explicitly
5185 * requested.
5186 */
5187 if (!(r->type & ARM_CP_OVERRIDE)) {
5188 ARMCPRegInfo *oldreg;
5189 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5190 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5191 fprintf(stderr, "Register redefined: cp=%d %d bit "
5192 "crn=%d crm=%d opc1=%d opc2=%d, "
5193 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5194 r2->crn, r2->crm, r2->opc1, r2->opc2,
5195 oldreg->name, r2->name);
5196 g_assert_not_reached();
5197 }
5198 }
5199 g_hash_table_insert(cpu->cp_regs, key, r2);
5200}
5201
5202
4b6a83fb
PM
5203void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5204 const ARMCPRegInfo *r, void *opaque)
5205{
5206 /* Define implementations of coprocessor registers.
5207 * We store these in a hashtable because typically
5208 * there are less than 150 registers in a space which
5209 * is 16*16*16*8*8 = 262144 in size.
5210 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5211 * If a register is defined twice then the second definition is
5212 * used, so this can be used to define some generic registers and
5213 * then override them with implementation specific variations.
5214 * At least one of the original and the second definition should
5215 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5216 * against accidental use.
f5a0a5a5
PM
5217 *
5218 * The state field defines whether the register is to be
5219 * visible in the AArch32 or AArch64 execution state. If the
5220 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5221 * reginfo structure for the AArch32 view, which sees the lower
5222 * 32 bits of the 64 bit register.
5223 *
5224 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5225 * be wildcarded. AArch64 registers are always considered to be 64
5226 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5227 * the register, if any.
4b6a83fb 5228 */
f5a0a5a5 5229 int crm, opc1, opc2, state;
4b6a83fb
PM
5230 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5231 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5232 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5233 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5234 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5235 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5236 /* 64 bit registers have only CRm and Opc1 fields */
5237 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
5238 /* op0 only exists in the AArch64 encodings */
5239 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5240 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5241 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5242 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5243 * encodes a minimum access level for the register. We roll this
5244 * runtime check into our general permission check code, so check
5245 * here that the reginfo's specified permissions are strict enough
5246 * to encompass the generic architectural permission check.
5247 */
5248 if (r->state != ARM_CP_STATE_AA32) {
5249 int mask = 0;
5250 switch (r->opc1) {
5251 case 0: case 1: case 2:
5252 /* min_EL EL1 */
5253 mask = PL1_RW;
5254 break;
5255 case 3:
5256 /* min_EL EL0 */
5257 mask = PL0_RW;
5258 break;
5259 case 4:
5260 /* min_EL EL2 */
5261 mask = PL2_RW;
5262 break;
5263 case 5:
5264 /* unallocated encoding, so not possible */
5265 assert(false);
5266 break;
5267 case 6:
5268 /* min_EL EL3 */
5269 mask = PL3_RW;
5270 break;
5271 case 7:
5272 /* min_EL EL1, secure mode only (we don't check the latter) */
5273 mask = PL1_RW;
5274 break;
5275 default:
5276 /* broken reginfo with out-of-range opc1 */
5277 assert(false);
5278 break;
5279 }
5280 /* assert our permissions are not too lax (stricter is fine) */
5281 assert((r->access & ~mask) == 0);
5282 }
5283
4b6a83fb
PM
5284 /* Check that the register definition has enough info to handle
5285 * reads and writes if they are permitted.
5286 */
5287 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5288 if (r->access & PL3_R) {
3f3c82a5
FA
5289 assert((r->fieldoffset ||
5290 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5291 r->readfn);
4b6a83fb
PM
5292 }
5293 if (r->access & PL3_W) {
3f3c82a5
FA
5294 assert((r->fieldoffset ||
5295 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5296 r->writefn);
4b6a83fb
PM
5297 }
5298 }
5299 /* Bad type field probably means missing sentinel at end of reg list */
5300 assert(cptype_valid(r->type));
5301 for (crm = crmmin; crm <= crmmax; crm++) {
5302 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5303 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
5304 for (state = ARM_CP_STATE_AA32;
5305 state <= ARM_CP_STATE_AA64; state++) {
5306 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5307 continue;
5308 }
3f3c82a5
FA
5309 if (state == ARM_CP_STATE_AA32) {
5310 /* Under AArch32 CP registers can be common
5311 * (same for secure and non-secure world) or banked.
5312 */
5313 switch (r->secure) {
5314 case ARM_CP_SECSTATE_S:
5315 case ARM_CP_SECSTATE_NS:
5316 add_cpreg_to_hashtable(cpu, r, opaque, state,
5317 r->secure, crm, opc1, opc2);
5318 break;
5319 default:
5320 add_cpreg_to_hashtable(cpu, r, opaque, state,
5321 ARM_CP_SECSTATE_S,
5322 crm, opc1, opc2);
5323 add_cpreg_to_hashtable(cpu, r, opaque, state,
5324 ARM_CP_SECSTATE_NS,
5325 crm, opc1, opc2);
5326 break;
5327 }
5328 } else {
5329 /* AArch64 registers get mapped to non-secure instance
5330 * of AArch32 */
5331 add_cpreg_to_hashtable(cpu, r, opaque, state,
5332 ARM_CP_SECSTATE_NS,
5333 crm, opc1, opc2);
5334 }
f5a0a5a5 5335 }
4b6a83fb
PM
5336 }
5337 }
5338 }
5339}
5340
5341void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5342 const ARMCPRegInfo *regs, void *opaque)
5343{
5344 /* Define a whole list of registers */
5345 const ARMCPRegInfo *r;
5346 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5347 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5348 }
5349}
5350
60322b39 5351const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 5352{
60322b39 5353 return g_hash_table_lookup(cpregs, &encoded_cp);
4b6a83fb
PM
5354}
5355
c4241c7d
PM
5356void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5357 uint64_t value)
4b6a83fb
PM
5358{
5359 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
5360}
5361
c4241c7d 5362uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
5363{
5364 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
5365 return 0;
5366}
5367
f5a0a5a5
PM
5368void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5369{
5370 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5371}
5372
af393ffc 5373static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
37064a8b
PM
5374{
5375 /* Return true if it is not valid for us to switch to
5376 * this CPU mode (ie all the UNPREDICTABLE cases in
5377 * the ARM ARM CPSRWriteByInstr pseudocode).
5378 */
af393ffc
PM
5379
5380 /* Changes to or from Hyp via MSR and CPS are illegal. */
5381 if (write_type == CPSRWriteByInstr &&
5382 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5383 mode == ARM_CPU_MODE_HYP)) {
5384 return 1;
5385 }
5386
37064a8b
PM
5387 switch (mode) {
5388 case ARM_CPU_MODE_USR:
10eacda7 5389 return 0;
37064a8b
PM
5390 case ARM_CPU_MODE_SYS:
5391 case ARM_CPU_MODE_SVC:
5392 case ARM_CPU_MODE_ABT:
5393 case ARM_CPU_MODE_UND:
5394 case ARM_CPU_MODE_IRQ:
5395 case ARM_CPU_MODE_FIQ:
52ff951b
PM
5396 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5397 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5398 */
10eacda7
PM
5399 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5400 * and CPS are treated as illegal mode changes.
5401 */
5402 if (write_type == CPSRWriteByInstr &&
5403 (env->cp15.hcr_el2 & HCR_TGE) &&
5404 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5405 !arm_is_secure_below_el3(env)) {
5406 return 1;
5407 }
37064a8b 5408 return 0;
e6c8fc07
PM
5409 case ARM_CPU_MODE_HYP:
5410 return !arm_feature(env, ARM_FEATURE_EL2)
5411 || arm_current_el(env) < 2 || arm_is_secure(env);
027fc527 5412 case ARM_CPU_MODE_MON:
58ae2d1f 5413 return arm_current_el(env) < 3;
37064a8b
PM
5414 default:
5415 return 1;
5416 }
5417}
5418
2f4a40e5
AZ
5419uint32_t cpsr_read(CPUARMState *env)
5420{
5421 int ZF;
6fbe23d5
PB
5422 ZF = (env->ZF == 0);
5423 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
5424 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5425 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5426 | ((env->condexec_bits & 0xfc) << 8)
af519934 5427 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
5428}
5429
50866ba5
PM
5430void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5431 CPSRWriteType write_type)
2f4a40e5 5432{
6e8801f9
FA
5433 uint32_t changed_daif;
5434
2f4a40e5 5435 if (mask & CPSR_NZCV) {
6fbe23d5
PB
5436 env->ZF = (~val) & CPSR_Z;
5437 env->NF = val;
2f4a40e5
AZ
5438 env->CF = (val >> 29) & 1;
5439 env->VF = (val << 3) & 0x80000000;
5440 }
5441 if (mask & CPSR_Q)
5442 env->QF = ((val & CPSR_Q) != 0);
5443 if (mask & CPSR_T)
5444 env->thumb = ((val & CPSR_T) != 0);
5445 if (mask & CPSR_IT_0_1) {
5446 env->condexec_bits &= ~3;
5447 env->condexec_bits |= (val >> 25) & 3;
5448 }
5449 if (mask & CPSR_IT_2_7) {
5450 env->condexec_bits &= 3;
5451 env->condexec_bits |= (val >> 8) & 0xfc;
5452 }
5453 if (mask & CPSR_GE) {
5454 env->GE = (val >> 16) & 0xf;
5455 }
5456
6e8801f9
FA
5457 /* In a V7 implementation that includes the security extensions but does
5458 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5459 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5460 * bits respectively.
5461 *
5462 * In a V8 implementation, it is permitted for privileged software to
5463 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5464 */
f8c88bbc 5465 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6e8801f9
FA
5466 arm_feature(env, ARM_FEATURE_EL3) &&
5467 !arm_feature(env, ARM_FEATURE_EL2) &&
5468 !arm_is_secure(env)) {
5469
5470 changed_daif = (env->daif ^ val) & mask;
5471
5472 if (changed_daif & CPSR_A) {
5473 /* Check to see if we are allowed to change the masking of async
5474 * abort exceptions from a non-secure state.
5475 */
5476 if (!(env->cp15.scr_el3 & SCR_AW)) {
5477 qemu_log_mask(LOG_GUEST_ERROR,
5478 "Ignoring attempt to switch CPSR_A flag from "
5479 "non-secure world with SCR.AW bit clear\n");
5480 mask &= ~CPSR_A;
5481 }
5482 }
5483
5484 if (changed_daif & CPSR_F) {
5485 /* Check to see if we are allowed to change the masking of FIQ
5486 * exceptions from a non-secure state.
5487 */
5488 if (!(env->cp15.scr_el3 & SCR_FW)) {
5489 qemu_log_mask(LOG_GUEST_ERROR,
5490 "Ignoring attempt to switch CPSR_F flag from "
5491 "non-secure world with SCR.FW bit clear\n");
5492 mask &= ~CPSR_F;
5493 }
5494
5495 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5496 * If this bit is set software is not allowed to mask
5497 * FIQs, but is allowed to set CPSR_F to 0.
5498 */
5499 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5500 (val & CPSR_F)) {
5501 qemu_log_mask(LOG_GUEST_ERROR,
5502 "Ignoring attempt to enable CPSR_F flag "
5503 "(non-maskable FIQ [NMFI] support enabled)\n");
5504 mask &= ~CPSR_F;
5505 }
5506 }
5507 }
5508
4cc35614
PM
5509 env->daif &= ~(CPSR_AIF & mask);
5510 env->daif |= val & CPSR_AIF & mask;
5511
f8c88bbc
PM
5512 if (write_type != CPSRWriteRaw &&
5513 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8c4f0eb9
PM
5514 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5515 /* Note that we can only get here in USR mode if this is a
5516 * gdb stub write; for this case we follow the architectural
5517 * behaviour for guest writes in USR mode of ignoring an attempt
5518 * to switch mode. (Those are caught by translate.c for writes
5519 * triggered by guest instructions.)
5520 */
5521 mask &= ~CPSR_M;
5522 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
81907a58
PM
5523 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5524 * v7, and has defined behaviour in v8:
5525 * + leave CPSR.M untouched
5526 * + allow changes to the other CPSR fields
5527 * + set PSTATE.IL
5528 * For user changes via the GDB stub, we don't set PSTATE.IL,
5529 * as this would be unnecessarily harsh for a user error.
37064a8b
PM
5530 */
5531 mask &= ~CPSR_M;
81907a58
PM
5532 if (write_type != CPSRWriteByGDBStub &&
5533 arm_feature(env, ARM_FEATURE_V8)) {
5534 mask |= CPSR_IL;
5535 val |= CPSR_IL;
5536 }
37064a8b
PM
5537 } else {
5538 switch_mode(env, val & CPSR_M);
5539 }
2f4a40e5
AZ
5540 }
5541 mask &= ~CACHED_CPSR_BITS;
5542 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5543}
5544
b26eefb6
PB
5545/* Sign/zero extend */
5546uint32_t HELPER(sxtb16)(uint32_t x)
5547{
5548 uint32_t res;
5549 res = (uint16_t)(int8_t)x;
5550 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5551 return res;
5552}
5553
5554uint32_t HELPER(uxtb16)(uint32_t x)
5555{
5556 uint32_t res;
5557 res = (uint16_t)(uint8_t)x;
5558 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5559 return res;
5560}
5561
f51bbbfe
PB
5562uint32_t HELPER(clz)(uint32_t x)
5563{
7bbcb0af 5564 return clz32(x);
f51bbbfe
PB
5565}
5566
3670669c
PB
5567int32_t HELPER(sdiv)(int32_t num, int32_t den)
5568{
5569 if (den == 0)
5570 return 0;
686eeb93
AJ
5571 if (num == INT_MIN && den == -1)
5572 return INT_MIN;
3670669c
PB
5573 return num / den;
5574}
5575
5576uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5577{
5578 if (den == 0)
5579 return 0;
5580 return num / den;
5581}
5582
5583uint32_t HELPER(rbit)(uint32_t x)
5584{
42fedbca 5585 return revbit32(x);
3670669c
PB
5586}
5587
5fafdf24 5588#if defined(CONFIG_USER_ONLY)
b5ff1b31 5589
9ee6e8bb 5590/* These should probably raise undefined insn exceptions. */
0ecb72a5 5591void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 5592{
a47dddd7
AF
5593 ARMCPU *cpu = arm_env_get_cpu(env);
5594
5595 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
9ee6e8bb
PB
5596}
5597
0ecb72a5 5598uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 5599{
a47dddd7
AF
5600 ARMCPU *cpu = arm_env_get_cpu(env);
5601
5602 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
9ee6e8bb
PB
5603 return 0;
5604}
5605
0ecb72a5 5606void switch_mode(CPUARMState *env, int mode)
b5ff1b31 5607{
a47dddd7
AF
5608 ARMCPU *cpu = arm_env_get_cpu(env);
5609
5610 if (mode != ARM_CPU_MODE_USR) {
5611 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5612 }
b5ff1b31
FB
5613}
5614
012a906b
GB
5615uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5616 uint32_t cur_el, bool secure)
9e729b57
EI
5617{
5618 return 1;
5619}
5620
ce02049d
GB
5621void aarch64_sync_64_to_32(CPUARMState *env)
5622{
5623 g_assert_not_reached();
5624}
5625
b5ff1b31
FB
5626#else
5627
0ecb72a5 5628void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
5629{
5630 int old_mode;
5631 int i;
5632
5633 old_mode = env->uncached_cpsr & CPSR_M;
5634 if (mode == old_mode)
5635 return;
5636
5637 if (old_mode == ARM_CPU_MODE_FIQ) {
5638 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5639 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5640 } else if (mode == ARM_CPU_MODE_FIQ) {
5641 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5642 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5643 }
5644
f5206413 5645 i = bank_number(old_mode);
b5ff1b31
FB
5646 env->banked_r13[i] = env->regs[13];
5647 env->banked_r14[i] = env->regs[14];
5648 env->banked_spsr[i] = env->spsr;
5649
f5206413 5650 i = bank_number(mode);
b5ff1b31
FB
5651 env->regs[13] = env->banked_r13[i];
5652 env->regs[14] = env->banked_r14[i];
5653 env->spsr = env->banked_spsr[i];
5654}
5655
0eeb17d6
GB
5656/* Physical Interrupt Target EL Lookup Table
5657 *
5658 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5659 *
5660 * The below multi-dimensional table is used for looking up the target
5661 * exception level given numerous condition criteria. Specifically, the
5662 * target EL is based on SCR and HCR routing controls as well as the
5663 * currently executing EL and secure state.
5664 *
5665 * Dimensions:
5666 * target_el_table[2][2][2][2][2][4]
5667 * | | | | | +--- Current EL
5668 * | | | | +------ Non-secure(0)/Secure(1)
5669 * | | | +--------- HCR mask override
5670 * | | +------------ SCR exec state control
5671 * | +--------------- SCR mask override
5672 * +------------------ 32-bit(0)/64-bit(1) EL3
5673 *
5674 * The table values are as such:
5675 * 0-3 = EL0-EL3
5676 * -1 = Cannot occur
5677 *
5678 * The ARM ARM target EL table includes entries indicating that an "exception
5679 * is not taken". The two cases where this is applicable are:
5680 * 1) An exception is taken from EL3 but the SCR does not have the exception
5681 * routed to EL3.
5682 * 2) An exception is taken from EL2 but the HCR does not have the exception
5683 * routed to EL2.
5684 * In these two cases, the below table contain a target of EL1. This value is
5685 * returned as it is expected that the consumer of the table data will check
5686 * for "target EL >= current EL" to ensure the exception is not taken.
5687 *
5688 * SCR HCR
5689 * 64 EA AMO From
5690 * BIT IRQ IMO Non-secure Secure
5691 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5692 */
82c39f6a 5693static const int8_t target_el_table[2][2][2][2][2][4] = {
0eeb17d6
GB
5694 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5695 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5696 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5697 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5698 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5699 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5700 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5701 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5702 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5703 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5704 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5705 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5706 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5707 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5708 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5709 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5710};
5711
5712/*
5713 * Determine the target EL for physical exceptions
5714 */
012a906b
GB
5715uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5716 uint32_t cur_el, bool secure)
0eeb17d6
GB
5717{
5718 CPUARMState *env = cs->env_ptr;
2cde031f 5719 int rw;
0eeb17d6
GB
5720 int scr;
5721 int hcr;
5722 int target_el;
2cde031f
SS
5723 /* Is the highest EL AArch64? */
5724 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5725
5726 if (arm_feature(env, ARM_FEATURE_EL3)) {
5727 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5728 } else {
5729 /* Either EL2 is the highest EL (and so the EL2 register width
5730 * is given by is64); or there is no EL2 or EL3, in which case
5731 * the value of 'rw' does not affect the table lookup anyway.
5732 */
5733 rw = is64;
5734 }
0eeb17d6
GB
5735
5736 switch (excp_idx) {
5737 case EXCP_IRQ:
5738 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5739 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5740 break;
5741 case EXCP_FIQ:
5742 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5743 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5744 break;
5745 default:
5746 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5747 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5748 break;
5749 };
5750
5751 /* If HCR.TGE is set then HCR is treated as being 1 */
5752 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5753
5754 /* Perform a table-lookup for the target EL given the current state */
5755 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5756
5757 assert(target_el > 0);
5758
5759 return target_el;
5760}
5761
9ee6e8bb
PB
5762static void v7m_push(CPUARMState *env, uint32_t val)
5763{
70d74660
AF
5764 CPUState *cs = CPU(arm_env_get_cpu(env));
5765
9ee6e8bb 5766 env->regs[13] -= 4;
ab1da857 5767 stl_phys(cs->as, env->regs[13], val);
9ee6e8bb
PB
5768}
5769
5770static uint32_t v7m_pop(CPUARMState *env)
5771{
70d74660 5772 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb 5773 uint32_t val;
70d74660 5774
fdfba1a2 5775 val = ldl_phys(cs->as, env->regs[13]);
9ee6e8bb
PB
5776 env->regs[13] += 4;
5777 return val;
5778}
5779
5780/* Switch to V7M main or process stack pointer. */
5781static void switch_v7m_sp(CPUARMState *env, int process)
5782{
5783 uint32_t tmp;
5784 if (env->v7m.current_sp != process) {
5785 tmp = env->v7m.other_sp;
5786 env->v7m.other_sp = env->regs[13];
5787 env->regs[13] = tmp;
5788 env->v7m.current_sp = process;
5789 }
5790}
5791
5792static void do_v7m_exception_exit(CPUARMState *env)
5793{
5794 uint32_t type;
5795 uint32_t xpsr;
5796
5797 type = env->regs[15];
5798 if (env->v7m.exception != 0)
983fe826 5799 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
9ee6e8bb
PB
5800
5801 /* Switch to the target stack. */
5802 switch_v7m_sp(env, (type & 4) != 0);
5803 /* Pop registers. */
5804 env->regs[0] = v7m_pop(env);
5805 env->regs[1] = v7m_pop(env);
5806 env->regs[2] = v7m_pop(env);
5807 env->regs[3] = v7m_pop(env);
5808 env->regs[12] = v7m_pop(env);
5809 env->regs[14] = v7m_pop(env);
5810 env->regs[15] = v7m_pop(env);
fcf83ab1
PM
5811 if (env->regs[15] & 1) {
5812 qemu_log_mask(LOG_GUEST_ERROR,
5813 "M profile return from interrupt with misaligned "
5814 "PC is UNPREDICTABLE\n");
5815 /* Actual hardware seems to ignore the lsbit, and there are several
5816 * RTOSes out there which incorrectly assume the r15 in the stack
5817 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5818 */
5819 env->regs[15] &= ~1U;
5820 }
9ee6e8bb
PB
5821 xpsr = v7m_pop(env);
5822 xpsr_write(env, xpsr, 0xfffffdff);
5823 /* Undo stack alignment. */
5824 if (xpsr & 0x200)
5825 env->regs[13] |= 4;
5826 /* ??? The exception return type specifies Thread/Handler mode. However
5827 this is also implied by the xPSR value. Not sure what to do
5828 if there is a mismatch. */
5829 /* ??? Likewise for mismatches between the CONTROL register and the stack
5830 pointer. */
5831}
5832
27a7ea8a
PB
5833static void arm_log_exception(int idx)
5834{
5835 if (qemu_loglevel_mask(CPU_LOG_INT)) {
5836 const char *exc = NULL;
5837
5838 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
5839 exc = excnames[idx];
5840 }
5841 if (!exc) {
5842 exc = "unknown";
5843 }
5844 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
5845 }
5846}
5847
e6f010cc 5848void arm_v7m_cpu_do_interrupt(CPUState *cs)
9ee6e8bb 5849{
e6f010cc
AF
5850 ARMCPU *cpu = ARM_CPU(cs);
5851 CPUARMState *env = &cpu->env;
9ee6e8bb
PB
5852 uint32_t xpsr = xpsr_read(env);
5853 uint32_t lr;
5854 uint32_t addr;
5855
27103424 5856 arm_log_exception(cs->exception_index);
3f1beaca 5857
9ee6e8bb
PB
5858 lr = 0xfffffff1;
5859 if (env->v7m.current_sp)
5860 lr |= 4;
5861 if (env->v7m.exception == 0)
5862 lr |= 8;
5863
5864 /* For exceptions we just mark as pending on the NVIC, and let that
5865 handle it. */
5866 /* TODO: Need to escalate if the current priority is higher than the
5867 one we're raising. */
27103424 5868 switch (cs->exception_index) {
9ee6e8bb 5869 case EXCP_UDEF:
983fe826 5870 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
9ee6e8bb
PB
5871 return;
5872 case EXCP_SWI:
314e2296 5873 /* The PC already points to the next instruction. */
983fe826 5874 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
9ee6e8bb
PB
5875 return;
5876 case EXCP_PREFETCH_ABORT:
5877 case EXCP_DATA_ABORT:
abf1172f
PM
5878 /* TODO: if we implemented the MPU registers, this is where we
5879 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5880 */
983fe826 5881 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
9ee6e8bb
PB
5882 return;
5883 case EXCP_BKPT:
cfe67cef 5884 if (semihosting_enabled()) {
2ad207d4 5885 int nr;
f9fd40eb 5886 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
2ad207d4
PB
5887 if (nr == 0xab) {
5888 env->regs[15] += 2;
205ace55
CC
5889 qemu_log_mask(CPU_LOG_INT,
5890 "...handling as semihosting call 0x%x\n",
5891 env->regs[0]);
2ad207d4
PB
5892 env->regs[0] = do_arm_semihosting(env);
5893 return;
5894 }
5895 }
983fe826 5896 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
9ee6e8bb
PB
5897 return;
5898 case EXCP_IRQ:
983fe826 5899 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
9ee6e8bb
PB
5900 break;
5901 case EXCP_EXCEPTION_EXIT:
5902 do_v7m_exception_exit(env);
5903 return;
5904 default:
a47dddd7 5905 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9ee6e8bb
PB
5906 return; /* Never happens. Keep compiler happy. */
5907 }
5908
5909 /* Align stack pointer. */
5910 /* ??? Should only do this if Configuration Control Register
5911 STACKALIGN bit is set. */
5912 if (env->regs[13] & 4) {
ab19b0ec 5913 env->regs[13] -= 4;
9ee6e8bb
PB
5914 xpsr |= 0x200;
5915 }
6c95676b 5916 /* Switch to the handler mode. */
9ee6e8bb
PB
5917 v7m_push(env, xpsr);
5918 v7m_push(env, env->regs[15]);
5919 v7m_push(env, env->regs[14]);
5920 v7m_push(env, env->regs[12]);
5921 v7m_push(env, env->regs[3]);
5922 v7m_push(env, env->regs[2]);
5923 v7m_push(env, env->regs[1]);
5924 v7m_push(env, env->regs[0]);
5925 switch_v7m_sp(env, 0);
c98d174c
PM
5926 /* Clear IT bits */
5927 env->condexec_bits = 0;
9ee6e8bb 5928 env->regs[14] = lr;
fdfba1a2 5929 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
9ee6e8bb
PB
5930 env->regs[15] = addr & 0xfffffffe;
5931 env->thumb = addr & 1;
5932}
5933
ce02049d
GB
5934/* Function used to synchronize QEMU's AArch64 register set with AArch32
5935 * register set. This is necessary when switching between AArch32 and AArch64
5936 * execution state.
5937 */
5938void aarch64_sync_32_to_64(CPUARMState *env)
5939{
5940 int i;
5941 uint32_t mode = env->uncached_cpsr & CPSR_M;
5942
5943 /* We can blanket copy R[0:7] to X[0:7] */
5944 for (i = 0; i < 8; i++) {
5945 env->xregs[i] = env->regs[i];
5946 }
5947
5948 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5949 * Otherwise, they come from the banked user regs.
5950 */
5951 if (mode == ARM_CPU_MODE_FIQ) {
5952 for (i = 8; i < 13; i++) {
5953 env->xregs[i] = env->usr_regs[i - 8];
5954 }
5955 } else {
5956 for (i = 8; i < 13; i++) {
5957 env->xregs[i] = env->regs[i];
5958 }
5959 }
5960
5961 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5962 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5963 * from the mode banked register.
5964 */
5965 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5966 env->xregs[13] = env->regs[13];
5967 env->xregs[14] = env->regs[14];
5968 } else {
5969 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
5970 /* HYP is an exception in that it is copied from r14 */
5971 if (mode == ARM_CPU_MODE_HYP) {
5972 env->xregs[14] = env->regs[14];
5973 } else {
5974 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
5975 }
5976 }
5977
5978 if (mode == ARM_CPU_MODE_HYP) {
5979 env->xregs[15] = env->regs[13];
5980 } else {
5981 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
5982 }
5983
5984 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
5985 env->xregs[16] = env->regs[14];
5986 env->xregs[17] = env->regs[13];
ce02049d 5987 } else {
3a9148d0
SS
5988 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
5989 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
ce02049d
GB
5990 }
5991
5992 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
5993 env->xregs[18] = env->regs[14];
5994 env->xregs[19] = env->regs[13];
ce02049d 5995 } else {
3a9148d0
SS
5996 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
5997 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
ce02049d
GB
5998 }
5999
6000 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
6001 env->xregs[20] = env->regs[14];
6002 env->xregs[21] = env->regs[13];
ce02049d 6003 } else {
3a9148d0
SS
6004 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6005 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
ce02049d
GB
6006 }
6007
6008 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
6009 env->xregs[22] = env->regs[14];
6010 env->xregs[23] = env->regs[13];
ce02049d 6011 } else {
3a9148d0
SS
6012 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6013 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
ce02049d
GB
6014 }
6015
6016 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6017 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6018 * FIQ bank for r8-r14.
6019 */
6020 if (mode == ARM_CPU_MODE_FIQ) {
6021 for (i = 24; i < 31; i++) {
6022 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
6023 }
6024 } else {
6025 for (i = 24; i < 29; i++) {
6026 env->xregs[i] = env->fiq_regs[i - 24];
6027 }
6028 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6029 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6030 }
6031
6032 env->pc = env->regs[15];
6033}
6034
6035/* Function used to synchronize QEMU's AArch32 register set with AArch64
6036 * register set. This is necessary when switching between AArch32 and AArch64
6037 * execution state.
6038 */
6039void aarch64_sync_64_to_32(CPUARMState *env)
6040{
6041 int i;
6042 uint32_t mode = env->uncached_cpsr & CPSR_M;
6043
6044 /* We can blanket copy X[0:7] to R[0:7] */
6045 for (i = 0; i < 8; i++) {
6046 env->regs[i] = env->xregs[i];
6047 }
6048
6049 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6050 * Otherwise, we copy x8-x12 into the banked user regs.
6051 */
6052 if (mode == ARM_CPU_MODE_FIQ) {
6053 for (i = 8; i < 13; i++) {
6054 env->usr_regs[i - 8] = env->xregs[i];
6055 }
6056 } else {
6057 for (i = 8; i < 13; i++) {
6058 env->regs[i] = env->xregs[i];
6059 }
6060 }
6061
6062 /* Registers r13 & r14 depend on the current mode.
6063 * If we are in a given mode, we copy the corresponding x registers to r13
6064 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6065 * for the mode.
6066 */
6067 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6068 env->regs[13] = env->xregs[13];
6069 env->regs[14] = env->xregs[14];
6070 } else {
6071 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6072
6073 /* HYP is an exception in that it does not have its own banked r14 but
6074 * shares the USR r14
6075 */
6076 if (mode == ARM_CPU_MODE_HYP) {
6077 env->regs[14] = env->xregs[14];
6078 } else {
6079 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6080 }
6081 }
6082
6083 if (mode == ARM_CPU_MODE_HYP) {
6084 env->regs[13] = env->xregs[15];
6085 } else {
6086 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6087 }
6088
6089 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
6090 env->regs[14] = env->xregs[16];
6091 env->regs[13] = env->xregs[17];
ce02049d 6092 } else {
3a9148d0
SS
6093 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6094 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
ce02049d
GB
6095 }
6096
6097 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
6098 env->regs[14] = env->xregs[18];
6099 env->regs[13] = env->xregs[19];
ce02049d 6100 } else {
3a9148d0
SS
6101 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6102 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
ce02049d
GB
6103 }
6104
6105 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
6106 env->regs[14] = env->xregs[20];
6107 env->regs[13] = env->xregs[21];
ce02049d 6108 } else {
3a9148d0
SS
6109 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6110 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
ce02049d
GB
6111 }
6112
6113 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
6114 env->regs[14] = env->xregs[22];
6115 env->regs[13] = env->xregs[23];
ce02049d 6116 } else {
3a9148d0
SS
6117 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6118 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
ce02049d
GB
6119 }
6120
6121 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6122 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6123 * FIQ bank for r8-r14.
6124 */
6125 if (mode == ARM_CPU_MODE_FIQ) {
6126 for (i = 24; i < 31; i++) {
6127 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6128 }
6129 } else {
6130 for (i = 24; i < 29; i++) {
6131 env->fiq_regs[i - 24] = env->xregs[i];
6132 }
6133 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6134 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6135 }
6136
6137 env->regs[15] = env->pc;
6138}
6139
966f758c 6140static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
b5ff1b31 6141{
97a8ea5a
AF
6142 ARMCPU *cpu = ARM_CPU(cs);
6143 CPUARMState *env = &cpu->env;
b5ff1b31
FB
6144 uint32_t addr;
6145 uint32_t mask;
6146 int new_mode;
6147 uint32_t offset;
16a906fd 6148 uint32_t moe;
b5ff1b31 6149
16a906fd
PM
6150 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6151 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6152 case EC_BREAKPOINT:
6153 case EC_BREAKPOINT_SAME_EL:
6154 moe = 1;
6155 break;
6156 case EC_WATCHPOINT:
6157 case EC_WATCHPOINT_SAME_EL:
6158 moe = 10;
6159 break;
6160 case EC_AA32_BKPT:
6161 moe = 3;
6162 break;
6163 case EC_VECTORCATCH:
6164 moe = 5;
6165 break;
6166 default:
6167 moe = 0;
6168 break;
6169 }
6170
6171 if (moe) {
6172 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6173 }
6174
b5ff1b31 6175 /* TODO: Vectored interrupt controller. */
27103424 6176 switch (cs->exception_index) {
b5ff1b31
FB
6177 case EXCP_UDEF:
6178 new_mode = ARM_CPU_MODE_UND;
6179 addr = 0x04;
6180 mask = CPSR_I;
6181 if (env->thumb)
6182 offset = 2;
6183 else
6184 offset = 4;
6185 break;
6186 case EXCP_SWI:
6187 new_mode = ARM_CPU_MODE_SVC;
6188 addr = 0x08;
6189 mask = CPSR_I;
601d70b9 6190 /* The PC already points to the next instruction. */
b5ff1b31
FB
6191 offset = 0;
6192 break;
06c949e6 6193 case EXCP_BKPT:
abf1172f 6194 env->exception.fsr = 2;
9ee6e8bb
PB
6195 /* Fall through to prefetch abort. */
6196 case EXCP_PREFETCH_ABORT:
88ca1c2d 6197 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
b848ce2b 6198 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
3f1beaca 6199 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
88ca1c2d 6200 env->exception.fsr, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
6201 new_mode = ARM_CPU_MODE_ABT;
6202 addr = 0x0c;
6203 mask = CPSR_A | CPSR_I;
6204 offset = 4;
6205 break;
6206 case EXCP_DATA_ABORT:
4a7e2d73 6207 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
b848ce2b 6208 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
3f1beaca 6209 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4a7e2d73 6210 env->exception.fsr,
6cd8a264 6211 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
6212 new_mode = ARM_CPU_MODE_ABT;
6213 addr = 0x10;
6214 mask = CPSR_A | CPSR_I;
6215 offset = 8;
6216 break;
6217 case EXCP_IRQ:
6218 new_mode = ARM_CPU_MODE_IRQ;
6219 addr = 0x18;
6220 /* Disable IRQ and imprecise data aborts. */
6221 mask = CPSR_A | CPSR_I;
6222 offset = 4;
de38d23b
FA
6223 if (env->cp15.scr_el3 & SCR_IRQ) {
6224 /* IRQ routed to monitor mode */
6225 new_mode = ARM_CPU_MODE_MON;
6226 mask |= CPSR_F;
6227 }
b5ff1b31
FB
6228 break;
6229 case EXCP_FIQ:
6230 new_mode = ARM_CPU_MODE_FIQ;
6231 addr = 0x1c;
6232 /* Disable FIQ, IRQ and imprecise data aborts. */
6233 mask = CPSR_A | CPSR_I | CPSR_F;
de38d23b
FA
6234 if (env->cp15.scr_el3 & SCR_FIQ) {
6235 /* FIQ routed to monitor mode */
6236 new_mode = ARM_CPU_MODE_MON;
6237 }
b5ff1b31
FB
6238 offset = 4;
6239 break;
dbe9d163
FA
6240 case EXCP_SMC:
6241 new_mode = ARM_CPU_MODE_MON;
6242 addr = 0x08;
6243 mask = CPSR_A | CPSR_I | CPSR_F;
6244 offset = 0;
6245 break;
b5ff1b31 6246 default:
a47dddd7 6247 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
6248 return; /* Never happens. Keep compiler happy. */
6249 }
e89e51a1
FA
6250
6251 if (new_mode == ARM_CPU_MODE_MON) {
6252 addr += env->cp15.mvbar;
137feaa9 6253 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
e89e51a1 6254 /* High vectors. When enabled, base address cannot be remapped. */
b5ff1b31 6255 addr += 0xffff0000;
8641136c
NR
6256 } else {
6257 /* ARM v7 architectures provide a vector base address register to remap
6258 * the interrupt vector table.
e89e51a1 6259 * This register is only followed in non-monitor mode, and is banked.
8641136c
NR
6260 * Note: only bits 31:5 are valid.
6261 */
fb6c91ba 6262 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
b5ff1b31 6263 }
dbe9d163
FA
6264
6265 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6266 env->cp15.scr_el3 &= ~SCR_NS;
6267 }
6268
b5ff1b31 6269 switch_mode (env, new_mode);
662cefb7
PM
6270 /* For exceptions taken to AArch32 we must clear the SS bit in both
6271 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6272 */
6273 env->uncached_cpsr &= ~PSTATE_SS;
b5ff1b31 6274 env->spsr = cpsr_read(env);
9ee6e8bb
PB
6275 /* Clear IT bits. */
6276 env->condexec_bits = 0;
30a8cac1 6277 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 6278 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
73462ddd
PC
6279 /* Set new mode endianness */
6280 env->uncached_cpsr &= ~CPSR_E;
6281 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6282 env->uncached_cpsr |= ~CPSR_E;
6283 }
4cc35614 6284 env->daif |= mask;
be5e7a76
DES
6285 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6286 * and we should just guard the thumb mode on V4 */
6287 if (arm_feature(env, ARM_FEATURE_V4T)) {
137feaa9 6288 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
be5e7a76 6289 }
b5ff1b31
FB
6290 env->regs[14] = env->regs[15] + offset;
6291 env->regs[15] = addr;
b5ff1b31
FB
6292}
6293
966f758c
PM
6294/* Handle exception entry to a target EL which is using AArch64 */
6295static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
f3a9b694
PM
6296{
6297 ARMCPU *cpu = ARM_CPU(cs);
6298 CPUARMState *env = &cpu->env;
6299 unsigned int new_el = env->exception.target_el;
6300 target_ulong addr = env->cp15.vbar_el[new_el];
6301 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6302
6303 if (arm_current_el(env) < new_el) {
3d6f7617
PM
6304 /* Entry vector offset depends on whether the implemented EL
6305 * immediately lower than the target level is using AArch32 or AArch64
6306 */
6307 bool is_aa64;
6308
6309 switch (new_el) {
6310 case 3:
6311 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6312 break;
6313 case 2:
6314 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6315 break;
6316 case 1:
6317 is_aa64 = is_a64(env);
6318 break;
6319 default:
6320 g_assert_not_reached();
6321 }
6322
6323 if (is_aa64) {
f3a9b694
PM
6324 addr += 0x400;
6325 } else {
6326 addr += 0x600;
6327 }
6328 } else if (pstate_read(env) & PSTATE_SP) {
6329 addr += 0x200;
6330 }
6331
f3a9b694
PM
6332 switch (cs->exception_index) {
6333 case EXCP_PREFETCH_ABORT:
6334 case EXCP_DATA_ABORT:
6335 env->cp15.far_el[new_el] = env->exception.vaddress;
6336 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6337 env->cp15.far_el[new_el]);
6338 /* fall through */
6339 case EXCP_BKPT:
6340 case EXCP_UDEF:
6341 case EXCP_SWI:
6342 case EXCP_HVC:
6343 case EXCP_HYP_TRAP:
6344 case EXCP_SMC:
6345 env->cp15.esr_el[new_el] = env->exception.syndrome;
6346 break;
6347 case EXCP_IRQ:
6348 case EXCP_VIRQ:
6349 addr += 0x80;
6350 break;
6351 case EXCP_FIQ:
6352 case EXCP_VFIQ:
6353 addr += 0x100;
6354 break;
6355 case EXCP_SEMIHOST:
6356 qemu_log_mask(CPU_LOG_INT,
6357 "...handling as semihosting call 0x%" PRIx64 "\n",
6358 env->xregs[0]);
6359 env->xregs[0] = do_arm_semihosting(env);
6360 return;
6361 default:
6362 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6363 }
6364
6365 if (is_a64(env)) {
6366 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6367 aarch64_save_sp(env, arm_current_el(env));
6368 env->elr_el[new_el] = env->pc;
6369 } else {
6370 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
f3a9b694
PM
6371 env->elr_el[new_el] = env->regs[15];
6372
6373 aarch64_sync_32_to_64(env);
6374
6375 env->condexec_bits = 0;
6376 }
6377 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6378 env->elr_el[new_el]);
6379
6380 pstate_write(env, PSTATE_DAIF | new_mode);
6381 env->aarch64 = 1;
6382 aarch64_restore_sp(env, new_el);
6383
6384 env->pc = addr;
6385
6386 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6387 new_el, env->pc, pstate_read(env));
966f758c
PM
6388}
6389
904c04de
PM
6390static inline bool check_for_semihosting(CPUState *cs)
6391{
6392 /* Check whether this exception is a semihosting call; if so
6393 * then handle it and return true; otherwise return false.
6394 */
6395 ARMCPU *cpu = ARM_CPU(cs);
6396 CPUARMState *env = &cpu->env;
6397
6398 if (is_a64(env)) {
6399 if (cs->exception_index == EXCP_SEMIHOST) {
6400 /* This is always the 64-bit semihosting exception.
6401 * The "is this usermode" and "is semihosting enabled"
6402 * checks have been done at translate time.
6403 */
6404 qemu_log_mask(CPU_LOG_INT,
6405 "...handling as semihosting call 0x%" PRIx64 "\n",
6406 env->xregs[0]);
6407 env->xregs[0] = do_arm_semihosting(env);
6408 return true;
6409 }
6410 return false;
6411 } else {
6412 uint32_t imm;
6413
6414 /* Only intercept calls from privileged modes, to provide some
6415 * semblance of security.
6416 */
6417 if (!semihosting_enabled() ||
6418 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)) {
6419 return false;
6420 }
6421
6422 switch (cs->exception_index) {
6423 case EXCP_SWI:
6424 /* Check for semihosting interrupt. */
6425 if (env->thumb) {
f9fd40eb 6426 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
904c04de
PM
6427 & 0xff;
6428 if (imm == 0xab) {
6429 break;
6430 }
6431 } else {
f9fd40eb 6432 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
904c04de
PM
6433 & 0xffffff;
6434 if (imm == 0x123456) {
6435 break;
6436 }
6437 }
6438 return false;
6439 case EXCP_BKPT:
6440 /* See if this is a semihosting syscall. */
6441 if (env->thumb) {
f9fd40eb 6442 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
904c04de
PM
6443 & 0xff;
6444 if (imm == 0xab) {
6445 env->regs[15] += 2;
6446 break;
6447 }
6448 }
6449 return false;
6450 default:
6451 return false;
6452 }
6453
6454 qemu_log_mask(CPU_LOG_INT,
6455 "...handling as semihosting call 0x%x\n",
6456 env->regs[0]);
6457 env->regs[0] = do_arm_semihosting(env);
6458 return true;
6459 }
6460}
6461
966f758c
PM
6462/* Handle a CPU exception for A and R profile CPUs.
6463 * Do any appropriate logging, handle PSCI calls, and then hand off
6464 * to the AArch64-entry or AArch32-entry function depending on the
6465 * target exception level's register width.
6466 */
6467void arm_cpu_do_interrupt(CPUState *cs)
6468{
6469 ARMCPU *cpu = ARM_CPU(cs);
6470 CPUARMState *env = &cpu->env;
6471 unsigned int new_el = env->exception.target_el;
6472
6473 assert(!IS_M(env));
6474
6475 arm_log_exception(cs->exception_index);
6476 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6477 new_el);
6478 if (qemu_loglevel_mask(CPU_LOG_INT)
6479 && !excp_is_internal(cs->exception_index)) {
6480 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
6481 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6482 env->exception.syndrome);
6483 }
6484
6485 if (arm_is_psci_call(cpu, cs->exception_index)) {
6486 arm_handle_psci_call(cpu);
6487 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6488 return;
6489 }
6490
904c04de
PM
6491 /* Semihosting semantics depend on the register width of the
6492 * code that caused the exception, not the target exception level,
6493 * so must be handled here.
966f758c 6494 */
904c04de
PM
6495 if (check_for_semihosting(cs)) {
6496 return;
6497 }
6498
6499 assert(!excp_is_internal(cs->exception_index));
6500 if (arm_el_is_aa64(env, new_el)) {
966f758c
PM
6501 arm_cpu_do_interrupt_aarch64(cs);
6502 } else {
6503 arm_cpu_do_interrupt_aarch32(cs);
6504 }
f3a9b694 6505
bd7d00fc
PM
6506 arm_call_el_change_hook(cpu);
6507
f3a9b694
PM
6508 if (!kvm_enabled()) {
6509 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
6510 }
6511}
0480f69a
PM
6512
6513/* Return the exception level which controls this address translation regime */
6514static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
6515{
6516 switch (mmu_idx) {
6517 case ARMMMUIdx_S2NS:
6518 case ARMMMUIdx_S1E2:
6519 return 2;
6520 case ARMMMUIdx_S1E3:
6521 return 3;
6522 case ARMMMUIdx_S1SE0:
6523 return arm_el_is_aa64(env, 3) ? 1 : 3;
6524 case ARMMMUIdx_S1SE1:
6525 case ARMMMUIdx_S1NSE0:
6526 case ARMMMUIdx_S1NSE1:
6527 return 1;
6528 default:
6529 g_assert_not_reached();
6530 }
6531}
6532
8bf5b6a9
PM
6533/* Return true if this address translation regime is secure */
6534static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
6535{
6536 switch (mmu_idx) {
6537 case ARMMMUIdx_S12NSE0:
6538 case ARMMMUIdx_S12NSE1:
6539 case ARMMMUIdx_S1NSE0:
6540 case ARMMMUIdx_S1NSE1:
6541 case ARMMMUIdx_S1E2:
6542 case ARMMMUIdx_S2NS:
6543 return false;
6544 case ARMMMUIdx_S1E3:
6545 case ARMMMUIdx_S1SE0:
6546 case ARMMMUIdx_S1SE1:
6547 return true;
6548 default:
6549 g_assert_not_reached();
6550 }
6551}
6552
0480f69a
PM
6553/* Return the SCTLR value which controls this address translation regime */
6554static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
6555{
6556 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
6557}
6558
6559/* Return true if the specified stage of address translation is disabled */
6560static inline bool regime_translation_disabled(CPUARMState *env,
6561 ARMMMUIdx mmu_idx)
6562{
6563 if (mmu_idx == ARMMMUIdx_S2NS) {
6564 return (env->cp15.hcr_el2 & HCR_VM) == 0;
6565 }
6566 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
6567}
6568
73462ddd
PC
6569static inline bool regime_translation_big_endian(CPUARMState *env,
6570 ARMMMUIdx mmu_idx)
6571{
6572 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
6573}
6574
0480f69a
PM
6575/* Return the TCR controlling this translation regime */
6576static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
6577{
6578 if (mmu_idx == ARMMMUIdx_S2NS) {
68e9c2fe 6579 return &env->cp15.vtcr_el2;
0480f69a
PM
6580 }
6581 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
6582}
6583
aef878be
GB
6584/* Return the TTBR associated with this translation regime */
6585static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
6586 int ttbrn)
6587{
6588 if (mmu_idx == ARMMMUIdx_S2NS) {
b698e9cf 6589 return env->cp15.vttbr_el2;
aef878be
GB
6590 }
6591 if (ttbrn == 0) {
6592 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
6593 } else {
6594 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
6595 }
6596}
6597
0480f69a
PM
6598/* Return true if the translation regime is using LPAE format page tables */
6599static inline bool regime_using_lpae_format(CPUARMState *env,
6600 ARMMMUIdx mmu_idx)
6601{
6602 int el = regime_el(env, mmu_idx);
6603 if (el == 2 || arm_el_is_aa64(env, el)) {
6604 return true;
6605 }
6606 if (arm_feature(env, ARM_FEATURE_LPAE)
6607 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
6608 return true;
6609 }
6610 return false;
6611}
6612
deb2db99
AR
6613/* Returns true if the stage 1 translation regime is using LPAE format page
6614 * tables. Used when raising alignment exceptions, whose FSR changes depending
6615 * on whether the long or short descriptor format is in use. */
6616bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
30901475 6617{
deb2db99
AR
6618 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6619 mmu_idx += ARMMMUIdx_S1NSE0;
6620 }
6621
30901475
AB
6622 return regime_using_lpae_format(env, mmu_idx);
6623}
6624
0480f69a
PM
6625static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
6626{
6627 switch (mmu_idx) {
6628 case ARMMMUIdx_S1SE0:
6629 case ARMMMUIdx_S1NSE0:
6630 return true;
6631 default:
6632 return false;
6633 case ARMMMUIdx_S12NSE0:
6634 case ARMMMUIdx_S12NSE1:
6635 g_assert_not_reached();
6636 }
6637}
6638
0fbf5238
AJ
6639/* Translate section/page access permissions to page
6640 * R/W protection flags
d76951b6
AJ
6641 *
6642 * @env: CPUARMState
6643 * @mmu_idx: MMU index indicating required translation regime
6644 * @ap: The 3-bit access permissions (AP[2:0])
6645 * @domain_prot: The 2-bit domain access permissions
0fbf5238
AJ
6646 */
6647static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
6648 int ap, int domain_prot)
6649{
554b0b09
PM
6650 bool is_user = regime_is_user(env, mmu_idx);
6651
6652 if (domain_prot == 3) {
6653 return PAGE_READ | PAGE_WRITE;
6654 }
6655
554b0b09
PM
6656 switch (ap) {
6657 case 0:
6658 if (arm_feature(env, ARM_FEATURE_V7)) {
6659 return 0;
6660 }
554b0b09
PM
6661 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
6662 case SCTLR_S:
6663 return is_user ? 0 : PAGE_READ;
6664 case SCTLR_R:
6665 return PAGE_READ;
6666 default:
6667 return 0;
6668 }
6669 case 1:
6670 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6671 case 2:
87c3d486 6672 if (is_user) {
0fbf5238 6673 return PAGE_READ;
87c3d486 6674 } else {
554b0b09 6675 return PAGE_READ | PAGE_WRITE;
87c3d486 6676 }
554b0b09
PM
6677 case 3:
6678 return PAGE_READ | PAGE_WRITE;
6679 case 4: /* Reserved. */
6680 return 0;
6681 case 5:
0fbf5238 6682 return is_user ? 0 : PAGE_READ;
554b0b09 6683 case 6:
0fbf5238 6684 return PAGE_READ;
554b0b09 6685 case 7:
87c3d486 6686 if (!arm_feature(env, ARM_FEATURE_V6K)) {
554b0b09 6687 return 0;
87c3d486 6688 }
0fbf5238 6689 return PAGE_READ;
554b0b09 6690 default:
0fbf5238 6691 g_assert_not_reached();
554b0b09 6692 }
b5ff1b31
FB
6693}
6694
d76951b6
AJ
6695/* Translate section/page access permissions to page
6696 * R/W protection flags.
6697 *
d76951b6 6698 * @ap: The 2-bit simple AP (AP[2:1])
d8e052b3 6699 * @is_user: TRUE if accessing from PL0
d76951b6 6700 */
d8e052b3 6701static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
d76951b6 6702{
d76951b6
AJ
6703 switch (ap) {
6704 case 0:
6705 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6706 case 1:
6707 return PAGE_READ | PAGE_WRITE;
6708 case 2:
6709 return is_user ? 0 : PAGE_READ;
6710 case 3:
6711 return PAGE_READ;
6712 default:
6713 g_assert_not_reached();
6714 }
6715}
6716
d8e052b3
AJ
6717static inline int
6718simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
6719{
6720 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
6721}
6722
6ab1a5ee
EI
6723/* Translate S2 section/page access permissions to protection flags
6724 *
6725 * @env: CPUARMState
6726 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6727 * @xn: XN (execute-never) bit
6728 */
6729static int get_S2prot(CPUARMState *env, int s2ap, int xn)
6730{
6731 int prot = 0;
6732
6733 if (s2ap & 1) {
6734 prot |= PAGE_READ;
6735 }
6736 if (s2ap & 2) {
6737 prot |= PAGE_WRITE;
6738 }
6739 if (!xn) {
dfda6837
SS
6740 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
6741 prot |= PAGE_EXEC;
6742 }
6ab1a5ee
EI
6743 }
6744 return prot;
6745}
6746
d8e052b3
AJ
6747/* Translate section/page access permissions to protection flags
6748 *
6749 * @env: CPUARMState
6750 * @mmu_idx: MMU index indicating required translation regime
6751 * @is_aa64: TRUE if AArch64
6752 * @ap: The 2-bit simple AP (AP[2:1])
6753 * @ns: NS (non-secure) bit
6754 * @xn: XN (execute-never) bit
6755 * @pxn: PXN (privileged execute-never) bit
6756 */
6757static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
6758 int ap, int ns, int xn, int pxn)
6759{
6760 bool is_user = regime_is_user(env, mmu_idx);
6761 int prot_rw, user_rw;
6762 bool have_wxn;
6763 int wxn = 0;
6764
6765 assert(mmu_idx != ARMMMUIdx_S2NS);
6766
6767 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
6768 if (is_user) {
6769 prot_rw = user_rw;
6770 } else {
6771 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
6772 }
6773
6774 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
6775 return prot_rw;
6776 }
6777
6778 /* TODO have_wxn should be replaced with
6779 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6780 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6781 * compatible processors have EL2, which is required for [U]WXN.
6782 */
6783 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
6784
6785 if (have_wxn) {
6786 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
6787 }
6788
6789 if (is_aa64) {
6790 switch (regime_el(env, mmu_idx)) {
6791 case 1:
6792 if (!is_user) {
6793 xn = pxn || (user_rw & PAGE_WRITE);
6794 }
6795 break;
6796 case 2:
6797 case 3:
6798 break;
6799 }
6800 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6801 switch (regime_el(env, mmu_idx)) {
6802 case 1:
6803 case 3:
6804 if (is_user) {
6805 xn = xn || !(user_rw & PAGE_READ);
6806 } else {
6807 int uwxn = 0;
6808 if (have_wxn) {
6809 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
6810 }
6811 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
6812 (uwxn && (user_rw & PAGE_WRITE));
6813 }
6814 break;
6815 case 2:
6816 break;
6817 }
6818 } else {
6819 xn = wxn = 0;
6820 }
6821
6822 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
6823 return prot_rw;
6824 }
6825 return prot_rw | PAGE_EXEC;
6826}
6827
0480f69a
PM
6828static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
6829 uint32_t *table, uint32_t address)
b2fa1797 6830{
0480f69a 6831 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
0480f69a 6832 TCR *tcr = regime_tcr(env, mmu_idx);
11f136ee 6833
11f136ee
FA
6834 if (address & tcr->mask) {
6835 if (tcr->raw_tcr & TTBCR_PD1) {
e389be16
FA
6836 /* Translation table walk disabled for TTBR1 */
6837 return false;
6838 }
aef878be 6839 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
e389be16 6840 } else {
11f136ee 6841 if (tcr->raw_tcr & TTBCR_PD0) {
e389be16
FA
6842 /* Translation table walk disabled for TTBR0 */
6843 return false;
6844 }
aef878be 6845 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
e389be16
FA
6846 }
6847 *table |= (address >> 18) & 0x3ffc;
6848 return true;
b2fa1797
PB
6849}
6850
37785977
EI
6851/* Translate a S1 pagetable walk through S2 if needed. */
6852static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
6853 hwaddr addr, MemTxAttrs txattrs,
6854 uint32_t *fsr,
6855 ARMMMUFaultInfo *fi)
6856{
6857 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
6858 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
6859 target_ulong s2size;
6860 hwaddr s2pa;
6861 int s2prot;
6862 int ret;
6863
6864 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
6865 &txattrs, &s2prot, &s2size, fsr, fi);
6866 if (ret) {
6867 fi->s2addr = addr;
6868 fi->stage2 = true;
6869 fi->s1ptw = true;
6870 return ~0;
6871 }
6872 addr = s2pa;
6873 }
6874 return addr;
6875}
6876
ebca90e4
PM
6877/* All loads done in the course of a page table walk go through here.
6878 * TODO: rather than ignoring errors from physical memory reads (which
6879 * are external aborts in ARM terminology) we should propagate this
6880 * error out so that we can turn it into a Data Abort if this walk
6881 * was being done for a CPU load/store or an address translation instruction
6882 * (but not if it was for a debug access).
6883 */
a614e698
EI
6884static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
6885 ARMMMUIdx mmu_idx, uint32_t *fsr,
6886 ARMMMUFaultInfo *fi)
ebca90e4 6887{
a614e698
EI
6888 ARMCPU *cpu = ARM_CPU(cs);
6889 CPUARMState *env = &cpu->env;
ebca90e4 6890 MemTxAttrs attrs = {};
5ce4ff65 6891 AddressSpace *as;
ebca90e4
PM
6892
6893 attrs.secure = is_secure;
5ce4ff65 6894 as = arm_addressspace(cs, attrs);
a614e698
EI
6895 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
6896 if (fi->s1ptw) {
6897 return 0;
6898 }
73462ddd
PC
6899 if (regime_translation_big_endian(env, mmu_idx)) {
6900 return address_space_ldl_be(as, addr, attrs, NULL);
6901 } else {
6902 return address_space_ldl_le(as, addr, attrs, NULL);
6903 }
ebca90e4
PM
6904}
6905
37785977
EI
6906static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
6907 ARMMMUIdx mmu_idx, uint32_t *fsr,
6908 ARMMMUFaultInfo *fi)
ebca90e4 6909{
37785977
EI
6910 ARMCPU *cpu = ARM_CPU(cs);
6911 CPUARMState *env = &cpu->env;
ebca90e4 6912 MemTxAttrs attrs = {};
5ce4ff65 6913 AddressSpace *as;
ebca90e4
PM
6914
6915 attrs.secure = is_secure;
5ce4ff65 6916 as = arm_addressspace(cs, attrs);
37785977
EI
6917 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
6918 if (fi->s1ptw) {
6919 return 0;
6920 }
73462ddd
PC
6921 if (regime_translation_big_endian(env, mmu_idx)) {
6922 return address_space_ldq_be(as, addr, attrs, NULL);
6923 } else {
6924 return address_space_ldq_le(as, addr, attrs, NULL);
6925 }
ebca90e4
PM
6926}
6927
b7cc4e82
PC
6928static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
6929 int access_type, ARMMMUIdx mmu_idx,
6930 hwaddr *phys_ptr, int *prot,
e14b5a23
EI
6931 target_ulong *page_size, uint32_t *fsr,
6932 ARMMMUFaultInfo *fi)
b5ff1b31 6933{
70d74660 6934 CPUState *cs = CPU(arm_env_get_cpu(env));
b5ff1b31
FB
6935 int code;
6936 uint32_t table;
6937 uint32_t desc;
6938 int type;
6939 int ap;
e389be16 6940 int domain = 0;
dd4ebc2e 6941 int domain_prot;
a8170e5e 6942 hwaddr phys_addr;
0480f69a 6943 uint32_t dacr;
b5ff1b31 6944
9ee6e8bb
PB
6945 /* Pagetable walk. */
6946 /* Lookup l1 descriptor. */
0480f69a 6947 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
6948 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6949 code = 5;
6950 goto do_fault;
6951 }
a614e698
EI
6952 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6953 mmu_idx, fsr, fi);
9ee6e8bb 6954 type = (desc & 3);
dd4ebc2e 6955 domain = (desc >> 5) & 0x0f;
0480f69a
PM
6956 if (regime_el(env, mmu_idx) == 1) {
6957 dacr = env->cp15.dacr_ns;
6958 } else {
6959 dacr = env->cp15.dacr_s;
6960 }
6961 domain_prot = (dacr >> (domain * 2)) & 3;
9ee6e8bb 6962 if (type == 0) {
601d70b9 6963 /* Section translation fault. */
9ee6e8bb
PB
6964 code = 5;
6965 goto do_fault;
6966 }
dd4ebc2e 6967 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
6968 if (type == 2)
6969 code = 9; /* Section domain fault. */
6970 else
6971 code = 11; /* Page domain fault. */
6972 goto do_fault;
6973 }
6974 if (type == 2) {
6975 /* 1Mb section. */
6976 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6977 ap = (desc >> 10) & 3;
6978 code = 13;
d4c430a8 6979 *page_size = 1024 * 1024;
9ee6e8bb
PB
6980 } else {
6981 /* Lookup l2 entry. */
554b0b09
PM
6982 if (type == 1) {
6983 /* Coarse pagetable. */
6984 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6985 } else {
6986 /* Fine pagetable. */
6987 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
6988 }
a614e698
EI
6989 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6990 mmu_idx, fsr, fi);
9ee6e8bb
PB
6991 switch (desc & 3) {
6992 case 0: /* Page translation fault. */
6993 code = 7;
6994 goto do_fault;
6995 case 1: /* 64k page. */
6996 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6997 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 6998 *page_size = 0x10000;
ce819861 6999 break;
9ee6e8bb
PB
7000 case 2: /* 4k page. */
7001 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
c10f7fc3 7002 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
d4c430a8 7003 *page_size = 0x1000;
ce819861 7004 break;
fc1891c7 7005 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
554b0b09 7006 if (type == 1) {
fc1891c7
PM
7007 /* ARMv6/XScale extended small page format */
7008 if (arm_feature(env, ARM_FEATURE_XSCALE)
7009 || arm_feature(env, ARM_FEATURE_V6)) {
554b0b09 7010 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
fc1891c7 7011 *page_size = 0x1000;
554b0b09 7012 } else {
fc1891c7
PM
7013 /* UNPREDICTABLE in ARMv5; we choose to take a
7014 * page translation fault.
7015 */
554b0b09
PM
7016 code = 7;
7017 goto do_fault;
7018 }
7019 } else {
7020 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
fc1891c7 7021 *page_size = 0x400;
554b0b09 7022 }
9ee6e8bb 7023 ap = (desc >> 4) & 3;
ce819861
PB
7024 break;
7025 default:
9ee6e8bb
PB
7026 /* Never happens, but compiler isn't smart enough to tell. */
7027 abort();
ce819861 7028 }
9ee6e8bb
PB
7029 code = 15;
7030 }
0fbf5238
AJ
7031 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7032 *prot |= *prot ? PAGE_EXEC : 0;
7033 if (!(*prot & (1 << access_type))) {
9ee6e8bb
PB
7034 /* Access permission fault. */
7035 goto do_fault;
7036 }
7037 *phys_ptr = phys_addr;
b7cc4e82 7038 return false;
9ee6e8bb 7039do_fault:
b7cc4e82
PC
7040 *fsr = code | (domain << 4);
7041 return true;
9ee6e8bb
PB
7042}
7043
b7cc4e82
PC
7044static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7045 int access_type, ARMMMUIdx mmu_idx,
7046 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
7047 target_ulong *page_size, uint32_t *fsr,
7048 ARMMMUFaultInfo *fi)
9ee6e8bb 7049{
70d74660 7050 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb
PB
7051 int code;
7052 uint32_t table;
7053 uint32_t desc;
7054 uint32_t xn;
de9b05b8 7055 uint32_t pxn = 0;
9ee6e8bb
PB
7056 int type;
7057 int ap;
de9b05b8 7058 int domain = 0;
dd4ebc2e 7059 int domain_prot;
a8170e5e 7060 hwaddr phys_addr;
0480f69a 7061 uint32_t dacr;
8bf5b6a9 7062 bool ns;
9ee6e8bb
PB
7063
7064 /* Pagetable walk. */
7065 /* Lookup l1 descriptor. */
0480f69a 7066 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
7067 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7068 code = 5;
7069 goto do_fault;
7070 }
a614e698
EI
7071 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7072 mmu_idx, fsr, fi);
9ee6e8bb 7073 type = (desc & 3);
de9b05b8
PM
7074 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7075 /* Section translation fault, or attempt to use the encoding
7076 * which is Reserved on implementations without PXN.
7077 */
9ee6e8bb 7078 code = 5;
9ee6e8bb 7079 goto do_fault;
de9b05b8
PM
7080 }
7081 if ((type == 1) || !(desc & (1 << 18))) {
7082 /* Page or Section. */
dd4ebc2e 7083 domain = (desc >> 5) & 0x0f;
9ee6e8bb 7084 }
0480f69a
PM
7085 if (regime_el(env, mmu_idx) == 1) {
7086 dacr = env->cp15.dacr_ns;
7087 } else {
7088 dacr = env->cp15.dacr_s;
7089 }
7090 domain_prot = (dacr >> (domain * 2)) & 3;
dd4ebc2e 7091 if (domain_prot == 0 || domain_prot == 2) {
de9b05b8 7092 if (type != 1) {
9ee6e8bb 7093 code = 9; /* Section domain fault. */
de9b05b8 7094 } else {
9ee6e8bb 7095 code = 11; /* Page domain fault. */
de9b05b8 7096 }
9ee6e8bb
PB
7097 goto do_fault;
7098 }
de9b05b8 7099 if (type != 1) {
9ee6e8bb
PB
7100 if (desc & (1 << 18)) {
7101 /* Supersection. */
7102 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
4e42a6ca
SF
7103 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7104 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
d4c430a8 7105 *page_size = 0x1000000;
b5ff1b31 7106 } else {
9ee6e8bb
PB
7107 /* Section. */
7108 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 7109 *page_size = 0x100000;
b5ff1b31 7110 }
9ee6e8bb
PB
7111 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7112 xn = desc & (1 << 4);
de9b05b8 7113 pxn = desc & 1;
9ee6e8bb 7114 code = 13;
8bf5b6a9 7115 ns = extract32(desc, 19, 1);
9ee6e8bb 7116 } else {
de9b05b8
PM
7117 if (arm_feature(env, ARM_FEATURE_PXN)) {
7118 pxn = (desc >> 2) & 1;
7119 }
8bf5b6a9 7120 ns = extract32(desc, 3, 1);
9ee6e8bb
PB
7121 /* Lookup l2 entry. */
7122 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
a614e698
EI
7123 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7124 mmu_idx, fsr, fi);
9ee6e8bb
PB
7125 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7126 switch (desc & 3) {
7127 case 0: /* Page translation fault. */
7128 code = 7;
b5ff1b31 7129 goto do_fault;
9ee6e8bb
PB
7130 case 1: /* 64k page. */
7131 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7132 xn = desc & (1 << 15);
d4c430a8 7133 *page_size = 0x10000;
9ee6e8bb
PB
7134 break;
7135 case 2: case 3: /* 4k page. */
7136 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7137 xn = desc & 1;
d4c430a8 7138 *page_size = 0x1000;
9ee6e8bb
PB
7139 break;
7140 default:
7141 /* Never happens, but compiler isn't smart enough to tell. */
7142 abort();
b5ff1b31 7143 }
9ee6e8bb
PB
7144 code = 15;
7145 }
dd4ebc2e 7146 if (domain_prot == 3) {
c0034328
JR
7147 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7148 } else {
0480f69a 7149 if (pxn && !regime_is_user(env, mmu_idx)) {
de9b05b8
PM
7150 xn = 1;
7151 }
c0034328
JR
7152 if (xn && access_type == 2)
7153 goto do_fault;
9ee6e8bb 7154
d76951b6
AJ
7155 if (arm_feature(env, ARM_FEATURE_V6K) &&
7156 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7157 /* The simplified model uses AP[0] as an access control bit. */
7158 if ((ap & 1) == 0) {
7159 /* Access flag fault. */
7160 code = (code == 15) ? 6 : 3;
7161 goto do_fault;
7162 }
7163 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7164 } else {
7165 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
c0034328 7166 }
0fbf5238
AJ
7167 if (*prot && !xn) {
7168 *prot |= PAGE_EXEC;
7169 }
7170 if (!(*prot & (1 << access_type))) {
c0034328
JR
7171 /* Access permission fault. */
7172 goto do_fault;
7173 }
3ad493fc 7174 }
8bf5b6a9
PM
7175 if (ns) {
7176 /* The NS bit will (as required by the architecture) have no effect if
7177 * the CPU doesn't support TZ or this is a non-secure translation
7178 * regime, because the attribute will already be non-secure.
7179 */
7180 attrs->secure = false;
7181 }
9ee6e8bb 7182 *phys_ptr = phys_addr;
b7cc4e82 7183 return false;
b5ff1b31 7184do_fault:
b7cc4e82
PC
7185 *fsr = code | (domain << 4);
7186 return true;
b5ff1b31
FB
7187}
7188
3dde962f
PM
7189/* Fault type for long-descriptor MMU fault reporting; this corresponds
7190 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7191 */
7192typedef enum {
7193 translation_fault = 1,
7194 access_fault = 2,
7195 permission_fault = 3,
7196} MMUFaultType;
7197
1853d5a9 7198/*
a0e966c9 7199 * check_s2_mmu_setup
1853d5a9
EI
7200 * @cpu: ARMCPU
7201 * @is_aa64: True if the translation regime is in AArch64 state
7202 * @startlevel: Suggested starting level
7203 * @inputsize: Bitsize of IPAs
7204 * @stride: Page-table stride (See the ARM ARM)
7205 *
a0e966c9
EI
7206 * Returns true if the suggested S2 translation parameters are OK and
7207 * false otherwise.
1853d5a9 7208 */
a0e966c9
EI
7209static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7210 int inputsize, int stride)
1853d5a9 7211{
98d68ec2
EI
7212 const int grainsize = stride + 3;
7213 int startsizecheck;
7214
1853d5a9
EI
7215 /* Negative levels are never allowed. */
7216 if (level < 0) {
7217 return false;
7218 }
7219
98d68ec2
EI
7220 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7221 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7222 return false;
7223 }
7224
1853d5a9 7225 if (is_aa64) {
3526423e 7226 CPUARMState *env = &cpu->env;
1853d5a9
EI
7227 unsigned int pamax = arm_pamax(cpu);
7228
7229 switch (stride) {
7230 case 13: /* 64KB Pages. */
7231 if (level == 0 || (level == 1 && pamax <= 42)) {
7232 return false;
7233 }
7234 break;
7235 case 11: /* 16KB Pages. */
7236 if (level == 0 || (level == 1 && pamax <= 40)) {
7237 return false;
7238 }
7239 break;
7240 case 9: /* 4KB Pages. */
7241 if (level == 0 && pamax <= 42) {
7242 return false;
7243 }
7244 break;
7245 default:
7246 g_assert_not_reached();
7247 }
3526423e
EI
7248
7249 /* Inputsize checks. */
7250 if (inputsize > pamax &&
7251 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7252 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7253 return false;
7254 }
1853d5a9 7255 } else {
1853d5a9
EI
7256 /* AArch32 only supports 4KB pages. Assert on that. */
7257 assert(stride == 9);
7258
7259 if (level == 0) {
7260 return false;
7261 }
1853d5a9
EI
7262 }
7263 return true;
7264}
7265
b7cc4e82
PC
7266static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7267 int access_type, ARMMMUIdx mmu_idx,
7268 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
e14b5a23
EI
7269 target_ulong *page_size_ptr, uint32_t *fsr,
7270 ARMMMUFaultInfo *fi)
3dde962f 7271{
1853d5a9
EI
7272 ARMCPU *cpu = arm_env_get_cpu(env);
7273 CPUState *cs = CPU(cpu);
3dde962f
PM
7274 /* Read an LPAE long-descriptor translation table. */
7275 MMUFaultType fault_type = translation_fault;
1b4093ea 7276 uint32_t level;
0c5fbf3b 7277 uint32_t epd = 0;
1f4c8c18 7278 int32_t t0sz, t1sz;
2c8dd318 7279 uint32_t tg;
3dde962f
PM
7280 uint64_t ttbr;
7281 int ttbr_select;
dddb5223 7282 hwaddr descaddr, indexmask, indexmask_grainsize;
3dde962f
PM
7283 uint32_t tableattrs;
7284 target_ulong page_size;
7285 uint32_t attrs;
973a5434 7286 int32_t stride = 9;
6e99f762 7287 int32_t addrsize;
4ca6a051 7288 int inputsize;
2c8dd318 7289 int32_t tbi = 0;
0480f69a 7290 TCR *tcr = regime_tcr(env, mmu_idx);
d8e052b3 7291 int ap, ns, xn, pxn;
88e8add8
GB
7292 uint32_t el = regime_el(env, mmu_idx);
7293 bool ttbr1_valid = true;
6109769a 7294 uint64_t descaddrmask;
6e99f762 7295 bool aarch64 = arm_el_is_aa64(env, el);
0480f69a
PM
7296
7297 /* TODO:
88e8add8
GB
7298 * This code does not handle the different format TCR for VTCR_EL2.
7299 * This code also does not support shareability levels.
7300 * Attribute and permission bit handling should also be checked when adding
7301 * support for those page table walks.
0480f69a 7302 */
6e99f762 7303 if (aarch64) {
1b4093ea 7304 level = 0;
6e99f762 7305 addrsize = 64;
88e8add8 7306 if (el > 1) {
1edee470
EI
7307 if (mmu_idx != ARMMMUIdx_S2NS) {
7308 tbi = extract64(tcr->raw_tcr, 20, 1);
7309 }
88e8add8
GB
7310 } else {
7311 if (extract64(address, 55, 1)) {
7312 tbi = extract64(tcr->raw_tcr, 38, 1);
7313 } else {
7314 tbi = extract64(tcr->raw_tcr, 37, 1);
7315 }
7316 }
2c8dd318 7317 tbi *= 8;
88e8add8
GB
7318
7319 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7320 * invalid.
7321 */
7322 if (el > 1) {
7323 ttbr1_valid = false;
7324 }
d0a2cbce 7325 } else {
1b4093ea 7326 level = 1;
6e99f762 7327 addrsize = 32;
d0a2cbce
PM
7328 /* There is no TTBR1 for EL2 */
7329 if (el == 2) {
7330 ttbr1_valid = false;
7331 }
2c8dd318 7332 }
3dde962f
PM
7333
7334 /* Determine whether this address is in the region controlled by
7335 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7336 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7337 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7338 */
6e99f762 7339 if (aarch64) {
4ee38098
EI
7340 /* AArch64 translation. */
7341 t0sz = extract32(tcr->raw_tcr, 0, 6);
2c8dd318
RH
7342 t0sz = MIN(t0sz, 39);
7343 t0sz = MAX(t0sz, 16);
4ee38098
EI
7344 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7345 /* AArch32 stage 1 translation. */
7346 t0sz = extract32(tcr->raw_tcr, 0, 3);
7347 } else {
7348 /* AArch32 stage 2 translation. */
7349 bool sext = extract32(tcr->raw_tcr, 4, 1);
7350 bool sign = extract32(tcr->raw_tcr, 3, 1);
6e99f762
SS
7351 /* Address size is 40-bit for a stage 2 translation,
7352 * and t0sz can be negative (from -8 to 7),
7353 * so we need to adjust it to use the TTBR selecting logic below.
7354 */
7355 addrsize = 40;
7356 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
4ee38098
EI
7357
7358 /* If the sign-extend bit is not the same as t0sz[3], the result
7359 * is unpredictable. Flag this as a guest error. */
7360 if (sign != sext) {
7361 qemu_log_mask(LOG_GUEST_ERROR,
7362 "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
7363 }
2c8dd318 7364 }
1f4c8c18 7365 t1sz = extract32(tcr->raw_tcr, 16, 6);
6e99f762 7366 if (aarch64) {
2c8dd318
RH
7367 t1sz = MIN(t1sz, 39);
7368 t1sz = MAX(t1sz, 16);
7369 }
6e99f762 7370 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
3dde962f
PM
7371 /* there is a ttbr0 region and we are in it (high bits all zero) */
7372 ttbr_select = 0;
88e8add8 7373 } else if (ttbr1_valid && t1sz &&
6e99f762 7374 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
3dde962f
PM
7375 /* there is a ttbr1 region and we are in it (high bits all one) */
7376 ttbr_select = 1;
7377 } else if (!t0sz) {
7378 /* ttbr0 region is "everything not in the ttbr1 region" */
7379 ttbr_select = 0;
88e8add8 7380 } else if (!t1sz && ttbr1_valid) {
3dde962f
PM
7381 /* ttbr1 region is "everything not in the ttbr0 region" */
7382 ttbr_select = 1;
7383 } else {
7384 /* in the gap between the two regions, this is a Translation fault */
7385 fault_type = translation_fault;
7386 goto do_fault;
7387 }
7388
7389 /* Note that QEMU ignores shareability and cacheability attributes,
7390 * so we don't need to do anything with the SH, ORGN, IRGN fields
7391 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7392 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7393 * implement any ASID-like capability so we can ignore it (instead
7394 * we will always flush the TLB any time the ASID is changed).
7395 */
7396 if (ttbr_select == 0) {
aef878be 7397 ttbr = regime_ttbr(env, mmu_idx, 0);
0c5fbf3b
EI
7398 if (el < 2) {
7399 epd = extract32(tcr->raw_tcr, 7, 1);
7400 }
6e99f762 7401 inputsize = addrsize - t0sz;
2c8dd318 7402
11f136ee 7403 tg = extract32(tcr->raw_tcr, 14, 2);
2c8dd318 7404 if (tg == 1) { /* 64KB pages */
973a5434 7405 stride = 13;
2c8dd318
RH
7406 }
7407 if (tg == 2) { /* 16KB pages */
973a5434 7408 stride = 11;
2c8dd318 7409 }
3dde962f 7410 } else {
88e8add8
GB
7411 /* We should only be here if TTBR1 is valid */
7412 assert(ttbr1_valid);
7413
aef878be 7414 ttbr = regime_ttbr(env, mmu_idx, 1);
11f136ee 7415 epd = extract32(tcr->raw_tcr, 23, 1);
6e99f762 7416 inputsize = addrsize - t1sz;
2c8dd318 7417
11f136ee 7418 tg = extract32(tcr->raw_tcr, 30, 2);
2c8dd318 7419 if (tg == 3) { /* 64KB pages */
973a5434 7420 stride = 13;
2c8dd318
RH
7421 }
7422 if (tg == 1) { /* 16KB pages */
973a5434 7423 stride = 11;
2c8dd318 7424 }
3dde962f
PM
7425 }
7426
0480f69a 7427 /* Here we should have set up all the parameters for the translation:
6e99f762 7428 * inputsize, ttbr, epd, stride, tbi
0480f69a
PM
7429 */
7430
3dde962f 7431 if (epd) {
88e8add8
GB
7432 /* Translation table walk disabled => Translation fault on TLB miss
7433 * Note: This is always 0 on 64-bit EL2 and EL3.
7434 */
3dde962f
PM
7435 goto do_fault;
7436 }
7437
1853d5a9
EI
7438 if (mmu_idx != ARMMMUIdx_S2NS) {
7439 /* The starting level depends on the virtual address size (which can
7440 * be up to 48 bits) and the translation granule size. It indicates
7441 * the number of strides (stride bits at a time) needed to
7442 * consume the bits of the input address. In the pseudocode this is:
7443 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7444 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7445 * our 'stride + 3' and 'stride' is our 'stride'.
7446 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7447 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7448 * = 4 - (inputsize - 4) / stride;
7449 */
7450 level = 4 - (inputsize - 4) / stride;
7451 } else {
7452 /* For stage 2 translations the starting level is specified by the
7453 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7454 */
1b4093ea
SS
7455 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
7456 uint32_t startlevel;
1853d5a9
EI
7457 bool ok;
7458
6e99f762 7459 if (!aarch64 || stride == 9) {
1853d5a9 7460 /* AArch32 or 4KB pages */
1b4093ea 7461 startlevel = 2 - sl0;
1853d5a9
EI
7462 } else {
7463 /* 16KB or 64KB pages */
1b4093ea 7464 startlevel = 3 - sl0;
1853d5a9
EI
7465 }
7466
7467 /* Check that the starting level is valid. */
6e99f762 7468 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1b4093ea 7469 inputsize, stride);
1853d5a9 7470 if (!ok) {
1853d5a9
EI
7471 fault_type = translation_fault;
7472 goto do_fault;
7473 }
1b4093ea 7474 level = startlevel;
1853d5a9 7475 }
3dde962f 7476
dddb5223
SS
7477 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
7478 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
3dde962f
PM
7479
7480 /* Now we can extract the actual base address from the TTBR */
2c8dd318 7481 descaddr = extract64(ttbr, 0, 48);
dddb5223 7482 descaddr &= ~indexmask;
3dde962f 7483
6109769a 7484 /* The address field in the descriptor goes up to bit 39 for ARMv7
dddb5223
SS
7485 * but up to bit 47 for ARMv8, but we use the descaddrmask
7486 * up to bit 39 for AArch32, because we don't need other bits in that case
7487 * to construct next descriptor address (anyway they should be all zeroes).
6109769a 7488 */
6e99f762 7489 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
dddb5223 7490 ~indexmask_grainsize;
6109769a 7491
ebca90e4
PM
7492 /* Secure accesses start with the page table in secure memory and
7493 * can be downgraded to non-secure at any step. Non-secure accesses
7494 * remain non-secure. We implement this by just ORing in the NSTable/NS
7495 * bits at each step.
7496 */
7497 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
3dde962f
PM
7498 for (;;) {
7499 uint64_t descriptor;
ebca90e4 7500 bool nstable;
3dde962f 7501
dddb5223 7502 descaddr |= (address >> (stride * (4 - level))) & indexmask;
2c8dd318 7503 descaddr &= ~7ULL;
ebca90e4 7504 nstable = extract32(tableattrs, 4, 1);
37785977
EI
7505 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
7506 if (fi->s1ptw) {
7507 goto do_fault;
7508 }
7509
3dde962f
PM
7510 if (!(descriptor & 1) ||
7511 (!(descriptor & 2) && (level == 3))) {
7512 /* Invalid, or the Reserved level 3 encoding */
7513 goto do_fault;
7514 }
6109769a 7515 descaddr = descriptor & descaddrmask;
3dde962f
PM
7516
7517 if ((descriptor & 2) && (level < 3)) {
7518 /* Table entry. The top five bits are attributes which may
7519 * propagate down through lower levels of the table (and
7520 * which are all arranged so that 0 means "no effect", so
7521 * we can gather them up by ORing in the bits at each level).
7522 */
7523 tableattrs |= extract64(descriptor, 59, 5);
7524 level++;
dddb5223 7525 indexmask = indexmask_grainsize;
3dde962f
PM
7526 continue;
7527 }
7528 /* Block entry at level 1 or 2, or page entry at level 3.
7529 * These are basically the same thing, although the number
7530 * of bits we pull in from the vaddr varies.
7531 */
973a5434 7532 page_size = (1ULL << ((stride * (4 - level)) + 3));
3dde962f 7533 descaddr |= (address & (page_size - 1));
6ab1a5ee 7534 /* Extract attributes from the descriptor */
d615efac
IC
7535 attrs = extract64(descriptor, 2, 10)
7536 | (extract64(descriptor, 52, 12) << 10);
6ab1a5ee
EI
7537
7538 if (mmu_idx == ARMMMUIdx_S2NS) {
7539 /* Stage 2 table descriptors do not include any attribute fields */
7540 break;
7541 }
7542 /* Merge in attributes from table descriptors */
3dde962f
PM
7543 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
7544 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
7545 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7546 * means "force PL1 access only", which means forcing AP[1] to 0.
7547 */
7548 if (extract32(tableattrs, 2, 1)) {
7549 attrs &= ~(1 << 4);
7550 }
ebca90e4 7551 attrs |= nstable << 3; /* NS */
3dde962f
PM
7552 break;
7553 }
7554 /* Here descaddr is the final physical address, and attributes
7555 * are all in attrs.
7556 */
7557 fault_type = access_fault;
7558 if ((attrs & (1 << 8)) == 0) {
7559 /* Access flag */
7560 goto do_fault;
7561 }
d8e052b3
AJ
7562
7563 ap = extract32(attrs, 4, 2);
d8e052b3 7564 xn = extract32(attrs, 12, 1);
d8e052b3 7565
6ab1a5ee
EI
7566 if (mmu_idx == ARMMMUIdx_S2NS) {
7567 ns = true;
7568 *prot = get_S2prot(env, ap, xn);
7569 } else {
7570 ns = extract32(attrs, 3, 1);
7571 pxn = extract32(attrs, 11, 1);
6e99f762 7572 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
6ab1a5ee 7573 }
d8e052b3 7574
3dde962f 7575 fault_type = permission_fault;
d8e052b3 7576 if (!(*prot & (1 << access_type))) {
3dde962f
PM
7577 goto do_fault;
7578 }
3dde962f 7579
8bf5b6a9
PM
7580 if (ns) {
7581 /* The NS bit will (as required by the architecture) have no effect if
7582 * the CPU doesn't support TZ or this is a non-secure translation
7583 * regime, because the attribute will already be non-secure.
7584 */
7585 txattrs->secure = false;
7586 }
3dde962f
PM
7587 *phys_ptr = descaddr;
7588 *page_size_ptr = page_size;
b7cc4e82 7589 return false;
3dde962f
PM
7590
7591do_fault:
7592 /* Long-descriptor format IFSR/DFSR value */
b7cc4e82 7593 *fsr = (1 << 9) | (fault_type << 2) | level;
37785977
EI
7594 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7595 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
b7cc4e82 7596 return true;
3dde962f
PM
7597}
7598
f6bda88f
PC
7599static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
7600 ARMMMUIdx mmu_idx,
7601 int32_t address, int *prot)
7602{
7603 *prot = PAGE_READ | PAGE_WRITE;
7604 switch (address) {
7605 case 0xF0000000 ... 0xFFFFFFFF:
7606 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
7607 *prot |= PAGE_EXEC;
7608 }
7609 break;
7610 case 0x00000000 ... 0x7FFFFFFF:
7611 *prot |= PAGE_EXEC;
7612 break;
7613 }
7614
7615}
7616
7617static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
7618 int access_type, ARMMMUIdx mmu_idx,
7619 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7620{
7621 ARMCPU *cpu = arm_env_get_cpu(env);
7622 int n;
7623 bool is_user = regime_is_user(env, mmu_idx);
7624
7625 *phys_ptr = address;
7626 *prot = 0;
7627
7628 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
7629 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7630 } else { /* MPU enabled */
7631 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
7632 /* region search */
7633 uint32_t base = env->pmsav7.drbar[n];
7634 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
7635 uint32_t rmask;
7636 bool srdis = false;
7637
7638 if (!(env->pmsav7.drsr[n] & 0x1)) {
7639 continue;
7640 }
7641
7642 if (!rsize) {
7643 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
7644 continue;
7645 }
7646 rsize++;
7647 rmask = (1ull << rsize) - 1;
7648
7649 if (base & rmask) {
7650 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
7651 "to DRSR region size, mask = %" PRIx32,
7652 base, rmask);
7653 continue;
7654 }
7655
7656 if (address < base || address > base + rmask) {
7657 continue;
7658 }
7659
7660 /* Region matched */
7661
7662 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
7663 int i, snd;
7664 uint32_t srdis_mask;
7665
7666 rsize -= 3; /* sub region size (power of 2) */
7667 snd = ((address - base) >> rsize) & 0x7;
7668 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
7669
7670 srdis_mask = srdis ? 0x3 : 0x0;
7671 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
7672 /* This will check in groups of 2, 4 and then 8, whether
7673 * the subregion bits are consistent. rsize is incremented
7674 * back up to give the region size, considering consistent
7675 * adjacent subregions as one region. Stop testing if rsize
7676 * is already big enough for an entire QEMU page.
7677 */
7678 int snd_rounded = snd & ~(i - 1);
7679 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
7680 snd_rounded + 8, i);
7681 if (srdis_mask ^ srdis_multi) {
7682 break;
7683 }
7684 srdis_mask = (srdis_mask << i) | srdis_mask;
7685 rsize++;
7686 }
7687 }
7688 if (rsize < TARGET_PAGE_BITS) {
7689 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
7690 "alignment of %" PRIu32 " bits. Minimum is %d\n",
7691 rsize, TARGET_PAGE_BITS);
7692 continue;
7693 }
7694 if (srdis) {
7695 continue;
7696 }
7697 break;
7698 }
7699
7700 if (n == -1) { /* no hits */
7701 if (cpu->pmsav7_dregion &&
7702 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
7703 /* background fault */
7704 *fsr = 0;
7705 return true;
7706 }
7707 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7708 } else { /* a MPU hit! */
7709 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
7710
7711 if (is_user) { /* User mode AP bit decoding */
7712 switch (ap) {
7713 case 0:
7714 case 1:
7715 case 5:
7716 break; /* no access */
7717 case 3:
7718 *prot |= PAGE_WRITE;
7719 /* fall through */
7720 case 2:
7721 case 6:
7722 *prot |= PAGE_READ | PAGE_EXEC;
7723 break;
7724 default:
7725 qemu_log_mask(LOG_GUEST_ERROR,
7726 "Bad value for AP bits in DRACR %"
7727 PRIx32 "\n", ap);
7728 }
7729 } else { /* Priv. mode AP bits decoding */
7730 switch (ap) {
7731 case 0:
7732 break; /* no access */
7733 case 1:
7734 case 2:
7735 case 3:
7736 *prot |= PAGE_WRITE;
7737 /* fall through */
7738 case 5:
7739 case 6:
7740 *prot |= PAGE_READ | PAGE_EXEC;
7741 break;
7742 default:
7743 qemu_log_mask(LOG_GUEST_ERROR,
7744 "Bad value for AP bits in DRACR %"
7745 PRIx32 "\n", ap);
7746 }
7747 }
7748
7749 /* execute never */
7750 if (env->pmsav7.dracr[n] & (1 << 12)) {
7751 *prot &= ~PAGE_EXEC;
7752 }
7753 }
7754 }
7755
7756 *fsr = 0x00d; /* Permission fault */
7757 return !(*prot & (1 << access_type));
7758}
7759
13689d43
PC
7760static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
7761 int access_type, ARMMMUIdx mmu_idx,
7762 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9ee6e8bb
PB
7763{
7764 int n;
7765 uint32_t mask;
7766 uint32_t base;
0480f69a 7767 bool is_user = regime_is_user(env, mmu_idx);
9ee6e8bb
PB
7768
7769 *phys_ptr = address;
7770 for (n = 7; n >= 0; n--) {
554b0b09 7771 base = env->cp15.c6_region[n];
87c3d486 7772 if ((base & 1) == 0) {
554b0b09 7773 continue;
87c3d486 7774 }
554b0b09
PM
7775 mask = 1 << ((base >> 1) & 0x1f);
7776 /* Keep this shift separate from the above to avoid an
7777 (undefined) << 32. */
7778 mask = (mask << 1) - 1;
87c3d486 7779 if (((base ^ address) & ~mask) == 0) {
554b0b09 7780 break;
87c3d486 7781 }
9ee6e8bb 7782 }
87c3d486 7783 if (n < 0) {
b7cc4e82
PC
7784 *fsr = 2;
7785 return true;
87c3d486 7786 }
9ee6e8bb
PB
7787
7788 if (access_type == 2) {
7e09797c 7789 mask = env->cp15.pmsav5_insn_ap;
9ee6e8bb 7790 } else {
7e09797c 7791 mask = env->cp15.pmsav5_data_ap;
9ee6e8bb
PB
7792 }
7793 mask = (mask >> (n * 4)) & 0xf;
7794 switch (mask) {
7795 case 0:
b7cc4e82
PC
7796 *fsr = 1;
7797 return true;
9ee6e8bb 7798 case 1:
87c3d486 7799 if (is_user) {
b7cc4e82
PC
7800 *fsr = 1;
7801 return true;
87c3d486 7802 }
554b0b09
PM
7803 *prot = PAGE_READ | PAGE_WRITE;
7804 break;
9ee6e8bb 7805 case 2:
554b0b09 7806 *prot = PAGE_READ;
87c3d486 7807 if (!is_user) {
554b0b09 7808 *prot |= PAGE_WRITE;
87c3d486 7809 }
554b0b09 7810 break;
9ee6e8bb 7811 case 3:
554b0b09
PM
7812 *prot = PAGE_READ | PAGE_WRITE;
7813 break;
9ee6e8bb 7814 case 5:
87c3d486 7815 if (is_user) {
b7cc4e82
PC
7816 *fsr = 1;
7817 return true;
87c3d486 7818 }
554b0b09
PM
7819 *prot = PAGE_READ;
7820 break;
9ee6e8bb 7821 case 6:
554b0b09
PM
7822 *prot = PAGE_READ;
7823 break;
9ee6e8bb 7824 default:
554b0b09 7825 /* Bad permission. */
b7cc4e82
PC
7826 *fsr = 1;
7827 return true;
9ee6e8bb 7828 }
3ad493fc 7829 *prot |= PAGE_EXEC;
b7cc4e82 7830 return false;
9ee6e8bb
PB
7831}
7832
702a9357
PM
7833/* get_phys_addr - get the physical address for this virtual address
7834 *
7835 * Find the physical address corresponding to the given virtual address,
7836 * by doing a translation table walk on MMU based systems or using the
7837 * MPU state on MPU based systems.
7838 *
b7cc4e82
PC
7839 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7840 * prot and page_size may not be filled in, and the populated fsr value provides
702a9357
PM
7841 * information on why the translation aborted, in the format of a
7842 * DFSR/IFSR fault register, with the following caveats:
7843 * * we honour the short vs long DFSR format differences.
7844 * * the WnR bit is never set (the caller must do this).
f6bda88f 7845 * * for PSMAv5 based systems we don't bother to return a full FSR format
702a9357
PM
7846 * value.
7847 *
7848 * @env: CPUARMState
7849 * @address: virtual address to get physical address for
7850 * @access_type: 0 for read, 1 for write, 2 for execute
d3649702 7851 * @mmu_idx: MMU index indicating required translation regime
702a9357 7852 * @phys_ptr: set to the physical address corresponding to the virtual address
8bf5b6a9 7853 * @attrs: set to the memory transaction attributes to use
702a9357
PM
7854 * @prot: set to the permissions for the page containing phys_ptr
7855 * @page_size: set to the size of the page containing phys_ptr
b7cc4e82 7856 * @fsr: set to the DFSR/IFSR value on failure
702a9357 7857 */
af51f566
EI
7858static bool get_phys_addr(CPUARMState *env, target_ulong address,
7859 int access_type, ARMMMUIdx mmu_idx,
7860 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
7861 target_ulong *page_size, uint32_t *fsr,
7862 ARMMMUFaultInfo *fi)
9ee6e8bb 7863{
0480f69a 7864 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9b539263
EI
7865 /* Call ourselves recursively to do the stage 1 and then stage 2
7866 * translations.
0480f69a 7867 */
9b539263
EI
7868 if (arm_feature(env, ARM_FEATURE_EL2)) {
7869 hwaddr ipa;
7870 int s2_prot;
7871 int ret;
7872
7873 ret = get_phys_addr(env, address, access_type,
7874 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
7875 prot, page_size, fsr, fi);
7876
7877 /* If S1 fails or S2 is disabled, return early. */
7878 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7879 *phys_ptr = ipa;
7880 return ret;
7881 }
7882
7883 /* S1 is done. Now do S2 translation. */
7884 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
7885 phys_ptr, attrs, &s2_prot,
7886 page_size, fsr, fi);
7887 fi->s2addr = ipa;
7888 /* Combine the S1 and S2 perms. */
7889 *prot &= s2_prot;
7890 return ret;
7891 } else {
7892 /*
7893 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
7894 */
7895 mmu_idx += ARMMMUIdx_S1NSE0;
7896 }
0480f69a 7897 }
d3649702 7898
8bf5b6a9
PM
7899 /* The page table entries may downgrade secure to non-secure, but
7900 * cannot upgrade an non-secure translation regime's attributes
7901 * to secure.
7902 */
7903 attrs->secure = regime_is_secure(env, mmu_idx);
0995bf8c 7904 attrs->user = regime_is_user(env, mmu_idx);
8bf5b6a9 7905
0480f69a
PM
7906 /* Fast Context Switch Extension. This doesn't exist at all in v8.
7907 * In v7 and earlier it affects all stage 1 translations.
7908 */
7909 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
7910 && !arm_feature(env, ARM_FEATURE_V8)) {
7911 if (regime_el(env, mmu_idx) == 3) {
7912 address += env->cp15.fcseidr_s;
7913 } else {
7914 address += env->cp15.fcseidr_ns;
7915 }
54bf36ed 7916 }
9ee6e8bb 7917
f6bda88f
PC
7918 /* pmsav7 has special handling for when MPU is disabled so call it before
7919 * the common MMU/MPU disabled check below.
7920 */
7921 if (arm_feature(env, ARM_FEATURE_MPU) &&
7922 arm_feature(env, ARM_FEATURE_V7)) {
7923 *page_size = TARGET_PAGE_SIZE;
7924 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
7925 phys_ptr, prot, fsr);
7926 }
7927
0480f69a 7928 if (regime_translation_disabled(env, mmu_idx)) {
9ee6e8bb
PB
7929 /* MMU/MPU disabled. */
7930 *phys_ptr = address;
3ad493fc 7931 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 7932 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb 7933 return 0;
0480f69a
PM
7934 }
7935
7936 if (arm_feature(env, ARM_FEATURE_MPU)) {
f6bda88f 7937 /* Pre-v7 MPU */
d4c430a8 7938 *page_size = TARGET_PAGE_SIZE;
13689d43
PC
7939 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
7940 phys_ptr, prot, fsr);
0480f69a
PM
7941 }
7942
7943 if (regime_using_lpae_format(env, mmu_idx)) {
7944 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 7945 attrs, prot, page_size, fsr, fi);
0480f69a
PM
7946 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
7947 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 7948 attrs, prot, page_size, fsr, fi);
9ee6e8bb 7949 } else {
0480f69a 7950 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 7951 prot, page_size, fsr, fi);
9ee6e8bb
PB
7952 }
7953}
7954
8c6084bf 7955/* Walk the page table and (if the mapping exists) add the page
b7cc4e82
PC
7956 * to the TLB. Return false on success, or true on failure. Populate
7957 * fsr with ARM DFSR/IFSR fault register format value on failure.
8c6084bf 7958 */
b7cc4e82 7959bool arm_tlb_fill(CPUState *cs, vaddr address,
e14b5a23
EI
7960 int access_type, int mmu_idx, uint32_t *fsr,
7961 ARMMMUFaultInfo *fi)
b5ff1b31 7962{
7510454e
AF
7963 ARMCPU *cpu = ARM_CPU(cs);
7964 CPUARMState *env = &cpu->env;
a8170e5e 7965 hwaddr phys_addr;
d4c430a8 7966 target_ulong page_size;
b5ff1b31 7967 int prot;
d3649702 7968 int ret;
8bf5b6a9 7969 MemTxAttrs attrs = {};
b5ff1b31 7970
8bf5b6a9 7971 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
e14b5a23 7972 &attrs, &prot, &page_size, fsr, fi);
b7cc4e82 7973 if (!ret) {
b5ff1b31 7974 /* Map a single [sub]page. */
dcd82c11
AB
7975 phys_addr &= TARGET_PAGE_MASK;
7976 address &= TARGET_PAGE_MASK;
8bf5b6a9
PM
7977 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
7978 prot, mmu_idx, page_size);
d4c430a8 7979 return 0;
b5ff1b31
FB
7980 }
7981
8c6084bf 7982 return ret;
b5ff1b31
FB
7983}
7984
0faea0c7
PM
7985hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
7986 MemTxAttrs *attrs)
b5ff1b31 7987{
00b941e5 7988 ARMCPU *cpu = ARM_CPU(cs);
d3649702 7989 CPUARMState *env = &cpu->env;
a8170e5e 7990 hwaddr phys_addr;
d4c430a8 7991 target_ulong page_size;
b5ff1b31 7992 int prot;
b7cc4e82
PC
7993 bool ret;
7994 uint32_t fsr;
e14b5a23 7995 ARMMMUFaultInfo fi = {};
b5ff1b31 7996
0faea0c7
PM
7997 *attrs = (MemTxAttrs) {};
7998
97ed5ccd 7999 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
0faea0c7 8000 attrs, &prot, &page_size, &fsr, &fi);
b5ff1b31 8001
b7cc4e82 8002 if (ret) {
b5ff1b31 8003 return -1;
00b941e5 8004 }
b5ff1b31
FB
8005 return phys_addr;
8006}
8007
0ecb72a5 8008uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 8009{
a47dddd7
AF
8010 ARMCPU *cpu = arm_env_get_cpu(env);
8011
9ee6e8bb
PB
8012 switch (reg) {
8013 case 0: /* APSR */
8014 return xpsr_read(env) & 0xf8000000;
8015 case 1: /* IAPSR */
8016 return xpsr_read(env) & 0xf80001ff;
8017 case 2: /* EAPSR */
8018 return xpsr_read(env) & 0xff00fc00;
8019 case 3: /* xPSR */
8020 return xpsr_read(env) & 0xff00fdff;
8021 case 5: /* IPSR */
8022 return xpsr_read(env) & 0x000001ff;
8023 case 6: /* EPSR */
8024 return xpsr_read(env) & 0x0700fc00;
8025 case 7: /* IEPSR */
8026 return xpsr_read(env) & 0x0700edff;
8027 case 8: /* MSP */
8028 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
8029 case 9: /* PSP */
8030 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
8031 case 16: /* PRIMASK */
4cc35614 8032 return (env->daif & PSTATE_I) != 0;
82845826
SH
8033 case 17: /* BASEPRI */
8034 case 18: /* BASEPRI_MAX */
9ee6e8bb 8035 return env->v7m.basepri;
82845826 8036 case 19: /* FAULTMASK */
4cc35614 8037 return (env->daif & PSTATE_F) != 0;
9ee6e8bb
PB
8038 case 20: /* CONTROL */
8039 return env->v7m.control;
8040 default:
8041 /* ??? For debugging only. */
a47dddd7 8042 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
9ee6e8bb
PB
8043 return 0;
8044 }
8045}
8046
0ecb72a5 8047void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 8048{
a47dddd7
AF
8049 ARMCPU *cpu = arm_env_get_cpu(env);
8050
9ee6e8bb
PB
8051 switch (reg) {
8052 case 0: /* APSR */
8053 xpsr_write(env, val, 0xf8000000);
8054 break;
8055 case 1: /* IAPSR */
8056 xpsr_write(env, val, 0xf8000000);
8057 break;
8058 case 2: /* EAPSR */
8059 xpsr_write(env, val, 0xfe00fc00);
8060 break;
8061 case 3: /* xPSR */
8062 xpsr_write(env, val, 0xfe00fc00);
8063 break;
8064 case 5: /* IPSR */
8065 /* IPSR bits are readonly. */
8066 break;
8067 case 6: /* EPSR */
8068 xpsr_write(env, val, 0x0600fc00);
8069 break;
8070 case 7: /* IEPSR */
8071 xpsr_write(env, val, 0x0600fc00);
8072 break;
8073 case 8: /* MSP */
8074 if (env->v7m.current_sp)
8075 env->v7m.other_sp = val;
8076 else
8077 env->regs[13] = val;
8078 break;
8079 case 9: /* PSP */
8080 if (env->v7m.current_sp)
8081 env->regs[13] = val;
8082 else
8083 env->v7m.other_sp = val;
8084 break;
8085 case 16: /* PRIMASK */
4cc35614
PM
8086 if (val & 1) {
8087 env->daif |= PSTATE_I;
8088 } else {
8089 env->daif &= ~PSTATE_I;
8090 }
9ee6e8bb 8091 break;
82845826 8092 case 17: /* BASEPRI */
9ee6e8bb
PB
8093 env->v7m.basepri = val & 0xff;
8094 break;
82845826 8095 case 18: /* BASEPRI_MAX */
9ee6e8bb
PB
8096 val &= 0xff;
8097 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8098 env->v7m.basepri = val;
8099 break;
82845826 8100 case 19: /* FAULTMASK */
4cc35614
PM
8101 if (val & 1) {
8102 env->daif |= PSTATE_F;
8103 } else {
8104 env->daif &= ~PSTATE_F;
8105 }
82845826 8106 break;
9ee6e8bb
PB
8107 case 20: /* CONTROL */
8108 env->v7m.control = val & 3;
8109 switch_v7m_sp(env, (val & 2) != 0);
8110 break;
8111 default:
8112 /* ??? For debugging only. */
a47dddd7 8113 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
9ee6e8bb
PB
8114 return;
8115 }
8116}
8117
b5ff1b31 8118#endif
6ddbc6e4 8119
aca3f40b
PM
8120void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8121{
8122 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8123 * Note that we do not implement the (architecturally mandated)
8124 * alignment fault for attempts to use this on Device memory
8125 * (which matches the usual QEMU behaviour of not implementing either
8126 * alignment faults or any memory attribute handling).
8127 */
8128
8129 ARMCPU *cpu = arm_env_get_cpu(env);
8130 uint64_t blocklen = 4 << cpu->dcz_blocksize;
8131 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8132
8133#ifndef CONFIG_USER_ONLY
8134 {
8135 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8136 * the block size so we might have to do more than one TLB lookup.
8137 * We know that in fact for any v8 CPU the page size is at least 4K
8138 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8139 * 1K as an artefact of legacy v5 subpage support being present in the
8140 * same QEMU executable.
8141 */
8142 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8143 void *hostaddr[maxidx];
8144 int try, i;
97ed5ccd 8145 unsigned mmu_idx = cpu_mmu_index(env, false);
3972ef6f 8146 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
aca3f40b
PM
8147
8148 for (try = 0; try < 2; try++) {
8149
8150 for (i = 0; i < maxidx; i++) {
8151 hostaddr[i] = tlb_vaddr_to_host(env,
8152 vaddr + TARGET_PAGE_SIZE * i,
3972ef6f 8153 1, mmu_idx);
aca3f40b
PM
8154 if (!hostaddr[i]) {
8155 break;
8156 }
8157 }
8158 if (i == maxidx) {
8159 /* If it's all in the TLB it's fair game for just writing to;
8160 * we know we don't need to update dirty status, etc.
8161 */
8162 for (i = 0; i < maxidx - 1; i++) {
8163 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8164 }
8165 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8166 return;
8167 }
8168 /* OK, try a store and see if we can populate the tlb. This
8169 * might cause an exception if the memory isn't writable,
8170 * in which case we will longjmp out of here. We must for
8171 * this purpose use the actual register value passed to us
8172 * so that we get the fault address right.
8173 */
3972ef6f 8174 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
aca3f40b
PM
8175 /* Now we can populate the other TLB entries, if any */
8176 for (i = 0; i < maxidx; i++) {
8177 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8178 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
3972ef6f 8179 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
aca3f40b
PM
8180 }
8181 }
8182 }
8183
8184 /* Slow path (probably attempt to do this to an I/O device or
8185 * similar, or clearing of a block of code we have translations
8186 * cached for). Just do a series of byte writes as the architecture
8187 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8188 * memset(), unmap() sequence here because:
8189 * + we'd need to account for the blocksize being larger than a page
8190 * + the direct-RAM access case is almost always going to be dealt
8191 * with in the fastpath code above, so there's no speed benefit
8192 * + we would have to deal with the map returning NULL because the
8193 * bounce buffer was in use
8194 */
8195 for (i = 0; i < blocklen; i++) {
3972ef6f 8196 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
aca3f40b
PM
8197 }
8198 }
8199#else
8200 memset(g2h(vaddr), 0, blocklen);
8201#endif
8202}
8203
6ddbc6e4
PB
8204/* Note that signed overflow is undefined in C. The following routines are
8205 careful to use unsigned types where modulo arithmetic is required.
8206 Failure to do so _will_ break on newer gcc. */
8207
8208/* Signed saturating arithmetic. */
8209
1654b2d6 8210/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
8211static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8212{
8213 uint16_t res;
8214
8215 res = a + b;
8216 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8217 if (a & 0x8000)
8218 res = 0x8000;
8219 else
8220 res = 0x7fff;
8221 }
8222 return res;
8223}
8224
1654b2d6 8225/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
8226static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8227{
8228 uint8_t res;
8229
8230 res = a + b;
8231 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8232 if (a & 0x80)
8233 res = 0x80;
8234 else
8235 res = 0x7f;
8236 }
8237 return res;
8238}
8239
1654b2d6 8240/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
8241static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8242{
8243 uint16_t res;
8244
8245 res = a - b;
8246 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8247 if (a & 0x8000)
8248 res = 0x8000;
8249 else
8250 res = 0x7fff;
8251 }
8252 return res;
8253}
8254
1654b2d6 8255/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
8256static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8257{
8258 uint8_t res;
8259
8260 res = a - b;
8261 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8262 if (a & 0x80)
8263 res = 0x80;
8264 else
8265 res = 0x7f;
8266 }
8267 return res;
8268}
8269
8270#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8271#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8272#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8273#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8274#define PFX q
8275
8276#include "op_addsub.h"
8277
8278/* Unsigned saturating arithmetic. */
460a09c1 8279static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
8280{
8281 uint16_t res;
8282 res = a + b;
8283 if (res < a)
8284 res = 0xffff;
8285 return res;
8286}
8287
460a09c1 8288static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 8289{
4c4fd3f8 8290 if (a > b)
6ddbc6e4
PB
8291 return a - b;
8292 else
8293 return 0;
8294}
8295
8296static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8297{
8298 uint8_t res;
8299 res = a + b;
8300 if (res < a)
8301 res = 0xff;
8302 return res;
8303}
8304
8305static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8306{
4c4fd3f8 8307 if (a > b)
6ddbc6e4
PB
8308 return a - b;
8309 else
8310 return 0;
8311}
8312
8313#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8314#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8315#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8316#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8317#define PFX uq
8318
8319#include "op_addsub.h"
8320
8321/* Signed modulo arithmetic. */
8322#define SARITH16(a, b, n, op) do { \
8323 int32_t sum; \
db6e2e65 8324 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
8325 RESULT(sum, n, 16); \
8326 if (sum >= 0) \
8327 ge |= 3 << (n * 2); \
8328 } while(0)
8329
8330#define SARITH8(a, b, n, op) do { \
8331 int32_t sum; \
db6e2e65 8332 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
8333 RESULT(sum, n, 8); \
8334 if (sum >= 0) \
8335 ge |= 1 << n; \
8336 } while(0)
8337
8338
8339#define ADD16(a, b, n) SARITH16(a, b, n, +)
8340#define SUB16(a, b, n) SARITH16(a, b, n, -)
8341#define ADD8(a, b, n) SARITH8(a, b, n, +)
8342#define SUB8(a, b, n) SARITH8(a, b, n, -)
8343#define PFX s
8344#define ARITH_GE
8345
8346#include "op_addsub.h"
8347
8348/* Unsigned modulo arithmetic. */
8349#define ADD16(a, b, n) do { \
8350 uint32_t sum; \
8351 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8352 RESULT(sum, n, 16); \
a87aa10b 8353 if ((sum >> 16) == 1) \
6ddbc6e4
PB
8354 ge |= 3 << (n * 2); \
8355 } while(0)
8356
8357#define ADD8(a, b, n) do { \
8358 uint32_t sum; \
8359 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8360 RESULT(sum, n, 8); \
a87aa10b
AZ
8361 if ((sum >> 8) == 1) \
8362 ge |= 1 << n; \
6ddbc6e4
PB
8363 } while(0)
8364
8365#define SUB16(a, b, n) do { \
8366 uint32_t sum; \
8367 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8368 RESULT(sum, n, 16); \
8369 if ((sum >> 16) == 0) \
8370 ge |= 3 << (n * 2); \
8371 } while(0)
8372
8373#define SUB8(a, b, n) do { \
8374 uint32_t sum; \
8375 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8376 RESULT(sum, n, 8); \
8377 if ((sum >> 8) == 0) \
a87aa10b 8378 ge |= 1 << n; \
6ddbc6e4
PB
8379 } while(0)
8380
8381#define PFX u
8382#define ARITH_GE
8383
8384#include "op_addsub.h"
8385
8386/* Halved signed arithmetic. */
8387#define ADD16(a, b, n) \
8388 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8389#define SUB16(a, b, n) \
8390 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8391#define ADD8(a, b, n) \
8392 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8393#define SUB8(a, b, n) \
8394 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8395#define PFX sh
8396
8397#include "op_addsub.h"
8398
8399/* Halved unsigned arithmetic. */
8400#define ADD16(a, b, n) \
8401 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8402#define SUB16(a, b, n) \
8403 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8404#define ADD8(a, b, n) \
8405 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8406#define SUB8(a, b, n) \
8407 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8408#define PFX uh
8409
8410#include "op_addsub.h"
8411
8412static inline uint8_t do_usad(uint8_t a, uint8_t b)
8413{
8414 if (a > b)
8415 return a - b;
8416 else
8417 return b - a;
8418}
8419
8420/* Unsigned sum of absolute byte differences. */
8421uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
8422{
8423 uint32_t sum;
8424 sum = do_usad(a, b);
8425 sum += do_usad(a >> 8, b >> 8);
8426 sum += do_usad(a >> 16, b >>16);
8427 sum += do_usad(a >> 24, b >> 24);
8428 return sum;
8429}
8430
8431/* For ARMv6 SEL instruction. */
8432uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
8433{
8434 uint32_t mask;
8435
8436 mask = 0;
8437 if (flags & 1)
8438 mask |= 0xff;
8439 if (flags & 2)
8440 mask |= 0xff00;
8441 if (flags & 4)
8442 mask |= 0xff0000;
8443 if (flags & 8)
8444 mask |= 0xff000000;
8445 return (a & mask) | (b & ~mask);
8446}
8447
b90372ad
PM
8448/* VFP support. We follow the convention used for VFP instructions:
8449 Single precision routines have a "s" suffix, double precision a
4373f3ce
PB
8450 "d" suffix. */
8451
8452/* Convert host exception flags to vfp form. */
8453static inline int vfp_exceptbits_from_host(int host_bits)
8454{
8455 int target_bits = 0;
8456
8457 if (host_bits & float_flag_invalid)
8458 target_bits |= 1;
8459 if (host_bits & float_flag_divbyzero)
8460 target_bits |= 2;
8461 if (host_bits & float_flag_overflow)
8462 target_bits |= 4;
36802b6b 8463 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
8464 target_bits |= 8;
8465 if (host_bits & float_flag_inexact)
8466 target_bits |= 0x10;
cecd8504
PM
8467 if (host_bits & float_flag_input_denormal)
8468 target_bits |= 0x80;
4373f3ce
PB
8469 return target_bits;
8470}
8471
0ecb72a5 8472uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
8473{
8474 int i;
8475 uint32_t fpscr;
8476
8477 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
8478 | (env->vfp.vec_len << 16)
8479 | (env->vfp.vec_stride << 20);
8480 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 8481 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
8482 fpscr |= vfp_exceptbits_from_host(i);
8483 return fpscr;
8484}
8485
0ecb72a5 8486uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
8487{
8488 return HELPER(vfp_get_fpscr)(env);
8489}
8490
4373f3ce
PB
8491/* Convert vfp exception flags to target form. */
8492static inline int vfp_exceptbits_to_host(int target_bits)
8493{
8494 int host_bits = 0;
8495
8496 if (target_bits & 1)
8497 host_bits |= float_flag_invalid;
8498 if (target_bits & 2)
8499 host_bits |= float_flag_divbyzero;
8500 if (target_bits & 4)
8501 host_bits |= float_flag_overflow;
8502 if (target_bits & 8)
8503 host_bits |= float_flag_underflow;
8504 if (target_bits & 0x10)
8505 host_bits |= float_flag_inexact;
cecd8504
PM
8506 if (target_bits & 0x80)
8507 host_bits |= float_flag_input_denormal;
4373f3ce
PB
8508 return host_bits;
8509}
8510
0ecb72a5 8511void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
8512{
8513 int i;
8514 uint32_t changed;
8515
8516 changed = env->vfp.xregs[ARM_VFP_FPSCR];
8517 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
8518 env->vfp.vec_len = (val >> 16) & 7;
8519 env->vfp.vec_stride = (val >> 20) & 3;
8520
8521 changed ^= val;
8522 if (changed & (3 << 22)) {
8523 i = (val >> 22) & 3;
8524 switch (i) {
4d3da0f3 8525 case FPROUNDING_TIEEVEN:
4373f3ce
PB
8526 i = float_round_nearest_even;
8527 break;
4d3da0f3 8528 case FPROUNDING_POSINF:
4373f3ce
PB
8529 i = float_round_up;
8530 break;
4d3da0f3 8531 case FPROUNDING_NEGINF:
4373f3ce
PB
8532 i = float_round_down;
8533 break;
4d3da0f3 8534 case FPROUNDING_ZERO:
4373f3ce
PB
8535 i = float_round_to_zero;
8536 break;
8537 }
8538 set_float_rounding_mode(i, &env->vfp.fp_status);
8539 }
cecd8504 8540 if (changed & (1 << 24)) {
fe76d976 8541 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
8542 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8543 }
5c7908ed
PB
8544 if (changed & (1 << 25))
8545 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 8546
b12c390b 8547 i = vfp_exceptbits_to_host(val);
4373f3ce 8548 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 8549 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
8550}
8551
0ecb72a5 8552void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
8553{
8554 HELPER(vfp_set_fpscr)(env, val);
8555}
8556
4373f3ce
PB
8557#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8558
8559#define VFP_BINOP(name) \
ae1857ec 8560float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 8561{ \
ae1857ec
PM
8562 float_status *fpst = fpstp; \
8563 return float32_ ## name(a, b, fpst); \
4373f3ce 8564} \
ae1857ec 8565float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 8566{ \
ae1857ec
PM
8567 float_status *fpst = fpstp; \
8568 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
8569}
8570VFP_BINOP(add)
8571VFP_BINOP(sub)
8572VFP_BINOP(mul)
8573VFP_BINOP(div)
f71a2ae5
PM
8574VFP_BINOP(min)
8575VFP_BINOP(max)
8576VFP_BINOP(minnum)
8577VFP_BINOP(maxnum)
4373f3ce
PB
8578#undef VFP_BINOP
8579
8580float32 VFP_HELPER(neg, s)(float32 a)
8581{
8582 return float32_chs(a);
8583}
8584
8585float64 VFP_HELPER(neg, d)(float64 a)
8586{
66230e0d 8587 return float64_chs(a);
4373f3ce
PB
8588}
8589
8590float32 VFP_HELPER(abs, s)(float32 a)
8591{
8592 return float32_abs(a);
8593}
8594
8595float64 VFP_HELPER(abs, d)(float64 a)
8596{
66230e0d 8597 return float64_abs(a);
4373f3ce
PB
8598}
8599
0ecb72a5 8600float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
8601{
8602 return float32_sqrt(a, &env->vfp.fp_status);
8603}
8604
0ecb72a5 8605float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
8606{
8607 return float64_sqrt(a, &env->vfp.fp_status);
8608}
8609
8610/* XXX: check quiet/signaling case */
8611#define DO_VFP_cmp(p, type) \
0ecb72a5 8612void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
8613{ \
8614 uint32_t flags; \
8615 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8616 case 0: flags = 0x6; break; \
8617 case -1: flags = 0x8; break; \
8618 case 1: flags = 0x2; break; \
8619 default: case 2: flags = 0x3; break; \
8620 } \
8621 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8622 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8623} \
0ecb72a5 8624void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
8625{ \
8626 uint32_t flags; \
8627 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8628 case 0: flags = 0x6; break; \
8629 case -1: flags = 0x8; break; \
8630 case 1: flags = 0x2; break; \
8631 default: case 2: flags = 0x3; break; \
8632 } \
8633 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8634 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8635}
8636DO_VFP_cmp(s, float32)
8637DO_VFP_cmp(d, float64)
8638#undef DO_VFP_cmp
8639
5500b06c 8640/* Integer to float and float to integer conversions */
4373f3ce 8641
5500b06c
PM
8642#define CONV_ITOF(name, fsz, sign) \
8643 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8644{ \
8645 float_status *fpst = fpstp; \
85836979 8646 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
8647}
8648
5500b06c
PM
8649#define CONV_FTOI(name, fsz, sign, round) \
8650uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8651{ \
8652 float_status *fpst = fpstp; \
8653 if (float##fsz##_is_any_nan(x)) { \
8654 float_raise(float_flag_invalid, fpst); \
8655 return 0; \
8656 } \
8657 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
8658}
8659
5500b06c
PM
8660#define FLOAT_CONVS(name, p, fsz, sign) \
8661CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8662CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8663CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 8664
5500b06c
PM
8665FLOAT_CONVS(si, s, 32, )
8666FLOAT_CONVS(si, d, 64, )
8667FLOAT_CONVS(ui, s, 32, u)
8668FLOAT_CONVS(ui, d, 64, u)
4373f3ce 8669
5500b06c
PM
8670#undef CONV_ITOF
8671#undef CONV_FTOI
8672#undef FLOAT_CONVS
4373f3ce
PB
8673
8674/* floating point conversion */
0ecb72a5 8675float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 8676{
2d627737
PM
8677 float64 r = float32_to_float64(x, &env->vfp.fp_status);
8678 /* ARM requires that S<->D conversion of any kind of NaN generates
8679 * a quiet NaN by forcing the most significant frac bit to 1.
8680 */
8681 return float64_maybe_silence_nan(r);
4373f3ce
PB
8682}
8683
0ecb72a5 8684float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 8685{
2d627737
PM
8686 float32 r = float64_to_float32(x, &env->vfp.fp_status);
8687 /* ARM requires that S<->D conversion of any kind of NaN generates
8688 * a quiet NaN by forcing the most significant frac bit to 1.
8689 */
8690 return float32_maybe_silence_nan(r);
4373f3ce
PB
8691}
8692
8693/* VFP3 fixed point conversion. */
16d5b3ca 8694#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8ed697e8
WN
8695float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8696 void *fpstp) \
4373f3ce 8697{ \
5500b06c 8698 float_status *fpst = fpstp; \
622465e1 8699 float##fsz tmp; \
8ed697e8 8700 tmp = itype##_to_##float##fsz(x, fpst); \
5500b06c 8701 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
16d5b3ca
WN
8702}
8703
abe66f70
PM
8704/* Notice that we want only input-denormal exception flags from the
8705 * scalbn operation: the other possible flags (overflow+inexact if
8706 * we overflow to infinity, output-denormal) aren't correct for the
8707 * complete scale-and-convert operation.
8708 */
16d5b3ca
WN
8709#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8710uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8711 uint32_t shift, \
8712 void *fpstp) \
4373f3ce 8713{ \
5500b06c 8714 float_status *fpst = fpstp; \
abe66f70 8715 int old_exc_flags = get_float_exception_flags(fpst); \
622465e1
PM
8716 float##fsz tmp; \
8717 if (float##fsz##_is_any_nan(x)) { \
5500b06c 8718 float_raise(float_flag_invalid, fpst); \
622465e1 8719 return 0; \
09d9487f 8720 } \
5500b06c 8721 tmp = float##fsz##_scalbn(x, shift, fpst); \
abe66f70
PM
8722 old_exc_flags |= get_float_exception_flags(fpst) \
8723 & float_flag_input_denormal; \
8724 set_float_exception_flags(old_exc_flags, fpst); \
16d5b3ca 8725 return float##fsz##_to_##itype##round(tmp, fpst); \
622465e1
PM
8726}
8727
16d5b3ca
WN
8728#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8729VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3c6a074a
WN
8730VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8731VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8732
8733#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8734VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8735VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
16d5b3ca 8736
8ed697e8
WN
8737VFP_CONV_FIX(sh, d, 64, 64, int16)
8738VFP_CONV_FIX(sl, d, 64, 64, int32)
3c6a074a 8739VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8ed697e8
WN
8740VFP_CONV_FIX(uh, d, 64, 64, uint16)
8741VFP_CONV_FIX(ul, d, 64, 64, uint32)
3c6a074a 8742VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8ed697e8
WN
8743VFP_CONV_FIX(sh, s, 32, 32, int16)
8744VFP_CONV_FIX(sl, s, 32, 32, int32)
3c6a074a 8745VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8ed697e8
WN
8746VFP_CONV_FIX(uh, s, 32, 32, uint16)
8747VFP_CONV_FIX(ul, s, 32, 32, uint32)
3c6a074a 8748VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4373f3ce 8749#undef VFP_CONV_FIX
16d5b3ca
WN
8750#undef VFP_CONV_FIX_FLOAT
8751#undef VFP_CONV_FLOAT_FIX_ROUND
4373f3ce 8752
52a1f6a3
AG
8753/* Set the current fp rounding mode and return the old one.
8754 * The argument is a softfloat float_round_ value.
8755 */
8756uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
8757{
8758 float_status *fp_status = &env->vfp.fp_status;
8759
8760 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8761 set_float_rounding_mode(rmode, fp_status);
8762
8763 return prev_rmode;
8764}
8765
43630e58
WN
8766/* Set the current fp rounding mode in the standard fp status and return
8767 * the old one. This is for NEON instructions that need to change the
8768 * rounding mode but wish to use the standard FPSCR values for everything
8769 * else. Always set the rounding mode back to the correct value after
8770 * modifying it.
8771 * The argument is a softfloat float_round_ value.
8772 */
8773uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
8774{
8775 float_status *fp_status = &env->vfp.standard_fp_status;
8776
8777 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8778 set_float_rounding_mode(rmode, fp_status);
8779
8780 return prev_rmode;
8781}
8782
60011498 8783/* Half precision conversions. */
0ecb72a5 8784static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 8785{
60011498 8786 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
8787 float32 r = float16_to_float32(make_float16(a), ieee, s);
8788 if (ieee) {
8789 return float32_maybe_silence_nan(r);
8790 }
8791 return r;
60011498
PB
8792}
8793
0ecb72a5 8794static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 8795{
60011498 8796 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
8797 float16 r = float32_to_float16(a, ieee, s);
8798 if (ieee) {
8799 r = float16_maybe_silence_nan(r);
8800 }
8801 return float16_val(r);
60011498
PB
8802}
8803
0ecb72a5 8804float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
8805{
8806 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
8807}
8808
0ecb72a5 8809uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
8810{
8811 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
8812}
8813
0ecb72a5 8814float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
8815{
8816 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
8817}
8818
0ecb72a5 8819uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
8820{
8821 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
8822}
8823
8900aad2
PM
8824float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
8825{
8826 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8827 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
8828 if (ieee) {
8829 return float64_maybe_silence_nan(r);
8830 }
8831 return r;
8832}
8833
8834uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
8835{
8836 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8837 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
8838 if (ieee) {
8839 r = float16_maybe_silence_nan(r);
8840 }
8841 return float16_val(r);
8842}
8843
dda3ec49 8844#define float32_two make_float32(0x40000000)
6aae3df1
PM
8845#define float32_three make_float32(0x40400000)
8846#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 8847
0ecb72a5 8848float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 8849{
dda3ec49
PM
8850 float_status *s = &env->vfp.standard_fp_status;
8851 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8852 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
8853 if (!(float32_is_zero(a) || float32_is_zero(b))) {
8854 float_raise(float_flag_input_denormal, s);
8855 }
dda3ec49
PM
8856 return float32_two;
8857 }
8858 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
8859}
8860
0ecb72a5 8861float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 8862{
71826966 8863 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
8864 float32 product;
8865 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8866 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
8867 if (!(float32_is_zero(a) || float32_is_zero(b))) {
8868 float_raise(float_flag_input_denormal, s);
8869 }
6aae3df1 8870 return float32_one_point_five;
9ea62f57 8871 }
6aae3df1
PM
8872 product = float32_mul(a, b, s);
8873 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
8874}
8875
8f8e3aa4
PB
8876/* NEON helpers. */
8877
56bf4fe2
CL
8878/* Constants 256 and 512 are used in some helpers; we avoid relying on
8879 * int->float conversions at run-time. */
8880#define float64_256 make_float64(0x4070000000000000LL)
8881#define float64_512 make_float64(0x4080000000000000LL)
b6d4443a
AB
8882#define float32_maxnorm make_float32(0x7f7fffff)
8883#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
56bf4fe2 8884
b6d4443a
AB
8885/* Reciprocal functions
8886 *
8887 * The algorithm that must be used to calculate the estimate
8888 * is specified by the ARM ARM, see FPRecipEstimate()
fe0e4872 8889 */
b6d4443a
AB
8890
8891static float64 recip_estimate(float64 a, float_status *real_fp_status)
fe0e4872 8892{
1146a817
PM
8893 /* These calculations mustn't set any fp exception flags,
8894 * so we use a local copy of the fp_status.
8895 */
b6d4443a 8896 float_status dummy_status = *real_fp_status;
1146a817 8897 float_status *s = &dummy_status;
fe0e4872
CL
8898 /* q = (int)(a * 512.0) */
8899 float64 q = float64_mul(float64_512, a, s);
8900 int64_t q_int = float64_to_int64_round_to_zero(q, s);
8901
8902 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
8903 q = int64_to_float64(q_int, s);
8904 q = float64_add(q, float64_half, s);
8905 q = float64_div(q, float64_512, s);
8906 q = float64_div(float64_one, q, s);
8907
8908 /* s = (int)(256.0 * r + 0.5) */
8909 q = float64_mul(q, float64_256, s);
8910 q = float64_add(q, float64_half, s);
8911 q_int = float64_to_int64_round_to_zero(q, s);
8912
8913 /* return (double)s / 256.0 */
8914 return float64_div(int64_to_float64(q_int, s), float64_256, s);
8915}
8916
b6d4443a
AB
8917/* Common wrapper to call recip_estimate */
8918static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
4373f3ce 8919{
b6d4443a
AB
8920 uint64_t val64 = float64_val(num);
8921 uint64_t frac = extract64(val64, 0, 52);
8922 int64_t exp = extract64(val64, 52, 11);
8923 uint64_t sbit;
8924 float64 scaled, estimate;
fe0e4872 8925
b6d4443a
AB
8926 /* Generate the scaled number for the estimate function */
8927 if (exp == 0) {
8928 if (extract64(frac, 51, 1) == 0) {
8929 exp = -1;
8930 frac = extract64(frac, 0, 50) << 2;
8931 } else {
8932 frac = extract64(frac, 0, 51) << 1;
8933 }
8934 }
fe0e4872 8935
b6d4443a
AB
8936 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
8937 scaled = make_float64((0x3feULL << 52)
8938 | extract64(frac, 44, 8) << 44);
8939
8940 estimate = recip_estimate(scaled, fpst);
8941
8942 /* Build new result */
8943 val64 = float64_val(estimate);
8944 sbit = 0x8000000000000000ULL & val64;
8945 exp = off - exp;
8946 frac = extract64(val64, 0, 52);
8947
8948 if (exp == 0) {
8949 frac = 1ULL << 51 | extract64(frac, 1, 51);
8950 } else if (exp == -1) {
8951 frac = 1ULL << 50 | extract64(frac, 2, 50);
8952 exp = 0;
8953 }
8954
8955 return make_float64(sbit | (exp << 52) | frac);
8956}
8957
8958static bool round_to_inf(float_status *fpst, bool sign_bit)
8959{
8960 switch (fpst->float_rounding_mode) {
8961 case float_round_nearest_even: /* Round to Nearest */
8962 return true;
8963 case float_round_up: /* Round to +Inf */
8964 return !sign_bit;
8965 case float_round_down: /* Round to -Inf */
8966 return sign_bit;
8967 case float_round_to_zero: /* Round to Zero */
8968 return false;
8969 }
8970
8971 g_assert_not_reached();
8972}
8973
8974float32 HELPER(recpe_f32)(float32 input, void *fpstp)
8975{
8976 float_status *fpst = fpstp;
8977 float32 f32 = float32_squash_input_denormal(input, fpst);
8978 uint32_t f32_val = float32_val(f32);
8979 uint32_t f32_sbit = 0x80000000ULL & f32_val;
8980 int32_t f32_exp = extract32(f32_val, 23, 8);
8981 uint32_t f32_frac = extract32(f32_val, 0, 23);
8982 float64 f64, r64;
8983 uint64_t r64_val;
8984 int64_t r64_exp;
8985 uint64_t r64_frac;
8986
8987 if (float32_is_any_nan(f32)) {
8988 float32 nan = f32;
8989 if (float32_is_signaling_nan(f32)) {
8990 float_raise(float_flag_invalid, fpst);
8991 nan = float32_maybe_silence_nan(f32);
fe0e4872 8992 }
b6d4443a
AB
8993 if (fpst->default_nan_mode) {
8994 nan = float32_default_nan;
43fe9bdb 8995 }
b6d4443a
AB
8996 return nan;
8997 } else if (float32_is_infinity(f32)) {
8998 return float32_set_sign(float32_zero, float32_is_neg(f32));
8999 } else if (float32_is_zero(f32)) {
9000 float_raise(float_flag_divbyzero, fpst);
9001 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9002 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
9003 /* Abs(value) < 2.0^-128 */
9004 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9005 if (round_to_inf(fpst, f32_sbit)) {
9006 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9007 } else {
9008 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
9009 }
9010 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
9011 float_raise(float_flag_underflow, fpst);
9012 return float32_set_sign(float32_zero, float32_is_neg(f32));
fe0e4872
CL
9013 }
9014
fe0e4872 9015
b6d4443a
AB
9016 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
9017 r64 = call_recip_estimate(f64, 253, fpst);
9018 r64_val = float64_val(r64);
9019 r64_exp = extract64(r64_val, 52, 11);
9020 r64_frac = extract64(r64_val, 0, 52);
9021
9022 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9023 return make_float32(f32_sbit |
9024 (r64_exp & 0xff) << 23 |
9025 extract64(r64_frac, 29, 24));
9026}
9027
9028float64 HELPER(recpe_f64)(float64 input, void *fpstp)
9029{
9030 float_status *fpst = fpstp;
9031 float64 f64 = float64_squash_input_denormal(input, fpst);
9032 uint64_t f64_val = float64_val(f64);
9033 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9034 int64_t f64_exp = extract64(f64_val, 52, 11);
9035 float64 r64;
9036 uint64_t r64_val;
9037 int64_t r64_exp;
9038 uint64_t r64_frac;
9039
9040 /* Deal with any special cases */
9041 if (float64_is_any_nan(f64)) {
9042 float64 nan = f64;
9043 if (float64_is_signaling_nan(f64)) {
9044 float_raise(float_flag_invalid, fpst);
9045 nan = float64_maybe_silence_nan(f64);
9046 }
9047 if (fpst->default_nan_mode) {
9048 nan = float64_default_nan;
9049 }
9050 return nan;
9051 } else if (float64_is_infinity(f64)) {
9052 return float64_set_sign(float64_zero, float64_is_neg(f64));
9053 } else if (float64_is_zero(f64)) {
9054 float_raise(float_flag_divbyzero, fpst);
9055 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9056 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9057 /* Abs(value) < 2.0^-1024 */
9058 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9059 if (round_to_inf(fpst, f64_sbit)) {
9060 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9061 } else {
9062 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9063 }
fc1792e9 9064 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
b6d4443a
AB
9065 float_raise(float_flag_underflow, fpst);
9066 return float64_set_sign(float64_zero, float64_is_neg(f64));
9067 }
fe0e4872 9068
b6d4443a
AB
9069 r64 = call_recip_estimate(f64, 2045, fpst);
9070 r64_val = float64_val(r64);
9071 r64_exp = extract64(r64_val, 52, 11);
9072 r64_frac = extract64(r64_val, 0, 52);
fe0e4872 9073
b6d4443a
AB
9074 /* result = sign : result_exp<10:0> : fraction<51:0> */
9075 return make_float64(f64_sbit |
9076 ((r64_exp & 0x7ff) << 52) |
9077 r64_frac);
4373f3ce
PB
9078}
9079
e07be5d2
CL
9080/* The algorithm that must be used to calculate the estimate
9081 * is specified by the ARM ARM.
9082 */
c2fb418e 9083static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
e07be5d2 9084{
1146a817
PM
9085 /* These calculations mustn't set any fp exception flags,
9086 * so we use a local copy of the fp_status.
9087 */
c2fb418e 9088 float_status dummy_status = *real_fp_status;
1146a817 9089 float_status *s = &dummy_status;
e07be5d2
CL
9090 float64 q;
9091 int64_t q_int;
9092
9093 if (float64_lt(a, float64_half, s)) {
9094 /* range 0.25 <= a < 0.5 */
9095
9096 /* a in units of 1/512 rounded down */
9097 /* q0 = (int)(a * 512.0); */
9098 q = float64_mul(float64_512, a, s);
9099 q_int = float64_to_int64_round_to_zero(q, s);
9100
9101 /* reciprocal root r */
9102 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9103 q = int64_to_float64(q_int, s);
9104 q = float64_add(q, float64_half, s);
9105 q = float64_div(q, float64_512, s);
9106 q = float64_sqrt(q, s);
9107 q = float64_div(float64_one, q, s);
9108 } else {
9109 /* range 0.5 <= a < 1.0 */
9110
9111 /* a in units of 1/256 rounded down */
9112 /* q1 = (int)(a * 256.0); */
9113 q = float64_mul(float64_256, a, s);
9114 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9115
9116 /* reciprocal root r */
9117 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9118 q = int64_to_float64(q_int, s);
9119 q = float64_add(q, float64_half, s);
9120 q = float64_div(q, float64_256, s);
9121 q = float64_sqrt(q, s);
9122 q = float64_div(float64_one, q, s);
9123 }
9124 /* r in units of 1/256 rounded to nearest */
9125 /* s = (int)(256.0 * r + 0.5); */
9126
9127 q = float64_mul(q, float64_256,s );
9128 q = float64_add(q, float64_half, s);
9129 q_int = float64_to_int64_round_to_zero(q, s);
9130
9131 /* return (double)s / 256.0;*/
9132 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9133}
9134
c2fb418e 9135float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
4373f3ce 9136{
c2fb418e
AB
9137 float_status *s = fpstp;
9138 float32 f32 = float32_squash_input_denormal(input, s);
9139 uint32_t val = float32_val(f32);
9140 uint32_t f32_sbit = 0x80000000 & val;
9141 int32_t f32_exp = extract32(val, 23, 8);
9142 uint32_t f32_frac = extract32(val, 0, 23);
9143 uint64_t f64_frac;
9144 uint64_t val64;
e07be5d2
CL
9145 int result_exp;
9146 float64 f64;
e07be5d2 9147
c2fb418e
AB
9148 if (float32_is_any_nan(f32)) {
9149 float32 nan = f32;
9150 if (float32_is_signaling_nan(f32)) {
e07be5d2 9151 float_raise(float_flag_invalid, s);
c2fb418e 9152 nan = float32_maybe_silence_nan(f32);
e07be5d2 9153 }
c2fb418e
AB
9154 if (s->default_nan_mode) {
9155 nan = float32_default_nan;
43fe9bdb 9156 }
c2fb418e
AB
9157 return nan;
9158 } else if (float32_is_zero(f32)) {
e07be5d2 9159 float_raise(float_flag_divbyzero, s);
c2fb418e
AB
9160 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9161 } else if (float32_is_neg(f32)) {
e07be5d2
CL
9162 float_raise(float_flag_invalid, s);
9163 return float32_default_nan;
c2fb418e 9164 } else if (float32_is_infinity(f32)) {
e07be5d2
CL
9165 return float32_zero;
9166 }
9167
c2fb418e 9168 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
e07be5d2 9169 * preserving the parity of the exponent. */
c2fb418e
AB
9170
9171 f64_frac = ((uint64_t) f32_frac) << 29;
9172 if (f32_exp == 0) {
9173 while (extract64(f64_frac, 51, 1) == 0) {
9174 f64_frac = f64_frac << 1;
9175 f32_exp = f32_exp-1;
9176 }
9177 f64_frac = extract64(f64_frac, 0, 51) << 1;
9178 }
9179
9180 if (extract64(f32_exp, 0, 1) == 0) {
9181 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 9182 | (0x3feULL << 52)
c2fb418e 9183 | f64_frac);
e07be5d2 9184 } else {
c2fb418e 9185 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 9186 | (0x3fdULL << 52)
c2fb418e 9187 | f64_frac);
e07be5d2
CL
9188 }
9189
c2fb418e 9190 result_exp = (380 - f32_exp) / 2;
e07be5d2 9191
c2fb418e 9192 f64 = recip_sqrt_estimate(f64, s);
e07be5d2
CL
9193
9194 val64 = float64_val(f64);
9195
26cc6abf 9196 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
9197 | ((val64 >> 29) & 0x7fffff);
9198 return make_float32(val);
4373f3ce
PB
9199}
9200
c2fb418e
AB
9201float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9202{
9203 float_status *s = fpstp;
9204 float64 f64 = float64_squash_input_denormal(input, s);
9205 uint64_t val = float64_val(f64);
9206 uint64_t f64_sbit = 0x8000000000000000ULL & val;
9207 int64_t f64_exp = extract64(val, 52, 11);
9208 uint64_t f64_frac = extract64(val, 0, 52);
9209 int64_t result_exp;
9210 uint64_t result_frac;
9211
9212 if (float64_is_any_nan(f64)) {
9213 float64 nan = f64;
9214 if (float64_is_signaling_nan(f64)) {
9215 float_raise(float_flag_invalid, s);
9216 nan = float64_maybe_silence_nan(f64);
9217 }
9218 if (s->default_nan_mode) {
9219 nan = float64_default_nan;
9220 }
9221 return nan;
9222 } else if (float64_is_zero(f64)) {
9223 float_raise(float_flag_divbyzero, s);
9224 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9225 } else if (float64_is_neg(f64)) {
9226 float_raise(float_flag_invalid, s);
9227 return float64_default_nan;
9228 } else if (float64_is_infinity(f64)) {
9229 return float64_zero;
9230 }
9231
9232 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9233 * preserving the parity of the exponent. */
9234
9235 if (f64_exp == 0) {
9236 while (extract64(f64_frac, 51, 1) == 0) {
9237 f64_frac = f64_frac << 1;
9238 f64_exp = f64_exp - 1;
9239 }
9240 f64_frac = extract64(f64_frac, 0, 51) << 1;
9241 }
9242
9243 if (extract64(f64_exp, 0, 1) == 0) {
9244 f64 = make_float64(f64_sbit
9245 | (0x3feULL << 52)
9246 | f64_frac);
9247 } else {
9248 f64 = make_float64(f64_sbit
9249 | (0x3fdULL << 52)
9250 | f64_frac);
9251 }
9252
9253 result_exp = (3068 - f64_exp) / 2;
9254
9255 f64 = recip_sqrt_estimate(f64, s);
9256
9257 result_frac = extract64(float64_val(f64), 0, 52);
9258
9259 return make_float64(f64_sbit |
9260 ((result_exp & 0x7ff) << 52) |
9261 result_frac);
9262}
9263
b6d4443a 9264uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
4373f3ce 9265{
b6d4443a 9266 float_status *s = fpstp;
fe0e4872
CL
9267 float64 f64;
9268
9269 if ((a & 0x80000000) == 0) {
9270 return 0xffffffff;
9271 }
9272
9273 f64 = make_float64((0x3feULL << 52)
9274 | ((int64_t)(a & 0x7fffffff) << 21));
9275
b6d4443a 9276 f64 = recip_estimate(f64, s);
fe0e4872
CL
9277
9278 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
9279}
9280
c2fb418e 9281uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
4373f3ce 9282{
c2fb418e 9283 float_status *fpst = fpstp;
e07be5d2
CL
9284 float64 f64;
9285
9286 if ((a & 0xc0000000) == 0) {
9287 return 0xffffffff;
9288 }
9289
9290 if (a & 0x80000000) {
9291 f64 = make_float64((0x3feULL << 52)
9292 | ((uint64_t)(a & 0x7fffffff) << 21));
9293 } else { /* bits 31-30 == '01' */
9294 f64 = make_float64((0x3fdULL << 52)
9295 | ((uint64_t)(a & 0x3fffffff) << 22));
9296 }
9297
c2fb418e 9298 f64 = recip_sqrt_estimate(f64, fpst);
e07be5d2
CL
9299
9300 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 9301}
fe1479c3 9302
da97f52c
PM
9303/* VFPv4 fused multiply-accumulate */
9304float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9305{
9306 float_status *fpst = fpstp;
9307 return float32_muladd(a, b, c, 0, fpst);
9308}
9309
9310float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9311{
9312 float_status *fpst = fpstp;
9313 return float64_muladd(a, b, c, 0, fpst);
9314}
d9b0848d
PM
9315
9316/* ARMv8 round to integral */
9317float32 HELPER(rints_exact)(float32 x, void *fp_status)
9318{
9319 return float32_round_to_int(x, fp_status);
9320}
9321
9322float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9323{
9324 return float64_round_to_int(x, fp_status);
9325}
9326
9327float32 HELPER(rints)(float32 x, void *fp_status)
9328{
9329 int old_flags = get_float_exception_flags(fp_status), new_flags;
9330 float32 ret;
9331
9332 ret = float32_round_to_int(x, fp_status);
9333
9334 /* Suppress any inexact exceptions the conversion produced */
9335 if (!(old_flags & float_flag_inexact)) {
9336 new_flags = get_float_exception_flags(fp_status);
9337 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9338 }
9339
9340 return ret;
9341}
9342
9343float64 HELPER(rintd)(float64 x, void *fp_status)
9344{
9345 int old_flags = get_float_exception_flags(fp_status), new_flags;
9346 float64 ret;
9347
9348 ret = float64_round_to_int(x, fp_status);
9349
9350 new_flags = get_float_exception_flags(fp_status);
9351
9352 /* Suppress any inexact exceptions the conversion produced */
9353 if (!(old_flags & float_flag_inexact)) {
9354 new_flags = get_float_exception_flags(fp_status);
9355 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9356 }
9357
9358 return ret;
9359}
9972da66
WN
9360
9361/* Convert ARM rounding mode to softfloat */
9362int arm_rmode_to_sf(int rmode)
9363{
9364 switch (rmode) {
9365 case FPROUNDING_TIEAWAY:
9366 rmode = float_round_ties_away;
9367 break;
9368 case FPROUNDING_ODD:
9369 /* FIXME: add support for TIEAWAY and ODD */
9370 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
9371 rmode);
9372 case FPROUNDING_TIEEVEN:
9373 default:
9374 rmode = float_round_nearest_even;
9375 break;
9376 case FPROUNDING_POSINF:
9377 rmode = float_round_up;
9378 break;
9379 case FPROUNDING_NEGINF:
9380 rmode = float_round_down;
9381 break;
9382 case FPROUNDING_ZERO:
9383 rmode = float_round_to_zero;
9384 break;
9385 }
9386 return rmode;
9387}
eb0ecd5a 9388
aa633469
PM
9389/* CRC helpers.
9390 * The upper bytes of val (above the number specified by 'bytes') must have
9391 * been zeroed out by the caller.
9392 */
eb0ecd5a
WN
9393uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
9394{
9395 uint8_t buf[4];
9396
aa633469 9397 stl_le_p(buf, val);
eb0ecd5a
WN
9398
9399 /* zlib crc32 converts the accumulator and output to one's complement. */
9400 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
9401}
9402
9403uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
9404{
9405 uint8_t buf[4];
9406
aa633469 9407 stl_le_p(buf, val);
eb0ecd5a
WN
9408
9409 /* Linux crc32c converts the output to one's complement. */
9410 return crc32c(acc, buf, bytes) ^ 0xffffffff;
9411}