]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/helper.c
target-arm: In cpsr_write() ignore mode switches from User mode
[mirror_qemu.git] / target-arm / helper.c
CommitLineData
74c21bd0 1#include "qemu/osdep.h"
b5ff1b31 2#include "cpu.h"
ccd38087 3#include "internals.h"
022c62cb 4#include "exec/gdbstub.h"
2ef6175a 5#include "exec/helper-proto.h"
1de7afc9 6#include "qemu/host-utils.h"
78027bb6 7#include "sysemu/arch_init.h"
9c17d615 8#include "sysemu/sysemu.h"
1de7afc9 9#include "qemu/bitops.h"
eb0ecd5a 10#include "qemu/crc32c.h"
f08b6170 11#include "exec/cpu_ldst.h"
1d854765 12#include "arm_ldst.h"
eb0ecd5a 13#include <zlib.h> /* For crc32 */
cfe67cef 14#include "exec/semihost.h"
f3a9b694 15#include "sysemu/kvm.h"
0b03bdfc 16
352c98e5
LV
17#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
18
4a501606 19#ifndef CONFIG_USER_ONLY
af51f566
EI
20static bool get_phys_addr(CPUARMState *env, target_ulong address,
21 int access_type, ARMMMUIdx mmu_idx,
22 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
23 target_ulong *page_size, uint32_t *fsr,
24 ARMMMUFaultInfo *fi);
7c2cb42b 25
37785977
EI
26static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
27 int access_type, ARMMMUIdx mmu_idx,
28 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
29 target_ulong *page_size_ptr, uint32_t *fsr,
30 ARMMMUFaultInfo *fi);
31
7c2cb42b
AF
32/* Definitions for the PMCCNTR and PMCR registers */
33#define PMCRD 0x8
34#define PMCRC 0x4
35#define PMCRE 0x1
4a501606
PM
36#endif
37
0ecb72a5 38static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
39{
40 int nregs;
41
42 /* VFP data registers are always little-endian. */
43 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
44 if (reg < nregs) {
45 stfq_le_p(buf, env->vfp.regs[reg]);
46 return 8;
47 }
48 if (arm_feature(env, ARM_FEATURE_NEON)) {
49 /* Aliases for Q regs. */
50 nregs += 16;
51 if (reg < nregs) {
52 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
53 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
54 return 16;
55 }
56 }
57 switch (reg - nregs) {
58 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
59 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
60 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
61 }
62 return 0;
63}
64
0ecb72a5 65static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
56aebc89
PB
66{
67 int nregs;
68
69 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
70 if (reg < nregs) {
71 env->vfp.regs[reg] = ldfq_le_p(buf);
72 return 8;
73 }
74 if (arm_feature(env, ARM_FEATURE_NEON)) {
75 nregs += 16;
76 if (reg < nregs) {
77 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
78 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
79 return 16;
80 }
81 }
82 switch (reg - nregs) {
83 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
84 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 85 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
86 }
87 return 0;
88}
89
6a669427
PM
90static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
91{
92 switch (reg) {
93 case 0 ... 31:
94 /* 128 bit FP register */
95 stfq_le_p(buf, env->vfp.regs[reg * 2]);
96 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
97 return 16;
98 case 32:
99 /* FPSR */
100 stl_p(buf, vfp_get_fpsr(env));
101 return 4;
102 case 33:
103 /* FPCR */
104 stl_p(buf, vfp_get_fpcr(env));
105 return 4;
106 default:
107 return 0;
108 }
109}
110
111static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
112{
113 switch (reg) {
114 case 0 ... 31:
115 /* 128 bit FP register */
116 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
117 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
118 return 16;
119 case 32:
120 /* FPSR */
121 vfp_set_fpsr(env, ldl_p(buf));
122 return 4;
123 case 33:
124 /* FPCR */
125 vfp_set_fpcr(env, ldl_p(buf));
126 return 4;
127 default:
128 return 0;
129 }
130}
131
c4241c7d 132static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
d4e6df63 133{
375421cc 134 assert(ri->fieldoffset);
67ed771d 135 if (cpreg_field_is_64bit(ri)) {
c4241c7d 136 return CPREG_FIELD64(env, ri);
22d9e1a9 137 } else {
c4241c7d 138 return CPREG_FIELD32(env, ri);
22d9e1a9 139 }
d4e6df63
PM
140}
141
c4241c7d
PM
142static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
143 uint64_t value)
d4e6df63 144{
375421cc 145 assert(ri->fieldoffset);
67ed771d 146 if (cpreg_field_is_64bit(ri)) {
22d9e1a9
PM
147 CPREG_FIELD64(env, ri) = value;
148 } else {
149 CPREG_FIELD32(env, ri) = value;
150 }
d4e6df63
PM
151}
152
11f136ee
FA
153static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
154{
155 return (char *)env + ri->fieldoffset;
156}
157
49a66191 158uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
721fae12 159{
59a1c327 160 /* Raw read of a coprocessor register (as needed for migration, etc). */
721fae12 161 if (ri->type & ARM_CP_CONST) {
59a1c327 162 return ri->resetvalue;
721fae12 163 } else if (ri->raw_readfn) {
59a1c327 164 return ri->raw_readfn(env, ri);
721fae12 165 } else if (ri->readfn) {
59a1c327 166 return ri->readfn(env, ri);
721fae12 167 } else {
59a1c327 168 return raw_read(env, ri);
721fae12 169 }
721fae12
PM
170}
171
59a1c327 172static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
7900e9f1 173 uint64_t v)
721fae12
PM
174{
175 /* Raw write of a coprocessor register (as needed for migration, etc).
721fae12
PM
176 * Note that constant registers are treated as write-ignored; the
177 * caller should check for success by whether a readback gives the
178 * value written.
179 */
180 if (ri->type & ARM_CP_CONST) {
59a1c327 181 return;
721fae12 182 } else if (ri->raw_writefn) {
c4241c7d 183 ri->raw_writefn(env, ri, v);
721fae12 184 } else if (ri->writefn) {
c4241c7d 185 ri->writefn(env, ri, v);
721fae12 186 } else {
afb2530f 187 raw_write(env, ri, v);
721fae12 188 }
721fae12
PM
189}
190
375421cc
PM
191static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
192{
193 /* Return true if the regdef would cause an assertion if you called
194 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
195 * program bug for it not to have the NO_RAW flag).
196 * NB that returning false here doesn't necessarily mean that calling
197 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
198 * read/write access functions which are safe for raw use" from "has
199 * read/write access functions which have side effects but has forgotten
200 * to provide raw access functions".
201 * The tests here line up with the conditions in read/write_raw_cp_reg()
202 * and assertions in raw_read()/raw_write().
203 */
204 if ((ri->type & ARM_CP_CONST) ||
205 ri->fieldoffset ||
206 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
207 return false;
208 }
209 return true;
210}
211
721fae12
PM
212bool write_cpustate_to_list(ARMCPU *cpu)
213{
214 /* Write the coprocessor state from cpu->env to the (index,value) list. */
215 int i;
216 bool ok = true;
217
218 for (i = 0; i < cpu->cpreg_array_len; i++) {
219 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
220 const ARMCPRegInfo *ri;
59a1c327 221
60322b39 222 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
223 if (!ri) {
224 ok = false;
225 continue;
226 }
7a0e58fa 227 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
228 continue;
229 }
59a1c327 230 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
721fae12
PM
231 }
232 return ok;
233}
234
235bool write_list_to_cpustate(ARMCPU *cpu)
236{
237 int i;
238 bool ok = true;
239
240 for (i = 0; i < cpu->cpreg_array_len; i++) {
241 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
242 uint64_t v = cpu->cpreg_values[i];
721fae12
PM
243 const ARMCPRegInfo *ri;
244
60322b39 245 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12
PM
246 if (!ri) {
247 ok = false;
248 continue;
249 }
7a0e58fa 250 if (ri->type & ARM_CP_NO_RAW) {
721fae12
PM
251 continue;
252 }
253 /* Write value and confirm it reads back as written
254 * (to catch read-only registers and partially read-only
255 * registers where the incoming migration value doesn't match)
256 */
59a1c327
PM
257 write_raw_cp_reg(&cpu->env, ri, v);
258 if (read_raw_cp_reg(&cpu->env, ri) != v) {
721fae12
PM
259 ok = false;
260 }
261 }
262 return ok;
263}
264
265static void add_cpreg_to_list(gpointer key, gpointer opaque)
266{
267 ARMCPU *cpu = opaque;
268 uint64_t regidx;
269 const ARMCPRegInfo *ri;
270
271 regidx = *(uint32_t *)key;
60322b39 272 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 273
7a0e58fa 274 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
275 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
276 /* The value array need not be initialized at this point */
277 cpu->cpreg_array_len++;
278 }
279}
280
281static void count_cpreg(gpointer key, gpointer opaque)
282{
283 ARMCPU *cpu = opaque;
284 uint64_t regidx;
285 const ARMCPRegInfo *ri;
286
287 regidx = *(uint32_t *)key;
60322b39 288 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
721fae12 289
7a0e58fa 290 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
721fae12
PM
291 cpu->cpreg_array_len++;
292 }
293}
294
295static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
296{
cbf239b7
AR
297 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
298 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
721fae12 299
cbf239b7
AR
300 if (aidx > bidx) {
301 return 1;
302 }
303 if (aidx < bidx) {
304 return -1;
305 }
306 return 0;
721fae12
PM
307}
308
309void init_cpreg_list(ARMCPU *cpu)
310{
311 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
312 * Note that we require cpreg_tuples[] to be sorted by key ID.
313 */
57b6d95e 314 GList *keys;
721fae12
PM
315 int arraylen;
316
57b6d95e 317 keys = g_hash_table_get_keys(cpu->cp_regs);
721fae12
PM
318 keys = g_list_sort(keys, cpreg_key_compare);
319
320 cpu->cpreg_array_len = 0;
321
322 g_list_foreach(keys, count_cpreg, cpu);
323
324 arraylen = cpu->cpreg_array_len;
325 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
326 cpu->cpreg_values = g_new(uint64_t, arraylen);
327 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
328 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
330 cpu->cpreg_array_len = 0;
331
332 g_list_foreach(keys, add_cpreg_to_list, cpu);
333
334 assert(cpu->cpreg_array_len == arraylen);
335
336 g_list_free(keys);
337}
338
68e9c2fe
EI
339/*
340 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
341 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
342 *
343 * access_el3_aa32ns: Used to check AArch32 register views.
344 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
345 */
346static CPAccessResult access_el3_aa32ns(CPUARMState *env,
3f208fd7
PM
347 const ARMCPRegInfo *ri,
348 bool isread)
68e9c2fe
EI
349{
350 bool secure = arm_is_secure_below_el3(env);
351
352 assert(!arm_el_is_aa64(env, 3));
353 if (secure) {
354 return CP_ACCESS_TRAP_UNCATEGORIZED;
355 }
356 return CP_ACCESS_OK;
357}
358
359static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
3f208fd7
PM
360 const ARMCPRegInfo *ri,
361 bool isread)
68e9c2fe
EI
362{
363 if (!arm_el_is_aa64(env, 3)) {
3f208fd7 364 return access_el3_aa32ns(env, ri, isread);
68e9c2fe
EI
365 }
366 return CP_ACCESS_OK;
367}
368
5513c3ab
PM
369/* Some secure-only AArch32 registers trap to EL3 if used from
370 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
371 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
372 * We assume that the .access field is set to PL1_RW.
373 */
374static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
3f208fd7
PM
375 const ARMCPRegInfo *ri,
376 bool isread)
5513c3ab
PM
377{
378 if (arm_current_el(env) == 3) {
379 return CP_ACCESS_OK;
380 }
381 if (arm_is_secure_below_el3(env)) {
382 return CP_ACCESS_TRAP_EL3;
383 }
384 /* This will be EL1 NS and EL2 NS, which just UNDEF */
385 return CP_ACCESS_TRAP_UNCATEGORIZED;
386}
387
187f678d
PM
388/* Check for traps to "powerdown debug" registers, which are controlled
389 * by MDCR.TDOSA
390 */
391static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
392 bool isread)
393{
394 int el = arm_current_el(env);
395
396 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
397 && !arm_is_secure_below_el3(env)) {
398 return CP_ACCESS_TRAP_EL2;
399 }
400 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
401 return CP_ACCESS_TRAP_EL3;
402 }
403 return CP_ACCESS_OK;
404}
405
91b0a238
PM
406/* Check for traps to "debug ROM" registers, which are controlled
407 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
408 */
409static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
410 bool isread)
411{
412 int el = arm_current_el(env);
413
414 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
415 && !arm_is_secure_below_el3(env)) {
416 return CP_ACCESS_TRAP_EL2;
417 }
418 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
419 return CP_ACCESS_TRAP_EL3;
420 }
421 return CP_ACCESS_OK;
422}
423
d6c8cf81
PM
424/* Check for traps to general debug registers, which are controlled
425 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
426 */
427static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
428 bool isread)
429{
430 int el = arm_current_el(env);
431
432 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
433 && !arm_is_secure_below_el3(env)) {
434 return CP_ACCESS_TRAP_EL2;
435 }
436 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
437 return CP_ACCESS_TRAP_EL3;
438 }
439 return CP_ACCESS_OK;
440}
441
c4241c7d 442static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
c983fe6c 443{
00c8cb0a
AF
444 ARMCPU *cpu = arm_env_get_cpu(env);
445
8d5c773e 446 raw_write(env, ri, value);
00c8cb0a 447 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
c983fe6c
PM
448}
449
c4241c7d 450static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
08de207b 451{
00c8cb0a
AF
452 ARMCPU *cpu = arm_env_get_cpu(env);
453
8d5c773e 454 if (raw_read(env, ri) != value) {
08de207b
PM
455 /* Unlike real hardware the qemu TLB uses virtual addresses,
456 * not modified virtual addresses, so this causes a TLB flush.
457 */
00c8cb0a 458 tlb_flush(CPU(cpu), 1);
8d5c773e 459 raw_write(env, ri, value);
08de207b 460 }
08de207b 461}
c4241c7d
PM
462
463static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
464 uint64_t value)
08de207b 465{
00c8cb0a
AF
466 ARMCPU *cpu = arm_env_get_cpu(env);
467
8d5c773e 468 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
014406b5 469 && !extended_addresses_enabled(env)) {
08de207b
PM
470 /* For VMSA (when not using the LPAE long descriptor page table
471 * format) this register includes the ASID, so do a TLB flush.
472 * For PMSA it is purely a process ID and no action is needed.
473 */
00c8cb0a 474 tlb_flush(CPU(cpu), 1);
08de207b 475 }
8d5c773e 476 raw_write(env, ri, value);
08de207b
PM
477}
478
c4241c7d
PM
479static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
480 uint64_t value)
d929823f
PM
481{
482 /* Invalidate all (TLBIALL) */
00c8cb0a
AF
483 ARMCPU *cpu = arm_env_get_cpu(env);
484
485 tlb_flush(CPU(cpu), 1);
d929823f
PM
486}
487
c4241c7d
PM
488static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
489 uint64_t value)
d929823f
PM
490{
491 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
31b030d4
AF
492 ARMCPU *cpu = arm_env_get_cpu(env);
493
494 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
495}
496
c4241c7d
PM
497static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
498 uint64_t value)
d929823f
PM
499{
500 /* Invalidate by ASID (TLBIASID) */
00c8cb0a
AF
501 ARMCPU *cpu = arm_env_get_cpu(env);
502
503 tlb_flush(CPU(cpu), value == 0);
d929823f
PM
504}
505
c4241c7d
PM
506static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
507 uint64_t value)
d929823f
PM
508{
509 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
31b030d4
AF
510 ARMCPU *cpu = arm_env_get_cpu(env);
511
512 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
d929823f
PM
513}
514
fa439fc5
PM
515/* IS variants of TLB operations must affect all cores */
516static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
517 uint64_t value)
518{
519 CPUState *other_cs;
520
521 CPU_FOREACH(other_cs) {
522 tlb_flush(other_cs, 1);
523 }
524}
525
526static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
528{
529 CPUState *other_cs;
530
531 CPU_FOREACH(other_cs) {
532 tlb_flush(other_cs, value == 0);
533 }
534}
535
536static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537 uint64_t value)
538{
539 CPUState *other_cs;
540
541 CPU_FOREACH(other_cs) {
542 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
543 }
544}
545
546static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
547 uint64_t value)
548{
549 CPUState *other_cs;
550
551 CPU_FOREACH(other_cs) {
552 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
553 }
554}
555
e9aa6c21 556static const ARMCPRegInfo cp_reginfo[] = {
54bf36ed
FA
557 /* Define the secure and non-secure FCSE identifier CP registers
558 * separately because there is no secure bank in V8 (no _EL3). This allows
559 * the secure register to be properly reset and migrated. There is also no
560 * v8 EL1 version of the register so the non-secure instance stands alone.
561 */
562 { .name = "FCSEIDR(NS)",
563 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
564 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
565 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
566 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
567 { .name = "FCSEIDR(S)",
568 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
569 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
570 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
d4e6df63 571 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
54bf36ed
FA
572 /* Define the secure and non-secure context identifier CP registers
573 * separately because there is no secure bank in V8 (no _EL3). This allows
574 * the secure register to be properly reset and migrated. In the
575 * non-secure case, the 32-bit register will have reset and migration
576 * disabled during registration as it is handled by the 64-bit instance.
577 */
578 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
014406b5 579 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
54bf36ed
FA
580 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
581 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
582 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
583 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
584 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
585 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
586 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
d4e6df63 587 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
9449fdf6
PM
588 REGINFO_SENTINEL
589};
590
591static const ARMCPRegInfo not_v8_cp_reginfo[] = {
592 /* NB: Some of these registers exist in v8 but with more precise
593 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
594 */
595 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
596 { .name = "DACR",
597 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
598 .access = PL1_RW, .resetvalue = 0,
599 .writefn = dacr_write, .raw_writefn = raw_write,
600 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
601 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a903c449
EI
602 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
603 * For v6 and v5, these mappings are overly broad.
4fdd17dd 604 */
a903c449
EI
605 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
606 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
607 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
608 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
609 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
610 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
611 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
4fdd17dd 612 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
c4804214
PM
613 /* Cache maintenance ops; some of this space may be overridden later. */
614 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
615 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
616 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
e9aa6c21
PM
617 REGINFO_SENTINEL
618};
619
7d57f408
PM
620static const ARMCPRegInfo not_v6_cp_reginfo[] = {
621 /* Not all pre-v6 cores implemented this WFI, so this is slightly
622 * over-broad.
623 */
624 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
625 .access = PL1_W, .type = ARM_CP_WFI },
626 REGINFO_SENTINEL
627};
628
629static const ARMCPRegInfo not_v7_cp_reginfo[] = {
630 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
631 * is UNPREDICTABLE; we choose to NOP as most implementations do).
632 */
633 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
634 .access = PL1_W, .type = ARM_CP_WFI },
34f90529
PM
635 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
636 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
637 * OMAPCP will override this space.
638 */
639 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
640 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
641 .resetvalue = 0 },
642 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
643 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
644 .resetvalue = 0 },
776d4e5c
PM
645 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
646 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
7a0e58fa 647 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 648 .resetvalue = 0 },
50300698
PM
649 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
650 * implementing it as RAZ means the "debug architecture version" bits
651 * will read as a reserved value, which should cause Linux to not try
652 * to use the debug hardware.
653 */
654 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
655 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
995939a6
PM
656 /* MMU TLB control. Note that the wildcarding means we cover not just
657 * the unified TLB ops but also the dside/iside/inner-shareable variants.
658 */
659 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
660 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
7a0e58fa 661 .type = ARM_CP_NO_RAW },
995939a6
PM
662 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
663 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
7a0e58fa 664 .type = ARM_CP_NO_RAW },
995939a6
PM
665 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
666 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
7a0e58fa 667 .type = ARM_CP_NO_RAW },
995939a6
PM
668 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
669 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
7a0e58fa 670 .type = ARM_CP_NO_RAW },
a903c449
EI
671 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
672 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
673 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
674 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
7d57f408
PM
675 REGINFO_SENTINEL
676};
677
c4241c7d
PM
678static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
679 uint64_t value)
2771db27 680{
f0aff255
FA
681 uint32_t mask = 0;
682
683 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
684 if (!arm_feature(env, ARM_FEATURE_V8)) {
685 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
686 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
687 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
688 */
689 if (arm_feature(env, ARM_FEATURE_VFP)) {
690 /* VFP coprocessor: cp10 & cp11 [23:20] */
691 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
692
693 if (!arm_feature(env, ARM_FEATURE_NEON)) {
694 /* ASEDIS [31] bit is RAO/WI */
695 value |= (1 << 31);
696 }
697
698 /* VFPv3 and upwards with NEON implement 32 double precision
699 * registers (D0-D31).
700 */
701 if (!arm_feature(env, ARM_FEATURE_NEON) ||
702 !arm_feature(env, ARM_FEATURE_VFP3)) {
703 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
704 value |= (1 << 30);
705 }
706 }
707 value &= mask;
2771db27 708 }
7ebd5f2e 709 env->cp15.cpacr_el1 = value;
2771db27
PM
710}
711
3f208fd7
PM
712static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
713 bool isread)
c6f19164
GB
714{
715 if (arm_feature(env, ARM_FEATURE_V8)) {
716 /* Check if CPACR accesses are to be trapped to EL2 */
717 if (arm_current_el(env) == 1 &&
718 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
719 return CP_ACCESS_TRAP_EL2;
720 /* Check if CPACR accesses are to be trapped to EL3 */
721 } else if (arm_current_el(env) < 3 &&
722 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
723 return CP_ACCESS_TRAP_EL3;
724 }
725 }
726
727 return CP_ACCESS_OK;
728}
729
3f208fd7
PM
730static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
731 bool isread)
c6f19164
GB
732{
733 /* Check if CPTR accesses are set to trap to EL3 */
734 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
735 return CP_ACCESS_TRAP_EL3;
736 }
737
738 return CP_ACCESS_OK;
739}
740
7d57f408
PM
741static const ARMCPRegInfo v6_cp_reginfo[] = {
742 /* prefetch by MVA in v6, NOP in v7 */
743 { .name = "MVA_prefetch",
744 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
745 .access = PL1_W, .type = ARM_CP_NOP },
6df99dec
SS
746 /* We need to break the TB after ISB to execute self-modifying code
747 * correctly and also to take any pending interrupts immediately.
748 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
749 */
7d57f408 750 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
6df99dec 751 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
091fd17c 752 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
7d57f408 753 .access = PL0_W, .type = ARM_CP_NOP },
091fd17c 754 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
7d57f408 755 .access = PL0_W, .type = ARM_CP_NOP },
06d76f31 756 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
6cd8a264 757 .access = PL1_RW,
b848ce2b
FA
758 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
759 offsetof(CPUARMState, cp15.ifar_ns) },
06d76f31
PM
760 .resetvalue = 0, },
761 /* Watchpoint Fault Address Register : should actually only be present
762 * for 1136, 1176, 11MPCore.
763 */
764 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
765 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
34222fb8 766 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
c6f19164 767 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
7ebd5f2e 768 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
2771db27 769 .resetvalue = 0, .writefn = cpacr_write },
7d57f408
PM
770 REGINFO_SENTINEL
771};
772
3f208fd7
PM
773static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
774 bool isread)
200ac0ef 775{
3b163b01 776 /* Performance monitor registers user accessibility is controlled
fcd25206 777 * by PMUSERENR.
200ac0ef 778 */
dcbff19b 779 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
fcd25206 780 return CP_ACCESS_TRAP;
200ac0ef 781 }
fcd25206 782 return CP_ACCESS_OK;
200ac0ef
PM
783}
784
7c2cb42b 785#ifndef CONFIG_USER_ONLY
87124fde
AF
786
787static inline bool arm_ccnt_enabled(CPUARMState *env)
788{
789 /* This does not support checking PMCCFILTR_EL0 register */
790
791 if (!(env->cp15.c9_pmcr & PMCRE)) {
792 return false;
793 }
794
795 return true;
796}
797
ec7b4ce4
AF
798void pmccntr_sync(CPUARMState *env)
799{
800 uint64_t temp_ticks;
801
352c98e5
LV
802 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
803 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
ec7b4ce4
AF
804
805 if (env->cp15.c9_pmcr & PMCRD) {
806 /* Increment once every 64 processor clock cycles */
807 temp_ticks /= 64;
808 }
809
810 if (arm_ccnt_enabled(env)) {
811 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
812 }
813}
814
c4241c7d
PM
815static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
816 uint64_t value)
200ac0ef 817{
942a155b 818 pmccntr_sync(env);
7c2cb42b
AF
819
820 if (value & PMCRC) {
821 /* The counter has been reset */
822 env->cp15.c15_ccnt = 0;
823 }
824
200ac0ef
PM
825 /* only the DP, X, D and E bits are writable */
826 env->cp15.c9_pmcr &= ~0x39;
827 env->cp15.c9_pmcr |= (value & 0x39);
7c2cb42b 828
942a155b 829 pmccntr_sync(env);
7c2cb42b
AF
830}
831
832static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
833{
c92c0687 834 uint64_t total_ticks;
7c2cb42b 835
942a155b 836 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
837 /* Counter is disabled, do not change value */
838 return env->cp15.c15_ccnt;
839 }
840
352c98e5
LV
841 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
842 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
843
844 if (env->cp15.c9_pmcr & PMCRD) {
845 /* Increment once every 64 processor clock cycles */
846 total_ticks /= 64;
847 }
848 return total_ticks - env->cp15.c15_ccnt;
849}
850
851static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
852 uint64_t value)
853{
c92c0687 854 uint64_t total_ticks;
7c2cb42b 855
942a155b 856 if (!arm_ccnt_enabled(env)) {
7c2cb42b
AF
857 /* Counter is disabled, set the absolute value */
858 env->cp15.c15_ccnt = value;
859 return;
860 }
861
352c98e5
LV
862 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
863 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
7c2cb42b
AF
864
865 if (env->cp15.c9_pmcr & PMCRD) {
866 /* Increment once every 64 processor clock cycles */
867 total_ticks /= 64;
868 }
869 env->cp15.c15_ccnt = total_ticks - value;
200ac0ef 870}
421c7ebd
PC
871
872static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
873 uint64_t value)
874{
875 uint64_t cur_val = pmccntr_read(env, NULL);
876
877 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
878}
879
ec7b4ce4
AF
880#else /* CONFIG_USER_ONLY */
881
882void pmccntr_sync(CPUARMState *env)
883{
884}
885
7c2cb42b 886#endif
200ac0ef 887
0614601c
AF
888static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
889 uint64_t value)
890{
891 pmccntr_sync(env);
892 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
893 pmccntr_sync(env);
894}
895
c4241c7d 896static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
897 uint64_t value)
898{
200ac0ef
PM
899 value &= (1 << 31);
900 env->cp15.c9_pmcnten |= value;
200ac0ef
PM
901}
902
c4241c7d
PM
903static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
904 uint64_t value)
200ac0ef 905{
200ac0ef
PM
906 value &= (1 << 31);
907 env->cp15.c9_pmcnten &= ~value;
200ac0ef
PM
908}
909
c4241c7d
PM
910static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
911 uint64_t value)
200ac0ef 912{
200ac0ef 913 env->cp15.c9_pmovsr &= ~value;
200ac0ef
PM
914}
915
c4241c7d
PM
916static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
917 uint64_t value)
200ac0ef 918{
200ac0ef 919 env->cp15.c9_pmxevtyper = value & 0xff;
200ac0ef
PM
920}
921
c4241c7d 922static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
200ac0ef
PM
923 uint64_t value)
924{
925 env->cp15.c9_pmuserenr = value & 1;
200ac0ef
PM
926}
927
c4241c7d
PM
928static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
929 uint64_t value)
200ac0ef
PM
930{
931 /* We have no event counters so only the C bit can be changed */
932 value &= (1 << 31);
933 env->cp15.c9_pminten |= value;
200ac0ef
PM
934}
935
c4241c7d
PM
936static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
937 uint64_t value)
200ac0ef
PM
938{
939 value &= (1 << 31);
940 env->cp15.c9_pminten &= ~value;
200ac0ef
PM
941}
942
c4241c7d
PM
943static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
944 uint64_t value)
8641136c 945{
a505d7fe
PM
946 /* Note that even though the AArch64 view of this register has bits
947 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
948 * architectural requirements for bits which are RES0 only in some
949 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
950 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
951 */
855ea66d 952 raw_write(env, ri, value & ~0x1FULL);
8641136c
NR
953}
954
64e0e2de
EI
955static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
956{
957 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
958 * For bits that vary between AArch32/64, code needs to check the
959 * current execution mode before directly using the feature bit.
960 */
961 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
962
963 if (!arm_feature(env, ARM_FEATURE_EL2)) {
964 valid_mask &= ~SCR_HCE;
965
966 /* On ARMv7, SMD (or SCD as it is called in v7) is only
967 * supported if EL2 exists. The bit is UNK/SBZP when
968 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
969 * when EL2 is unavailable.
4eb27640 970 * On ARMv8, this bit is always available.
64e0e2de 971 */
4eb27640
GB
972 if (arm_feature(env, ARM_FEATURE_V7) &&
973 !arm_feature(env, ARM_FEATURE_V8)) {
64e0e2de
EI
974 valid_mask &= ~SCR_SMD;
975 }
976 }
977
978 /* Clear all-context RES0 bits. */
979 value &= valid_mask;
980 raw_write(env, ri, value);
981}
982
c4241c7d 983static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
776d4e5c
PM
984{
985 ARMCPU *cpu = arm_env_get_cpu(env);
b85a1fd6
FA
986
987 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
988 * bank
989 */
990 uint32_t index = A32_BANKED_REG_GET(env, csselr,
991 ri->secure & ARM_CP_SECSTATE_S);
992
993 return cpu->ccsidr[index];
776d4e5c
PM
994}
995
c4241c7d
PM
996static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
997 uint64_t value)
776d4e5c 998{
8d5c773e 999 raw_write(env, ri, value & 0xf);
776d4e5c
PM
1000}
1001
1090b9c6
PM
1002static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1003{
1004 CPUState *cs = ENV_GET_CPU(env);
1005 uint64_t ret = 0;
1006
1007 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1008 ret |= CPSR_I;
1009 }
1010 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1011 ret |= CPSR_F;
1012 }
1013 /* External aborts are not possible in QEMU so A bit is always clear */
1014 return ret;
1015}
1016
e9aa6c21 1017static const ARMCPRegInfo v7_cp_reginfo[] = {
7d57f408
PM
1018 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1019 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1020 .access = PL1_W, .type = ARM_CP_NOP },
200ac0ef
PM
1021 /* Performance monitors are implementation defined in v7,
1022 * but with an ARM recommended set of registers, which we
1023 * follow (although we don't actually implement any counters)
1024 *
1025 * Performance registers fall into three categories:
1026 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1027 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1028 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1029 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1030 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1031 */
1032 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
7a0e58fa 1033 .access = PL0_RW, .type = ARM_CP_ALIAS,
8521466b 1034 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1035 .writefn = pmcntenset_write,
1036 .accessfn = pmreg_access,
1037 .raw_writefn = raw_write },
8521466b
AF
1038 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1039 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1040 .access = PL0_RW, .accessfn = pmreg_access,
1041 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1042 .writefn = pmcntenset_write, .raw_writefn = raw_write },
200ac0ef 1043 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
8521466b
AF
1044 .access = PL0_RW,
1045 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
fcd25206
PM
1046 .accessfn = pmreg_access,
1047 .writefn = pmcntenclr_write,
7a0e58fa 1048 .type = ARM_CP_ALIAS },
8521466b
AF
1049 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1050 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1051 .access = PL0_RW, .accessfn = pmreg_access,
7a0e58fa 1052 .type = ARM_CP_ALIAS,
8521466b
AF
1053 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1054 .writefn = pmcntenclr_write },
200ac0ef
PM
1055 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1056 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
fcd25206
PM
1057 .accessfn = pmreg_access,
1058 .writefn = pmovsr_write,
1059 .raw_writefn = raw_write },
978364f1
AF
1060 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1061 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1062 .access = PL0_RW, .accessfn = pmreg_access,
1063 .type = ARM_CP_ALIAS,
1064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1065 .writefn = pmovsr_write,
1066 .raw_writefn = raw_write },
fcd25206 1067 /* Unimplemented so WI. */
200ac0ef 1068 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
fcd25206 1069 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
200ac0ef 1070 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
fcd25206 1071 * We choose to RAZ/WI.
200ac0ef
PM
1072 */
1073 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
fcd25206
PM
1074 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1075 .accessfn = pmreg_access },
7c2cb42b 1076#ifndef CONFIG_USER_ONLY
200ac0ef 1077 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
7c2cb42b 1078 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
421c7ebd 1079 .readfn = pmccntr_read, .writefn = pmccntr_write32,
fcd25206 1080 .accessfn = pmreg_access },
8521466b
AF
1081 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1082 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1083 .access = PL0_RW, .accessfn = pmreg_access,
1084 .type = ARM_CP_IO,
1085 .readfn = pmccntr_read, .writefn = pmccntr_write, },
7c2cb42b 1086#endif
8521466b
AF
1087 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1088 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
0614601c 1089 .writefn = pmccfiltr_write,
8521466b
AF
1090 .access = PL0_RW, .accessfn = pmreg_access,
1091 .type = ARM_CP_IO,
1092 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1093 .resetvalue = 0, },
200ac0ef
PM
1094 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1095 .access = PL0_RW,
1096 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
fcd25206
PM
1097 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
1098 .raw_writefn = raw_write },
1099 /* Unimplemented, RAZ/WI. */
200ac0ef 1100 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
fcd25206
PM
1101 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1102 .accessfn = pmreg_access },
200ac0ef
PM
1103 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1104 .access = PL0_R | PL1_RW,
1105 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1106 .resetvalue = 0,
d4e6df63 1107 .writefn = pmuserenr_write, .raw_writefn = raw_write },
8a83ffc2
AF
1108 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1109 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1110 .access = PL0_R | PL1_RW, .type = ARM_CP_ALIAS,
1111 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1112 .resetvalue = 0,
1113 .writefn = pmuserenr_write, .raw_writefn = raw_write },
200ac0ef
PM
1114 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1115 .access = PL1_RW,
1116 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1117 .resetvalue = 0,
d4e6df63 1118 .writefn = pmintenset_write, .raw_writefn = raw_write },
200ac0ef 1119 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
7a0e58fa 1120 .access = PL1_RW, .type = ARM_CP_ALIAS,
200ac0ef 1121 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
b061a82b 1122 .writefn = pmintenclr_write, },
978364f1
AF
1123 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1124 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1125 .access = PL1_RW, .type = ARM_CP_ALIAS,
1126 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1127 .writefn = pmintenclr_write },
a505d7fe
PM
1128 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
1129 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8641136c 1130 .access = PL1_RW, .writefn = vbar_write,
fb6c91ba
GB
1131 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
1132 offsetof(CPUARMState, cp15.vbar_ns) },
8641136c 1133 .resetvalue = 0 },
7da845b0
PM
1134 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1135 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
7a0e58fa 1136 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
7da845b0
PM
1137 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1138 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
b85a1fd6
FA
1139 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1140 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1141 offsetof(CPUARMState, cp15.csselr_ns) } },
776d4e5c
PM
1142 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1143 * just RAZ for all cores:
1144 */
0ff644a7
PM
1145 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1146 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
776d4e5c 1147 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
f32cdad5
PM
1148 /* Auxiliary fault status registers: these also are IMPDEF, and we
1149 * choose to RAZ/WI for all cores.
1150 */
1151 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1152 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1153 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1154 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1155 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1156 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b0fe2427
PM
1157 /* MAIR can just read-as-written because we don't implement caches
1158 * and so don't need to care about memory attributes.
1159 */
1160 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1161 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
be693c87 1162 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
b0fe2427 1163 .resetvalue = 0 },
4cfb8ad8
PM
1164 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1165 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1166 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1167 .resetvalue = 0 },
b0fe2427
PM
1168 /* For non-long-descriptor page tables these are PRRR and NMRR;
1169 * regardless they still act as reads-as-written for QEMU.
b0fe2427 1170 */
1281f8e3 1171 /* MAIR0/1 are defined separately from their 64-bit counterpart which
be693c87
GB
1172 * allows them to assign the correct fieldoffset based on the endianness
1173 * handled in the field definitions.
1174 */
a903c449 1175 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
b0fe2427 1176 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
be693c87
GB
1177 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1178 offsetof(CPUARMState, cp15.mair0_ns) },
b0fe2427 1179 .resetfn = arm_cp_reset_ignore },
a903c449 1180 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
b0fe2427 1181 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
be693c87
GB
1182 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1183 offsetof(CPUARMState, cp15.mair1_ns) },
b0fe2427 1184 .resetfn = arm_cp_reset_ignore },
1090b9c6
PM
1185 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1186 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
7a0e58fa 1187 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
995939a6
PM
1188 /* 32 bit ITLB invalidates */
1189 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
7a0e58fa 1190 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1191 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7a0e58fa 1192 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1193 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
7a0e58fa 1194 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1195 /* 32 bit DTLB invalidates */
1196 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
7a0e58fa 1197 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1198 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7a0e58fa 1199 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1200 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
7a0e58fa 1201 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6
PM
1202 /* 32 bit TLB invalidates */
1203 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 1204 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
995939a6 1205 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 1206 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
995939a6 1207 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 1208 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
995939a6 1209 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 1210 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
995939a6
PM
1211 REGINFO_SENTINEL
1212};
1213
1214static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1215 /* 32 bit TLB invalidates, Inner Shareable */
1216 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 1217 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
995939a6 1218 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 1219 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
995939a6 1220 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 1221 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1222 .writefn = tlbiasid_is_write },
995939a6 1223 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 1224 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 1225 .writefn = tlbimvaa_is_write },
e9aa6c21
PM
1226 REGINFO_SENTINEL
1227};
1228
c4241c7d
PM
1229static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1230 uint64_t value)
c326b979
PM
1231{
1232 value &= 1;
1233 env->teecr = value;
c326b979
PM
1234}
1235
3f208fd7
PM
1236static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1237 bool isread)
c326b979 1238{
dcbff19b 1239 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
92611c00 1240 return CP_ACCESS_TRAP;
c326b979 1241 }
92611c00 1242 return CP_ACCESS_OK;
c326b979
PM
1243}
1244
1245static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1246 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1247 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1248 .resetvalue = 0,
1249 .writefn = teecr_write },
1250 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1251 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
92611c00 1252 .accessfn = teehbr_access, .resetvalue = 0 },
c326b979
PM
1253 REGINFO_SENTINEL
1254};
1255
4d31c596 1256static const ARMCPRegInfo v6k_cp_reginfo[] = {
e4fe830b
PM
1257 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1258 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1259 .access = PL0_RW,
54bf36ed 1260 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
4d31c596
PM
1261 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1262 .access = PL0_RW,
54bf36ed
FA
1263 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1264 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
e4fe830b
PM
1265 .resetfn = arm_cp_reset_ignore },
1266 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1267 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1268 .access = PL0_R|PL1_W,
54bf36ed
FA
1269 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1270 .resetvalue = 0},
4d31c596
PM
1271 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1272 .access = PL0_R|PL1_W,
54bf36ed
FA
1273 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1274 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
e4fe830b 1275 .resetfn = arm_cp_reset_ignore },
54bf36ed 1276 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
e4fe830b 1277 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
4d31c596 1278 .access = PL1_RW,
54bf36ed
FA
1279 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1280 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1281 .access = PL1_RW,
1282 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1283 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1284 .resetvalue = 0 },
4d31c596
PM
1285 REGINFO_SENTINEL
1286};
1287
55d284af
PM
1288#ifndef CONFIG_USER_ONLY
1289
3f208fd7
PM
1290static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1291 bool isread)
00108f2d 1292{
75502672
PM
1293 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1294 * Writable only at the highest implemented exception level.
1295 */
1296 int el = arm_current_el(env);
1297
1298 switch (el) {
1299 case 0:
1300 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1301 return CP_ACCESS_TRAP;
1302 }
1303 break;
1304 case 1:
1305 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1306 arm_is_secure_below_el3(env)) {
1307 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1308 return CP_ACCESS_TRAP_UNCATEGORIZED;
1309 }
1310 break;
1311 case 2:
1312 case 3:
1313 break;
00108f2d 1314 }
75502672
PM
1315
1316 if (!isread && el < arm_highest_el(env)) {
1317 return CP_ACCESS_TRAP_UNCATEGORIZED;
1318 }
1319
00108f2d
PM
1320 return CP_ACCESS_OK;
1321}
1322
3f208fd7
PM
1323static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1324 bool isread)
00108f2d 1325{
0b6440af
EI
1326 unsigned int cur_el = arm_current_el(env);
1327 bool secure = arm_is_secure(env);
1328
00108f2d 1329 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
0b6440af 1330 if (cur_el == 0 &&
00108f2d
PM
1331 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1332 return CP_ACCESS_TRAP;
1333 }
0b6440af
EI
1334
1335 if (arm_feature(env, ARM_FEATURE_EL2) &&
1336 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1337 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1338 return CP_ACCESS_TRAP_EL2;
1339 }
00108f2d
PM
1340 return CP_ACCESS_OK;
1341}
1342
3f208fd7
PM
1343static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1344 bool isread)
00108f2d 1345{
0b6440af
EI
1346 unsigned int cur_el = arm_current_el(env);
1347 bool secure = arm_is_secure(env);
1348
00108f2d
PM
1349 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1350 * EL0[PV]TEN is zero.
1351 */
0b6440af 1352 if (cur_el == 0 &&
00108f2d
PM
1353 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1354 return CP_ACCESS_TRAP;
1355 }
0b6440af
EI
1356
1357 if (arm_feature(env, ARM_FEATURE_EL2) &&
1358 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1359 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1360 return CP_ACCESS_TRAP_EL2;
1361 }
00108f2d
PM
1362 return CP_ACCESS_OK;
1363}
1364
1365static CPAccessResult gt_pct_access(CPUARMState *env,
3f208fd7
PM
1366 const ARMCPRegInfo *ri,
1367 bool isread)
00108f2d 1368{
3f208fd7 1369 return gt_counter_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1370}
1371
1372static CPAccessResult gt_vct_access(CPUARMState *env,
3f208fd7
PM
1373 const ARMCPRegInfo *ri,
1374 bool isread)
00108f2d 1375{
3f208fd7 1376 return gt_counter_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1377}
1378
3f208fd7
PM
1379static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1380 bool isread)
00108f2d 1381{
3f208fd7 1382 return gt_timer_access(env, GTIMER_PHYS, isread);
00108f2d
PM
1383}
1384
3f208fd7
PM
1385static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1386 bool isread)
00108f2d 1387{
3f208fd7 1388 return gt_timer_access(env, GTIMER_VIRT, isread);
00108f2d
PM
1389}
1390
b4d3978c 1391static CPAccessResult gt_stimer_access(CPUARMState *env,
3f208fd7
PM
1392 const ARMCPRegInfo *ri,
1393 bool isread)
b4d3978c
PM
1394{
1395 /* The AArch64 register view of the secure physical timer is
1396 * always accessible from EL3, and configurably accessible from
1397 * Secure EL1.
1398 */
1399 switch (arm_current_el(env)) {
1400 case 1:
1401 if (!arm_is_secure(env)) {
1402 return CP_ACCESS_TRAP;
1403 }
1404 if (!(env->cp15.scr_el3 & SCR_ST)) {
1405 return CP_ACCESS_TRAP_EL3;
1406 }
1407 return CP_ACCESS_OK;
1408 case 0:
1409 case 2:
1410 return CP_ACCESS_TRAP;
1411 case 3:
1412 return CP_ACCESS_OK;
1413 default:
1414 g_assert_not_reached();
1415 }
1416}
1417
55d284af
PM
1418static uint64_t gt_get_countervalue(CPUARMState *env)
1419{
bc72ad67 1420 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
55d284af
PM
1421}
1422
1423static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1424{
1425 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1426
1427 if (gt->ctl & 1) {
1428 /* Timer enabled: calculate and set current ISTATUS, irq, and
1429 * reset timer to when ISTATUS next has to change
1430 */
edac4d8a
EI
1431 uint64_t offset = timeridx == GTIMER_VIRT ?
1432 cpu->env.cp15.cntvoff_el2 : 0;
55d284af
PM
1433 uint64_t count = gt_get_countervalue(&cpu->env);
1434 /* Note that this must be unsigned 64 bit arithmetic: */
edac4d8a 1435 int istatus = count - offset >= gt->cval;
55d284af
PM
1436 uint64_t nexttick;
1437
1438 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1439 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1440 (istatus && !(gt->ctl & 2)));
1441 if (istatus) {
1442 /* Next transition is when count rolls back over to zero */
1443 nexttick = UINT64_MAX;
1444 } else {
1445 /* Next transition is when we hit cval */
edac4d8a 1446 nexttick = gt->cval + offset;
55d284af
PM
1447 }
1448 /* Note that the desired next expiry time might be beyond the
1449 * signed-64-bit range of a QEMUTimer -- in this case we just
1450 * set the timer for as far in the future as possible. When the
1451 * timer expires we will reset the timer for any remaining period.
1452 */
1453 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1454 nexttick = INT64_MAX / GTIMER_SCALE;
1455 }
bc72ad67 1456 timer_mod(cpu->gt_timer[timeridx], nexttick);
55d284af
PM
1457 } else {
1458 /* Timer disabled: ISTATUS and timer output always clear */
1459 gt->ctl &= ~4;
1460 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
bc72ad67 1461 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1462 }
1463}
1464
0e3eca4c
EI
1465static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1466 int timeridx)
55d284af
PM
1467{
1468 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af 1469
bc72ad67 1470 timer_del(cpu->gt_timer[timeridx]);
55d284af
PM
1471}
1472
c4241c7d 1473static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
55d284af 1474{
c4241c7d 1475 return gt_get_countervalue(env);
55d284af
PM
1476}
1477
edac4d8a
EI
1478static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1479{
1480 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1481}
1482
c4241c7d 1483static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1484 int timeridx,
c4241c7d 1485 uint64_t value)
55d284af 1486{
55d284af
PM
1487 env->cp15.c14_timer[timeridx].cval = value;
1488 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af 1489}
c4241c7d 1490
0e3eca4c
EI
1491static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1492 int timeridx)
55d284af 1493{
edac4d8a 1494 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1495
c4241c7d 1496 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
edac4d8a 1497 (gt_get_countervalue(env) - offset));
55d284af
PM
1498}
1499
c4241c7d 1500static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1501 int timeridx,
c4241c7d 1502 uint64_t value)
55d284af 1503{
edac4d8a 1504 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
55d284af 1505
edac4d8a 1506 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
18084b2f 1507 sextract64(value, 0, 32);
55d284af 1508 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
55d284af
PM
1509}
1510
c4241c7d 1511static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
0e3eca4c 1512 int timeridx,
c4241c7d 1513 uint64_t value)
55d284af
PM
1514{
1515 ARMCPU *cpu = arm_env_get_cpu(env);
55d284af
PM
1516 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1517
d3afacc7 1518 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
55d284af
PM
1519 if ((oldval ^ value) & 1) {
1520 /* Enable toggled */
1521 gt_recalc_timer(cpu, timeridx);
d3afacc7 1522 } else if ((oldval ^ value) & 2) {
55d284af
PM
1523 /* IMASK toggled: don't need to recalculate,
1524 * just set the interrupt line based on ISTATUS
1525 */
1526 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
d3afacc7 1527 (oldval & 4) && !(value & 2));
55d284af 1528 }
55d284af
PM
1529}
1530
0e3eca4c
EI
1531static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1532{
1533 gt_timer_reset(env, ri, GTIMER_PHYS);
1534}
1535
1536static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1537 uint64_t value)
1538{
1539 gt_cval_write(env, ri, GTIMER_PHYS, value);
1540}
1541
1542static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1543{
1544 return gt_tval_read(env, ri, GTIMER_PHYS);
1545}
1546
1547static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1548 uint64_t value)
1549{
1550 gt_tval_write(env, ri, GTIMER_PHYS, value);
1551}
1552
1553static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1554 uint64_t value)
1555{
1556 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1557}
1558
1559static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1560{
1561 gt_timer_reset(env, ri, GTIMER_VIRT);
1562}
1563
1564static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1565 uint64_t value)
1566{
1567 gt_cval_write(env, ri, GTIMER_VIRT, value);
1568}
1569
1570static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1571{
1572 return gt_tval_read(env, ri, GTIMER_VIRT);
1573}
1574
1575static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1576 uint64_t value)
1577{
1578 gt_tval_write(env, ri, GTIMER_VIRT, value);
1579}
1580
1581static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1582 uint64_t value)
1583{
1584 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1585}
1586
edac4d8a
EI
1587static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1588 uint64_t value)
1589{
1590 ARMCPU *cpu = arm_env_get_cpu(env);
1591
1592 raw_write(env, ri, value);
1593 gt_recalc_timer(cpu, GTIMER_VIRT);
1594}
1595
b0e66d95
EI
1596static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1597{
1598 gt_timer_reset(env, ri, GTIMER_HYP);
1599}
1600
1601static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1602 uint64_t value)
1603{
1604 gt_cval_write(env, ri, GTIMER_HYP, value);
1605}
1606
1607static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1608{
1609 return gt_tval_read(env, ri, GTIMER_HYP);
1610}
1611
1612static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1613 uint64_t value)
1614{
1615 gt_tval_write(env, ri, GTIMER_HYP, value);
1616}
1617
1618static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1619 uint64_t value)
1620{
1621 gt_ctl_write(env, ri, GTIMER_HYP, value);
1622}
1623
b4d3978c
PM
1624static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1625{
1626 gt_timer_reset(env, ri, GTIMER_SEC);
1627}
1628
1629static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1630 uint64_t value)
1631{
1632 gt_cval_write(env, ri, GTIMER_SEC, value);
1633}
1634
1635static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1636{
1637 return gt_tval_read(env, ri, GTIMER_SEC);
1638}
1639
1640static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1641 uint64_t value)
1642{
1643 gt_tval_write(env, ri, GTIMER_SEC, value);
1644}
1645
1646static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1647 uint64_t value)
1648{
1649 gt_ctl_write(env, ri, GTIMER_SEC, value);
1650}
1651
55d284af
PM
1652void arm_gt_ptimer_cb(void *opaque)
1653{
1654 ARMCPU *cpu = opaque;
1655
1656 gt_recalc_timer(cpu, GTIMER_PHYS);
1657}
1658
1659void arm_gt_vtimer_cb(void *opaque)
1660{
1661 ARMCPU *cpu = opaque;
1662
1663 gt_recalc_timer(cpu, GTIMER_VIRT);
1664}
1665
b0e66d95
EI
1666void arm_gt_htimer_cb(void *opaque)
1667{
1668 ARMCPU *cpu = opaque;
1669
1670 gt_recalc_timer(cpu, GTIMER_HYP);
1671}
1672
b4d3978c
PM
1673void arm_gt_stimer_cb(void *opaque)
1674{
1675 ARMCPU *cpu = opaque;
1676
1677 gt_recalc_timer(cpu, GTIMER_SEC);
1678}
1679
55d284af
PM
1680static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1681 /* Note that CNTFRQ is purely reads-as-written for the benefit
1682 * of software; writing it doesn't actually change the timer frequency.
1683 * Our reset value matches the fixed frequency we implement the timer at.
1684 */
1685 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 1686 .type = ARM_CP_ALIAS,
a7adc4b7
PM
1687 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1688 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
a7adc4b7
PM
1689 },
1690 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1691 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1692 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
55d284af
PM
1693 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1694 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
55d284af
PM
1695 },
1696 /* overall control: mostly access permissions */
a7adc4b7
PM
1697 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1698 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
55d284af
PM
1699 .access = PL1_RW,
1700 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1701 .resetvalue = 0,
1702 },
1703 /* per-timer control */
1704 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
9ff9dd3c 1705 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1706 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1707 .accessfn = gt_ptimer_access,
1708 .fieldoffset = offsetoflow32(CPUARMState,
1709 cp15.c14_timer[GTIMER_PHYS].ctl),
0e3eca4c 1710 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
a7adc4b7 1711 },
9ff9dd3c
PM
1712 { .name = "CNTP_CTL(S)",
1713 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1714 .secure = ARM_CP_SECSTATE_S,
1715 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1716 .accessfn = gt_ptimer_access,
1717 .fieldoffset = offsetoflow32(CPUARMState,
1718 cp15.c14_timer[GTIMER_SEC].ctl),
1719 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1720 },
a7adc4b7
PM
1721 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1722 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
55d284af 1723 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1724 .accessfn = gt_ptimer_access,
55d284af
PM
1725 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1726 .resetvalue = 0,
0e3eca4c 1727 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1728 },
1729 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
7a0e58fa 1730 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
a7adc4b7
PM
1731 .accessfn = gt_vtimer_access,
1732 .fieldoffset = offsetoflow32(CPUARMState,
1733 cp15.c14_timer[GTIMER_VIRT].ctl),
0e3eca4c 1734 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
a7adc4b7
PM
1735 },
1736 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1737 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
55d284af 1738 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
a7adc4b7 1739 .accessfn = gt_vtimer_access,
55d284af
PM
1740 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1741 .resetvalue = 0,
0e3eca4c 1742 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
55d284af
PM
1743 },
1744 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1745 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
9ff9dd3c 1746 .secure = ARM_CP_SECSTATE_NS,
7a0e58fa 1747 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1748 .accessfn = gt_ptimer_access,
0e3eca4c 1749 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
55d284af 1750 },
9ff9dd3c
PM
1751 { .name = "CNTP_TVAL(S)",
1752 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1753 .secure = ARM_CP_SECSTATE_S,
1754 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1755 .accessfn = gt_ptimer_access,
1756 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1757 },
a7adc4b7
PM
1758 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1759 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
7a0e58fa 1760 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
1761 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1762 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
a7adc4b7 1763 },
55d284af 1764 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
7a0e58fa 1765 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
00108f2d 1766 .accessfn = gt_vtimer_access,
0e3eca4c 1767 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
55d284af 1768 },
a7adc4b7
PM
1769 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1770 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
7a0e58fa 1771 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
0e3eca4c
EI
1772 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1773 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
a7adc4b7 1774 },
55d284af
PM
1775 /* The counter itself */
1776 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
7a0e58fa 1777 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 1778 .accessfn = gt_pct_access,
a7adc4b7
PM
1779 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1780 },
1781 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1782 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
7a0e58fa 1783 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 1784 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
55d284af
PM
1785 },
1786 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
7a0e58fa 1787 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
00108f2d 1788 .accessfn = gt_vct_access,
edac4d8a 1789 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
a7adc4b7
PM
1790 },
1791 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1792 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
7a0e58fa 1793 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
d57b9ee8 1794 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
55d284af
PM
1795 },
1796 /* Comparison value, indicating when the timer goes off */
1797 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
9ff9dd3c 1798 .secure = ARM_CP_SECSTATE_NS,
55d284af 1799 .access = PL1_RW | PL0_R,
7a0e58fa 1800 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 1801 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
b061a82b 1802 .accessfn = gt_ptimer_access,
0e3eca4c 1803 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
a7adc4b7 1804 },
9ff9dd3c
PM
1805 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1806 .secure = ARM_CP_SECSTATE_S,
1807 .access = PL1_RW | PL0_R,
1808 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1809 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1810 .accessfn = gt_ptimer_access,
1811 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1812 },
a7adc4b7
PM
1813 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1814 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1815 .access = PL1_RW | PL0_R,
1816 .type = ARM_CP_IO,
1817 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
12cde08a 1818 .resetvalue = 0, .accessfn = gt_ptimer_access,
0e3eca4c 1819 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
55d284af
PM
1820 },
1821 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1822 .access = PL1_RW | PL0_R,
7a0e58fa 1823 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
55d284af 1824 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
b061a82b 1825 .accessfn = gt_vtimer_access,
0e3eca4c 1826 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
a7adc4b7
PM
1827 },
1828 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1829 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1830 .access = PL1_RW | PL0_R,
1831 .type = ARM_CP_IO,
1832 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1833 .resetvalue = 0, .accessfn = gt_vtimer_access,
0e3eca4c 1834 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
55d284af 1835 },
b4d3978c
PM
1836 /* Secure timer -- this is actually restricted to only EL3
1837 * and configurably Secure-EL1 via the accessfn.
1838 */
1839 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1840 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1841 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1842 .accessfn = gt_stimer_access,
1843 .readfn = gt_sec_tval_read,
1844 .writefn = gt_sec_tval_write,
1845 .resetfn = gt_sec_timer_reset,
1846 },
1847 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1848 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1849 .type = ARM_CP_IO, .access = PL1_RW,
1850 .accessfn = gt_stimer_access,
1851 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1852 .resetvalue = 0,
1853 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1854 },
1855 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1856 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1857 .type = ARM_CP_IO, .access = PL1_RW,
1858 .accessfn = gt_stimer_access,
1859 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1860 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1861 },
55d284af
PM
1862 REGINFO_SENTINEL
1863};
1864
1865#else
1866/* In user-mode none of the generic timer registers are accessible,
bc72ad67 1867 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
55d284af
PM
1868 * so instead just don't register any of them.
1869 */
6cc7a3ae 1870static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
6cc7a3ae
PM
1871 REGINFO_SENTINEL
1872};
1873
55d284af
PM
1874#endif
1875
c4241c7d 1876static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4a501606 1877{
891a2fe7 1878 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8d5c773e 1879 raw_write(env, ri, value);
891a2fe7 1880 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8d5c773e 1881 raw_write(env, ri, value & 0xfffff6ff);
4a501606 1882 } else {
8d5c773e 1883 raw_write(env, ri, value & 0xfffff1ff);
4a501606 1884 }
4a501606
PM
1885}
1886
1887#ifndef CONFIG_USER_ONLY
1888/* get_phys_addr() isn't present for user-mode-only targets */
702a9357 1889
3f208fd7
PM
1890static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
1891 bool isread)
92611c00
PM
1892{
1893 if (ri->opc2 & 4) {
87562e4f
PM
1894 /* The ATS12NSO* operations must trap to EL3 if executed in
1895 * Secure EL1 (which can only happen if EL3 is AArch64).
1896 * They are simply UNDEF if executed from NS EL1.
1897 * They function normally from EL2 or EL3.
92611c00 1898 */
87562e4f
PM
1899 if (arm_current_el(env) == 1) {
1900 if (arm_is_secure_below_el3(env)) {
1901 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
1902 }
1903 return CP_ACCESS_TRAP_UNCATEGORIZED;
1904 }
92611c00
PM
1905 }
1906 return CP_ACCESS_OK;
1907}
1908
060e8a48 1909static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
d3649702 1910 int access_type, ARMMMUIdx mmu_idx)
4a501606 1911{
a8170e5e 1912 hwaddr phys_addr;
4a501606
PM
1913 target_ulong page_size;
1914 int prot;
b7cc4e82
PC
1915 uint32_t fsr;
1916 bool ret;
01c097f7 1917 uint64_t par64;
8bf5b6a9 1918 MemTxAttrs attrs = {};
e14b5a23 1919 ARMMMUFaultInfo fi = {};
4a501606 1920
d3649702 1921 ret = get_phys_addr(env, value, access_type, mmu_idx,
e14b5a23 1922 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
702a9357 1923 if (extended_addresses_enabled(env)) {
b7cc4e82 1924 /* fsr is a DFSR/IFSR value for the long descriptor
702a9357
PM
1925 * translation table format, but with WnR always clear.
1926 * Convert it to a 64-bit PAR.
1927 */
01c097f7 1928 par64 = (1 << 11); /* LPAE bit always set */
b7cc4e82 1929 if (!ret) {
702a9357 1930 par64 |= phys_addr & ~0xfffULL;
8bf5b6a9
PM
1931 if (!attrs.secure) {
1932 par64 |= (1 << 9); /* NS */
1933 }
702a9357 1934 /* We don't set the ATTR or SH fields in the PAR. */
4a501606 1935 } else {
702a9357 1936 par64 |= 1; /* F */
b7cc4e82 1937 par64 |= (fsr & 0x3f) << 1; /* FS */
702a9357
PM
1938 /* Note that S2WLK and FSTAGE are always zero, because we don't
1939 * implement virtualization and therefore there can't be a stage 2
1940 * fault.
1941 */
4a501606
PM
1942 }
1943 } else {
b7cc4e82 1944 /* fsr is a DFSR/IFSR value for the short descriptor
702a9357
PM
1945 * translation table format (with WnR always clear).
1946 * Convert it to a 32-bit PAR.
1947 */
b7cc4e82 1948 if (!ret) {
702a9357
PM
1949 /* We do not set any attribute bits in the PAR */
1950 if (page_size == (1 << 24)
1951 && arm_feature(env, ARM_FEATURE_V7)) {
01c097f7 1952 par64 = (phys_addr & 0xff000000) | (1 << 1);
702a9357 1953 } else {
01c097f7 1954 par64 = phys_addr & 0xfffff000;
702a9357 1955 }
8bf5b6a9
PM
1956 if (!attrs.secure) {
1957 par64 |= (1 << 9); /* NS */
1958 }
702a9357 1959 } else {
b7cc4e82
PC
1960 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
1961 ((fsr & 0xf) << 1) | 1;
702a9357 1962 }
4a501606 1963 }
060e8a48
PM
1964 return par64;
1965}
1966
1967static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1968{
060e8a48
PM
1969 int access_type = ri->opc2 & 1;
1970 uint64_t par64;
d3649702
PM
1971 ARMMMUIdx mmu_idx;
1972 int el = arm_current_el(env);
1973 bool secure = arm_is_secure_below_el3(env);
060e8a48 1974
d3649702
PM
1975 switch (ri->opc2 & 6) {
1976 case 0:
1977 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1978 switch (el) {
1979 case 3:
1980 mmu_idx = ARMMMUIdx_S1E3;
1981 break;
1982 case 2:
1983 mmu_idx = ARMMMUIdx_S1NSE1;
1984 break;
1985 case 1:
1986 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1987 break;
1988 default:
1989 g_assert_not_reached();
1990 }
1991 break;
1992 case 2:
1993 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1994 switch (el) {
1995 case 3:
1996 mmu_idx = ARMMMUIdx_S1SE0;
1997 break;
1998 case 2:
1999 mmu_idx = ARMMMUIdx_S1NSE0;
2000 break;
2001 case 1:
2002 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2003 break;
2004 default:
2005 g_assert_not_reached();
2006 }
2007 break;
2008 case 4:
2009 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2010 mmu_idx = ARMMMUIdx_S12NSE1;
2011 break;
2012 case 6:
2013 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2014 mmu_idx = ARMMMUIdx_S12NSE0;
2015 break;
2016 default:
2017 g_assert_not_reached();
2018 }
2019
2020 par64 = do_ats_write(env, value, access_type, mmu_idx);
01c097f7
FA
2021
2022 A32_BANKED_CURRENT_REG_SET(env, par, par64);
4a501606 2023}
060e8a48 2024
14db7fe0
PM
2025static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2026 uint64_t value)
2027{
2028 int access_type = ri->opc2 & 1;
2029 uint64_t par64;
2030
2031 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2032
2033 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2034}
2035
3f208fd7
PM
2036static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2037 bool isread)
2a47df95
PM
2038{
2039 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2040 return CP_ACCESS_TRAP;
2041 }
2042 return CP_ACCESS_OK;
2043}
2044
060e8a48
PM
2045static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2046 uint64_t value)
2047{
060e8a48 2048 int access_type = ri->opc2 & 1;
d3649702
PM
2049 ARMMMUIdx mmu_idx;
2050 int secure = arm_is_secure_below_el3(env);
2051
2052 switch (ri->opc2 & 6) {
2053 case 0:
2054 switch (ri->opc1) {
2055 case 0: /* AT S1E1R, AT S1E1W */
2056 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2057 break;
2058 case 4: /* AT S1E2R, AT S1E2W */
2059 mmu_idx = ARMMMUIdx_S1E2;
2060 break;
2061 case 6: /* AT S1E3R, AT S1E3W */
2062 mmu_idx = ARMMMUIdx_S1E3;
2063 break;
2064 default:
2065 g_assert_not_reached();
2066 }
2067 break;
2068 case 2: /* AT S1E0R, AT S1E0W */
2069 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2070 break;
2071 case 4: /* AT S12E1R, AT S12E1W */
2a47df95 2072 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
d3649702
PM
2073 break;
2074 case 6: /* AT S12E0R, AT S12E0W */
2a47df95 2075 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
d3649702
PM
2076 break;
2077 default:
2078 g_assert_not_reached();
2079 }
060e8a48 2080
d3649702 2081 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
060e8a48 2082}
4a501606
PM
2083#endif
2084
2085static const ARMCPRegInfo vapa_cp_reginfo[] = {
2086 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2087 .access = PL1_RW, .resetvalue = 0,
01c097f7
FA
2088 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2089 offsetoflow32(CPUARMState, cp15.par_ns) },
4a501606
PM
2090 .writefn = par_write },
2091#ifndef CONFIG_USER_ONLY
87562e4f 2092 /* This underdecoding is safe because the reginfo is NO_RAW. */
4a501606 2093 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
92611c00 2094 .access = PL1_W, .accessfn = ats_access,
7a0e58fa 2095 .writefn = ats_write, .type = ARM_CP_NO_RAW },
4a501606
PM
2096#endif
2097 REGINFO_SENTINEL
2098};
2099
18032bec
PM
2100/* Return basic MPU access permission bits. */
2101static uint32_t simple_mpu_ap_bits(uint32_t val)
2102{
2103 uint32_t ret;
2104 uint32_t mask;
2105 int i;
2106 ret = 0;
2107 mask = 3;
2108 for (i = 0; i < 16; i += 2) {
2109 ret |= (val >> i) & mask;
2110 mask <<= 2;
2111 }
2112 return ret;
2113}
2114
2115/* Pad basic MPU access permission bits to extended format. */
2116static uint32_t extended_mpu_ap_bits(uint32_t val)
2117{
2118 uint32_t ret;
2119 uint32_t mask;
2120 int i;
2121 ret = 0;
2122 mask = 3;
2123 for (i = 0; i < 16; i += 2) {
2124 ret |= (val & mask) << i;
2125 mask <<= 2;
2126 }
2127 return ret;
2128}
2129
c4241c7d
PM
2130static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2131 uint64_t value)
18032bec 2132{
7e09797c 2133 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
18032bec
PM
2134}
2135
c4241c7d 2136static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2137{
7e09797c 2138 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
18032bec
PM
2139}
2140
c4241c7d
PM
2141static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2142 uint64_t value)
18032bec 2143{
7e09797c 2144 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
18032bec
PM
2145}
2146
c4241c7d 2147static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
18032bec 2148{
7e09797c 2149 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
18032bec
PM
2150}
2151
6cb0b013
PC
2152static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2153{
2154 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2155
2156 if (!u32p) {
2157 return 0;
2158 }
2159
2160 u32p += env->cp15.c6_rgnr;
2161 return *u32p;
2162}
2163
2164static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2165 uint64_t value)
2166{
2167 ARMCPU *cpu = arm_env_get_cpu(env);
2168 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2169
2170 if (!u32p) {
2171 return;
2172 }
2173
2174 u32p += env->cp15.c6_rgnr;
2175 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2176 *u32p = value;
2177}
2178
2179static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2180{
2181 ARMCPU *cpu = arm_env_get_cpu(env);
2182 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2183
2184 if (!u32p) {
2185 return;
2186 }
2187
2188 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2189}
2190
2191static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2192 uint64_t value)
2193{
2194 ARMCPU *cpu = arm_env_get_cpu(env);
2195 uint32_t nrgs = cpu->pmsav7_dregion;
2196
2197 if (value >= nrgs) {
2198 qemu_log_mask(LOG_GUEST_ERROR,
2199 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2200 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2201 return;
2202 }
2203
2204 raw_write(env, ri, value);
2205}
2206
2207static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2208 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2209 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2210 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2211 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2212 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2213 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2214 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2215 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2216 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2217 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2218 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2219 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2220 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2221 .access = PL1_RW,
2222 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2223 .writefn = pmsav7_rgnr_write },
2224 REGINFO_SENTINEL
2225};
2226
18032bec
PM
2227static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2228 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2229 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2230 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
18032bec
PM
2231 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2232 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
7a0e58fa 2233 .access = PL1_RW, .type = ARM_CP_ALIAS,
7e09797c 2234 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
18032bec
PM
2235 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2236 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2237 .access = PL1_RW,
7e09797c
PM
2238 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2239 .resetvalue = 0, },
18032bec
PM
2240 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2241 .access = PL1_RW,
7e09797c
PM
2242 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2243 .resetvalue = 0, },
ecce5c3c
PM
2244 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2245 .access = PL1_RW,
2246 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2247 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2248 .access = PL1_RW,
2249 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
06d76f31 2250 /* Protection region base and size registers */
e508a92b
PM
2251 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2252 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2253 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2254 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2255 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2256 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2257 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2258 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2259 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2260 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2261 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2262 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2263 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2264 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2265 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2266 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2267 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2268 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2269 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2270 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2271 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2272 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2273 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2274 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
18032bec
PM
2275 REGINFO_SENTINEL
2276};
2277
c4241c7d
PM
2278static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2279 uint64_t value)
ecce5c3c 2280{
11f136ee 2281 TCR *tcr = raw_ptr(env, ri);
2ebcebe2
PM
2282 int maskshift = extract32(value, 0, 3);
2283
e389be16
FA
2284 if (!arm_feature(env, ARM_FEATURE_V8)) {
2285 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2286 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2287 * using Long-desciptor translation table format */
2288 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2289 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2290 /* In an implementation that includes the Security Extensions
2291 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2292 * Short-descriptor translation table format.
2293 */
2294 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2295 } else {
2296 value &= TTBCR_N;
2297 }
e42c4db3 2298 }
e389be16 2299
b6af0975 2300 /* Update the masks corresponding to the TCR bank being written
11f136ee 2301 * Note that we always calculate mask and base_mask, but
e42c4db3 2302 * they are only used for short-descriptor tables (ie if EAE is 0);
11f136ee
FA
2303 * for long-descriptor tables the TCR fields are used differently
2304 * and the mask and base_mask values are meaningless.
e42c4db3 2305 */
11f136ee
FA
2306 tcr->raw_tcr = value;
2307 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2308 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
ecce5c3c
PM
2309}
2310
c4241c7d
PM
2311static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2312 uint64_t value)
d4e6df63 2313{
00c8cb0a
AF
2314 ARMCPU *cpu = arm_env_get_cpu(env);
2315
d4e6df63
PM
2316 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2317 /* With LPAE the TTBCR could result in a change of ASID
2318 * via the TTBCR.A1 bit, so do a TLB flush.
2319 */
00c8cb0a 2320 tlb_flush(CPU(cpu), 1);
d4e6df63 2321 }
c4241c7d 2322 vmsa_ttbcr_raw_write(env, ri, value);
d4e6df63
PM
2323}
2324
ecce5c3c
PM
2325static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2326{
11f136ee
FA
2327 TCR *tcr = raw_ptr(env, ri);
2328
2329 /* Reset both the TCR as well as the masks corresponding to the bank of
2330 * the TCR being reset.
2331 */
2332 tcr->raw_tcr = 0;
2333 tcr->mask = 0;
2334 tcr->base_mask = 0xffffc000u;
ecce5c3c
PM
2335}
2336
cb2e37df
PM
2337static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2338 uint64_t value)
2339{
00c8cb0a 2340 ARMCPU *cpu = arm_env_get_cpu(env);
11f136ee 2341 TCR *tcr = raw_ptr(env, ri);
00c8cb0a 2342
cb2e37df 2343 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
00c8cb0a 2344 tlb_flush(CPU(cpu), 1);
11f136ee 2345 tcr->raw_tcr = value;
cb2e37df
PM
2346}
2347
327ed10f
PM
2348static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2349 uint64_t value)
2350{
2351 /* 64 bit accesses to the TTBRs can change the ASID and so we
2352 * must flush the TLB.
2353 */
2354 if (cpreg_field_is_64bit(ri)) {
00c8cb0a
AF
2355 ARMCPU *cpu = arm_env_get_cpu(env);
2356
2357 tlb_flush(CPU(cpu), 1);
327ed10f
PM
2358 }
2359 raw_write(env, ri, value);
2360}
2361
b698e9cf
EI
2362static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2363 uint64_t value)
2364{
2365 ARMCPU *cpu = arm_env_get_cpu(env);
2366 CPUState *cs = CPU(cpu);
2367
2368 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2369 if (raw_read(env, ri) != value) {
2370 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2371 ARMMMUIdx_S2NS, -1);
2372 raw_write(env, ri, value);
2373 }
2374}
2375
8e5d75c9 2376static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
18032bec 2377 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
7a0e58fa 2378 .access = PL1_RW, .type = ARM_CP_ALIAS,
4a7e2d73 2379 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
b061a82b 2380 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
18032bec 2381 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
88ca1c2d
FA
2382 .access = PL1_RW, .resetvalue = 0,
2383 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2384 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
8e5d75c9
PC
2385 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2386 .access = PL1_RW, .resetvalue = 0,
2387 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2388 offsetof(CPUARMState, cp15.dfar_ns) } },
2389 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2390 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2391 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2392 .resetvalue = 0, },
2393 REGINFO_SENTINEL
2394};
2395
2396static const ARMCPRegInfo vmsa_cp_reginfo[] = {
6cd8a264
RH
2397 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2398 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2399 .access = PL1_RW,
d81c519c 2400 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
327ed10f 2401 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2402 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2403 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2404 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2405 offsetof(CPUARMState, cp15.ttbr0_ns) } },
327ed10f 2406 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
7dd8c9af
FA
2407 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2408 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2409 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2410 offsetof(CPUARMState, cp15.ttbr1_ns) } },
cb2e37df
PM
2411 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2412 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2413 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2414 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
11f136ee 2415 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
cb2e37df 2416 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
7a0e58fa 2417 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
b061a82b 2418 .raw_writefn = vmsa_ttbcr_raw_write,
11f136ee
FA
2419 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2420 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
18032bec
PM
2421 REGINFO_SENTINEL
2422};
2423
c4241c7d
PM
2424static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2425 uint64_t value)
1047b9d7
PM
2426{
2427 env->cp15.c15_ticonfig = value & 0xe7;
2428 /* The OS_TYPE bit in this register changes the reported CPUID! */
2429 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2430 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1047b9d7
PM
2431}
2432
c4241c7d
PM
2433static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2434 uint64_t value)
1047b9d7
PM
2435{
2436 env->cp15.c15_threadid = value & 0xffff;
1047b9d7
PM
2437}
2438
c4241c7d
PM
2439static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2440 uint64_t value)
1047b9d7
PM
2441{
2442 /* Wait-for-interrupt (deprecated) */
c3affe56 2443 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1047b9d7
PM
2444}
2445
c4241c7d
PM
2446static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2447 uint64_t value)
c4804214
PM
2448{
2449 /* On OMAP there are registers indicating the max/min index of dcache lines
2450 * containing a dirty line; cache flush operations have to reset these.
2451 */
2452 env->cp15.c15_i_max = 0x000;
2453 env->cp15.c15_i_min = 0xff0;
c4804214
PM
2454}
2455
18032bec
PM
2456static const ARMCPRegInfo omap_cp_reginfo[] = {
2457 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2458 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
d81c519c 2459 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
6cd8a264 2460 .resetvalue = 0, },
1047b9d7
PM
2461 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2462 .access = PL1_RW, .type = ARM_CP_NOP },
2463 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2464 .access = PL1_RW,
2465 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2466 .writefn = omap_ticonfig_write },
2467 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2468 .access = PL1_RW,
2469 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2470 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2471 .access = PL1_RW, .resetvalue = 0xff0,
2472 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2473 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2474 .access = PL1_RW,
2475 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2476 .writefn = omap_threadid_write },
2477 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2478 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
7a0e58fa 2479 .type = ARM_CP_NO_RAW,
1047b9d7
PM
2480 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2481 /* TODO: Peripheral port remap register:
2482 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2483 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2484 * when MMU is off.
2485 */
c4804214 2486 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
d4e6df63 2487 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
7a0e58fa 2488 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
c4804214 2489 .writefn = omap_cachemaint_write },
34f90529
PM
2490 { .name = "C9", .cp = 15, .crn = 9,
2491 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2492 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1047b9d7
PM
2493 REGINFO_SENTINEL
2494};
2495
c4241c7d
PM
2496static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2497 uint64_t value)
1047b9d7 2498{
c0f4af17 2499 env->cp15.c15_cpar = value & 0x3fff;
1047b9d7
PM
2500}
2501
2502static const ARMCPRegInfo xscale_cp_reginfo[] = {
2503 { .name = "XSCALE_CPAR",
2504 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2505 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2506 .writefn = xscale_cpar_write, },
2771db27
PM
2507 { .name = "XSCALE_AUXCR",
2508 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2509 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2510 .resetvalue = 0, },
3b771579
PM
2511 /* XScale specific cache-lockdown: since we have no cache we NOP these
2512 * and hope the guest does not really rely on cache behaviour.
2513 */
2514 { .name = "XSCALE_LOCK_ICACHE_LINE",
2515 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2516 .access = PL1_W, .type = ARM_CP_NOP },
2517 { .name = "XSCALE_UNLOCK_ICACHE",
2518 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2519 .access = PL1_W, .type = ARM_CP_NOP },
2520 { .name = "XSCALE_DCACHE_LOCK",
2521 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2522 .access = PL1_RW, .type = ARM_CP_NOP },
2523 { .name = "XSCALE_UNLOCK_DCACHE",
2524 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2525 .access = PL1_W, .type = ARM_CP_NOP },
1047b9d7
PM
2526 REGINFO_SENTINEL
2527};
2528
2529static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2530 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2531 * implementation of this implementation-defined space.
2532 * Ideally this should eventually disappear in favour of actually
2533 * implementing the correct behaviour for all cores.
2534 */
2535 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2536 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3671cd87 2537 .access = PL1_RW,
7a0e58fa 2538 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
d4e6df63 2539 .resetvalue = 0 },
18032bec
PM
2540 REGINFO_SENTINEL
2541};
2542
c4804214
PM
2543static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2544 /* Cache status: RAZ because we have no cache so it's always clean */
2545 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
7a0e58fa 2546 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2547 .resetvalue = 0 },
c4804214
PM
2548 REGINFO_SENTINEL
2549};
2550
2551static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2552 /* We never have a a block transfer operation in progress */
2553 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
7a0e58fa 2554 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2555 .resetvalue = 0 },
30b05bba
PM
2556 /* The cache ops themselves: these all NOP for QEMU */
2557 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2558 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2559 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2560 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2561 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2562 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2563 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2564 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2565 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2566 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2567 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2568 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
c4804214
PM
2569 REGINFO_SENTINEL
2570};
2571
2572static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2573 /* The cache test-and-clean instructions always return (1 << 30)
2574 * to indicate that there are no dirty cache lines.
2575 */
2576 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
7a0e58fa 2577 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2578 .resetvalue = (1 << 30) },
c4804214 2579 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
7a0e58fa 2580 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
d4e6df63 2581 .resetvalue = (1 << 30) },
c4804214
PM
2582 REGINFO_SENTINEL
2583};
2584
34f90529
PM
2585static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2586 /* Ignore ReadBuffer accesses */
2587 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2588 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
d4e6df63 2589 .access = PL1_RW, .resetvalue = 0,
7a0e58fa 2590 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
34f90529
PM
2591 REGINFO_SENTINEL
2592};
2593
731de9e6
EI
2594static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2595{
2596 ARMCPU *cpu = arm_env_get_cpu(env);
2597 unsigned int cur_el = arm_current_el(env);
2598 bool secure = arm_is_secure(env);
2599
2600 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2601 return env->cp15.vpidr_el2;
2602 }
2603 return raw_read(env, ri);
2604}
2605
06a7e647 2606static uint64_t mpidr_read_val(CPUARMState *env)
81bdde9d 2607{
eb5e1d3c
PF
2608 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2609 uint64_t mpidr = cpu->mp_affinity;
2610
81bdde9d 2611 if (arm_feature(env, ARM_FEATURE_V7MP)) {
78dbbbe4 2612 mpidr |= (1U << 31);
81bdde9d
PM
2613 /* Cores which are uniprocessor (non-coherent)
2614 * but still implement the MP extensions set
a8e81b31 2615 * bit 30. (For instance, Cortex-R5).
81bdde9d 2616 */
a8e81b31
PC
2617 if (cpu->mp_is_up) {
2618 mpidr |= (1u << 30);
2619 }
81bdde9d 2620 }
c4241c7d 2621 return mpidr;
81bdde9d
PM
2622}
2623
06a7e647
EI
2624static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2625{
f0d574d6
EI
2626 unsigned int cur_el = arm_current_el(env);
2627 bool secure = arm_is_secure(env);
2628
2629 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2630 return env->cp15.vmpidr_el2;
2631 }
06a7e647
EI
2632 return mpidr_read_val(env);
2633}
2634
81bdde9d 2635static const ARMCPRegInfo mpidr_cp_reginfo[] = {
4b7fff2f
PM
2636 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2637 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7a0e58fa 2638 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
81bdde9d
PM
2639 REGINFO_SENTINEL
2640};
2641
7ac681cf 2642static const ARMCPRegInfo lpae_cp_reginfo[] = {
a903c449 2643 /* NOP AMAIR0/1 */
b0fe2427
PM
2644 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2645 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
a903c449 2646 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2647 .resetvalue = 0 },
b0fe2427 2648 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
7ac681cf 2649 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
a903c449 2650 .access = PL1_RW, .type = ARM_CP_CONST,
7ac681cf 2651 .resetvalue = 0 },
891a2fe7 2652 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
01c097f7
FA
2653 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2654 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2655 offsetof(CPUARMState, cp15.par_ns)} },
891a2fe7 2656 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
7a0e58fa 2657 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2658 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2659 offsetof(CPUARMState, cp15.ttbr0_ns) },
b061a82b 2660 .writefn = vmsa_ttbr_write, },
891a2fe7 2661 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
7a0e58fa 2662 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
7dd8c9af
FA
2663 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2664 offsetof(CPUARMState, cp15.ttbr1_ns) },
b061a82b 2665 .writefn = vmsa_ttbr_write, },
7ac681cf
PM
2666 REGINFO_SENTINEL
2667};
2668
c4241c7d 2669static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2670{
c4241c7d 2671 return vfp_get_fpcr(env);
b0d2b7d0
PM
2672}
2673
c4241c7d
PM
2674static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2675 uint64_t value)
b0d2b7d0
PM
2676{
2677 vfp_set_fpcr(env, value);
b0d2b7d0
PM
2678}
2679
c4241c7d 2680static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
b0d2b7d0 2681{
c4241c7d 2682 return vfp_get_fpsr(env);
b0d2b7d0
PM
2683}
2684
c4241c7d
PM
2685static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2686 uint64_t value)
b0d2b7d0
PM
2687{
2688 vfp_set_fpsr(env, value);
b0d2b7d0
PM
2689}
2690
3f208fd7
PM
2691static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2692 bool isread)
c2b820fe 2693{
137feaa9 2694 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
c2b820fe
PM
2695 return CP_ACCESS_TRAP;
2696 }
2697 return CP_ACCESS_OK;
2698}
2699
2700static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2701 uint64_t value)
2702{
2703 env->daif = value & PSTATE_DAIF;
2704}
2705
8af35c37 2706static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3f208fd7
PM
2707 const ARMCPRegInfo *ri,
2708 bool isread)
8af35c37
PM
2709{
2710 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2711 * SCTLR_EL1.UCI is set.
2712 */
137feaa9 2713 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
8af35c37
PM
2714 return CP_ACCESS_TRAP;
2715 }
2716 return CP_ACCESS_OK;
2717}
2718
dbb1fb27
AB
2719/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2720 * Page D4-1736 (DDI0487A.b)
2721 */
2722
fd3ed969
PM
2723static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2724 uint64_t value)
168aa23b 2725{
31b030d4 2726 ARMCPU *cpu = arm_env_get_cpu(env);
fd3ed969 2727 CPUState *cs = CPU(cpu);
dbb1fb27 2728
fd3ed969
PM
2729 if (arm_is_secure_below_el3(env)) {
2730 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2731 } else {
2732 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2733 }
168aa23b
PM
2734}
2735
fd3ed969
PM
2736static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2737 uint64_t value)
168aa23b 2738{
fd3ed969
PM
2739 bool sec = arm_is_secure_below_el3(env);
2740 CPUState *other_cs;
dbb1fb27 2741
fd3ed969
PM
2742 CPU_FOREACH(other_cs) {
2743 if (sec) {
2744 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2745 } else {
2746 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2747 ARMMMUIdx_S12NSE0, -1);
2748 }
2749 }
168aa23b
PM
2750}
2751
fd3ed969
PM
2752static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2753 uint64_t value)
168aa23b 2754{
fd3ed969
PM
2755 /* Note that the 'ALL' scope must invalidate both stage 1 and
2756 * stage 2 translations, whereas most other scopes only invalidate
2757 * stage 1 translations.
2758 */
00c8cb0a 2759 ARMCPU *cpu = arm_env_get_cpu(env);
fd3ed969
PM
2760 CPUState *cs = CPU(cpu);
2761
2762 if (arm_is_secure_below_el3(env)) {
2763 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2764 } else {
2765 if (arm_feature(env, ARM_FEATURE_EL2)) {
2766 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2767 ARMMMUIdx_S2NS, -1);
2768 } else {
2769 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2770 }
2771 }
168aa23b
PM
2772}
2773
fd3ed969 2774static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
fa439fc5
PM
2775 uint64_t value)
2776{
fd3ed969
PM
2777 ARMCPU *cpu = arm_env_get_cpu(env);
2778 CPUState *cs = CPU(cpu);
2779
2780 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2781}
2782
43efaa33
PM
2783static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2784 uint64_t value)
2785{
2786 ARMCPU *cpu = arm_env_get_cpu(env);
2787 CPUState *cs = CPU(cpu);
2788
2789 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2790}
2791
fd3ed969
PM
2792static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2793 uint64_t value)
2794{
2795 /* Note that the 'ALL' scope must invalidate both stage 1 and
2796 * stage 2 translations, whereas most other scopes only invalidate
2797 * stage 1 translations.
2798 */
2799 bool sec = arm_is_secure_below_el3(env);
2800 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
fa439fc5 2801 CPUState *other_cs;
fa439fc5
PM
2802
2803 CPU_FOREACH(other_cs) {
fd3ed969
PM
2804 if (sec) {
2805 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2806 } else if (has_el2) {
2807 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2808 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2809 } else {
2810 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2811 ARMMMUIdx_S12NSE0, -1);
2812 }
fa439fc5
PM
2813 }
2814}
2815
2bfb9d75
PM
2816static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2817 uint64_t value)
2818{
2819 CPUState *other_cs;
2820
2821 CPU_FOREACH(other_cs) {
2822 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2823 }
2824}
2825
43efaa33
PM
2826static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2827 uint64_t value)
2828{
2829 CPUState *other_cs;
2830
2831 CPU_FOREACH(other_cs) {
2832 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2833 }
2834}
2835
fd3ed969
PM
2836static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2837 uint64_t value)
2838{
2839 /* Invalidate by VA, EL1&0 (AArch64 version).
2840 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2841 * since we don't support flush-for-specific-ASID-only or
2842 * flush-last-level-only.
2843 */
2844 ARMCPU *cpu = arm_env_get_cpu(env);
2845 CPUState *cs = CPU(cpu);
2846 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2847
2848 if (arm_is_secure_below_el3(env)) {
2849 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2850 ARMMMUIdx_S1SE0, -1);
2851 } else {
2852 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2853 ARMMMUIdx_S12NSE0, -1);
2854 }
2855}
2856
2857static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2858 uint64_t value)
fa439fc5 2859{
fd3ed969
PM
2860 /* Invalidate by VA, EL2
2861 * Currently handles both VAE2 and VALE2, since we don't support
2862 * flush-last-level-only.
2863 */
2864 ARMCPU *cpu = arm_env_get_cpu(env);
2865 CPUState *cs = CPU(cpu);
2866 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2867
2868 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
2869}
2870
43efaa33
PM
2871static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2872 uint64_t value)
2873{
2874 /* Invalidate by VA, EL3
2875 * Currently handles both VAE3 and VALE3, since we don't support
2876 * flush-last-level-only.
2877 */
2878 ARMCPU *cpu = arm_env_get_cpu(env);
2879 CPUState *cs = CPU(cpu);
2880 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2881
2882 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
2883}
2884
fd3ed969
PM
2885static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2886 uint64_t value)
2887{
2888 bool sec = arm_is_secure_below_el3(env);
fa439fc5
PM
2889 CPUState *other_cs;
2890 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2891
2892 CPU_FOREACH(other_cs) {
fd3ed969
PM
2893 if (sec) {
2894 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
2895 ARMMMUIdx_S1SE0, -1);
2896 } else {
2897 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
2898 ARMMMUIdx_S12NSE0, -1);
2899 }
fa439fc5
PM
2900 }
2901}
2902
fd3ed969
PM
2903static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2904 uint64_t value)
fa439fc5
PM
2905{
2906 CPUState *other_cs;
fd3ed969 2907 uint64_t pageaddr = sextract64(value << 12, 0, 56);
fa439fc5
PM
2908
2909 CPU_FOREACH(other_cs) {
fd3ed969 2910 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
fa439fc5
PM
2911 }
2912}
2913
43efaa33
PM
2914static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2915 uint64_t value)
2916{
2917 CPUState *other_cs;
2918 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2919
2920 CPU_FOREACH(other_cs) {
2921 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
2922 }
2923}
2924
cea66e91
PM
2925static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2926 uint64_t value)
2927{
2928 /* Invalidate by IPA. This has to invalidate any structures that
2929 * contain only stage 2 translation information, but does not need
2930 * to apply to structures that contain combined stage 1 and stage 2
2931 * translation information.
2932 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2933 */
2934 ARMCPU *cpu = arm_env_get_cpu(env);
2935 CPUState *cs = CPU(cpu);
2936 uint64_t pageaddr;
2937
2938 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2939 return;
2940 }
2941
2942 pageaddr = sextract64(value << 12, 0, 48);
2943
2944 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
2945}
2946
2947static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2948 uint64_t value)
2949{
2950 CPUState *other_cs;
2951 uint64_t pageaddr;
2952
2953 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
2954 return;
2955 }
2956
2957 pageaddr = sextract64(value << 12, 0, 48);
2958
2959 CPU_FOREACH(other_cs) {
2960 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
2961 }
2962}
2963
3f208fd7
PM
2964static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
2965 bool isread)
aca3f40b
PM
2966{
2967 /* We don't implement EL2, so the only control on DC ZVA is the
2968 * bit in the SCTLR which can prohibit access for EL0.
2969 */
137feaa9 2970 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
aca3f40b
PM
2971 return CP_ACCESS_TRAP;
2972 }
2973 return CP_ACCESS_OK;
2974}
2975
2976static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2977{
2978 ARMCPU *cpu = arm_env_get_cpu(env);
2979 int dzp_bit = 1 << 4;
2980
2981 /* DZP indicates whether DC ZVA access is allowed */
3f208fd7 2982 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
aca3f40b
PM
2983 dzp_bit = 0;
2984 }
2985 return cpu->dcz_blocksize | dzp_bit;
2986}
2987
3f208fd7
PM
2988static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
2989 bool isread)
f502cfc2 2990{
cdcf1405 2991 if (!(env->pstate & PSTATE_SP)) {
f502cfc2
PM
2992 /* Access to SP_EL0 is undefined if it's being used as
2993 * the stack pointer.
2994 */
2995 return CP_ACCESS_TRAP_UNCATEGORIZED;
2996 }
2997 return CP_ACCESS_OK;
2998}
2999
3000static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3001{
3002 return env->pstate & PSTATE_SP;
3003}
3004
3005static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3006{
3007 update_spsel(env, val);
3008}
3009
137feaa9
FA
3010static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3011 uint64_t value)
3012{
3013 ARMCPU *cpu = arm_env_get_cpu(env);
3014
3015 if (raw_read(env, ri) == value) {
3016 /* Skip the TLB flush if nothing actually changed; Linux likes
3017 * to do a lot of pointless SCTLR writes.
3018 */
3019 return;
3020 }
3021
3022 raw_write(env, ri, value);
3023 /* ??? Lots of these bits are not implemented. */
3024 /* This may enable/disable the MMU, so do a TLB flush. */
3025 tlb_flush(CPU(cpu), 1);
3026}
3027
3f208fd7
PM
3028static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3029 bool isread)
03fbf20f
PM
3030{
3031 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
f2cae609 3032 return CP_ACCESS_TRAP_FP_EL2;
03fbf20f
PM
3033 }
3034 if (env->cp15.cptr_el[3] & CPTR_TFP) {
f2cae609 3035 return CP_ACCESS_TRAP_FP_EL3;
03fbf20f
PM
3036 }
3037 return CP_ACCESS_OK;
3038}
3039
b0d2b7d0
PM
3040static const ARMCPRegInfo v8_cp_reginfo[] = {
3041 /* Minimal set of EL0-visible registers. This will need to be expanded
3042 * significantly for system emulation of AArch64 CPUs.
3043 */
3044 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3045 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3046 .access = PL0_RW, .type = ARM_CP_NZCV },
c2b820fe
PM
3047 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3048 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
7a0e58fa 3049 .type = ARM_CP_NO_RAW,
c2b820fe
PM
3050 .access = PL0_RW, .accessfn = aa64_daif_access,
3051 .fieldoffset = offsetof(CPUARMState, daif),
3052 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
b0d2b7d0
PM
3053 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3054 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3055 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3056 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3057 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3058 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
b0d2b7d0
PM
3059 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3060 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
7a0e58fa 3061 .access = PL0_R, .type = ARM_CP_NO_RAW,
aca3f40b
PM
3062 .readfn = aa64_dczid_read },
3063 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3064 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3065 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3066#ifndef CONFIG_USER_ONLY
3067 /* Avoid overhead of an access check that always passes in user-mode */
3068 .accessfn = aa64_zva_access,
3069#endif
3070 },
0eef9d98
PM
3071 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3072 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3073 .access = PL1_R, .type = ARM_CP_CURRENTEL },
8af35c37
PM
3074 /* Cache ops: all NOPs since we don't emulate caches */
3075 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3076 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3077 .access = PL1_W, .type = ARM_CP_NOP },
3078 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3079 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3080 .access = PL1_W, .type = ARM_CP_NOP },
3081 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3082 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3083 .access = PL0_W, .type = ARM_CP_NOP,
3084 .accessfn = aa64_cacheop_access },
3085 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3086 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3087 .access = PL1_W, .type = ARM_CP_NOP },
3088 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3089 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3090 .access = PL1_W, .type = ARM_CP_NOP },
3091 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3092 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3093 .access = PL0_W, .type = ARM_CP_NOP,
3094 .accessfn = aa64_cacheop_access },
3095 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3096 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3097 .access = PL1_W, .type = ARM_CP_NOP },
3098 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3099 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3100 .access = PL0_W, .type = ARM_CP_NOP,
3101 .accessfn = aa64_cacheop_access },
3102 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3103 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3104 .access = PL0_W, .type = ARM_CP_NOP,
3105 .accessfn = aa64_cacheop_access },
3106 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3107 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3108 .access = PL1_W, .type = ARM_CP_NOP },
168aa23b
PM
3109 /* TLBI operations */
3110 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3111 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
7a0e58fa 3112 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3113 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3114 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3115 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
7a0e58fa 3116 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3117 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3118 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3119 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
7a0e58fa 3120 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3121 .writefn = tlbi_aa64_vmalle1is_write },
168aa23b 3122 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3123 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
7a0e58fa 3124 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3125 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3126 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3127 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3128 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3129 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3130 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
6ab9f499 3131 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3132 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3133 .writefn = tlbi_aa64_vae1is_write },
168aa23b 3134 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3135 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
7a0e58fa 3136 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3137 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3138 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3139 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
7a0e58fa 3140 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3141 .writefn = tlbi_aa64_vae1_write },
168aa23b 3142 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3143 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
7a0e58fa 3144 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3145 .writefn = tlbi_aa64_vmalle1_write },
168aa23b 3146 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3147 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
7a0e58fa 3148 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3149 .writefn = tlbi_aa64_vae1_write },
168aa23b 3150 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3151 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3152 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3153 .writefn = tlbi_aa64_vae1_write },
168aa23b 3154 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
6ab9f499 3155 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3156 .access = PL1_W, .type = ARM_CP_NO_RAW,
fd3ed969 3157 .writefn = tlbi_aa64_vae1_write },
cea66e91
PM
3158 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3159 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3160 .access = PL2_W, .type = ARM_CP_NO_RAW,
3161 .writefn = tlbi_aa64_ipas2e1is_write },
3162 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3163 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3164 .access = PL2_W, .type = ARM_CP_NO_RAW,
3165 .writefn = tlbi_aa64_ipas2e1is_write },
83ddf975
PM
3166 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3167 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3168 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3169 .writefn = tlbi_aa64_alle1is_write },
43efaa33
PM
3170 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3171 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3172 .access = PL2_W, .type = ARM_CP_NO_RAW,
3173 .writefn = tlbi_aa64_alle1is_write },
cea66e91
PM
3174 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3175 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3176 .access = PL2_W, .type = ARM_CP_NO_RAW,
3177 .writefn = tlbi_aa64_ipas2e1_write },
3178 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3179 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3180 .access = PL2_W, .type = ARM_CP_NO_RAW,
3181 .writefn = tlbi_aa64_ipas2e1_write },
83ddf975
PM
3182 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3183 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3184 .access = PL2_W, .type = ARM_CP_NO_RAW,
fd3ed969 3185 .writefn = tlbi_aa64_alle1_write },
43efaa33
PM
3186 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3187 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3188 .access = PL2_W, .type = ARM_CP_NO_RAW,
3189 .writefn = tlbi_aa64_alle1is_write },
19525524
PM
3190#ifndef CONFIG_USER_ONLY
3191 /* 64 bit address translation operations */
3192 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3193 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
060e8a48 3194 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3195 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3196 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
060e8a48 3197 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3198 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3199 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
060e8a48 3200 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
19525524
PM
3201 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3202 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
060e8a48 3203 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2a47df95 3204 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
7a379c7e 3205 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
2a47df95
PM
3206 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3207 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
7a379c7e 3208 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
2a47df95
PM
3209 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3210 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
7a379c7e 3211 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
2a47df95
PM
3212 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3213 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
7a379c7e 3214 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
2a47df95
PM
3215 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3216 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3217 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3218 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3219 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3220 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3221 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3222 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
c96fc9b5
EI
3223 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3224 .type = ARM_CP_ALIAS,
3225 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3226 .access = PL1_RW, .resetvalue = 0,
3227 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3228 .writefn = par_write },
19525524 3229#endif
995939a6 3230 /* TLB invalidate last level of translation table walk */
9449fdf6 3231 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
7a0e58fa 3232 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
9449fdf6 3233 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
7a0e58fa 3234 .type = ARM_CP_NO_RAW, .access = PL1_W,
fa439fc5 3235 .writefn = tlbimvaa_is_write },
9449fdf6 3236 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
7a0e58fa 3237 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
9449fdf6 3238 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
7a0e58fa 3239 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
9449fdf6
PM
3240 /* 32 bit cache operations */
3241 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3242 .type = ARM_CP_NOP, .access = PL1_W },
3243 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3244 .type = ARM_CP_NOP, .access = PL1_W },
3245 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3246 .type = ARM_CP_NOP, .access = PL1_W },
3247 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3248 .type = ARM_CP_NOP, .access = PL1_W },
3249 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3250 .type = ARM_CP_NOP, .access = PL1_W },
3251 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3252 .type = ARM_CP_NOP, .access = PL1_W },
3253 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3254 .type = ARM_CP_NOP, .access = PL1_W },
3255 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3256 .type = ARM_CP_NOP, .access = PL1_W },
3257 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3258 .type = ARM_CP_NOP, .access = PL1_W },
3259 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3260 .type = ARM_CP_NOP, .access = PL1_W },
3261 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3262 .type = ARM_CP_NOP, .access = PL1_W },
3263 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3264 .type = ARM_CP_NOP, .access = PL1_W },
3265 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3266 .type = ARM_CP_NOP, .access = PL1_W },
3267 /* MMU Domain access control / MPU write buffer control */
0c17d68c
FA
3268 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3269 .access = PL1_RW, .resetvalue = 0,
3270 .writefn = dacr_write, .raw_writefn = raw_write,
3271 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3272 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
a0618a19 3273 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3274 .type = ARM_CP_ALIAS,
a0618a19 3275 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
6947f059
EI
3276 .access = PL1_RW,
3277 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
a65f1de9 3278 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
7a0e58fa 3279 .type = ARM_CP_ALIAS,
a65f1de9 3280 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3281 .access = PL1_RW,
3282 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
f502cfc2
PM
3283 /* We rely on the access checks not allowing the guest to write to the
3284 * state field when SPSel indicates that it's being used as the stack
3285 * pointer.
3286 */
3287 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3288 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3289 .access = PL1_RW, .accessfn = sp_el0_access,
7a0e58fa 3290 .type = ARM_CP_ALIAS,
f502cfc2 3291 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
884b4dee
GB
3292 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3293 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3294 .access = PL2_RW, .type = ARM_CP_ALIAS,
884b4dee 3295 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
f502cfc2
PM
3296 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3297 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
7a0e58fa 3298 .type = ARM_CP_NO_RAW,
f502cfc2 3299 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
03fbf20f
PM
3300 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3301 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3302 .type = ARM_CP_ALIAS,
3303 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3304 .access = PL2_RW, .accessfn = fpexc32_access },
6a43e0b6
PM
3305 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3306 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3307 .access = PL2_RW, .resetvalue = 0,
3308 .writefn = dacr_write, .raw_writefn = raw_write,
3309 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3310 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3311 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3312 .access = PL2_RW, .resetvalue = 0,
3313 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3314 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3315 .type = ARM_CP_ALIAS,
3316 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3317 .access = PL2_RW,
3318 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3319 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3320 .type = ARM_CP_ALIAS,
3321 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3322 .access = PL2_RW,
3323 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3324 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3325 .type = ARM_CP_ALIAS,
3326 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3327 .access = PL2_RW,
3328 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3329 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3330 .type = ARM_CP_ALIAS,
3331 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3332 .access = PL2_RW,
3333 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
b0d2b7d0
PM
3334 REGINFO_SENTINEL
3335};
3336
d42e3c26 3337/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4771cd01 3338static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
d42e3c26
EI
3339 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3340 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3341 .access = PL2_RW,
3342 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
f149e3e8 3343 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3344 .type = ARM_CP_NO_RAW,
f149e3e8
EI
3345 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3346 .access = PL2_RW,
3347 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
c6f19164
GB
3348 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3349 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3350 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
95f949ac
EI
3351 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3352 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3353 .access = PL2_RW, .type = ARM_CP_CONST,
3354 .resetvalue = 0 },
3355 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3356 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3357 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2179ef95
PM
3358 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3359 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3360 .access = PL2_RW, .type = ARM_CP_CONST,
3361 .resetvalue = 0 },
3362 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3363 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3364 .access = PL2_RW, .type = ARM_CP_CONST,
3365 .resetvalue = 0 },
37cd6c24
PM
3366 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3367 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3368 .access = PL2_RW, .type = ARM_CP_CONST,
3369 .resetvalue = 0 },
3370 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3371 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3372 .access = PL2_RW, .type = ARM_CP_CONST,
3373 .resetvalue = 0 },
06ec4c8c
EI
3374 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3375 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3376 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
68e9c2fe
EI
3377 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3378 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3379 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3380 .type = ARM_CP_CONST, .resetvalue = 0 },
b698e9cf
EI
3381 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3382 .cp = 15, .opc1 = 6, .crm = 2,
3383 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3384 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3385 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3386 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3387 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
b9cb5323
EI
3388 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3389 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3390 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
ff05f37b
EI
3391 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3392 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3393 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
a57633c0
EI
3394 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3395 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3396 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3397 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3398 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3399 .resetvalue = 0 },
0b6440af
EI
3400 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3401 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3402 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
edac4d8a
EI
3403 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3404 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3405 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3406 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3407 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3408 .resetvalue = 0 },
b0e66d95
EI
3409 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3410 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3411 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3412 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3413 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3414 .resetvalue = 0 },
3415 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3416 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3417 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3418 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3419 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3420 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
14cc7b54
SF
3421 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3422 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
d6c8cf81
PM
3423 .access = PL2_RW, .accessfn = access_tda,
3424 .type = ARM_CP_CONST, .resetvalue = 0 },
59e05530
EI
3425 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3426 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3427 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3428 .type = ARM_CP_CONST, .resetvalue = 0 },
d42e3c26
EI
3429 REGINFO_SENTINEL
3430};
3431
f149e3e8
EI
3432static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3433{
3434 ARMCPU *cpu = arm_env_get_cpu(env);
3435 uint64_t valid_mask = HCR_MASK;
3436
3437 if (arm_feature(env, ARM_FEATURE_EL3)) {
3438 valid_mask &= ~HCR_HCD;
3439 } else {
3440 valid_mask &= ~HCR_TSC;
3441 }
3442
3443 /* Clear RES0 bits. */
3444 value &= valid_mask;
3445
3446 /* These bits change the MMU setup:
3447 * HCR_VM enables stage 2 translation
3448 * HCR_PTW forbids certain page-table setups
3449 * HCR_DC Disables stage1 and enables stage2 translation
3450 */
3451 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3452 tlb_flush(CPU(cpu), 1);
3453 }
3454 raw_write(env, ri, value);
3455}
3456
4771cd01 3457static const ARMCPRegInfo el2_cp_reginfo[] = {
f149e3e8
EI
3458 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3459 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3460 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3461 .writefn = hcr_write },
3b685ba7 3462 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3463 .type = ARM_CP_ALIAS,
3b685ba7
EI
3464 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3465 .access = PL2_RW,
3466 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
f2c30f42 3467 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3468 .type = ARM_CP_ALIAS,
f2c30f42
EI
3469 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3470 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
63b60551
EI
3471 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3472 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3473 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3b685ba7 3474 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
7a0e58fa 3475 .type = ARM_CP_ALIAS,
3b685ba7 3476 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3477 .access = PL2_RW,
3478 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
d42e3c26
EI
3479 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3480 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3481 .access = PL2_RW, .writefn = vbar_write,
3482 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3483 .resetvalue = 0 },
884b4dee
GB
3484 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3485 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
7a0e58fa 3486 .access = PL3_RW, .type = ARM_CP_ALIAS,
884b4dee 3487 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
c6f19164
GB
3488 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3489 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3490 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3491 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
95f949ac
EI
3492 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3493 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3494 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3495 .resetvalue = 0 },
3496 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3497 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3498 .access = PL2_RW, .type = ARM_CP_ALIAS,
3499 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
2179ef95
PM
3500 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3501 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3502 .access = PL2_RW, .type = ARM_CP_CONST,
3503 .resetvalue = 0 },
3504 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3505 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3506 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3507 .access = PL2_RW, .type = ARM_CP_CONST,
3508 .resetvalue = 0 },
37cd6c24
PM
3509 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3510 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3511 .access = PL2_RW, .type = ARM_CP_CONST,
3512 .resetvalue = 0 },
3513 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3514 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3515 .access = PL2_RW, .type = ARM_CP_CONST,
3516 .resetvalue = 0 },
06ec4c8c
EI
3517 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3518 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3519 .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
3520 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3521 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
68e9c2fe
EI
3522 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3523 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3524 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3525 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3526 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3527 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3528 .access = PL2_RW, .type = ARM_CP_ALIAS,
3529 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
b698e9cf
EI
3530 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3531 .cp = 15, .opc1 = 6, .crm = 2,
3532 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3533 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3534 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3535 .writefn = vttbr_write },
3536 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3537 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3538 .access = PL2_RW, .writefn = vttbr_write,
3539 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
b9cb5323
EI
3540 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3541 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3542 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3543 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
ff05f37b
EI
3544 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3545 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3546 .access = PL2_RW, .resetvalue = 0,
3547 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
a57633c0
EI
3548 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3549 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3550 .access = PL2_RW, .resetvalue = 0,
3551 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3552 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3553 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
a57633c0 3554 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
51da9014
EI
3555 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3556 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3557 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3558 .writefn = tlbi_aa64_alle2_write },
8742d49d
EI
3559 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3560 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3561 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3562 .writefn = tlbi_aa64_vae2_write },
2bfb9d75
PM
3563 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3564 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3565 .access = PL2_W, .type = ARM_CP_NO_RAW,
3566 .writefn = tlbi_aa64_vae2_write },
3567 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3568 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3569 .access = PL2_W, .type = ARM_CP_NO_RAW,
3570 .writefn = tlbi_aa64_alle2is_write },
8742d49d
EI
3571 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3572 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3573 .type = ARM_CP_NO_RAW, .access = PL2_W,
fd3ed969 3574 .writefn = tlbi_aa64_vae2is_write },
2bfb9d75
PM
3575 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3576 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3577 .access = PL2_W, .type = ARM_CP_NO_RAW,
3578 .writefn = tlbi_aa64_vae2is_write },
edac4d8a 3579#ifndef CONFIG_USER_ONLY
2a47df95
PM
3580 /* Unlike the other EL2-related AT operations, these must
3581 * UNDEF from EL3 if EL2 is not implemented, which is why we
3582 * define them here rather than with the rest of the AT ops.
3583 */
3584 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3585 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3586 .access = PL2_W, .accessfn = at_s1e2_access,
3587 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3588 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3589 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3590 .access = PL2_W, .accessfn = at_s1e2_access,
3591 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
14db7fe0
PM
3592 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3593 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3594 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3595 * to behave as if SCR.NS was 1.
3596 */
3597 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3598 .access = PL2_W,
3599 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3600 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3601 .access = PL2_W,
3602 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
0b6440af
EI
3603 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3604 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3605 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3606 * reset values as IMPDEF. We choose to reset to 3 to comply with
3607 * both ARMv7 and ARMv8.
3608 */
3609 .access = PL2_RW, .resetvalue = 3,
3610 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
edac4d8a
EI
3611 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3612 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3613 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3614 .writefn = gt_cntvoff_write,
3615 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3616 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3617 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3618 .writefn = gt_cntvoff_write,
3619 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
b0e66d95
EI
3620 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3621 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3622 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3623 .type = ARM_CP_IO, .access = PL2_RW,
3624 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3625 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3626 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3627 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3628 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3629 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3630 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3631 .type = ARM_CP_IO, .access = PL2_RW,
3632 .resetfn = gt_hyp_timer_reset,
3633 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3634 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3635 .type = ARM_CP_IO,
3636 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3637 .access = PL2_RW,
3638 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3639 .resetvalue = 0,
3640 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
edac4d8a 3641#endif
14cc7b54
SF
3642 /* The only field of MDCR_EL2 that has a defined architectural reset value
3643 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3644 * don't impelment any PMU event counters, so using zero as a reset
3645 * value for MDCR_EL2 is okay
3646 */
3647 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3648 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3649 .access = PL2_RW, .resetvalue = 0,
3650 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
59e05530
EI
3651 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3652 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3653 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3654 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3655 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3656 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3657 .access = PL2_RW,
3658 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3b685ba7
EI
3659 REGINFO_SENTINEL
3660};
3661
2f027fc5
PM
3662static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3663 bool isread)
3664{
3665 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3666 * At Secure EL1 it traps to EL3.
3667 */
3668 if (arm_current_el(env) == 3) {
3669 return CP_ACCESS_OK;
3670 }
3671 if (arm_is_secure_below_el3(env)) {
3672 return CP_ACCESS_TRAP_EL3;
3673 }
3674 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3675 if (isread) {
3676 return CP_ACCESS_OK;
3677 }
3678 return CP_ACCESS_TRAP_UNCATEGORIZED;
3679}
3680
60fb1a87
GB
3681static const ARMCPRegInfo el3_cp_reginfo[] = {
3682 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3683 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3684 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3685 .resetvalue = 0, .writefn = scr_write },
7a0e58fa 3686 { .name = "SCR", .type = ARM_CP_ALIAS,
60fb1a87 3687 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
efe4a274
PM
3688 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3689 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
b061a82b 3690 .writefn = scr_write },
5513c3ab
PM
3691 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3692 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3693 .resetvalue = 0,
3694 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3695 { .name = "SDCR", .type = ARM_CP_ALIAS,
3696 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3697 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3698 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
60fb1a87
GB
3699 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3700 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3701 .access = PL3_RW, .resetvalue = 0,
3702 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3703 { .name = "SDER",
3704 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3705 .access = PL3_RW, .resetvalue = 0,
3706 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
60fb1a87 3707 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
efe4a274
PM
3708 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3709 .writefn = vbar_write, .resetvalue = 0,
60fb1a87 3710 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
137feaa9 3711 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
e46e1a74 3712 .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */
137feaa9
FA
3713 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
3714 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3715 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
7dd8c9af
FA
3716 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3717 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3718 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3719 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
11f136ee
FA
3720 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3721 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3722 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
3723 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3724 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
81547d66 3725 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 3726 .type = ARM_CP_ALIAS,
81547d66
EI
3727 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3728 .access = PL3_RW,
3729 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
f2c30f42 3730 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 3731 .type = ARM_CP_ALIAS,
f2c30f42
EI
3732 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3733 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
63b60551
EI
3734 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3735 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3736 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
81547d66 3737 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
7a0e58fa 3738 .type = ARM_CP_ALIAS,
81547d66 3739 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
99a99c1f
SB
3740 .access = PL3_RW,
3741 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
a1ba125c
EI
3742 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3743 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3744 .access = PL3_RW, .writefn = vbar_write,
3745 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3746 .resetvalue = 0 },
c6f19164
GB
3747 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3748 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3749 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3750 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4cfb8ad8
PM
3751 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3752 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3753 .access = PL3_RW, .resetvalue = 0,
3754 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
2179ef95
PM
3755 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3756 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3757 .access = PL3_RW, .type = ARM_CP_CONST,
3758 .resetvalue = 0 },
37cd6c24
PM
3759 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3760 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3761 .access = PL3_RW, .type = ARM_CP_CONST,
3762 .resetvalue = 0 },
3763 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3764 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3765 .access = PL3_RW, .type = ARM_CP_CONST,
3766 .resetvalue = 0 },
43efaa33
PM
3767 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3768 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3769 .access = PL3_W, .type = ARM_CP_NO_RAW,
3770 .writefn = tlbi_aa64_alle3is_write },
3771 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3772 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3773 .access = PL3_W, .type = ARM_CP_NO_RAW,
3774 .writefn = tlbi_aa64_vae3is_write },
3775 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3776 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3777 .access = PL3_W, .type = ARM_CP_NO_RAW,
3778 .writefn = tlbi_aa64_vae3is_write },
3779 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3780 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3781 .access = PL3_W, .type = ARM_CP_NO_RAW,
3782 .writefn = tlbi_aa64_alle3_write },
3783 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3784 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3785 .access = PL3_W, .type = ARM_CP_NO_RAW,
3786 .writefn = tlbi_aa64_vae3_write },
3787 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3788 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3789 .access = PL3_W, .type = ARM_CP_NO_RAW,
3790 .writefn = tlbi_aa64_vae3_write },
0f1a3b24
FA
3791 REGINFO_SENTINEL
3792};
3793
3f208fd7
PM
3794static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3795 bool isread)
7da845b0
PM
3796{
3797 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3798 * but the AArch32 CTR has its own reginfo struct)
3799 */
137feaa9 3800 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
7da845b0
PM
3801 return CP_ACCESS_TRAP;
3802 }
3803 return CP_ACCESS_OK;
3804}
3805
1424ca8d
DM
3806static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3807 uint64_t value)
3808{
3809 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3810 * read via a bit in OSLSR_EL1.
3811 */
3812 int oslock;
3813
3814 if (ri->state == ARM_CP_STATE_AA32) {
3815 oslock = (value == 0xC5ACCE55);
3816 } else {
3817 oslock = value & 1;
3818 }
3819
3820 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
3821}
3822
50300698 3823static const ARMCPRegInfo debug_cp_reginfo[] = {
50300698 3824 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
10aae104
PM
3825 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3826 * unlike DBGDRAR it is never accessible from EL0.
3827 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3828 * accessor.
50300698
PM
3829 */
3830 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
3831 .access = PL0_R, .accessfn = access_tdra,
3832 .type = ARM_CP_CONST, .resetvalue = 0 },
10aae104
PM
3833 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
3834 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
91b0a238
PM
3835 .access = PL1_R, .accessfn = access_tdra,
3836 .type = ARM_CP_CONST, .resetvalue = 0 },
50300698 3837 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
91b0a238
PM
3838 .access = PL0_R, .accessfn = access_tdra,
3839 .type = ARM_CP_CONST, .resetvalue = 0 },
17a9eb53 3840 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
10aae104
PM
3841 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
3842 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
d6c8cf81 3843 .access = PL1_RW, .accessfn = access_tda,
0e5e8935
PM
3844 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
3845 .resetvalue = 0 },
5e8b12ff
PM
3846 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3847 * We don't implement the configurable EL0 access.
3848 */
3849 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
3850 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7a0e58fa 3851 .type = ARM_CP_ALIAS,
d6c8cf81 3852 .access = PL1_R, .accessfn = access_tda,
b061a82b 3853 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
10aae104
PM
3854 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
3855 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1424ca8d 3856 .access = PL1_W, .type = ARM_CP_NO_RAW,
187f678d 3857 .accessfn = access_tdosa,
1424ca8d
DM
3858 .writefn = oslar_write },
3859 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
3860 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
3861 .access = PL1_R, .resetvalue = 10,
187f678d 3862 .accessfn = access_tdosa,
1424ca8d 3863 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5e8b12ff
PM
3864 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3865 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
3866 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
187f678d
PM
3867 .access = PL1_RW, .accessfn = access_tdosa,
3868 .type = ARM_CP_NOP },
5e8b12ff
PM
3869 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3870 * implement vector catch debug events yet.
3871 */
3872 { .name = "DBGVCR",
3873 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
d6c8cf81
PM
3874 .access = PL1_RW, .accessfn = access_tda,
3875 .type = ARM_CP_NOP },
50300698
PM
3876 REGINFO_SENTINEL
3877};
3878
3879static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
3880 /* 64 bit access versions of the (dummy) debug registers */
3881 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
3882 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3883 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
3884 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3885 REGINFO_SENTINEL
3886};
3887
9ee98ce8
PM
3888void hw_watchpoint_update(ARMCPU *cpu, int n)
3889{
3890 CPUARMState *env = &cpu->env;
3891 vaddr len = 0;
3892 vaddr wvr = env->cp15.dbgwvr[n];
3893 uint64_t wcr = env->cp15.dbgwcr[n];
3894 int mask;
3895 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
3896
3897 if (env->cpu_watchpoint[n]) {
3898 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
3899 env->cpu_watchpoint[n] = NULL;
3900 }
3901
3902 if (!extract64(wcr, 0, 1)) {
3903 /* E bit clear : watchpoint disabled */
3904 return;
3905 }
3906
3907 switch (extract64(wcr, 3, 2)) {
3908 case 0:
3909 /* LSC 00 is reserved and must behave as if the wp is disabled */
3910 return;
3911 case 1:
3912 flags |= BP_MEM_READ;
3913 break;
3914 case 2:
3915 flags |= BP_MEM_WRITE;
3916 break;
3917 case 3:
3918 flags |= BP_MEM_ACCESS;
3919 break;
3920 }
3921
3922 /* Attempts to use both MASK and BAS fields simultaneously are
3923 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3924 * thus generating a watchpoint for every byte in the masked region.
3925 */
3926 mask = extract64(wcr, 24, 4);
3927 if (mask == 1 || mask == 2) {
3928 /* Reserved values of MASK; we must act as if the mask value was
3929 * some non-reserved value, or as if the watchpoint were disabled.
3930 * We choose the latter.
3931 */
3932 return;
3933 } else if (mask) {
3934 /* Watchpoint covers an aligned area up to 2GB in size */
3935 len = 1ULL << mask;
3936 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3937 * whether the watchpoint fires when the unmasked bits match; we opt
3938 * to generate the exceptions.
3939 */
3940 wvr &= ~(len - 1);
3941 } else {
3942 /* Watchpoint covers bytes defined by the byte address select bits */
3943 int bas = extract64(wcr, 5, 8);
3944 int basstart;
3945
3946 if (bas == 0) {
3947 /* This must act as if the watchpoint is disabled */
3948 return;
3949 }
3950
3951 if (extract64(wvr, 2, 1)) {
3952 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3953 * ignored, and BAS[3:0] define which bytes to watch.
3954 */
3955 bas &= 0xf;
3956 }
3957 /* The BAS bits are supposed to be programmed to indicate a contiguous
3958 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3959 * we fire for each byte in the word/doubleword addressed by the WVR.
3960 * We choose to ignore any non-zero bits after the first range of 1s.
3961 */
3962 basstart = ctz32(bas);
3963 len = cto32(bas >> basstart);
3964 wvr += basstart;
3965 }
3966
3967 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
3968 &env->cpu_watchpoint[n]);
3969}
3970
3971void hw_watchpoint_update_all(ARMCPU *cpu)
3972{
3973 int i;
3974 CPUARMState *env = &cpu->env;
3975
3976 /* Completely clear out existing QEMU watchpoints and our array, to
3977 * avoid possible stale entries following migration load.
3978 */
3979 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
3980 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
3981
3982 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
3983 hw_watchpoint_update(cpu, i);
3984 }
3985}
3986
3987static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3988 uint64_t value)
3989{
3990 ARMCPU *cpu = arm_env_get_cpu(env);
3991 int i = ri->crm;
3992
3993 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
3994 * register reads and behaves as if values written are sign extended.
3995 * Bits [1:0] are RES0.
3996 */
3997 value = sextract64(value, 0, 49) & ~3ULL;
3998
3999 raw_write(env, ri, value);
4000 hw_watchpoint_update(cpu, i);
4001}
4002
4003static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4004 uint64_t value)
4005{
4006 ARMCPU *cpu = arm_env_get_cpu(env);
4007 int i = ri->crm;
4008
4009 raw_write(env, ri, value);
4010 hw_watchpoint_update(cpu, i);
4011}
4012
46747d15
PM
4013void hw_breakpoint_update(ARMCPU *cpu, int n)
4014{
4015 CPUARMState *env = &cpu->env;
4016 uint64_t bvr = env->cp15.dbgbvr[n];
4017 uint64_t bcr = env->cp15.dbgbcr[n];
4018 vaddr addr;
4019 int bt;
4020 int flags = BP_CPU;
4021
4022 if (env->cpu_breakpoint[n]) {
4023 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4024 env->cpu_breakpoint[n] = NULL;
4025 }
4026
4027 if (!extract64(bcr, 0, 1)) {
4028 /* E bit clear : watchpoint disabled */
4029 return;
4030 }
4031
4032 bt = extract64(bcr, 20, 4);
4033
4034 switch (bt) {
4035 case 4: /* unlinked address mismatch (reserved if AArch64) */
4036 case 5: /* linked address mismatch (reserved if AArch64) */
4037 qemu_log_mask(LOG_UNIMP,
4038 "arm: address mismatch breakpoint types not implemented");
4039 return;
4040 case 0: /* unlinked address match */
4041 case 1: /* linked address match */
4042 {
4043 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4044 * we behave as if the register was sign extended. Bits [1:0] are
4045 * RES0. The BAS field is used to allow setting breakpoints on 16
4046 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4047 * a bp will fire if the addresses covered by the bp and the addresses
4048 * covered by the insn overlap but the insn doesn't start at the
4049 * start of the bp address range. We choose to require the insn and
4050 * the bp to have the same address. The constraints on writing to
4051 * BAS enforced in dbgbcr_write mean we have only four cases:
4052 * 0b0000 => no breakpoint
4053 * 0b0011 => breakpoint on addr
4054 * 0b1100 => breakpoint on addr + 2
4055 * 0b1111 => breakpoint on addr
4056 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4057 */
4058 int bas = extract64(bcr, 5, 4);
4059 addr = sextract64(bvr, 0, 49) & ~3ULL;
4060 if (bas == 0) {
4061 return;
4062 }
4063 if (bas == 0xc) {
4064 addr += 2;
4065 }
4066 break;
4067 }
4068 case 2: /* unlinked context ID match */
4069 case 8: /* unlinked VMID match (reserved if no EL2) */
4070 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4071 qemu_log_mask(LOG_UNIMP,
4072 "arm: unlinked context breakpoint types not implemented");
4073 return;
4074 case 9: /* linked VMID match (reserved if no EL2) */
4075 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4076 case 3: /* linked context ID match */
4077 default:
4078 /* We must generate no events for Linked context matches (unless
4079 * they are linked to by some other bp/wp, which is handled in
4080 * updates for the linking bp/wp). We choose to also generate no events
4081 * for reserved values.
4082 */
4083 return;
4084 }
4085
4086 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4087}
4088
4089void hw_breakpoint_update_all(ARMCPU *cpu)
4090{
4091 int i;
4092 CPUARMState *env = &cpu->env;
4093
4094 /* Completely clear out existing QEMU breakpoints and our array, to
4095 * avoid possible stale entries following migration load.
4096 */
4097 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4098 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4099
4100 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4101 hw_breakpoint_update(cpu, i);
4102 }
4103}
4104
4105static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4106 uint64_t value)
4107{
4108 ARMCPU *cpu = arm_env_get_cpu(env);
4109 int i = ri->crm;
4110
4111 raw_write(env, ri, value);
4112 hw_breakpoint_update(cpu, i);
4113}
4114
4115static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4116 uint64_t value)
4117{
4118 ARMCPU *cpu = arm_env_get_cpu(env);
4119 int i = ri->crm;
4120
4121 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4122 * copy of BAS[0].
4123 */
4124 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4125 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4126
4127 raw_write(env, ri, value);
4128 hw_breakpoint_update(cpu, i);
4129}
4130
50300698 4131static void define_debug_regs(ARMCPU *cpu)
0b45451e 4132{
50300698
PM
4133 /* Define v7 and v8 architectural debug registers.
4134 * These are just dummy implementations for now.
0b45451e
PM
4135 */
4136 int i;
3ff6fc91 4137 int wrps, brps, ctx_cmps;
48eb3ae6
PM
4138 ARMCPRegInfo dbgdidr = {
4139 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
d6c8cf81
PM
4140 .access = PL0_R, .accessfn = access_tda,
4141 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
48eb3ae6
PM
4142 };
4143
3ff6fc91 4144 /* Note that all these register fields hold "number of Xs minus 1". */
48eb3ae6
PM
4145 brps = extract32(cpu->dbgdidr, 24, 4);
4146 wrps = extract32(cpu->dbgdidr, 28, 4);
3ff6fc91
PM
4147 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4148
4149 assert(ctx_cmps <= brps);
48eb3ae6
PM
4150
4151 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4152 * of the debug registers such as number of breakpoints;
4153 * check that if they both exist then they agree.
4154 */
4155 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4156 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4157 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3ff6fc91 4158 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
48eb3ae6 4159 }
0b45451e 4160
48eb3ae6 4161 define_one_arm_cp_reg(cpu, &dbgdidr);
50300698
PM
4162 define_arm_cp_regs(cpu, debug_cp_reginfo);
4163
4164 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4165 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4166 }
4167
48eb3ae6 4168 for (i = 0; i < brps + 1; i++) {
0b45451e 4169 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4170 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4171 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
d6c8cf81 4172 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4173 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4174 .writefn = dbgbvr_write, .raw_writefn = raw_write
4175 },
10aae104
PM
4176 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4177 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
d6c8cf81 4178 .access = PL1_RW, .accessfn = access_tda,
46747d15
PM
4179 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4180 .writefn = dbgbcr_write, .raw_writefn = raw_write
4181 },
48eb3ae6
PM
4182 REGINFO_SENTINEL
4183 };
4184 define_arm_cp_regs(cpu, dbgregs);
4185 }
4186
4187 for (i = 0; i < wrps + 1; i++) {
4188 ARMCPRegInfo dbgregs[] = {
10aae104
PM
4189 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4190 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
d6c8cf81 4191 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4192 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4193 .writefn = dbgwvr_write, .raw_writefn = raw_write
4194 },
10aae104
PM
4195 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4196 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
d6c8cf81 4197 .access = PL1_RW, .accessfn = access_tda,
9ee98ce8
PM
4198 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4199 .writefn = dbgwcr_write, .raw_writefn = raw_write
4200 },
4201 REGINFO_SENTINEL
0b45451e
PM
4202 };
4203 define_arm_cp_regs(cpu, dbgregs);
4204 }
4205}
4206
2ceb98c0
PM
4207void register_cp_regs_for_features(ARMCPU *cpu)
4208{
4209 /* Register all the coprocessor registers based on feature bits */
4210 CPUARMState *env = &cpu->env;
4211 if (arm_feature(env, ARM_FEATURE_M)) {
4212 /* M profile has no coprocessor registers */
4213 return;
4214 }
4215
e9aa6c21 4216 define_arm_cp_regs(cpu, cp_reginfo);
9449fdf6
PM
4217 if (!arm_feature(env, ARM_FEATURE_V8)) {
4218 /* Must go early as it is full of wildcards that may be
4219 * overridden by later definitions.
4220 */
4221 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4222 }
4223
7d57f408 4224 if (arm_feature(env, ARM_FEATURE_V6)) {
8515a092
PM
4225 /* The ID registers all have impdef reset values */
4226 ARMCPRegInfo v6_idregs[] = {
0ff644a7
PM
4227 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4228 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4229 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4230 .resetvalue = cpu->id_pfr0 },
0ff644a7
PM
4231 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4233 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4234 .resetvalue = cpu->id_pfr1 },
0ff644a7
PM
4235 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4236 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4237 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4238 .resetvalue = cpu->id_dfr0 },
0ff644a7
PM
4239 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4240 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4241 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4242 .resetvalue = cpu->id_afr0 },
0ff644a7
PM
4243 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4244 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4245 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4246 .resetvalue = cpu->id_mmfr0 },
0ff644a7
PM
4247 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4248 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4249 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4250 .resetvalue = cpu->id_mmfr1 },
0ff644a7
PM
4251 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4252 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4253 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4254 .resetvalue = cpu->id_mmfr2 },
0ff644a7
PM
4255 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4256 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4257 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4258 .resetvalue = cpu->id_mmfr3 },
0ff644a7
PM
4259 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4260 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4261 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4262 .resetvalue = cpu->id_isar0 },
0ff644a7
PM
4263 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4264 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4265 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4266 .resetvalue = cpu->id_isar1 },
0ff644a7
PM
4267 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4269 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4270 .resetvalue = cpu->id_isar2 },
0ff644a7
PM
4271 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4272 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4273 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4274 .resetvalue = cpu->id_isar3 },
0ff644a7
PM
4275 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4276 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4277 .access = PL1_R, .type = ARM_CP_CONST,
8515a092 4278 .resetvalue = cpu->id_isar4 },
0ff644a7
PM
4279 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4280 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4281 .access = PL1_R, .type = ARM_CP_CONST,
8515a092
PM
4282 .resetvalue = cpu->id_isar5 },
4283 /* 6..7 are as yet unallocated and must RAZ */
4284 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
4285 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
4286 .resetvalue = 0 },
4287 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
4288 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
4289 .resetvalue = 0 },
4290 REGINFO_SENTINEL
4291 };
4292 define_arm_cp_regs(cpu, v6_idregs);
7d57f408
PM
4293 define_arm_cp_regs(cpu, v6_cp_reginfo);
4294 } else {
4295 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4296 }
4d31c596
PM
4297 if (arm_feature(env, ARM_FEATURE_V6K)) {
4298 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4299 }
5e5cf9e3
PC
4300 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4301 !arm_feature(env, ARM_FEATURE_MPU)) {
995939a6
PM
4302 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4303 }
e9aa6c21 4304 if (arm_feature(env, ARM_FEATURE_V7)) {
200ac0ef 4305 /* v7 performance monitor control register: same implementor
7c2cb42b
AF
4306 * field as main ID register, and we implement only the cycle
4307 * count register.
200ac0ef 4308 */
7c2cb42b 4309#ifndef CONFIG_USER_ONLY
200ac0ef
PM
4310 ARMCPRegInfo pmcr = {
4311 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
8521466b 4312 .access = PL0_RW,
7a0e58fa 4313 .type = ARM_CP_IO | ARM_CP_ALIAS,
8521466b 4314 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
fcd25206
PM
4315 .accessfn = pmreg_access, .writefn = pmcr_write,
4316 .raw_writefn = raw_write,
200ac0ef 4317 };
8521466b
AF
4318 ARMCPRegInfo pmcr64 = {
4319 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4320 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4321 .access = PL0_RW, .accessfn = pmreg_access,
4322 .type = ARM_CP_IO,
4323 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4324 .resetvalue = cpu->midr & 0xff000000,
4325 .writefn = pmcr_write, .raw_writefn = raw_write,
4326 };
7c2cb42b 4327 define_one_arm_cp_reg(cpu, &pmcr);
8521466b 4328 define_one_arm_cp_reg(cpu, &pmcr64);
7c2cb42b 4329#endif
776d4e5c 4330 ARMCPRegInfo clidr = {
7da845b0
PM
4331 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4332 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
776d4e5c
PM
4333 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4334 };
776d4e5c 4335 define_one_arm_cp_reg(cpu, &clidr);
e9aa6c21 4336 define_arm_cp_regs(cpu, v7_cp_reginfo);
50300698 4337 define_debug_regs(cpu);
7d57f408
PM
4338 } else {
4339 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
e9aa6c21 4340 }
b0d2b7d0 4341 if (arm_feature(env, ARM_FEATURE_V8)) {
e60cef86
PM
4342 /* AArch64 ID registers, which all have impdef reset values */
4343 ARMCPRegInfo v8_idregs[] = {
4344 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4345 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4346 .access = PL1_R, .type = ARM_CP_CONST,
4347 .resetvalue = cpu->id_aa64pfr0 },
4348 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4349 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4350 .access = PL1_R, .type = ARM_CP_CONST,
4351 .resetvalue = cpu->id_aa64pfr1},
4352 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4353 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4354 .access = PL1_R, .type = ARM_CP_CONST,
5d831be2 4355 /* We mask out the PMUVer field, because we don't currently
9225d739
PM
4356 * implement the PMU. Not advertising it prevents the guest
4357 * from trying to use it and getting UNDEFs on registers we
4358 * don't implement.
4359 */
4360 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
e60cef86
PM
4361 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4362 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4363 .access = PL1_R, .type = ARM_CP_CONST,
4364 .resetvalue = cpu->id_aa64dfr1 },
4365 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4366 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4367 .access = PL1_R, .type = ARM_CP_CONST,
4368 .resetvalue = cpu->id_aa64afr0 },
4369 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4370 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4371 .access = PL1_R, .type = ARM_CP_CONST,
4372 .resetvalue = cpu->id_aa64afr1 },
4373 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4374 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4375 .access = PL1_R, .type = ARM_CP_CONST,
4376 .resetvalue = cpu->id_aa64isar0 },
4377 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4378 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4379 .access = PL1_R, .type = ARM_CP_CONST,
4380 .resetvalue = cpu->id_aa64isar1 },
4381 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4382 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4383 .access = PL1_R, .type = ARM_CP_CONST,
4384 .resetvalue = cpu->id_aa64mmfr0 },
4385 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4386 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4387 .access = PL1_R, .type = ARM_CP_CONST,
4388 .resetvalue = cpu->id_aa64mmfr1 },
a50c0f51
PM
4389 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4390 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4391 .access = PL1_R, .type = ARM_CP_CONST,
4392 .resetvalue = cpu->mvfr0 },
4393 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4394 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4395 .access = PL1_R, .type = ARM_CP_CONST,
4396 .resetvalue = cpu->mvfr1 },
4397 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4399 .access = PL1_R, .type = ARM_CP_CONST,
4400 .resetvalue = cpu->mvfr2 },
4054bfa9
AF
4401 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4402 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4403 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4404 .resetvalue = cpu->pmceid0 },
4405 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4406 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4407 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4408 .resetvalue = cpu->pmceid0 },
4409 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4410 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4411 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4412 .resetvalue = cpu->pmceid1 },
4413 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4414 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4415 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4416 .resetvalue = cpu->pmceid1 },
e60cef86
PM
4417 REGINFO_SENTINEL
4418 };
be8e8128
GB
4419 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4420 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4421 !arm_feature(env, ARM_FEATURE_EL2)) {
4422 ARMCPRegInfo rvbar = {
4423 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4424 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4425 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4426 };
4427 define_one_arm_cp_reg(cpu, &rvbar);
4428 }
e60cef86 4429 define_arm_cp_regs(cpu, v8_idregs);
b0d2b7d0
PM
4430 define_arm_cp_regs(cpu, v8_cp_reginfo);
4431 }
3b685ba7 4432 if (arm_feature(env, ARM_FEATURE_EL2)) {
f0d574d6 4433 uint64_t vmpidr_def = mpidr_read_val(env);
731de9e6
EI
4434 ARMCPRegInfo vpidr_regs[] = {
4435 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4436 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4437 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4438 .resetvalue = cpu->midr,
4439 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4440 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4441 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4442 .access = PL2_RW, .resetvalue = cpu->midr,
4443 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4444 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4445 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4446 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4447 .resetvalue = vmpidr_def,
4448 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4449 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4450 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4451 .access = PL2_RW,
4452 .resetvalue = vmpidr_def,
4453 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
731de9e6
EI
4454 REGINFO_SENTINEL
4455 };
4456 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4457 define_arm_cp_regs(cpu, el2_cp_reginfo);
be8e8128
GB
4458 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4459 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4460 ARMCPRegInfo rvbar = {
4461 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4462 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4463 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4464 };
4465 define_one_arm_cp_reg(cpu, &rvbar);
4466 }
d42e3c26
EI
4467 } else {
4468 /* If EL2 is missing but higher ELs are enabled, we need to
4469 * register the no_el2 reginfos.
4470 */
4471 if (arm_feature(env, ARM_FEATURE_EL3)) {
f0d574d6
EI
4472 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4473 * of MIDR_EL1 and MPIDR_EL1.
731de9e6
EI
4474 */
4475 ARMCPRegInfo vpidr_regs[] = {
4476 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4477 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4478 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4479 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4480 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
f0d574d6
EI
4481 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4482 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4483 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4484 .type = ARM_CP_NO_RAW,
4485 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
731de9e6
EI
4486 REGINFO_SENTINEL
4487 };
4488 define_arm_cp_regs(cpu, vpidr_regs);
4771cd01 4489 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
d42e3c26 4490 }
3b685ba7 4491 }
81547d66 4492 if (arm_feature(env, ARM_FEATURE_EL3)) {
0f1a3b24 4493 define_arm_cp_regs(cpu, el3_cp_reginfo);
be8e8128
GB
4494 ARMCPRegInfo rvbar = {
4495 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4496 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4497 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
4498 };
4499 define_one_arm_cp_reg(cpu, &rvbar);
81547d66 4500 }
2f027fc5
PM
4501 /* The behaviour of NSACR is sufficiently various that we don't
4502 * try to describe it in a single reginfo:
4503 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4504 * reads as constant 0xc00 from NS EL1 and NS EL2
4505 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4506 * if v7 without EL3, register doesn't exist
4507 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4508 */
4509 if (arm_feature(env, ARM_FEATURE_EL3)) {
4510 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4511 ARMCPRegInfo nsacr = {
4512 .name = "NSACR", .type = ARM_CP_CONST,
4513 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4514 .access = PL1_RW, .accessfn = nsacr_access,
4515 .resetvalue = 0xc00
4516 };
4517 define_one_arm_cp_reg(cpu, &nsacr);
4518 } else {
4519 ARMCPRegInfo nsacr = {
4520 .name = "NSACR",
4521 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4522 .access = PL3_RW | PL1_R,
4523 .resetvalue = 0,
4524 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4525 };
4526 define_one_arm_cp_reg(cpu, &nsacr);
4527 }
4528 } else {
4529 if (arm_feature(env, ARM_FEATURE_V8)) {
4530 ARMCPRegInfo nsacr = {
4531 .name = "NSACR", .type = ARM_CP_CONST,
4532 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4533 .access = PL1_R,
4534 .resetvalue = 0xc00
4535 };
4536 define_one_arm_cp_reg(cpu, &nsacr);
4537 }
4538 }
4539
18032bec 4540 if (arm_feature(env, ARM_FEATURE_MPU)) {
6cb0b013
PC
4541 if (arm_feature(env, ARM_FEATURE_V6)) {
4542 /* PMSAv6 not implemented */
4543 assert(arm_feature(env, ARM_FEATURE_V7));
4544 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4545 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4546 } else {
4547 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4548 }
18032bec 4549 } else {
8e5d75c9 4550 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
18032bec
PM
4551 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4552 }
c326b979
PM
4553 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4554 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4555 }
6cc7a3ae
PM
4556 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4557 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4558 }
4a501606
PM
4559 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4560 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4561 }
c4804214
PM
4562 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4563 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4564 }
4565 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4566 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4567 }
4568 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4569 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4570 }
18032bec
PM
4571 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4572 define_arm_cp_regs(cpu, omap_cp_reginfo);
4573 }
34f90529
PM
4574 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4575 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4576 }
1047b9d7
PM
4577 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4578 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4579 }
4580 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4581 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4582 }
7ac681cf
PM
4583 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4584 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4585 }
7884849c
PM
4586 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4587 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4588 * be read-only (ie write causes UNDEF exception).
4589 */
4590 {
00a29f3d
PM
4591 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4592 /* Pre-v8 MIDR space.
4593 * Note that the MIDR isn't a simple constant register because
7884849c
PM
4594 * of the TI925 behaviour where writes to another register can
4595 * cause the MIDR value to change.
97ce8d61
PC
4596 *
4597 * Unimplemented registers in the c15 0 0 0 space default to
4598 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4599 * and friends override accordingly.
7884849c
PM
4600 */
4601 { .name = "MIDR",
97ce8d61 4602 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7884849c 4603 .access = PL1_R, .resetvalue = cpu->midr,
d4e6df63 4604 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
731de9e6 4605 .readfn = midr_read,
97ce8d61
PC
4606 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4607 .type = ARM_CP_OVERRIDE },
7884849c
PM
4608 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4609 { .name = "DUMMY",
4610 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4611 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4612 { .name = "DUMMY",
4613 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4614 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4615 { .name = "DUMMY",
4616 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4617 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4618 { .name = "DUMMY",
4619 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4620 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4621 { .name = "DUMMY",
4622 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4623 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4624 REGINFO_SENTINEL
4625 };
00a29f3d 4626 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
00a29f3d
PM
4627 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
731de9e6
EI
4629 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4630 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4631 .readfn = midr_read },
ac00c79f
SF
4632 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4633 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4634 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4635 .access = PL1_R, .resetvalue = cpu->midr },
4636 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4637 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4638 .access = PL1_R, .resetvalue = cpu->midr },
00a29f3d
PM
4639 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
13b72b2b 4641 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
00a29f3d
PM
4642 REGINFO_SENTINEL
4643 };
4644 ARMCPRegInfo id_cp_reginfo[] = {
4645 /* These are common to v8 and pre-v8 */
4646 { .name = "CTR",
4647 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4648 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4649 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4650 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4651 .access = PL0_R, .accessfn = ctr_el0_access,
4652 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4653 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4654 { .name = "TCMTR",
4655 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4656 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
00a29f3d
PM
4657 REGINFO_SENTINEL
4658 };
8085ce63
PC
4659 /* TLBTR is specific to VMSA */
4660 ARMCPRegInfo id_tlbtr_reginfo = {
4661 .name = "TLBTR",
4662 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4663 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4664 };
3281af81
PC
4665 /* MPUIR is specific to PMSA V6+ */
4666 ARMCPRegInfo id_mpuir_reginfo = {
4667 .name = "MPUIR",
4668 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4669 .access = PL1_R, .type = ARM_CP_CONST,
4670 .resetvalue = cpu->pmsav7_dregion << 8
4671 };
7884849c
PM
4672 ARMCPRegInfo crn0_wi_reginfo = {
4673 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
4674 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
4675 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
4676 };
4677 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
4678 arm_feature(env, ARM_FEATURE_STRONGARM)) {
4679 ARMCPRegInfo *r;
4680 /* Register the blanket "writes ignored" value first to cover the
a703eda1
PC
4681 * whole space. Then update the specific ID registers to allow write
4682 * access, so that they ignore writes rather than causing them to
4683 * UNDEF.
7884849c
PM
4684 */
4685 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
00a29f3d
PM
4686 for (r = id_pre_v8_midr_cp_reginfo;
4687 r->type != ARM_CP_SENTINEL; r++) {
4688 r->access = PL1_RW;
4689 }
7884849c
PM
4690 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
4691 r->access = PL1_RW;
7884849c 4692 }
8085ce63 4693 id_tlbtr_reginfo.access = PL1_RW;
3281af81 4694 id_tlbtr_reginfo.access = PL1_RW;
7884849c 4695 }
00a29f3d
PM
4696 if (arm_feature(env, ARM_FEATURE_V8)) {
4697 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
4698 } else {
4699 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
4700 }
a703eda1 4701 define_arm_cp_regs(cpu, id_cp_reginfo);
8085ce63
PC
4702 if (!arm_feature(env, ARM_FEATURE_MPU)) {
4703 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
3281af81
PC
4704 } else if (arm_feature(env, ARM_FEATURE_V7)) {
4705 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8085ce63 4706 }
7884849c
PM
4707 }
4708
97ce8d61
PC
4709 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
4710 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
4711 }
4712
2771db27 4713 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
834a6c69
PM
4714 ARMCPRegInfo auxcr_reginfo[] = {
4715 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
4716 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
4717 .access = PL1_RW, .type = ARM_CP_CONST,
4718 .resetvalue = cpu->reset_auxcr },
4719 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
4720 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
4721 .access = PL2_RW, .type = ARM_CP_CONST,
4722 .resetvalue = 0 },
4723 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
4724 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
4725 .access = PL3_RW, .type = ARM_CP_CONST,
4726 .resetvalue = 0 },
4727 REGINFO_SENTINEL
2771db27 4728 };
834a6c69 4729 define_arm_cp_regs(cpu, auxcr_reginfo);
2771db27
PM
4730 }
4731
d8ba780b 4732 if (arm_feature(env, ARM_FEATURE_CBAR)) {
f318cec6
PM
4733 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4734 /* 32 bit view is [31:18] 0...0 [43:32]. */
4735 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
4736 | extract64(cpu->reset_cbar, 32, 12);
4737 ARMCPRegInfo cbar_reginfo[] = {
4738 { .name = "CBAR",
4739 .type = ARM_CP_CONST,
4740 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4741 .access = PL1_R, .resetvalue = cpu->reset_cbar },
4742 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
4743 .type = ARM_CP_CONST,
4744 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
4745 .access = PL1_R, .resetvalue = cbar32 },
4746 REGINFO_SENTINEL
4747 };
4748 /* We don't implement a r/w 64 bit CBAR currently */
4749 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
4750 define_arm_cp_regs(cpu, cbar_reginfo);
4751 } else {
4752 ARMCPRegInfo cbar = {
4753 .name = "CBAR",
4754 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4755 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
4756 .fieldoffset = offsetof(CPUARMState,
4757 cp15.c15_config_base_address)
4758 };
4759 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
4760 cbar.access = PL1_R;
4761 cbar.fieldoffset = 0;
4762 cbar.type = ARM_CP_CONST;
4763 }
4764 define_one_arm_cp_reg(cpu, &cbar);
4765 }
d8ba780b
PC
4766 }
4767
2771db27
PM
4768 /* Generic registers whose values depend on the implementation */
4769 {
4770 ARMCPRegInfo sctlr = {
5ebafdf3 4771 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
137feaa9
FA
4772 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4773 .access = PL1_RW,
4774 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
4775 offsetof(CPUARMState, cp15.sctlr_ns) },
d4e6df63
PM
4776 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
4777 .raw_writefn = raw_write,
2771db27
PM
4778 };
4779 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4780 /* Normally we would always end the TB on an SCTLR write, but Linux
4781 * arch/arm/mach-pxa/sleep.S expects two instructions following
4782 * an MMU enable to execute from cache. Imitate this behaviour.
4783 */
4784 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
4785 }
4786 define_one_arm_cp_reg(cpu, &sctlr);
4787 }
2ceb98c0
PM
4788}
4789
778c3a06 4790ARMCPU *cpu_arm_init(const char *cpu_model)
40f137e1 4791{
9262685b 4792 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
14969266
AF
4793}
4794
4795void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
4796{
22169d41 4797 CPUState *cs = CPU(cpu);
14969266
AF
4798 CPUARMState *env = &cpu->env;
4799
6a669427
PM
4800 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4801 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
4802 aarch64_fpu_gdb_set_reg,
4803 34, "aarch64-fpu.xml", 0);
4804 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
22169d41 4805 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
4806 51, "arm-neon.xml", 0);
4807 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
22169d41 4808 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
4809 35, "arm-vfp3.xml", 0);
4810 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
22169d41 4811 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
56aebc89
PB
4812 19, "arm-vfp.xml", 0);
4813 }
40f137e1
PB
4814}
4815
777dc784
PM
4816/* Sort alphabetically by type name, except for "any". */
4817static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5adb4839 4818{
777dc784
PM
4819 ObjectClass *class_a = (ObjectClass *)a;
4820 ObjectClass *class_b = (ObjectClass *)b;
4821 const char *name_a, *name_b;
5adb4839 4822
777dc784
PM
4823 name_a = object_class_get_name(class_a);
4824 name_b = object_class_get_name(class_b);
51492fd1 4825 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
777dc784 4826 return 1;
51492fd1 4827 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
777dc784
PM
4828 return -1;
4829 } else {
4830 return strcmp(name_a, name_b);
5adb4839
PB
4831 }
4832}
4833
777dc784 4834static void arm_cpu_list_entry(gpointer data, gpointer user_data)
40f137e1 4835{
777dc784 4836 ObjectClass *oc = data;
92a31361 4837 CPUListState *s = user_data;
51492fd1
AF
4838 const char *typename;
4839 char *name;
3371d272 4840
51492fd1
AF
4841 typename = object_class_get_name(oc);
4842 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
777dc784 4843 (*s->cpu_fprintf)(s->file, " %s\n",
51492fd1
AF
4844 name);
4845 g_free(name);
777dc784
PM
4846}
4847
4848void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
4849{
92a31361 4850 CPUListState s = {
777dc784
PM
4851 .file = f,
4852 .cpu_fprintf = cpu_fprintf,
4853 };
4854 GSList *list;
4855
4856 list = object_class_get_list(TYPE_ARM_CPU, false);
4857 list = g_slist_sort(list, arm_cpu_list_compare);
4858 (*cpu_fprintf)(f, "Available CPUs:\n");
4859 g_slist_foreach(list, arm_cpu_list_entry, &s);
4860 g_slist_free(list);
a96c0514
PM
4861#ifdef CONFIG_KVM
4862 /* The 'host' CPU type is dynamically registered only if KVM is
4863 * enabled, so we have to special-case it here:
4864 */
4865 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
4866#endif
40f137e1
PB
4867}
4868
78027bb6
CR
4869static void arm_cpu_add_definition(gpointer data, gpointer user_data)
4870{
4871 ObjectClass *oc = data;
4872 CpuDefinitionInfoList **cpu_list = user_data;
4873 CpuDefinitionInfoList *entry;
4874 CpuDefinitionInfo *info;
4875 const char *typename;
4876
4877 typename = object_class_get_name(oc);
4878 info = g_malloc0(sizeof(*info));
4879 info->name = g_strndup(typename,
4880 strlen(typename) - strlen("-" TYPE_ARM_CPU));
4881
4882 entry = g_malloc0(sizeof(*entry));
4883 entry->value = info;
4884 entry->next = *cpu_list;
4885 *cpu_list = entry;
4886}
4887
4888CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
4889{
4890 CpuDefinitionInfoList *cpu_list = NULL;
4891 GSList *list;
4892
4893 list = object_class_get_list(TYPE_ARM_CPU, false);
4894 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
4895 g_slist_free(list);
4896
4897 return cpu_list;
4898}
4899
6e6efd61 4900static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
51a79b03 4901 void *opaque, int state, int secstate,
f5a0a5a5 4902 int crm, int opc1, int opc2)
6e6efd61
PM
4903{
4904 /* Private utility function for define_one_arm_cp_reg_with_opaque():
4905 * add a single reginfo struct to the hash table.
4906 */
4907 uint32_t *key = g_new(uint32_t, 1);
4908 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
4909 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
3f3c82a5
FA
4910 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
4911
4912 /* Reset the secure state to the specific incoming state. This is
4913 * necessary as the register may have been defined with both states.
4914 */
4915 r2->secure = secstate;
4916
4917 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4918 /* Register is banked (using both entries in array).
4919 * Overwriting fieldoffset as the array is only used to define
4920 * banked registers but later only fieldoffset is used.
f5a0a5a5 4921 */
3f3c82a5
FA
4922 r2->fieldoffset = r->bank_fieldoffsets[ns];
4923 }
4924
4925 if (state == ARM_CP_STATE_AA32) {
4926 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4927 /* If the register is banked then we don't need to migrate or
4928 * reset the 32-bit instance in certain cases:
4929 *
4930 * 1) If the register has both 32-bit and 64-bit instances then we
4931 * can count on the 64-bit instance taking care of the
4932 * non-secure bank.
4933 * 2) If ARMv8 is enabled then we can count on a 64-bit version
4934 * taking care of the secure bank. This requires that separate
4935 * 32 and 64-bit definitions are provided.
4936 */
4937 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
4938 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7a0e58fa 4939 r2->type |= ARM_CP_ALIAS;
3f3c82a5
FA
4940 }
4941 } else if ((secstate != r->secure) && !ns) {
4942 /* The register is not banked so we only want to allow migration of
4943 * the non-secure instance.
4944 */
7a0e58fa 4945 r2->type |= ARM_CP_ALIAS;
58a1d8ce 4946 }
3f3c82a5
FA
4947
4948 if (r->state == ARM_CP_STATE_BOTH) {
4949 /* We assume it is a cp15 register if the .cp field is left unset.
4950 */
4951 if (r2->cp == 0) {
4952 r2->cp = 15;
4953 }
4954
f5a0a5a5 4955#ifdef HOST_WORDS_BIGENDIAN
3f3c82a5
FA
4956 if (r2->fieldoffset) {
4957 r2->fieldoffset += sizeof(uint32_t);
4958 }
f5a0a5a5 4959#endif
3f3c82a5 4960 }
f5a0a5a5
PM
4961 }
4962 if (state == ARM_CP_STATE_AA64) {
4963 /* To allow abbreviation of ARMCPRegInfo
4964 * definitions, we treat cp == 0 as equivalent to
4965 * the value for "standard guest-visible sysreg".
58a1d8ce
PM
4966 * STATE_BOTH definitions are also always "standard
4967 * sysreg" in their AArch64 view (the .cp value may
4968 * be non-zero for the benefit of the AArch32 view).
f5a0a5a5 4969 */
58a1d8ce 4970 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
f5a0a5a5
PM
4971 r2->cp = CP_REG_ARM64_SYSREG_CP;
4972 }
4973 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
4974 r2->opc0, opc1, opc2);
4975 } else {
51a79b03 4976 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
f5a0a5a5 4977 }
6e6efd61
PM
4978 if (opaque) {
4979 r2->opaque = opaque;
4980 }
67ed771d
PM
4981 /* reginfo passed to helpers is correct for the actual access,
4982 * and is never ARM_CP_STATE_BOTH:
4983 */
4984 r2->state = state;
6e6efd61
PM
4985 /* Make sure reginfo passed to helpers for wildcarded regs
4986 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
4987 */
4988 r2->crm = crm;
4989 r2->opc1 = opc1;
4990 r2->opc2 = opc2;
4991 /* By convention, for wildcarded registers only the first
4992 * entry is used for migration; the others are marked as
7a0e58fa 4993 * ALIAS so we don't try to transfer the register
6e6efd61 4994 * multiple times. Special registers (ie NOP/WFI) are
7a0e58fa 4995 * never migratable and not even raw-accessible.
6e6efd61 4996 */
7a0e58fa
PM
4997 if ((r->type & ARM_CP_SPECIAL)) {
4998 r2->type |= ARM_CP_NO_RAW;
4999 }
5000 if (((r->crm == CP_ANY) && crm != 0) ||
6e6efd61
PM
5001 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5002 ((r->opc2 == CP_ANY) && opc2 != 0)) {
7a0e58fa 5003 r2->type |= ARM_CP_ALIAS;
6e6efd61
PM
5004 }
5005
375421cc
PM
5006 /* Check that raw accesses are either forbidden or handled. Note that
5007 * we can't assert this earlier because the setup of fieldoffset for
5008 * banked registers has to be done first.
5009 */
5010 if (!(r2->type & ARM_CP_NO_RAW)) {
5011 assert(!raw_accessors_invalid(r2));
5012 }
5013
6e6efd61
PM
5014 /* Overriding of an existing definition must be explicitly
5015 * requested.
5016 */
5017 if (!(r->type & ARM_CP_OVERRIDE)) {
5018 ARMCPRegInfo *oldreg;
5019 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5020 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5021 fprintf(stderr, "Register redefined: cp=%d %d bit "
5022 "crn=%d crm=%d opc1=%d opc2=%d, "
5023 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5024 r2->crn, r2->crm, r2->opc1, r2->opc2,
5025 oldreg->name, r2->name);
5026 g_assert_not_reached();
5027 }
5028 }
5029 g_hash_table_insert(cpu->cp_regs, key, r2);
5030}
5031
5032
4b6a83fb
PM
5033void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5034 const ARMCPRegInfo *r, void *opaque)
5035{
5036 /* Define implementations of coprocessor registers.
5037 * We store these in a hashtable because typically
5038 * there are less than 150 registers in a space which
5039 * is 16*16*16*8*8 = 262144 in size.
5040 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5041 * If a register is defined twice then the second definition is
5042 * used, so this can be used to define some generic registers and
5043 * then override them with implementation specific variations.
5044 * At least one of the original and the second definition should
5045 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5046 * against accidental use.
f5a0a5a5
PM
5047 *
5048 * The state field defines whether the register is to be
5049 * visible in the AArch32 or AArch64 execution state. If the
5050 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5051 * reginfo structure for the AArch32 view, which sees the lower
5052 * 32 bits of the 64 bit register.
5053 *
5054 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5055 * be wildcarded. AArch64 registers are always considered to be 64
5056 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5057 * the register, if any.
4b6a83fb 5058 */
f5a0a5a5 5059 int crm, opc1, opc2, state;
4b6a83fb
PM
5060 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5061 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5062 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5063 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5064 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5065 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5066 /* 64 bit registers have only CRm and Opc1 fields */
5067 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
f5a0a5a5
PM
5068 /* op0 only exists in the AArch64 encodings */
5069 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5070 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5071 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5072 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5073 * encodes a minimum access level for the register. We roll this
5074 * runtime check into our general permission check code, so check
5075 * here that the reginfo's specified permissions are strict enough
5076 * to encompass the generic architectural permission check.
5077 */
5078 if (r->state != ARM_CP_STATE_AA32) {
5079 int mask = 0;
5080 switch (r->opc1) {
5081 case 0: case 1: case 2:
5082 /* min_EL EL1 */
5083 mask = PL1_RW;
5084 break;
5085 case 3:
5086 /* min_EL EL0 */
5087 mask = PL0_RW;
5088 break;
5089 case 4:
5090 /* min_EL EL2 */
5091 mask = PL2_RW;
5092 break;
5093 case 5:
5094 /* unallocated encoding, so not possible */
5095 assert(false);
5096 break;
5097 case 6:
5098 /* min_EL EL3 */
5099 mask = PL3_RW;
5100 break;
5101 case 7:
5102 /* min_EL EL1, secure mode only (we don't check the latter) */
5103 mask = PL1_RW;
5104 break;
5105 default:
5106 /* broken reginfo with out-of-range opc1 */
5107 assert(false);
5108 break;
5109 }
5110 /* assert our permissions are not too lax (stricter is fine) */
5111 assert((r->access & ~mask) == 0);
5112 }
5113
4b6a83fb
PM
5114 /* Check that the register definition has enough info to handle
5115 * reads and writes if they are permitted.
5116 */
5117 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5118 if (r->access & PL3_R) {
3f3c82a5
FA
5119 assert((r->fieldoffset ||
5120 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5121 r->readfn);
4b6a83fb
PM
5122 }
5123 if (r->access & PL3_W) {
3f3c82a5
FA
5124 assert((r->fieldoffset ||
5125 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5126 r->writefn);
4b6a83fb
PM
5127 }
5128 }
5129 /* Bad type field probably means missing sentinel at end of reg list */
5130 assert(cptype_valid(r->type));
5131 for (crm = crmmin; crm <= crmmax; crm++) {
5132 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5133 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
f5a0a5a5
PM
5134 for (state = ARM_CP_STATE_AA32;
5135 state <= ARM_CP_STATE_AA64; state++) {
5136 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5137 continue;
5138 }
3f3c82a5
FA
5139 if (state == ARM_CP_STATE_AA32) {
5140 /* Under AArch32 CP registers can be common
5141 * (same for secure and non-secure world) or banked.
5142 */
5143 switch (r->secure) {
5144 case ARM_CP_SECSTATE_S:
5145 case ARM_CP_SECSTATE_NS:
5146 add_cpreg_to_hashtable(cpu, r, opaque, state,
5147 r->secure, crm, opc1, opc2);
5148 break;
5149 default:
5150 add_cpreg_to_hashtable(cpu, r, opaque, state,
5151 ARM_CP_SECSTATE_S,
5152 crm, opc1, opc2);
5153 add_cpreg_to_hashtable(cpu, r, opaque, state,
5154 ARM_CP_SECSTATE_NS,
5155 crm, opc1, opc2);
5156 break;
5157 }
5158 } else {
5159 /* AArch64 registers get mapped to non-secure instance
5160 * of AArch32 */
5161 add_cpreg_to_hashtable(cpu, r, opaque, state,
5162 ARM_CP_SECSTATE_NS,
5163 crm, opc1, opc2);
5164 }
f5a0a5a5 5165 }
4b6a83fb
PM
5166 }
5167 }
5168 }
5169}
5170
5171void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5172 const ARMCPRegInfo *regs, void *opaque)
5173{
5174 /* Define a whole list of registers */
5175 const ARMCPRegInfo *r;
5176 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5177 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5178 }
5179}
5180
60322b39 5181const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4b6a83fb 5182{
60322b39 5183 return g_hash_table_lookup(cpregs, &encoded_cp);
4b6a83fb
PM
5184}
5185
c4241c7d
PM
5186void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5187 uint64_t value)
4b6a83fb
PM
5188{
5189 /* Helper coprocessor write function for write-ignore registers */
4b6a83fb
PM
5190}
5191
c4241c7d 5192uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4b6a83fb
PM
5193{
5194 /* Helper coprocessor write function for read-as-zero registers */
4b6a83fb
PM
5195 return 0;
5196}
5197
f5a0a5a5
PM
5198void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5199{
5200 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5201}
5202
0ecb72a5 5203static int bad_mode_switch(CPUARMState *env, int mode)
37064a8b
PM
5204{
5205 /* Return true if it is not valid for us to switch to
5206 * this CPU mode (ie all the UNPREDICTABLE cases in
5207 * the ARM ARM CPSRWriteByInstr pseudocode).
5208 */
5209 switch (mode) {
5210 case ARM_CPU_MODE_USR:
5211 case ARM_CPU_MODE_SYS:
5212 case ARM_CPU_MODE_SVC:
5213 case ARM_CPU_MODE_ABT:
5214 case ARM_CPU_MODE_UND:
5215 case ARM_CPU_MODE_IRQ:
5216 case ARM_CPU_MODE_FIQ:
5217 return 0;
027fc527
SF
5218 case ARM_CPU_MODE_MON:
5219 return !arm_is_secure(env);
37064a8b
PM
5220 default:
5221 return 1;
5222 }
5223}
5224
2f4a40e5
AZ
5225uint32_t cpsr_read(CPUARMState *env)
5226{
5227 int ZF;
6fbe23d5
PB
5228 ZF = (env->ZF == 0);
5229 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
5230 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5231 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5232 | ((env->condexec_bits & 0xfc) << 8)
af519934 5233 | (env->GE << 16) | (env->daif & CPSR_AIF);
2f4a40e5
AZ
5234}
5235
50866ba5
PM
5236void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5237 CPSRWriteType write_type)
2f4a40e5 5238{
6e8801f9
FA
5239 uint32_t changed_daif;
5240
2f4a40e5 5241 if (mask & CPSR_NZCV) {
6fbe23d5
PB
5242 env->ZF = (~val) & CPSR_Z;
5243 env->NF = val;
2f4a40e5
AZ
5244 env->CF = (val >> 29) & 1;
5245 env->VF = (val << 3) & 0x80000000;
5246 }
5247 if (mask & CPSR_Q)
5248 env->QF = ((val & CPSR_Q) != 0);
5249 if (mask & CPSR_T)
5250 env->thumb = ((val & CPSR_T) != 0);
5251 if (mask & CPSR_IT_0_1) {
5252 env->condexec_bits &= ~3;
5253 env->condexec_bits |= (val >> 25) & 3;
5254 }
5255 if (mask & CPSR_IT_2_7) {
5256 env->condexec_bits &= 3;
5257 env->condexec_bits |= (val >> 8) & 0xfc;
5258 }
5259 if (mask & CPSR_GE) {
5260 env->GE = (val >> 16) & 0xf;
5261 }
5262
6e8801f9
FA
5263 /* In a V7 implementation that includes the security extensions but does
5264 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5265 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5266 * bits respectively.
5267 *
5268 * In a V8 implementation, it is permitted for privileged software to
5269 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5270 */
f8c88bbc 5271 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6e8801f9
FA
5272 arm_feature(env, ARM_FEATURE_EL3) &&
5273 !arm_feature(env, ARM_FEATURE_EL2) &&
5274 !arm_is_secure(env)) {
5275
5276 changed_daif = (env->daif ^ val) & mask;
5277
5278 if (changed_daif & CPSR_A) {
5279 /* Check to see if we are allowed to change the masking of async
5280 * abort exceptions from a non-secure state.
5281 */
5282 if (!(env->cp15.scr_el3 & SCR_AW)) {
5283 qemu_log_mask(LOG_GUEST_ERROR,
5284 "Ignoring attempt to switch CPSR_A flag from "
5285 "non-secure world with SCR.AW bit clear\n");
5286 mask &= ~CPSR_A;
5287 }
5288 }
5289
5290 if (changed_daif & CPSR_F) {
5291 /* Check to see if we are allowed to change the masking of FIQ
5292 * exceptions from a non-secure state.
5293 */
5294 if (!(env->cp15.scr_el3 & SCR_FW)) {
5295 qemu_log_mask(LOG_GUEST_ERROR,
5296 "Ignoring attempt to switch CPSR_F flag from "
5297 "non-secure world with SCR.FW bit clear\n");
5298 mask &= ~CPSR_F;
5299 }
5300
5301 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5302 * If this bit is set software is not allowed to mask
5303 * FIQs, but is allowed to set CPSR_F to 0.
5304 */
5305 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5306 (val & CPSR_F)) {
5307 qemu_log_mask(LOG_GUEST_ERROR,
5308 "Ignoring attempt to enable CPSR_F flag "
5309 "(non-maskable FIQ [NMFI] support enabled)\n");
5310 mask &= ~CPSR_F;
5311 }
5312 }
5313 }
5314
4cc35614
PM
5315 env->daif &= ~(CPSR_AIF & mask);
5316 env->daif |= val & CPSR_AIF & mask;
5317
f8c88bbc 5318 if (write_type != CPSRWriteRaw &&
cb01d391 5319 (env->uncached_cpsr & CPSR_M) != CPSR_USER &&
f8c88bbc 5320 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
37064a8b
PM
5321 if (bad_mode_switch(env, val & CPSR_M)) {
5322 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
5323 * We choose to ignore the attempt and leave the CPSR M field
5324 * untouched.
5325 */
5326 mask &= ~CPSR_M;
5327 } else {
5328 switch_mode(env, val & CPSR_M);
5329 }
2f4a40e5
AZ
5330 }
5331 mask &= ~CACHED_CPSR_BITS;
5332 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5333}
5334
b26eefb6
PB
5335/* Sign/zero extend */
5336uint32_t HELPER(sxtb16)(uint32_t x)
5337{
5338 uint32_t res;
5339 res = (uint16_t)(int8_t)x;
5340 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5341 return res;
5342}
5343
5344uint32_t HELPER(uxtb16)(uint32_t x)
5345{
5346 uint32_t res;
5347 res = (uint16_t)(uint8_t)x;
5348 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5349 return res;
5350}
5351
f51bbbfe
PB
5352uint32_t HELPER(clz)(uint32_t x)
5353{
7bbcb0af 5354 return clz32(x);
f51bbbfe
PB
5355}
5356
3670669c
PB
5357int32_t HELPER(sdiv)(int32_t num, int32_t den)
5358{
5359 if (den == 0)
5360 return 0;
686eeb93
AJ
5361 if (num == INT_MIN && den == -1)
5362 return INT_MIN;
3670669c
PB
5363 return num / den;
5364}
5365
5366uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5367{
5368 if (den == 0)
5369 return 0;
5370 return num / den;
5371}
5372
5373uint32_t HELPER(rbit)(uint32_t x)
5374{
42fedbca 5375 return revbit32(x);
3670669c
PB
5376}
5377
5fafdf24 5378#if defined(CONFIG_USER_ONLY)
b5ff1b31 5379
9ee6e8bb 5380/* These should probably raise undefined insn exceptions. */
0ecb72a5 5381void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 5382{
a47dddd7
AF
5383 ARMCPU *cpu = arm_env_get_cpu(env);
5384
5385 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
9ee6e8bb
PB
5386}
5387
0ecb72a5 5388uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 5389{
a47dddd7
AF
5390 ARMCPU *cpu = arm_env_get_cpu(env);
5391
5392 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
9ee6e8bb
PB
5393 return 0;
5394}
5395
0ecb72a5 5396void switch_mode(CPUARMState *env, int mode)
b5ff1b31 5397{
a47dddd7
AF
5398 ARMCPU *cpu = arm_env_get_cpu(env);
5399
5400 if (mode != ARM_CPU_MODE_USR) {
5401 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5402 }
b5ff1b31
FB
5403}
5404
012a906b
GB
5405uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5406 uint32_t cur_el, bool secure)
9e729b57
EI
5407{
5408 return 1;
5409}
5410
ce02049d
GB
5411void aarch64_sync_64_to_32(CPUARMState *env)
5412{
5413 g_assert_not_reached();
5414}
5415
b5ff1b31
FB
5416#else
5417
0ecb72a5 5418void switch_mode(CPUARMState *env, int mode)
b5ff1b31
FB
5419{
5420 int old_mode;
5421 int i;
5422
5423 old_mode = env->uncached_cpsr & CPSR_M;
5424 if (mode == old_mode)
5425 return;
5426
5427 if (old_mode == ARM_CPU_MODE_FIQ) {
5428 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5429 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5430 } else if (mode == ARM_CPU_MODE_FIQ) {
5431 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 5432 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
5433 }
5434
f5206413 5435 i = bank_number(old_mode);
b5ff1b31
FB
5436 env->banked_r13[i] = env->regs[13];
5437 env->banked_r14[i] = env->regs[14];
5438 env->banked_spsr[i] = env->spsr;
5439
f5206413 5440 i = bank_number(mode);
b5ff1b31
FB
5441 env->regs[13] = env->banked_r13[i];
5442 env->regs[14] = env->banked_r14[i];
5443 env->spsr = env->banked_spsr[i];
5444}
5445
0eeb17d6
GB
5446/* Physical Interrupt Target EL Lookup Table
5447 *
5448 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5449 *
5450 * The below multi-dimensional table is used for looking up the target
5451 * exception level given numerous condition criteria. Specifically, the
5452 * target EL is based on SCR and HCR routing controls as well as the
5453 * currently executing EL and secure state.
5454 *
5455 * Dimensions:
5456 * target_el_table[2][2][2][2][2][4]
5457 * | | | | | +--- Current EL
5458 * | | | | +------ Non-secure(0)/Secure(1)
5459 * | | | +--------- HCR mask override
5460 * | | +------------ SCR exec state control
5461 * | +--------------- SCR mask override
5462 * +------------------ 32-bit(0)/64-bit(1) EL3
5463 *
5464 * The table values are as such:
5465 * 0-3 = EL0-EL3
5466 * -1 = Cannot occur
5467 *
5468 * The ARM ARM target EL table includes entries indicating that an "exception
5469 * is not taken". The two cases where this is applicable are:
5470 * 1) An exception is taken from EL3 but the SCR does not have the exception
5471 * routed to EL3.
5472 * 2) An exception is taken from EL2 but the HCR does not have the exception
5473 * routed to EL2.
5474 * In these two cases, the below table contain a target of EL1. This value is
5475 * returned as it is expected that the consumer of the table data will check
5476 * for "target EL >= current EL" to ensure the exception is not taken.
5477 *
5478 * SCR HCR
5479 * 64 EA AMO From
5480 * BIT IRQ IMO Non-secure Secure
5481 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5482 */
82c39f6a 5483static const int8_t target_el_table[2][2][2][2][2][4] = {
0eeb17d6
GB
5484 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5485 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5486 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5487 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5488 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5489 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5490 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5491 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5492 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5493 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5494 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5495 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5496 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5497 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5498 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5499 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5500};
5501
5502/*
5503 * Determine the target EL for physical exceptions
5504 */
012a906b
GB
5505uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5506 uint32_t cur_el, bool secure)
0eeb17d6
GB
5507{
5508 CPUARMState *env = cs->env_ptr;
2cde031f 5509 int rw;
0eeb17d6
GB
5510 int scr;
5511 int hcr;
5512 int target_el;
2cde031f
SS
5513 /* Is the highest EL AArch64? */
5514 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5515
5516 if (arm_feature(env, ARM_FEATURE_EL3)) {
5517 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5518 } else {
5519 /* Either EL2 is the highest EL (and so the EL2 register width
5520 * is given by is64); or there is no EL2 or EL3, in which case
5521 * the value of 'rw' does not affect the table lookup anyway.
5522 */
5523 rw = is64;
5524 }
0eeb17d6
GB
5525
5526 switch (excp_idx) {
5527 case EXCP_IRQ:
5528 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5529 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5530 break;
5531 case EXCP_FIQ:
5532 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5533 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5534 break;
5535 default:
5536 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5537 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5538 break;
5539 };
5540
5541 /* If HCR.TGE is set then HCR is treated as being 1 */
5542 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5543
5544 /* Perform a table-lookup for the target EL given the current state */
5545 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5546
5547 assert(target_el > 0);
5548
5549 return target_el;
5550}
5551
9ee6e8bb
PB
5552static void v7m_push(CPUARMState *env, uint32_t val)
5553{
70d74660
AF
5554 CPUState *cs = CPU(arm_env_get_cpu(env));
5555
9ee6e8bb 5556 env->regs[13] -= 4;
ab1da857 5557 stl_phys(cs->as, env->regs[13], val);
9ee6e8bb
PB
5558}
5559
5560static uint32_t v7m_pop(CPUARMState *env)
5561{
70d74660 5562 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb 5563 uint32_t val;
70d74660 5564
fdfba1a2 5565 val = ldl_phys(cs->as, env->regs[13]);
9ee6e8bb
PB
5566 env->regs[13] += 4;
5567 return val;
5568}
5569
5570/* Switch to V7M main or process stack pointer. */
5571static void switch_v7m_sp(CPUARMState *env, int process)
5572{
5573 uint32_t tmp;
5574 if (env->v7m.current_sp != process) {
5575 tmp = env->v7m.other_sp;
5576 env->v7m.other_sp = env->regs[13];
5577 env->regs[13] = tmp;
5578 env->v7m.current_sp = process;
5579 }
5580}
5581
5582static void do_v7m_exception_exit(CPUARMState *env)
5583{
5584 uint32_t type;
5585 uint32_t xpsr;
5586
5587 type = env->regs[15];
5588 if (env->v7m.exception != 0)
983fe826 5589 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
9ee6e8bb
PB
5590
5591 /* Switch to the target stack. */
5592 switch_v7m_sp(env, (type & 4) != 0);
5593 /* Pop registers. */
5594 env->regs[0] = v7m_pop(env);
5595 env->regs[1] = v7m_pop(env);
5596 env->regs[2] = v7m_pop(env);
5597 env->regs[3] = v7m_pop(env);
5598 env->regs[12] = v7m_pop(env);
5599 env->regs[14] = v7m_pop(env);
5600 env->regs[15] = v7m_pop(env);
fcf83ab1
PM
5601 if (env->regs[15] & 1) {
5602 qemu_log_mask(LOG_GUEST_ERROR,
5603 "M profile return from interrupt with misaligned "
5604 "PC is UNPREDICTABLE\n");
5605 /* Actual hardware seems to ignore the lsbit, and there are several
5606 * RTOSes out there which incorrectly assume the r15 in the stack
5607 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5608 */
5609 env->regs[15] &= ~1U;
5610 }
9ee6e8bb
PB
5611 xpsr = v7m_pop(env);
5612 xpsr_write(env, xpsr, 0xfffffdff);
5613 /* Undo stack alignment. */
5614 if (xpsr & 0x200)
5615 env->regs[13] |= 4;
5616 /* ??? The exception return type specifies Thread/Handler mode. However
5617 this is also implied by the xPSR value. Not sure what to do
5618 if there is a mismatch. */
5619 /* ??? Likewise for mismatches between the CONTROL register and the stack
5620 pointer. */
5621}
5622
e6f010cc 5623void arm_v7m_cpu_do_interrupt(CPUState *cs)
9ee6e8bb 5624{
e6f010cc
AF
5625 ARMCPU *cpu = ARM_CPU(cs);
5626 CPUARMState *env = &cpu->env;
9ee6e8bb
PB
5627 uint32_t xpsr = xpsr_read(env);
5628 uint32_t lr;
5629 uint32_t addr;
5630
27103424 5631 arm_log_exception(cs->exception_index);
3f1beaca 5632
9ee6e8bb
PB
5633 lr = 0xfffffff1;
5634 if (env->v7m.current_sp)
5635 lr |= 4;
5636 if (env->v7m.exception == 0)
5637 lr |= 8;
5638
5639 /* For exceptions we just mark as pending on the NVIC, and let that
5640 handle it. */
5641 /* TODO: Need to escalate if the current priority is higher than the
5642 one we're raising. */
27103424 5643 switch (cs->exception_index) {
9ee6e8bb 5644 case EXCP_UDEF:
983fe826 5645 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
9ee6e8bb
PB
5646 return;
5647 case EXCP_SWI:
314e2296 5648 /* The PC already points to the next instruction. */
983fe826 5649 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
9ee6e8bb
PB
5650 return;
5651 case EXCP_PREFETCH_ABORT:
5652 case EXCP_DATA_ABORT:
abf1172f
PM
5653 /* TODO: if we implemented the MPU registers, this is where we
5654 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5655 */
983fe826 5656 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
9ee6e8bb
PB
5657 return;
5658 case EXCP_BKPT:
cfe67cef 5659 if (semihosting_enabled()) {
2ad207d4 5660 int nr;
d31dd73e 5661 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2ad207d4
PB
5662 if (nr == 0xab) {
5663 env->regs[15] += 2;
205ace55
CC
5664 qemu_log_mask(CPU_LOG_INT,
5665 "...handling as semihosting call 0x%x\n",
5666 env->regs[0]);
2ad207d4
PB
5667 env->regs[0] = do_arm_semihosting(env);
5668 return;
5669 }
5670 }
983fe826 5671 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
9ee6e8bb
PB
5672 return;
5673 case EXCP_IRQ:
983fe826 5674 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
9ee6e8bb
PB
5675 break;
5676 case EXCP_EXCEPTION_EXIT:
5677 do_v7m_exception_exit(env);
5678 return;
5679 default:
a47dddd7 5680 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9ee6e8bb
PB
5681 return; /* Never happens. Keep compiler happy. */
5682 }
5683
5684 /* Align stack pointer. */
5685 /* ??? Should only do this if Configuration Control Register
5686 STACKALIGN bit is set. */
5687 if (env->regs[13] & 4) {
ab19b0ec 5688 env->regs[13] -= 4;
9ee6e8bb
PB
5689 xpsr |= 0x200;
5690 }
6c95676b 5691 /* Switch to the handler mode. */
9ee6e8bb
PB
5692 v7m_push(env, xpsr);
5693 v7m_push(env, env->regs[15]);
5694 v7m_push(env, env->regs[14]);
5695 v7m_push(env, env->regs[12]);
5696 v7m_push(env, env->regs[3]);
5697 v7m_push(env, env->regs[2]);
5698 v7m_push(env, env->regs[1]);
5699 v7m_push(env, env->regs[0]);
5700 switch_v7m_sp(env, 0);
c98d174c
PM
5701 /* Clear IT bits */
5702 env->condexec_bits = 0;
9ee6e8bb 5703 env->regs[14] = lr;
fdfba1a2 5704 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
9ee6e8bb
PB
5705 env->regs[15] = addr & 0xfffffffe;
5706 env->thumb = addr & 1;
5707}
5708
ce02049d
GB
5709/* Function used to synchronize QEMU's AArch64 register set with AArch32
5710 * register set. This is necessary when switching between AArch32 and AArch64
5711 * execution state.
5712 */
5713void aarch64_sync_32_to_64(CPUARMState *env)
5714{
5715 int i;
5716 uint32_t mode = env->uncached_cpsr & CPSR_M;
5717
5718 /* We can blanket copy R[0:7] to X[0:7] */
5719 for (i = 0; i < 8; i++) {
5720 env->xregs[i] = env->regs[i];
5721 }
5722
5723 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5724 * Otherwise, they come from the banked user regs.
5725 */
5726 if (mode == ARM_CPU_MODE_FIQ) {
5727 for (i = 8; i < 13; i++) {
5728 env->xregs[i] = env->usr_regs[i - 8];
5729 }
5730 } else {
5731 for (i = 8; i < 13; i++) {
5732 env->xregs[i] = env->regs[i];
5733 }
5734 }
5735
5736 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5737 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5738 * from the mode banked register.
5739 */
5740 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5741 env->xregs[13] = env->regs[13];
5742 env->xregs[14] = env->regs[14];
5743 } else {
5744 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
5745 /* HYP is an exception in that it is copied from r14 */
5746 if (mode == ARM_CPU_MODE_HYP) {
5747 env->xregs[14] = env->regs[14];
5748 } else {
5749 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
5750 }
5751 }
5752
5753 if (mode == ARM_CPU_MODE_HYP) {
5754 env->xregs[15] = env->regs[13];
5755 } else {
5756 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
5757 }
5758
5759 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
5760 env->xregs[16] = env->regs[14];
5761 env->xregs[17] = env->regs[13];
ce02049d 5762 } else {
3a9148d0
SS
5763 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
5764 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
ce02049d
GB
5765 }
5766
5767 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
5768 env->xregs[18] = env->regs[14];
5769 env->xregs[19] = env->regs[13];
ce02049d 5770 } else {
3a9148d0
SS
5771 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
5772 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
ce02049d
GB
5773 }
5774
5775 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
5776 env->xregs[20] = env->regs[14];
5777 env->xregs[21] = env->regs[13];
ce02049d 5778 } else {
3a9148d0
SS
5779 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
5780 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
ce02049d
GB
5781 }
5782
5783 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
5784 env->xregs[22] = env->regs[14];
5785 env->xregs[23] = env->regs[13];
ce02049d 5786 } else {
3a9148d0
SS
5787 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
5788 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
ce02049d
GB
5789 }
5790
5791 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5792 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5793 * FIQ bank for r8-r14.
5794 */
5795 if (mode == ARM_CPU_MODE_FIQ) {
5796 for (i = 24; i < 31; i++) {
5797 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
5798 }
5799 } else {
5800 for (i = 24; i < 29; i++) {
5801 env->xregs[i] = env->fiq_regs[i - 24];
5802 }
5803 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
5804 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
5805 }
5806
5807 env->pc = env->regs[15];
5808}
5809
5810/* Function used to synchronize QEMU's AArch32 register set with AArch64
5811 * register set. This is necessary when switching between AArch32 and AArch64
5812 * execution state.
5813 */
5814void aarch64_sync_64_to_32(CPUARMState *env)
5815{
5816 int i;
5817 uint32_t mode = env->uncached_cpsr & CPSR_M;
5818
5819 /* We can blanket copy X[0:7] to R[0:7] */
5820 for (i = 0; i < 8; i++) {
5821 env->regs[i] = env->xregs[i];
5822 }
5823
5824 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
5825 * Otherwise, we copy x8-x12 into the banked user regs.
5826 */
5827 if (mode == ARM_CPU_MODE_FIQ) {
5828 for (i = 8; i < 13; i++) {
5829 env->usr_regs[i - 8] = env->xregs[i];
5830 }
5831 } else {
5832 for (i = 8; i < 13; i++) {
5833 env->regs[i] = env->xregs[i];
5834 }
5835 }
5836
5837 /* Registers r13 & r14 depend on the current mode.
5838 * If we are in a given mode, we copy the corresponding x registers to r13
5839 * and r14. Otherwise, we copy the x register to the banked r13 and r14
5840 * for the mode.
5841 */
5842 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5843 env->regs[13] = env->xregs[13];
5844 env->regs[14] = env->xregs[14];
5845 } else {
5846 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
5847
5848 /* HYP is an exception in that it does not have its own banked r14 but
5849 * shares the USR r14
5850 */
5851 if (mode == ARM_CPU_MODE_HYP) {
5852 env->regs[14] = env->xregs[14];
5853 } else {
5854 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
5855 }
5856 }
5857
5858 if (mode == ARM_CPU_MODE_HYP) {
5859 env->regs[13] = env->xregs[15];
5860 } else {
5861 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
5862 }
5863
5864 if (mode == ARM_CPU_MODE_IRQ) {
3a9148d0
SS
5865 env->regs[14] = env->xregs[16];
5866 env->regs[13] = env->xregs[17];
ce02049d 5867 } else {
3a9148d0
SS
5868 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
5869 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
ce02049d
GB
5870 }
5871
5872 if (mode == ARM_CPU_MODE_SVC) {
3a9148d0
SS
5873 env->regs[14] = env->xregs[18];
5874 env->regs[13] = env->xregs[19];
ce02049d 5875 } else {
3a9148d0
SS
5876 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
5877 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
ce02049d
GB
5878 }
5879
5880 if (mode == ARM_CPU_MODE_ABT) {
3a9148d0
SS
5881 env->regs[14] = env->xregs[20];
5882 env->regs[13] = env->xregs[21];
ce02049d 5883 } else {
3a9148d0
SS
5884 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
5885 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
ce02049d
GB
5886 }
5887
5888 if (mode == ARM_CPU_MODE_UND) {
3a9148d0
SS
5889 env->regs[14] = env->xregs[22];
5890 env->regs[13] = env->xregs[23];
ce02049d 5891 } else {
3a9148d0
SS
5892 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
5893 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
ce02049d
GB
5894 }
5895
5896 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5897 * mode, then we can copy to r8-r14. Otherwise, we copy to the
5898 * FIQ bank for r8-r14.
5899 */
5900 if (mode == ARM_CPU_MODE_FIQ) {
5901 for (i = 24; i < 31; i++) {
5902 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
5903 }
5904 } else {
5905 for (i = 24; i < 29; i++) {
5906 env->fiq_regs[i - 24] = env->xregs[i];
5907 }
5908 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
5909 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
5910 }
5911
5912 env->regs[15] = env->pc;
5913}
5914
966f758c 5915static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
b5ff1b31 5916{
97a8ea5a
AF
5917 ARMCPU *cpu = ARM_CPU(cs);
5918 CPUARMState *env = &cpu->env;
b5ff1b31
FB
5919 uint32_t addr;
5920 uint32_t mask;
5921 int new_mode;
5922 uint32_t offset;
16a906fd 5923 uint32_t moe;
b5ff1b31 5924
16a906fd
PM
5925 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
5926 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
5927 case EC_BREAKPOINT:
5928 case EC_BREAKPOINT_SAME_EL:
5929 moe = 1;
5930 break;
5931 case EC_WATCHPOINT:
5932 case EC_WATCHPOINT_SAME_EL:
5933 moe = 10;
5934 break;
5935 case EC_AA32_BKPT:
5936 moe = 3;
5937 break;
5938 case EC_VECTORCATCH:
5939 moe = 5;
5940 break;
5941 default:
5942 moe = 0;
5943 break;
5944 }
5945
5946 if (moe) {
5947 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
5948 }
5949
b5ff1b31 5950 /* TODO: Vectored interrupt controller. */
27103424 5951 switch (cs->exception_index) {
b5ff1b31
FB
5952 case EXCP_UDEF:
5953 new_mode = ARM_CPU_MODE_UND;
5954 addr = 0x04;
5955 mask = CPSR_I;
5956 if (env->thumb)
5957 offset = 2;
5958 else
5959 offset = 4;
5960 break;
5961 case EXCP_SWI:
5962 new_mode = ARM_CPU_MODE_SVC;
5963 addr = 0x08;
5964 mask = CPSR_I;
601d70b9 5965 /* The PC already points to the next instruction. */
b5ff1b31
FB
5966 offset = 0;
5967 break;
06c949e6 5968 case EXCP_BKPT:
abf1172f 5969 env->exception.fsr = 2;
9ee6e8bb
PB
5970 /* Fall through to prefetch abort. */
5971 case EXCP_PREFETCH_ABORT:
88ca1c2d 5972 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
b848ce2b 5973 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
3f1beaca 5974 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
88ca1c2d 5975 env->exception.fsr, (uint32_t)env->exception.vaddress);
b5ff1b31
FB
5976 new_mode = ARM_CPU_MODE_ABT;
5977 addr = 0x0c;
5978 mask = CPSR_A | CPSR_I;
5979 offset = 4;
5980 break;
5981 case EXCP_DATA_ABORT:
4a7e2d73 5982 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
b848ce2b 5983 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
3f1beaca 5984 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
4a7e2d73 5985 env->exception.fsr,
6cd8a264 5986 (uint32_t)env->exception.vaddress);
b5ff1b31
FB
5987 new_mode = ARM_CPU_MODE_ABT;
5988 addr = 0x10;
5989 mask = CPSR_A | CPSR_I;
5990 offset = 8;
5991 break;
5992 case EXCP_IRQ:
5993 new_mode = ARM_CPU_MODE_IRQ;
5994 addr = 0x18;
5995 /* Disable IRQ and imprecise data aborts. */
5996 mask = CPSR_A | CPSR_I;
5997 offset = 4;
de38d23b
FA
5998 if (env->cp15.scr_el3 & SCR_IRQ) {
5999 /* IRQ routed to monitor mode */
6000 new_mode = ARM_CPU_MODE_MON;
6001 mask |= CPSR_F;
6002 }
b5ff1b31
FB
6003 break;
6004 case EXCP_FIQ:
6005 new_mode = ARM_CPU_MODE_FIQ;
6006 addr = 0x1c;
6007 /* Disable FIQ, IRQ and imprecise data aborts. */
6008 mask = CPSR_A | CPSR_I | CPSR_F;
de38d23b
FA
6009 if (env->cp15.scr_el3 & SCR_FIQ) {
6010 /* FIQ routed to monitor mode */
6011 new_mode = ARM_CPU_MODE_MON;
6012 }
b5ff1b31
FB
6013 offset = 4;
6014 break;
dbe9d163
FA
6015 case EXCP_SMC:
6016 new_mode = ARM_CPU_MODE_MON;
6017 addr = 0x08;
6018 mask = CPSR_A | CPSR_I | CPSR_F;
6019 offset = 0;
6020 break;
b5ff1b31 6021 default:
a47dddd7 6022 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
b5ff1b31
FB
6023 return; /* Never happens. Keep compiler happy. */
6024 }
e89e51a1
FA
6025
6026 if (new_mode == ARM_CPU_MODE_MON) {
6027 addr += env->cp15.mvbar;
137feaa9 6028 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
e89e51a1 6029 /* High vectors. When enabled, base address cannot be remapped. */
b5ff1b31 6030 addr += 0xffff0000;
8641136c
NR
6031 } else {
6032 /* ARM v7 architectures provide a vector base address register to remap
6033 * the interrupt vector table.
e89e51a1 6034 * This register is only followed in non-monitor mode, and is banked.
8641136c
NR
6035 * Note: only bits 31:5 are valid.
6036 */
fb6c91ba 6037 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
b5ff1b31 6038 }
dbe9d163
FA
6039
6040 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6041 env->cp15.scr_el3 &= ~SCR_NS;
6042 }
6043
b5ff1b31 6044 switch_mode (env, new_mode);
662cefb7
PM
6045 /* For exceptions taken to AArch32 we must clear the SS bit in both
6046 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6047 */
6048 env->uncached_cpsr &= ~PSTATE_SS;
b5ff1b31 6049 env->spsr = cpsr_read(env);
9ee6e8bb
PB
6050 /* Clear IT bits. */
6051 env->condexec_bits = 0;
30a8cac1 6052 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 6053 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
4cc35614 6054 env->daif |= mask;
be5e7a76
DES
6055 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6056 * and we should just guard the thumb mode on V4 */
6057 if (arm_feature(env, ARM_FEATURE_V4T)) {
137feaa9 6058 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
be5e7a76 6059 }
b5ff1b31
FB
6060 env->regs[14] = env->regs[15] + offset;
6061 env->regs[15] = addr;
b5ff1b31
FB
6062}
6063
966f758c
PM
6064/* Handle exception entry to a target EL which is using AArch64 */
6065static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
f3a9b694
PM
6066{
6067 ARMCPU *cpu = ARM_CPU(cs);
6068 CPUARMState *env = &cpu->env;
6069 unsigned int new_el = env->exception.target_el;
6070 target_ulong addr = env->cp15.vbar_el[new_el];
6071 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6072
6073 if (arm_current_el(env) < new_el) {
3d6f7617
PM
6074 /* Entry vector offset depends on whether the implemented EL
6075 * immediately lower than the target level is using AArch32 or AArch64
6076 */
6077 bool is_aa64;
6078
6079 switch (new_el) {
6080 case 3:
6081 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6082 break;
6083 case 2:
6084 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6085 break;
6086 case 1:
6087 is_aa64 = is_a64(env);
6088 break;
6089 default:
6090 g_assert_not_reached();
6091 }
6092
6093 if (is_aa64) {
f3a9b694
PM
6094 addr += 0x400;
6095 } else {
6096 addr += 0x600;
6097 }
6098 } else if (pstate_read(env) & PSTATE_SP) {
6099 addr += 0x200;
6100 }
6101
f3a9b694
PM
6102 switch (cs->exception_index) {
6103 case EXCP_PREFETCH_ABORT:
6104 case EXCP_DATA_ABORT:
6105 env->cp15.far_el[new_el] = env->exception.vaddress;
6106 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6107 env->cp15.far_el[new_el]);
6108 /* fall through */
6109 case EXCP_BKPT:
6110 case EXCP_UDEF:
6111 case EXCP_SWI:
6112 case EXCP_HVC:
6113 case EXCP_HYP_TRAP:
6114 case EXCP_SMC:
6115 env->cp15.esr_el[new_el] = env->exception.syndrome;
6116 break;
6117 case EXCP_IRQ:
6118 case EXCP_VIRQ:
6119 addr += 0x80;
6120 break;
6121 case EXCP_FIQ:
6122 case EXCP_VFIQ:
6123 addr += 0x100;
6124 break;
6125 case EXCP_SEMIHOST:
6126 qemu_log_mask(CPU_LOG_INT,
6127 "...handling as semihosting call 0x%" PRIx64 "\n",
6128 env->xregs[0]);
6129 env->xregs[0] = do_arm_semihosting(env);
6130 return;
6131 default:
6132 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6133 }
6134
6135 if (is_a64(env)) {
6136 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6137 aarch64_save_sp(env, arm_current_el(env));
6138 env->elr_el[new_el] = env->pc;
6139 } else {
6140 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6141 if (!env->thumb) {
6142 env->cp15.esr_el[new_el] |= 1 << 25;
6143 }
6144 env->elr_el[new_el] = env->regs[15];
6145
6146 aarch64_sync_32_to_64(env);
6147
6148 env->condexec_bits = 0;
6149 }
6150 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6151 env->elr_el[new_el]);
6152
6153 pstate_write(env, PSTATE_DAIF | new_mode);
6154 env->aarch64 = 1;
6155 aarch64_restore_sp(env, new_el);
6156
6157 env->pc = addr;
6158
6159 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6160 new_el, env->pc, pstate_read(env));
966f758c
PM
6161}
6162
904c04de
PM
6163static inline bool check_for_semihosting(CPUState *cs)
6164{
6165 /* Check whether this exception is a semihosting call; if so
6166 * then handle it and return true; otherwise return false.
6167 */
6168 ARMCPU *cpu = ARM_CPU(cs);
6169 CPUARMState *env = &cpu->env;
6170
6171 if (is_a64(env)) {
6172 if (cs->exception_index == EXCP_SEMIHOST) {
6173 /* This is always the 64-bit semihosting exception.
6174 * The "is this usermode" and "is semihosting enabled"
6175 * checks have been done at translate time.
6176 */
6177 qemu_log_mask(CPU_LOG_INT,
6178 "...handling as semihosting call 0x%" PRIx64 "\n",
6179 env->xregs[0]);
6180 env->xregs[0] = do_arm_semihosting(env);
6181 return true;
6182 }
6183 return false;
6184 } else {
6185 uint32_t imm;
6186
6187 /* Only intercept calls from privileged modes, to provide some
6188 * semblance of security.
6189 */
6190 if (!semihosting_enabled() ||
6191 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)) {
6192 return false;
6193 }
6194
6195 switch (cs->exception_index) {
6196 case EXCP_SWI:
6197 /* Check for semihosting interrupt. */
6198 if (env->thumb) {
6199 imm = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
6200 & 0xff;
6201 if (imm == 0xab) {
6202 break;
6203 }
6204 } else {
6205 imm = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
6206 & 0xffffff;
6207 if (imm == 0x123456) {
6208 break;
6209 }
6210 }
6211 return false;
6212 case EXCP_BKPT:
6213 /* See if this is a semihosting syscall. */
6214 if (env->thumb) {
6215 imm = arm_lduw_code(env, env->regs[15], env->bswap_code)
6216 & 0xff;
6217 if (imm == 0xab) {
6218 env->regs[15] += 2;
6219 break;
6220 }
6221 }
6222 return false;
6223 default:
6224 return false;
6225 }
6226
6227 qemu_log_mask(CPU_LOG_INT,
6228 "...handling as semihosting call 0x%x\n",
6229 env->regs[0]);
6230 env->regs[0] = do_arm_semihosting(env);
6231 return true;
6232 }
6233}
6234
966f758c
PM
6235/* Handle a CPU exception for A and R profile CPUs.
6236 * Do any appropriate logging, handle PSCI calls, and then hand off
6237 * to the AArch64-entry or AArch32-entry function depending on the
6238 * target exception level's register width.
6239 */
6240void arm_cpu_do_interrupt(CPUState *cs)
6241{
6242 ARMCPU *cpu = ARM_CPU(cs);
6243 CPUARMState *env = &cpu->env;
6244 unsigned int new_el = env->exception.target_el;
6245
6246 assert(!IS_M(env));
6247
6248 arm_log_exception(cs->exception_index);
6249 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6250 new_el);
6251 if (qemu_loglevel_mask(CPU_LOG_INT)
6252 && !excp_is_internal(cs->exception_index)) {
6253 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
6254 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6255 env->exception.syndrome);
6256 }
6257
6258 if (arm_is_psci_call(cpu, cs->exception_index)) {
6259 arm_handle_psci_call(cpu);
6260 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6261 return;
6262 }
6263
904c04de
PM
6264 /* Semihosting semantics depend on the register width of the
6265 * code that caused the exception, not the target exception level,
6266 * so must be handled here.
966f758c 6267 */
904c04de
PM
6268 if (check_for_semihosting(cs)) {
6269 return;
6270 }
6271
6272 assert(!excp_is_internal(cs->exception_index));
6273 if (arm_el_is_aa64(env, new_el)) {
966f758c
PM
6274 arm_cpu_do_interrupt_aarch64(cs);
6275 } else {
6276 arm_cpu_do_interrupt_aarch32(cs);
6277 }
f3a9b694
PM
6278
6279 if (!kvm_enabled()) {
6280 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
6281 }
6282}
0480f69a
PM
6283
6284/* Return the exception level which controls this address translation regime */
6285static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
6286{
6287 switch (mmu_idx) {
6288 case ARMMMUIdx_S2NS:
6289 case ARMMMUIdx_S1E2:
6290 return 2;
6291 case ARMMMUIdx_S1E3:
6292 return 3;
6293 case ARMMMUIdx_S1SE0:
6294 return arm_el_is_aa64(env, 3) ? 1 : 3;
6295 case ARMMMUIdx_S1SE1:
6296 case ARMMMUIdx_S1NSE0:
6297 case ARMMMUIdx_S1NSE1:
6298 return 1;
6299 default:
6300 g_assert_not_reached();
6301 }
6302}
6303
8bf5b6a9
PM
6304/* Return true if this address translation regime is secure */
6305static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
6306{
6307 switch (mmu_idx) {
6308 case ARMMMUIdx_S12NSE0:
6309 case ARMMMUIdx_S12NSE1:
6310 case ARMMMUIdx_S1NSE0:
6311 case ARMMMUIdx_S1NSE1:
6312 case ARMMMUIdx_S1E2:
6313 case ARMMMUIdx_S2NS:
6314 return false;
6315 case ARMMMUIdx_S1E3:
6316 case ARMMMUIdx_S1SE0:
6317 case ARMMMUIdx_S1SE1:
6318 return true;
6319 default:
6320 g_assert_not_reached();
6321 }
6322}
6323
0480f69a
PM
6324/* Return the SCTLR value which controls this address translation regime */
6325static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
6326{
6327 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
6328}
6329
6330/* Return true if the specified stage of address translation is disabled */
6331static inline bool regime_translation_disabled(CPUARMState *env,
6332 ARMMMUIdx mmu_idx)
6333{
6334 if (mmu_idx == ARMMMUIdx_S2NS) {
6335 return (env->cp15.hcr_el2 & HCR_VM) == 0;
6336 }
6337 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
6338}
6339
6340/* Return the TCR controlling this translation regime */
6341static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
6342{
6343 if (mmu_idx == ARMMMUIdx_S2NS) {
68e9c2fe 6344 return &env->cp15.vtcr_el2;
0480f69a
PM
6345 }
6346 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
6347}
6348
aef878be
GB
6349/* Return the TTBR associated with this translation regime */
6350static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
6351 int ttbrn)
6352{
6353 if (mmu_idx == ARMMMUIdx_S2NS) {
b698e9cf 6354 return env->cp15.vttbr_el2;
aef878be
GB
6355 }
6356 if (ttbrn == 0) {
6357 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
6358 } else {
6359 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
6360 }
6361}
6362
0480f69a
PM
6363/* Return true if the translation regime is using LPAE format page tables */
6364static inline bool regime_using_lpae_format(CPUARMState *env,
6365 ARMMMUIdx mmu_idx)
6366{
6367 int el = regime_el(env, mmu_idx);
6368 if (el == 2 || arm_el_is_aa64(env, el)) {
6369 return true;
6370 }
6371 if (arm_feature(env, ARM_FEATURE_LPAE)
6372 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
6373 return true;
6374 }
6375 return false;
6376}
6377
deb2db99
AR
6378/* Returns true if the stage 1 translation regime is using LPAE format page
6379 * tables. Used when raising alignment exceptions, whose FSR changes depending
6380 * on whether the long or short descriptor format is in use. */
6381bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
30901475 6382{
deb2db99
AR
6383 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6384 mmu_idx += ARMMMUIdx_S1NSE0;
6385 }
6386
30901475
AB
6387 return regime_using_lpae_format(env, mmu_idx);
6388}
6389
0480f69a
PM
6390static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
6391{
6392 switch (mmu_idx) {
6393 case ARMMMUIdx_S1SE0:
6394 case ARMMMUIdx_S1NSE0:
6395 return true;
6396 default:
6397 return false;
6398 case ARMMMUIdx_S12NSE0:
6399 case ARMMMUIdx_S12NSE1:
6400 g_assert_not_reached();
6401 }
6402}
6403
0fbf5238
AJ
6404/* Translate section/page access permissions to page
6405 * R/W protection flags
d76951b6
AJ
6406 *
6407 * @env: CPUARMState
6408 * @mmu_idx: MMU index indicating required translation regime
6409 * @ap: The 3-bit access permissions (AP[2:0])
6410 * @domain_prot: The 2-bit domain access permissions
0fbf5238
AJ
6411 */
6412static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
6413 int ap, int domain_prot)
6414{
554b0b09
PM
6415 bool is_user = regime_is_user(env, mmu_idx);
6416
6417 if (domain_prot == 3) {
6418 return PAGE_READ | PAGE_WRITE;
6419 }
6420
554b0b09
PM
6421 switch (ap) {
6422 case 0:
6423 if (arm_feature(env, ARM_FEATURE_V7)) {
6424 return 0;
6425 }
554b0b09
PM
6426 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
6427 case SCTLR_S:
6428 return is_user ? 0 : PAGE_READ;
6429 case SCTLR_R:
6430 return PAGE_READ;
6431 default:
6432 return 0;
6433 }
6434 case 1:
6435 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6436 case 2:
87c3d486 6437 if (is_user) {
0fbf5238 6438 return PAGE_READ;
87c3d486 6439 } else {
554b0b09 6440 return PAGE_READ | PAGE_WRITE;
87c3d486 6441 }
554b0b09
PM
6442 case 3:
6443 return PAGE_READ | PAGE_WRITE;
6444 case 4: /* Reserved. */
6445 return 0;
6446 case 5:
0fbf5238 6447 return is_user ? 0 : PAGE_READ;
554b0b09 6448 case 6:
0fbf5238 6449 return PAGE_READ;
554b0b09 6450 case 7:
87c3d486 6451 if (!arm_feature(env, ARM_FEATURE_V6K)) {
554b0b09 6452 return 0;
87c3d486 6453 }
0fbf5238 6454 return PAGE_READ;
554b0b09 6455 default:
0fbf5238 6456 g_assert_not_reached();
554b0b09 6457 }
b5ff1b31
FB
6458}
6459
d76951b6
AJ
6460/* Translate section/page access permissions to page
6461 * R/W protection flags.
6462 *
d76951b6 6463 * @ap: The 2-bit simple AP (AP[2:1])
d8e052b3 6464 * @is_user: TRUE if accessing from PL0
d76951b6 6465 */
d8e052b3 6466static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
d76951b6 6467{
d76951b6
AJ
6468 switch (ap) {
6469 case 0:
6470 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6471 case 1:
6472 return PAGE_READ | PAGE_WRITE;
6473 case 2:
6474 return is_user ? 0 : PAGE_READ;
6475 case 3:
6476 return PAGE_READ;
6477 default:
6478 g_assert_not_reached();
6479 }
6480}
6481
d8e052b3
AJ
6482static inline int
6483simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
6484{
6485 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
6486}
6487
6ab1a5ee
EI
6488/* Translate S2 section/page access permissions to protection flags
6489 *
6490 * @env: CPUARMState
6491 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6492 * @xn: XN (execute-never) bit
6493 */
6494static int get_S2prot(CPUARMState *env, int s2ap, int xn)
6495{
6496 int prot = 0;
6497
6498 if (s2ap & 1) {
6499 prot |= PAGE_READ;
6500 }
6501 if (s2ap & 2) {
6502 prot |= PAGE_WRITE;
6503 }
6504 if (!xn) {
6505 prot |= PAGE_EXEC;
6506 }
6507 return prot;
6508}
6509
d8e052b3
AJ
6510/* Translate section/page access permissions to protection flags
6511 *
6512 * @env: CPUARMState
6513 * @mmu_idx: MMU index indicating required translation regime
6514 * @is_aa64: TRUE if AArch64
6515 * @ap: The 2-bit simple AP (AP[2:1])
6516 * @ns: NS (non-secure) bit
6517 * @xn: XN (execute-never) bit
6518 * @pxn: PXN (privileged execute-never) bit
6519 */
6520static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
6521 int ap, int ns, int xn, int pxn)
6522{
6523 bool is_user = regime_is_user(env, mmu_idx);
6524 int prot_rw, user_rw;
6525 bool have_wxn;
6526 int wxn = 0;
6527
6528 assert(mmu_idx != ARMMMUIdx_S2NS);
6529
6530 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
6531 if (is_user) {
6532 prot_rw = user_rw;
6533 } else {
6534 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
6535 }
6536
6537 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
6538 return prot_rw;
6539 }
6540
6541 /* TODO have_wxn should be replaced with
6542 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6543 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6544 * compatible processors have EL2, which is required for [U]WXN.
6545 */
6546 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
6547
6548 if (have_wxn) {
6549 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
6550 }
6551
6552 if (is_aa64) {
6553 switch (regime_el(env, mmu_idx)) {
6554 case 1:
6555 if (!is_user) {
6556 xn = pxn || (user_rw & PAGE_WRITE);
6557 }
6558 break;
6559 case 2:
6560 case 3:
6561 break;
6562 }
6563 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6564 switch (regime_el(env, mmu_idx)) {
6565 case 1:
6566 case 3:
6567 if (is_user) {
6568 xn = xn || !(user_rw & PAGE_READ);
6569 } else {
6570 int uwxn = 0;
6571 if (have_wxn) {
6572 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
6573 }
6574 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
6575 (uwxn && (user_rw & PAGE_WRITE));
6576 }
6577 break;
6578 case 2:
6579 break;
6580 }
6581 } else {
6582 xn = wxn = 0;
6583 }
6584
6585 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
6586 return prot_rw;
6587 }
6588 return prot_rw | PAGE_EXEC;
6589}
6590
0480f69a
PM
6591static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
6592 uint32_t *table, uint32_t address)
b2fa1797 6593{
0480f69a 6594 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
0480f69a 6595 TCR *tcr = regime_tcr(env, mmu_idx);
11f136ee 6596
11f136ee
FA
6597 if (address & tcr->mask) {
6598 if (tcr->raw_tcr & TTBCR_PD1) {
e389be16
FA
6599 /* Translation table walk disabled for TTBR1 */
6600 return false;
6601 }
aef878be 6602 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
e389be16 6603 } else {
11f136ee 6604 if (tcr->raw_tcr & TTBCR_PD0) {
e389be16
FA
6605 /* Translation table walk disabled for TTBR0 */
6606 return false;
6607 }
aef878be 6608 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
e389be16
FA
6609 }
6610 *table |= (address >> 18) & 0x3ffc;
6611 return true;
b2fa1797
PB
6612}
6613
37785977
EI
6614/* Translate a S1 pagetable walk through S2 if needed. */
6615static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
6616 hwaddr addr, MemTxAttrs txattrs,
6617 uint32_t *fsr,
6618 ARMMMUFaultInfo *fi)
6619{
6620 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
6621 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
6622 target_ulong s2size;
6623 hwaddr s2pa;
6624 int s2prot;
6625 int ret;
6626
6627 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
6628 &txattrs, &s2prot, &s2size, fsr, fi);
6629 if (ret) {
6630 fi->s2addr = addr;
6631 fi->stage2 = true;
6632 fi->s1ptw = true;
6633 return ~0;
6634 }
6635 addr = s2pa;
6636 }
6637 return addr;
6638}
6639
ebca90e4
PM
6640/* All loads done in the course of a page table walk go through here.
6641 * TODO: rather than ignoring errors from physical memory reads (which
6642 * are external aborts in ARM terminology) we should propagate this
6643 * error out so that we can turn it into a Data Abort if this walk
6644 * was being done for a CPU load/store or an address translation instruction
6645 * (but not if it was for a debug access).
6646 */
a614e698
EI
6647static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
6648 ARMMMUIdx mmu_idx, uint32_t *fsr,
6649 ARMMMUFaultInfo *fi)
ebca90e4 6650{
a614e698
EI
6651 ARMCPU *cpu = ARM_CPU(cs);
6652 CPUARMState *env = &cpu->env;
ebca90e4 6653 MemTxAttrs attrs = {};
5ce4ff65 6654 AddressSpace *as;
ebca90e4
PM
6655
6656 attrs.secure = is_secure;
5ce4ff65 6657 as = arm_addressspace(cs, attrs);
a614e698
EI
6658 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
6659 if (fi->s1ptw) {
6660 return 0;
6661 }
5ce4ff65 6662 return address_space_ldl(as, addr, attrs, NULL);
ebca90e4
PM
6663}
6664
37785977
EI
6665static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
6666 ARMMMUIdx mmu_idx, uint32_t *fsr,
6667 ARMMMUFaultInfo *fi)
ebca90e4 6668{
37785977
EI
6669 ARMCPU *cpu = ARM_CPU(cs);
6670 CPUARMState *env = &cpu->env;
ebca90e4 6671 MemTxAttrs attrs = {};
5ce4ff65 6672 AddressSpace *as;
ebca90e4
PM
6673
6674 attrs.secure = is_secure;
5ce4ff65 6675 as = arm_addressspace(cs, attrs);
37785977
EI
6676 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
6677 if (fi->s1ptw) {
6678 return 0;
6679 }
5ce4ff65 6680 return address_space_ldq(as, addr, attrs, NULL);
ebca90e4
PM
6681}
6682
b7cc4e82
PC
6683static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
6684 int access_type, ARMMMUIdx mmu_idx,
6685 hwaddr *phys_ptr, int *prot,
e14b5a23
EI
6686 target_ulong *page_size, uint32_t *fsr,
6687 ARMMMUFaultInfo *fi)
b5ff1b31 6688{
70d74660 6689 CPUState *cs = CPU(arm_env_get_cpu(env));
b5ff1b31
FB
6690 int code;
6691 uint32_t table;
6692 uint32_t desc;
6693 int type;
6694 int ap;
e389be16 6695 int domain = 0;
dd4ebc2e 6696 int domain_prot;
a8170e5e 6697 hwaddr phys_addr;
0480f69a 6698 uint32_t dacr;
b5ff1b31 6699
9ee6e8bb
PB
6700 /* Pagetable walk. */
6701 /* Lookup l1 descriptor. */
0480f69a 6702 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
6703 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6704 code = 5;
6705 goto do_fault;
6706 }
a614e698
EI
6707 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6708 mmu_idx, fsr, fi);
9ee6e8bb 6709 type = (desc & 3);
dd4ebc2e 6710 domain = (desc >> 5) & 0x0f;
0480f69a
PM
6711 if (regime_el(env, mmu_idx) == 1) {
6712 dacr = env->cp15.dacr_ns;
6713 } else {
6714 dacr = env->cp15.dacr_s;
6715 }
6716 domain_prot = (dacr >> (domain * 2)) & 3;
9ee6e8bb 6717 if (type == 0) {
601d70b9 6718 /* Section translation fault. */
9ee6e8bb
PB
6719 code = 5;
6720 goto do_fault;
6721 }
dd4ebc2e 6722 if (domain_prot == 0 || domain_prot == 2) {
9ee6e8bb
PB
6723 if (type == 2)
6724 code = 9; /* Section domain fault. */
6725 else
6726 code = 11; /* Page domain fault. */
6727 goto do_fault;
6728 }
6729 if (type == 2) {
6730 /* 1Mb section. */
6731 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6732 ap = (desc >> 10) & 3;
6733 code = 13;
d4c430a8 6734 *page_size = 1024 * 1024;
9ee6e8bb
PB
6735 } else {
6736 /* Lookup l2 entry. */
554b0b09
PM
6737 if (type == 1) {
6738 /* Coarse pagetable. */
6739 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6740 } else {
6741 /* Fine pagetable. */
6742 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
6743 }
a614e698
EI
6744 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6745 mmu_idx, fsr, fi);
9ee6e8bb
PB
6746 switch (desc & 3) {
6747 case 0: /* Page translation fault. */
6748 code = 7;
6749 goto do_fault;
6750 case 1: /* 64k page. */
6751 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6752 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 6753 *page_size = 0x10000;
ce819861 6754 break;
9ee6e8bb
PB
6755 case 2: /* 4k page. */
6756 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
c10f7fc3 6757 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
d4c430a8 6758 *page_size = 0x1000;
ce819861 6759 break;
fc1891c7 6760 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
554b0b09 6761 if (type == 1) {
fc1891c7
PM
6762 /* ARMv6/XScale extended small page format */
6763 if (arm_feature(env, ARM_FEATURE_XSCALE)
6764 || arm_feature(env, ARM_FEATURE_V6)) {
554b0b09 6765 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
fc1891c7 6766 *page_size = 0x1000;
554b0b09 6767 } else {
fc1891c7
PM
6768 /* UNPREDICTABLE in ARMv5; we choose to take a
6769 * page translation fault.
6770 */
554b0b09
PM
6771 code = 7;
6772 goto do_fault;
6773 }
6774 } else {
6775 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
fc1891c7 6776 *page_size = 0x400;
554b0b09 6777 }
9ee6e8bb 6778 ap = (desc >> 4) & 3;
ce819861
PB
6779 break;
6780 default:
9ee6e8bb
PB
6781 /* Never happens, but compiler isn't smart enough to tell. */
6782 abort();
ce819861 6783 }
9ee6e8bb
PB
6784 code = 15;
6785 }
0fbf5238
AJ
6786 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6787 *prot |= *prot ? PAGE_EXEC : 0;
6788 if (!(*prot & (1 << access_type))) {
9ee6e8bb
PB
6789 /* Access permission fault. */
6790 goto do_fault;
6791 }
6792 *phys_ptr = phys_addr;
b7cc4e82 6793 return false;
9ee6e8bb 6794do_fault:
b7cc4e82
PC
6795 *fsr = code | (domain << 4);
6796 return true;
9ee6e8bb
PB
6797}
6798
b7cc4e82
PC
6799static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
6800 int access_type, ARMMMUIdx mmu_idx,
6801 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
6802 target_ulong *page_size, uint32_t *fsr,
6803 ARMMMUFaultInfo *fi)
9ee6e8bb 6804{
70d74660 6805 CPUState *cs = CPU(arm_env_get_cpu(env));
9ee6e8bb
PB
6806 int code;
6807 uint32_t table;
6808 uint32_t desc;
6809 uint32_t xn;
de9b05b8 6810 uint32_t pxn = 0;
9ee6e8bb
PB
6811 int type;
6812 int ap;
de9b05b8 6813 int domain = 0;
dd4ebc2e 6814 int domain_prot;
a8170e5e 6815 hwaddr phys_addr;
0480f69a 6816 uint32_t dacr;
8bf5b6a9 6817 bool ns;
9ee6e8bb
PB
6818
6819 /* Pagetable walk. */
6820 /* Lookup l1 descriptor. */
0480f69a 6821 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
e389be16
FA
6822 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6823 code = 5;
6824 goto do_fault;
6825 }
a614e698
EI
6826 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6827 mmu_idx, fsr, fi);
9ee6e8bb 6828 type = (desc & 3);
de9b05b8
PM
6829 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
6830 /* Section translation fault, or attempt to use the encoding
6831 * which is Reserved on implementations without PXN.
6832 */
9ee6e8bb 6833 code = 5;
9ee6e8bb 6834 goto do_fault;
de9b05b8
PM
6835 }
6836 if ((type == 1) || !(desc & (1 << 18))) {
6837 /* Page or Section. */
dd4ebc2e 6838 domain = (desc >> 5) & 0x0f;
9ee6e8bb 6839 }
0480f69a
PM
6840 if (regime_el(env, mmu_idx) == 1) {
6841 dacr = env->cp15.dacr_ns;
6842 } else {
6843 dacr = env->cp15.dacr_s;
6844 }
6845 domain_prot = (dacr >> (domain * 2)) & 3;
dd4ebc2e 6846 if (domain_prot == 0 || domain_prot == 2) {
de9b05b8 6847 if (type != 1) {
9ee6e8bb 6848 code = 9; /* Section domain fault. */
de9b05b8 6849 } else {
9ee6e8bb 6850 code = 11; /* Page domain fault. */
de9b05b8 6851 }
9ee6e8bb
PB
6852 goto do_fault;
6853 }
de9b05b8 6854 if (type != 1) {
9ee6e8bb
PB
6855 if (desc & (1 << 18)) {
6856 /* Supersection. */
6857 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
4e42a6ca
SF
6858 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
6859 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
d4c430a8 6860 *page_size = 0x1000000;
b5ff1b31 6861 } else {
9ee6e8bb
PB
6862 /* Section. */
6863 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 6864 *page_size = 0x100000;
b5ff1b31 6865 }
9ee6e8bb
PB
6866 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
6867 xn = desc & (1 << 4);
de9b05b8 6868 pxn = desc & 1;
9ee6e8bb 6869 code = 13;
8bf5b6a9 6870 ns = extract32(desc, 19, 1);
9ee6e8bb 6871 } else {
de9b05b8
PM
6872 if (arm_feature(env, ARM_FEATURE_PXN)) {
6873 pxn = (desc >> 2) & 1;
6874 }
8bf5b6a9 6875 ns = extract32(desc, 3, 1);
9ee6e8bb
PB
6876 /* Lookup l2 entry. */
6877 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
a614e698
EI
6878 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
6879 mmu_idx, fsr, fi);
9ee6e8bb
PB
6880 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
6881 switch (desc & 3) {
6882 case 0: /* Page translation fault. */
6883 code = 7;
b5ff1b31 6884 goto do_fault;
9ee6e8bb
PB
6885 case 1: /* 64k page. */
6886 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6887 xn = desc & (1 << 15);
d4c430a8 6888 *page_size = 0x10000;
9ee6e8bb
PB
6889 break;
6890 case 2: case 3: /* 4k page. */
6891 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6892 xn = desc & 1;
d4c430a8 6893 *page_size = 0x1000;
9ee6e8bb
PB
6894 break;
6895 default:
6896 /* Never happens, but compiler isn't smart enough to tell. */
6897 abort();
b5ff1b31 6898 }
9ee6e8bb
PB
6899 code = 15;
6900 }
dd4ebc2e 6901 if (domain_prot == 3) {
c0034328
JR
6902 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
6903 } else {
0480f69a 6904 if (pxn && !regime_is_user(env, mmu_idx)) {
de9b05b8
PM
6905 xn = 1;
6906 }
c0034328
JR
6907 if (xn && access_type == 2)
6908 goto do_fault;
9ee6e8bb 6909
d76951b6
AJ
6910 if (arm_feature(env, ARM_FEATURE_V6K) &&
6911 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
6912 /* The simplified model uses AP[0] as an access control bit. */
6913 if ((ap & 1) == 0) {
6914 /* Access flag fault. */
6915 code = (code == 15) ? 6 : 3;
6916 goto do_fault;
6917 }
6918 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
6919 } else {
6920 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
c0034328 6921 }
0fbf5238
AJ
6922 if (*prot && !xn) {
6923 *prot |= PAGE_EXEC;
6924 }
6925 if (!(*prot & (1 << access_type))) {
c0034328
JR
6926 /* Access permission fault. */
6927 goto do_fault;
6928 }
3ad493fc 6929 }
8bf5b6a9
PM
6930 if (ns) {
6931 /* The NS bit will (as required by the architecture) have no effect if
6932 * the CPU doesn't support TZ or this is a non-secure translation
6933 * regime, because the attribute will already be non-secure.
6934 */
6935 attrs->secure = false;
6936 }
9ee6e8bb 6937 *phys_ptr = phys_addr;
b7cc4e82 6938 return false;
b5ff1b31 6939do_fault:
b7cc4e82
PC
6940 *fsr = code | (domain << 4);
6941 return true;
b5ff1b31
FB
6942}
6943
3dde962f
PM
6944/* Fault type for long-descriptor MMU fault reporting; this corresponds
6945 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
6946 */
6947typedef enum {
6948 translation_fault = 1,
6949 access_fault = 2,
6950 permission_fault = 3,
6951} MMUFaultType;
6952
1853d5a9 6953/*
a0e966c9 6954 * check_s2_mmu_setup
1853d5a9
EI
6955 * @cpu: ARMCPU
6956 * @is_aa64: True if the translation regime is in AArch64 state
6957 * @startlevel: Suggested starting level
6958 * @inputsize: Bitsize of IPAs
6959 * @stride: Page-table stride (See the ARM ARM)
6960 *
a0e966c9
EI
6961 * Returns true if the suggested S2 translation parameters are OK and
6962 * false otherwise.
1853d5a9 6963 */
a0e966c9
EI
6964static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
6965 int inputsize, int stride)
1853d5a9 6966{
98d68ec2
EI
6967 const int grainsize = stride + 3;
6968 int startsizecheck;
6969
1853d5a9
EI
6970 /* Negative levels are never allowed. */
6971 if (level < 0) {
6972 return false;
6973 }
6974
98d68ec2
EI
6975 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
6976 if (startsizecheck < 1 || startsizecheck > stride + 4) {
6977 return false;
6978 }
6979
1853d5a9 6980 if (is_aa64) {
3526423e 6981 CPUARMState *env = &cpu->env;
1853d5a9
EI
6982 unsigned int pamax = arm_pamax(cpu);
6983
6984 switch (stride) {
6985 case 13: /* 64KB Pages. */
6986 if (level == 0 || (level == 1 && pamax <= 42)) {
6987 return false;
6988 }
6989 break;
6990 case 11: /* 16KB Pages. */
6991 if (level == 0 || (level == 1 && pamax <= 40)) {
6992 return false;
6993 }
6994 break;
6995 case 9: /* 4KB Pages. */
6996 if (level == 0 && pamax <= 42) {
6997 return false;
6998 }
6999 break;
7000 default:
7001 g_assert_not_reached();
7002 }
3526423e
EI
7003
7004 /* Inputsize checks. */
7005 if (inputsize > pamax &&
7006 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7007 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7008 return false;
7009 }
1853d5a9 7010 } else {
1853d5a9
EI
7011 /* AArch32 only supports 4KB pages. Assert on that. */
7012 assert(stride == 9);
7013
7014 if (level == 0) {
7015 return false;
7016 }
1853d5a9
EI
7017 }
7018 return true;
7019}
7020
b7cc4e82
PC
7021static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7022 int access_type, ARMMMUIdx mmu_idx,
7023 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
e14b5a23
EI
7024 target_ulong *page_size_ptr, uint32_t *fsr,
7025 ARMMMUFaultInfo *fi)
3dde962f 7026{
1853d5a9
EI
7027 ARMCPU *cpu = arm_env_get_cpu(env);
7028 CPUState *cs = CPU(cpu);
3dde962f
PM
7029 /* Read an LPAE long-descriptor translation table. */
7030 MMUFaultType fault_type = translation_fault;
7031 uint32_t level = 1;
0c5fbf3b 7032 uint32_t epd = 0;
1f4c8c18 7033 int32_t t0sz, t1sz;
2c8dd318 7034 uint32_t tg;
3dde962f
PM
7035 uint64_t ttbr;
7036 int ttbr_select;
2c8dd318 7037 hwaddr descaddr, descmask;
3dde962f
PM
7038 uint32_t tableattrs;
7039 target_ulong page_size;
7040 uint32_t attrs;
973a5434 7041 int32_t stride = 9;
2c8dd318 7042 int32_t va_size = 32;
4ca6a051 7043 int inputsize;
2c8dd318 7044 int32_t tbi = 0;
0480f69a 7045 TCR *tcr = regime_tcr(env, mmu_idx);
d8e052b3 7046 int ap, ns, xn, pxn;
88e8add8
GB
7047 uint32_t el = regime_el(env, mmu_idx);
7048 bool ttbr1_valid = true;
6109769a 7049 uint64_t descaddrmask;
0480f69a
PM
7050
7051 /* TODO:
88e8add8
GB
7052 * This code does not handle the different format TCR for VTCR_EL2.
7053 * This code also does not support shareability levels.
7054 * Attribute and permission bit handling should also be checked when adding
7055 * support for those page table walks.
0480f69a 7056 */
88e8add8 7057 if (arm_el_is_aa64(env, el)) {
2c8dd318 7058 va_size = 64;
88e8add8 7059 if (el > 1) {
1edee470
EI
7060 if (mmu_idx != ARMMMUIdx_S2NS) {
7061 tbi = extract64(tcr->raw_tcr, 20, 1);
7062 }
88e8add8
GB
7063 } else {
7064 if (extract64(address, 55, 1)) {
7065 tbi = extract64(tcr->raw_tcr, 38, 1);
7066 } else {
7067 tbi = extract64(tcr->raw_tcr, 37, 1);
7068 }
7069 }
2c8dd318 7070 tbi *= 8;
88e8add8
GB
7071
7072 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7073 * invalid.
7074 */
7075 if (el > 1) {
7076 ttbr1_valid = false;
7077 }
d0a2cbce
PM
7078 } else {
7079 /* There is no TTBR1 for EL2 */
7080 if (el == 2) {
7081 ttbr1_valid = false;
7082 }
2c8dd318 7083 }
3dde962f
PM
7084
7085 /* Determine whether this address is in the region controlled by
7086 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7087 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7088 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7089 */
0480f69a 7090 if (va_size == 64) {
4ee38098
EI
7091 /* AArch64 translation. */
7092 t0sz = extract32(tcr->raw_tcr, 0, 6);
2c8dd318
RH
7093 t0sz = MIN(t0sz, 39);
7094 t0sz = MAX(t0sz, 16);
4ee38098
EI
7095 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7096 /* AArch32 stage 1 translation. */
7097 t0sz = extract32(tcr->raw_tcr, 0, 3);
7098 } else {
7099 /* AArch32 stage 2 translation. */
7100 bool sext = extract32(tcr->raw_tcr, 4, 1);
7101 bool sign = extract32(tcr->raw_tcr, 3, 1);
7102 t0sz = sextract32(tcr->raw_tcr, 0, 4);
7103
7104 /* If the sign-extend bit is not the same as t0sz[3], the result
7105 * is unpredictable. Flag this as a guest error. */
7106 if (sign != sext) {
7107 qemu_log_mask(LOG_GUEST_ERROR,
7108 "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
7109 }
2c8dd318 7110 }
1f4c8c18 7111 t1sz = extract32(tcr->raw_tcr, 16, 6);
0480f69a 7112 if (va_size == 64) {
2c8dd318
RH
7113 t1sz = MIN(t1sz, 39);
7114 t1sz = MAX(t1sz, 16);
7115 }
7116 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
3dde962f
PM
7117 /* there is a ttbr0 region and we are in it (high bits all zero) */
7118 ttbr_select = 0;
88e8add8
GB
7119 } else if (ttbr1_valid && t1sz &&
7120 !extract64(~address, va_size - t1sz, t1sz - tbi)) {
3dde962f
PM
7121 /* there is a ttbr1 region and we are in it (high bits all one) */
7122 ttbr_select = 1;
7123 } else if (!t0sz) {
7124 /* ttbr0 region is "everything not in the ttbr1 region" */
7125 ttbr_select = 0;
88e8add8 7126 } else if (!t1sz && ttbr1_valid) {
3dde962f
PM
7127 /* ttbr1 region is "everything not in the ttbr0 region" */
7128 ttbr_select = 1;
7129 } else {
7130 /* in the gap between the two regions, this is a Translation fault */
7131 fault_type = translation_fault;
7132 goto do_fault;
7133 }
7134
7135 /* Note that QEMU ignores shareability and cacheability attributes,
7136 * so we don't need to do anything with the SH, ORGN, IRGN fields
7137 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7138 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7139 * implement any ASID-like capability so we can ignore it (instead
7140 * we will always flush the TLB any time the ASID is changed).
7141 */
7142 if (ttbr_select == 0) {
aef878be 7143 ttbr = regime_ttbr(env, mmu_idx, 0);
0c5fbf3b
EI
7144 if (el < 2) {
7145 epd = extract32(tcr->raw_tcr, 7, 1);
7146 }
4ca6a051 7147 inputsize = va_size - t0sz;
2c8dd318 7148
11f136ee 7149 tg = extract32(tcr->raw_tcr, 14, 2);
2c8dd318 7150 if (tg == 1) { /* 64KB pages */
973a5434 7151 stride = 13;
2c8dd318
RH
7152 }
7153 if (tg == 2) { /* 16KB pages */
973a5434 7154 stride = 11;
2c8dd318 7155 }
3dde962f 7156 } else {
88e8add8
GB
7157 /* We should only be here if TTBR1 is valid */
7158 assert(ttbr1_valid);
7159
aef878be 7160 ttbr = regime_ttbr(env, mmu_idx, 1);
11f136ee 7161 epd = extract32(tcr->raw_tcr, 23, 1);
4ca6a051 7162 inputsize = va_size - t1sz;
2c8dd318 7163
11f136ee 7164 tg = extract32(tcr->raw_tcr, 30, 2);
2c8dd318 7165 if (tg == 3) { /* 64KB pages */
973a5434 7166 stride = 13;
2c8dd318
RH
7167 }
7168 if (tg == 1) { /* 16KB pages */
973a5434 7169 stride = 11;
2c8dd318 7170 }
3dde962f
PM
7171 }
7172
0480f69a 7173 /* Here we should have set up all the parameters for the translation:
973a5434 7174 * va_size, inputsize, ttbr, epd, stride, tbi
0480f69a
PM
7175 */
7176
3dde962f 7177 if (epd) {
88e8add8
GB
7178 /* Translation table walk disabled => Translation fault on TLB miss
7179 * Note: This is always 0 on 64-bit EL2 and EL3.
7180 */
3dde962f
PM
7181 goto do_fault;
7182 }
7183
1853d5a9
EI
7184 if (mmu_idx != ARMMMUIdx_S2NS) {
7185 /* The starting level depends on the virtual address size (which can
7186 * be up to 48 bits) and the translation granule size. It indicates
7187 * the number of strides (stride bits at a time) needed to
7188 * consume the bits of the input address. In the pseudocode this is:
7189 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7190 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7191 * our 'stride + 3' and 'stride' is our 'stride'.
7192 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7193 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7194 * = 4 - (inputsize - 4) / stride;
7195 */
7196 level = 4 - (inputsize - 4) / stride;
7197 } else {
7198 /* For stage 2 translations the starting level is specified by the
7199 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7200 */
7201 int startlevel = extract32(tcr->raw_tcr, 6, 2);
7202 bool ok;
7203
7204 if (va_size == 32 || stride == 9) {
7205 /* AArch32 or 4KB pages */
7206 level = 2 - startlevel;
7207 } else {
7208 /* 16KB or 64KB pages */
7209 level = 3 - startlevel;
7210 }
7211
7212 /* Check that the starting level is valid. */
a0e966c9 7213 ok = check_s2_mmu_setup(cpu, va_size == 64, level, inputsize, stride);
1853d5a9
EI
7214 if (!ok) {
7215 /* AArch64 reports these as level 0 faults.
7216 * AArch32 reports these as level 1 faults.
7217 */
7218 level = va_size == 64 ? 0 : 1;
7219 fault_type = translation_fault;
7220 goto do_fault;
7221 }
7222 }
3dde962f
PM
7223
7224 /* Clear the vaddr bits which aren't part of the within-region address,
7225 * so that we don't have to special case things when calculating the
7226 * first descriptor address.
7227 */
4ca6a051
EI
7228 if (va_size != inputsize) {
7229 address &= (1ULL << inputsize) - 1;
2c8dd318
RH
7230 }
7231
973a5434 7232 descmask = (1ULL << (stride + 3)) - 1;
3dde962f
PM
7233
7234 /* Now we can extract the actual base address from the TTBR */
2c8dd318 7235 descaddr = extract64(ttbr, 0, 48);
973a5434 7236 descaddr &= ~((1ULL << (inputsize - (stride * (4 - level)))) - 1);
3dde962f 7237
6109769a
PM
7238 /* The address field in the descriptor goes up to bit 39 for ARMv7
7239 * but up to bit 47 for ARMv8.
7240 */
7241 if (arm_feature(env, ARM_FEATURE_V8)) {
7242 descaddrmask = 0xfffffffff000ULL;
7243 } else {
7244 descaddrmask = 0xfffffff000ULL;
7245 }
7246
ebca90e4
PM
7247 /* Secure accesses start with the page table in secure memory and
7248 * can be downgraded to non-secure at any step. Non-secure accesses
7249 * remain non-secure. We implement this by just ORing in the NSTable/NS
7250 * bits at each step.
7251 */
7252 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
3dde962f
PM
7253 for (;;) {
7254 uint64_t descriptor;
ebca90e4 7255 bool nstable;
3dde962f 7256
973a5434 7257 descaddr |= (address >> (stride * (4 - level))) & descmask;
2c8dd318 7258 descaddr &= ~7ULL;
ebca90e4 7259 nstable = extract32(tableattrs, 4, 1);
37785977
EI
7260 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
7261 if (fi->s1ptw) {
7262 goto do_fault;
7263 }
7264
3dde962f
PM
7265 if (!(descriptor & 1) ||
7266 (!(descriptor & 2) && (level == 3))) {
7267 /* Invalid, or the Reserved level 3 encoding */
7268 goto do_fault;
7269 }
6109769a 7270 descaddr = descriptor & descaddrmask;
3dde962f
PM
7271
7272 if ((descriptor & 2) && (level < 3)) {
7273 /* Table entry. The top five bits are attributes which may
7274 * propagate down through lower levels of the table (and
7275 * which are all arranged so that 0 means "no effect", so
7276 * we can gather them up by ORing in the bits at each level).
7277 */
7278 tableattrs |= extract64(descriptor, 59, 5);
7279 level++;
7280 continue;
7281 }
7282 /* Block entry at level 1 or 2, or page entry at level 3.
7283 * These are basically the same thing, although the number
7284 * of bits we pull in from the vaddr varies.
7285 */
973a5434 7286 page_size = (1ULL << ((stride * (4 - level)) + 3));
3dde962f 7287 descaddr |= (address & (page_size - 1));
6ab1a5ee 7288 /* Extract attributes from the descriptor */
d615efac
IC
7289 attrs = extract64(descriptor, 2, 10)
7290 | (extract64(descriptor, 52, 12) << 10);
6ab1a5ee
EI
7291
7292 if (mmu_idx == ARMMMUIdx_S2NS) {
7293 /* Stage 2 table descriptors do not include any attribute fields */
7294 break;
7295 }
7296 /* Merge in attributes from table descriptors */
3dde962f
PM
7297 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
7298 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
7299 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7300 * means "force PL1 access only", which means forcing AP[1] to 0.
7301 */
7302 if (extract32(tableattrs, 2, 1)) {
7303 attrs &= ~(1 << 4);
7304 }
ebca90e4 7305 attrs |= nstable << 3; /* NS */
3dde962f
PM
7306 break;
7307 }
7308 /* Here descaddr is the final physical address, and attributes
7309 * are all in attrs.
7310 */
7311 fault_type = access_fault;
7312 if ((attrs & (1 << 8)) == 0) {
7313 /* Access flag */
7314 goto do_fault;
7315 }
d8e052b3
AJ
7316
7317 ap = extract32(attrs, 4, 2);
d8e052b3 7318 xn = extract32(attrs, 12, 1);
d8e052b3 7319
6ab1a5ee
EI
7320 if (mmu_idx == ARMMMUIdx_S2NS) {
7321 ns = true;
7322 *prot = get_S2prot(env, ap, xn);
7323 } else {
7324 ns = extract32(attrs, 3, 1);
7325 pxn = extract32(attrs, 11, 1);
7326 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
7327 }
d8e052b3 7328
3dde962f 7329 fault_type = permission_fault;
d8e052b3 7330 if (!(*prot & (1 << access_type))) {
3dde962f
PM
7331 goto do_fault;
7332 }
3dde962f 7333
8bf5b6a9
PM
7334 if (ns) {
7335 /* The NS bit will (as required by the architecture) have no effect if
7336 * the CPU doesn't support TZ or this is a non-secure translation
7337 * regime, because the attribute will already be non-secure.
7338 */
7339 txattrs->secure = false;
7340 }
3dde962f
PM
7341 *phys_ptr = descaddr;
7342 *page_size_ptr = page_size;
b7cc4e82 7343 return false;
3dde962f
PM
7344
7345do_fault:
7346 /* Long-descriptor format IFSR/DFSR value */
b7cc4e82 7347 *fsr = (1 << 9) | (fault_type << 2) | level;
37785977
EI
7348 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7349 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
b7cc4e82 7350 return true;
3dde962f
PM
7351}
7352
f6bda88f
PC
7353static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
7354 ARMMMUIdx mmu_idx,
7355 int32_t address, int *prot)
7356{
7357 *prot = PAGE_READ | PAGE_WRITE;
7358 switch (address) {
7359 case 0xF0000000 ... 0xFFFFFFFF:
7360 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
7361 *prot |= PAGE_EXEC;
7362 }
7363 break;
7364 case 0x00000000 ... 0x7FFFFFFF:
7365 *prot |= PAGE_EXEC;
7366 break;
7367 }
7368
7369}
7370
7371static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
7372 int access_type, ARMMMUIdx mmu_idx,
7373 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7374{
7375 ARMCPU *cpu = arm_env_get_cpu(env);
7376 int n;
7377 bool is_user = regime_is_user(env, mmu_idx);
7378
7379 *phys_ptr = address;
7380 *prot = 0;
7381
7382 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
7383 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7384 } else { /* MPU enabled */
7385 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
7386 /* region search */
7387 uint32_t base = env->pmsav7.drbar[n];
7388 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
7389 uint32_t rmask;
7390 bool srdis = false;
7391
7392 if (!(env->pmsav7.drsr[n] & 0x1)) {
7393 continue;
7394 }
7395
7396 if (!rsize) {
7397 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
7398 continue;
7399 }
7400 rsize++;
7401 rmask = (1ull << rsize) - 1;
7402
7403 if (base & rmask) {
7404 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
7405 "to DRSR region size, mask = %" PRIx32,
7406 base, rmask);
7407 continue;
7408 }
7409
7410 if (address < base || address > base + rmask) {
7411 continue;
7412 }
7413
7414 /* Region matched */
7415
7416 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
7417 int i, snd;
7418 uint32_t srdis_mask;
7419
7420 rsize -= 3; /* sub region size (power of 2) */
7421 snd = ((address - base) >> rsize) & 0x7;
7422 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
7423
7424 srdis_mask = srdis ? 0x3 : 0x0;
7425 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
7426 /* This will check in groups of 2, 4 and then 8, whether
7427 * the subregion bits are consistent. rsize is incremented
7428 * back up to give the region size, considering consistent
7429 * adjacent subregions as one region. Stop testing if rsize
7430 * is already big enough for an entire QEMU page.
7431 */
7432 int snd_rounded = snd & ~(i - 1);
7433 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
7434 snd_rounded + 8, i);
7435 if (srdis_mask ^ srdis_multi) {
7436 break;
7437 }
7438 srdis_mask = (srdis_mask << i) | srdis_mask;
7439 rsize++;
7440 }
7441 }
7442 if (rsize < TARGET_PAGE_BITS) {
7443 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
7444 "alignment of %" PRIu32 " bits. Minimum is %d\n",
7445 rsize, TARGET_PAGE_BITS);
7446 continue;
7447 }
7448 if (srdis) {
7449 continue;
7450 }
7451 break;
7452 }
7453
7454 if (n == -1) { /* no hits */
7455 if (cpu->pmsav7_dregion &&
7456 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
7457 /* background fault */
7458 *fsr = 0;
7459 return true;
7460 }
7461 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7462 } else { /* a MPU hit! */
7463 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
7464
7465 if (is_user) { /* User mode AP bit decoding */
7466 switch (ap) {
7467 case 0:
7468 case 1:
7469 case 5:
7470 break; /* no access */
7471 case 3:
7472 *prot |= PAGE_WRITE;
7473 /* fall through */
7474 case 2:
7475 case 6:
7476 *prot |= PAGE_READ | PAGE_EXEC;
7477 break;
7478 default:
7479 qemu_log_mask(LOG_GUEST_ERROR,
7480 "Bad value for AP bits in DRACR %"
7481 PRIx32 "\n", ap);
7482 }
7483 } else { /* Priv. mode AP bits decoding */
7484 switch (ap) {
7485 case 0:
7486 break; /* no access */
7487 case 1:
7488 case 2:
7489 case 3:
7490 *prot |= PAGE_WRITE;
7491 /* fall through */
7492 case 5:
7493 case 6:
7494 *prot |= PAGE_READ | PAGE_EXEC;
7495 break;
7496 default:
7497 qemu_log_mask(LOG_GUEST_ERROR,
7498 "Bad value for AP bits in DRACR %"
7499 PRIx32 "\n", ap);
7500 }
7501 }
7502
7503 /* execute never */
7504 if (env->pmsav7.dracr[n] & (1 << 12)) {
7505 *prot &= ~PAGE_EXEC;
7506 }
7507 }
7508 }
7509
7510 *fsr = 0x00d; /* Permission fault */
7511 return !(*prot & (1 << access_type));
7512}
7513
13689d43
PC
7514static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
7515 int access_type, ARMMMUIdx mmu_idx,
7516 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9ee6e8bb
PB
7517{
7518 int n;
7519 uint32_t mask;
7520 uint32_t base;
0480f69a 7521 bool is_user = regime_is_user(env, mmu_idx);
9ee6e8bb
PB
7522
7523 *phys_ptr = address;
7524 for (n = 7; n >= 0; n--) {
554b0b09 7525 base = env->cp15.c6_region[n];
87c3d486 7526 if ((base & 1) == 0) {
554b0b09 7527 continue;
87c3d486 7528 }
554b0b09
PM
7529 mask = 1 << ((base >> 1) & 0x1f);
7530 /* Keep this shift separate from the above to avoid an
7531 (undefined) << 32. */
7532 mask = (mask << 1) - 1;
87c3d486 7533 if (((base ^ address) & ~mask) == 0) {
554b0b09 7534 break;
87c3d486 7535 }
9ee6e8bb 7536 }
87c3d486 7537 if (n < 0) {
b7cc4e82
PC
7538 *fsr = 2;
7539 return true;
87c3d486 7540 }
9ee6e8bb
PB
7541
7542 if (access_type == 2) {
7e09797c 7543 mask = env->cp15.pmsav5_insn_ap;
9ee6e8bb 7544 } else {
7e09797c 7545 mask = env->cp15.pmsav5_data_ap;
9ee6e8bb
PB
7546 }
7547 mask = (mask >> (n * 4)) & 0xf;
7548 switch (mask) {
7549 case 0:
b7cc4e82
PC
7550 *fsr = 1;
7551 return true;
9ee6e8bb 7552 case 1:
87c3d486 7553 if (is_user) {
b7cc4e82
PC
7554 *fsr = 1;
7555 return true;
87c3d486 7556 }
554b0b09
PM
7557 *prot = PAGE_READ | PAGE_WRITE;
7558 break;
9ee6e8bb 7559 case 2:
554b0b09 7560 *prot = PAGE_READ;
87c3d486 7561 if (!is_user) {
554b0b09 7562 *prot |= PAGE_WRITE;
87c3d486 7563 }
554b0b09 7564 break;
9ee6e8bb 7565 case 3:
554b0b09
PM
7566 *prot = PAGE_READ | PAGE_WRITE;
7567 break;
9ee6e8bb 7568 case 5:
87c3d486 7569 if (is_user) {
b7cc4e82
PC
7570 *fsr = 1;
7571 return true;
87c3d486 7572 }
554b0b09
PM
7573 *prot = PAGE_READ;
7574 break;
9ee6e8bb 7575 case 6:
554b0b09
PM
7576 *prot = PAGE_READ;
7577 break;
9ee6e8bb 7578 default:
554b0b09 7579 /* Bad permission. */
b7cc4e82
PC
7580 *fsr = 1;
7581 return true;
9ee6e8bb 7582 }
3ad493fc 7583 *prot |= PAGE_EXEC;
b7cc4e82 7584 return false;
9ee6e8bb
PB
7585}
7586
702a9357
PM
7587/* get_phys_addr - get the physical address for this virtual address
7588 *
7589 * Find the physical address corresponding to the given virtual address,
7590 * by doing a translation table walk on MMU based systems or using the
7591 * MPU state on MPU based systems.
7592 *
b7cc4e82
PC
7593 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7594 * prot and page_size may not be filled in, and the populated fsr value provides
702a9357
PM
7595 * information on why the translation aborted, in the format of a
7596 * DFSR/IFSR fault register, with the following caveats:
7597 * * we honour the short vs long DFSR format differences.
7598 * * the WnR bit is never set (the caller must do this).
f6bda88f 7599 * * for PSMAv5 based systems we don't bother to return a full FSR format
702a9357
PM
7600 * value.
7601 *
7602 * @env: CPUARMState
7603 * @address: virtual address to get physical address for
7604 * @access_type: 0 for read, 1 for write, 2 for execute
d3649702 7605 * @mmu_idx: MMU index indicating required translation regime
702a9357 7606 * @phys_ptr: set to the physical address corresponding to the virtual address
8bf5b6a9 7607 * @attrs: set to the memory transaction attributes to use
702a9357
PM
7608 * @prot: set to the permissions for the page containing phys_ptr
7609 * @page_size: set to the size of the page containing phys_ptr
b7cc4e82 7610 * @fsr: set to the DFSR/IFSR value on failure
702a9357 7611 */
af51f566
EI
7612static bool get_phys_addr(CPUARMState *env, target_ulong address,
7613 int access_type, ARMMMUIdx mmu_idx,
7614 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
e14b5a23
EI
7615 target_ulong *page_size, uint32_t *fsr,
7616 ARMMMUFaultInfo *fi)
9ee6e8bb 7617{
0480f69a 7618 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9b539263
EI
7619 /* Call ourselves recursively to do the stage 1 and then stage 2
7620 * translations.
0480f69a 7621 */
9b539263
EI
7622 if (arm_feature(env, ARM_FEATURE_EL2)) {
7623 hwaddr ipa;
7624 int s2_prot;
7625 int ret;
7626
7627 ret = get_phys_addr(env, address, access_type,
7628 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
7629 prot, page_size, fsr, fi);
7630
7631 /* If S1 fails or S2 is disabled, return early. */
7632 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7633 *phys_ptr = ipa;
7634 return ret;
7635 }
7636
7637 /* S1 is done. Now do S2 translation. */
7638 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
7639 phys_ptr, attrs, &s2_prot,
7640 page_size, fsr, fi);
7641 fi->s2addr = ipa;
7642 /* Combine the S1 and S2 perms. */
7643 *prot &= s2_prot;
7644 return ret;
7645 } else {
7646 /*
7647 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
7648 */
7649 mmu_idx += ARMMMUIdx_S1NSE0;
7650 }
0480f69a 7651 }
d3649702 7652
8bf5b6a9
PM
7653 /* The page table entries may downgrade secure to non-secure, but
7654 * cannot upgrade an non-secure translation regime's attributes
7655 * to secure.
7656 */
7657 attrs->secure = regime_is_secure(env, mmu_idx);
0995bf8c 7658 attrs->user = regime_is_user(env, mmu_idx);
8bf5b6a9 7659
0480f69a
PM
7660 /* Fast Context Switch Extension. This doesn't exist at all in v8.
7661 * In v7 and earlier it affects all stage 1 translations.
7662 */
7663 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
7664 && !arm_feature(env, ARM_FEATURE_V8)) {
7665 if (regime_el(env, mmu_idx) == 3) {
7666 address += env->cp15.fcseidr_s;
7667 } else {
7668 address += env->cp15.fcseidr_ns;
7669 }
54bf36ed 7670 }
9ee6e8bb 7671
f6bda88f
PC
7672 /* pmsav7 has special handling for when MPU is disabled so call it before
7673 * the common MMU/MPU disabled check below.
7674 */
7675 if (arm_feature(env, ARM_FEATURE_MPU) &&
7676 arm_feature(env, ARM_FEATURE_V7)) {
7677 *page_size = TARGET_PAGE_SIZE;
7678 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
7679 phys_ptr, prot, fsr);
7680 }
7681
0480f69a 7682 if (regime_translation_disabled(env, mmu_idx)) {
9ee6e8bb
PB
7683 /* MMU/MPU disabled. */
7684 *phys_ptr = address;
3ad493fc 7685 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 7686 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb 7687 return 0;
0480f69a
PM
7688 }
7689
7690 if (arm_feature(env, ARM_FEATURE_MPU)) {
f6bda88f 7691 /* Pre-v7 MPU */
d4c430a8 7692 *page_size = TARGET_PAGE_SIZE;
13689d43
PC
7693 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
7694 phys_ptr, prot, fsr);
0480f69a
PM
7695 }
7696
7697 if (regime_using_lpae_format(env, mmu_idx)) {
7698 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 7699 attrs, prot, page_size, fsr, fi);
0480f69a
PM
7700 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
7701 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 7702 attrs, prot, page_size, fsr, fi);
9ee6e8bb 7703 } else {
0480f69a 7704 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
e14b5a23 7705 prot, page_size, fsr, fi);
9ee6e8bb
PB
7706 }
7707}
7708
8c6084bf 7709/* Walk the page table and (if the mapping exists) add the page
b7cc4e82
PC
7710 * to the TLB. Return false on success, or true on failure. Populate
7711 * fsr with ARM DFSR/IFSR fault register format value on failure.
8c6084bf 7712 */
b7cc4e82 7713bool arm_tlb_fill(CPUState *cs, vaddr address,
e14b5a23
EI
7714 int access_type, int mmu_idx, uint32_t *fsr,
7715 ARMMMUFaultInfo *fi)
b5ff1b31 7716{
7510454e
AF
7717 ARMCPU *cpu = ARM_CPU(cs);
7718 CPUARMState *env = &cpu->env;
a8170e5e 7719 hwaddr phys_addr;
d4c430a8 7720 target_ulong page_size;
b5ff1b31 7721 int prot;
d3649702 7722 int ret;
8bf5b6a9 7723 MemTxAttrs attrs = {};
b5ff1b31 7724
8bf5b6a9 7725 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
e14b5a23 7726 &attrs, &prot, &page_size, fsr, fi);
b7cc4e82 7727 if (!ret) {
b5ff1b31 7728 /* Map a single [sub]page. */
dcd82c11
AB
7729 phys_addr &= TARGET_PAGE_MASK;
7730 address &= TARGET_PAGE_MASK;
8bf5b6a9
PM
7731 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
7732 prot, mmu_idx, page_size);
d4c430a8 7733 return 0;
b5ff1b31
FB
7734 }
7735
8c6084bf 7736 return ret;
b5ff1b31
FB
7737}
7738
0faea0c7
PM
7739hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
7740 MemTxAttrs *attrs)
b5ff1b31 7741{
00b941e5 7742 ARMCPU *cpu = ARM_CPU(cs);
d3649702 7743 CPUARMState *env = &cpu->env;
a8170e5e 7744 hwaddr phys_addr;
d4c430a8 7745 target_ulong page_size;
b5ff1b31 7746 int prot;
b7cc4e82
PC
7747 bool ret;
7748 uint32_t fsr;
e14b5a23 7749 ARMMMUFaultInfo fi = {};
b5ff1b31 7750
0faea0c7
PM
7751 *attrs = (MemTxAttrs) {};
7752
97ed5ccd 7753 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
0faea0c7 7754 attrs, &prot, &page_size, &fsr, &fi);
b5ff1b31 7755
b7cc4e82 7756 if (ret) {
b5ff1b31 7757 return -1;
00b941e5 7758 }
b5ff1b31
FB
7759 return phys_addr;
7760}
7761
0ecb72a5 7762uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9ee6e8bb 7763{
a47dddd7
AF
7764 ARMCPU *cpu = arm_env_get_cpu(env);
7765
9ee6e8bb
PB
7766 switch (reg) {
7767 case 0: /* APSR */
7768 return xpsr_read(env) & 0xf8000000;
7769 case 1: /* IAPSR */
7770 return xpsr_read(env) & 0xf80001ff;
7771 case 2: /* EAPSR */
7772 return xpsr_read(env) & 0xff00fc00;
7773 case 3: /* xPSR */
7774 return xpsr_read(env) & 0xff00fdff;
7775 case 5: /* IPSR */
7776 return xpsr_read(env) & 0x000001ff;
7777 case 6: /* EPSR */
7778 return xpsr_read(env) & 0x0700fc00;
7779 case 7: /* IEPSR */
7780 return xpsr_read(env) & 0x0700edff;
7781 case 8: /* MSP */
7782 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
7783 case 9: /* PSP */
7784 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
7785 case 16: /* PRIMASK */
4cc35614 7786 return (env->daif & PSTATE_I) != 0;
82845826
SH
7787 case 17: /* BASEPRI */
7788 case 18: /* BASEPRI_MAX */
9ee6e8bb 7789 return env->v7m.basepri;
82845826 7790 case 19: /* FAULTMASK */
4cc35614 7791 return (env->daif & PSTATE_F) != 0;
9ee6e8bb
PB
7792 case 20: /* CONTROL */
7793 return env->v7m.control;
7794 default:
7795 /* ??? For debugging only. */
a47dddd7 7796 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
9ee6e8bb
PB
7797 return 0;
7798 }
7799}
7800
0ecb72a5 7801void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
9ee6e8bb 7802{
a47dddd7
AF
7803 ARMCPU *cpu = arm_env_get_cpu(env);
7804
9ee6e8bb
PB
7805 switch (reg) {
7806 case 0: /* APSR */
7807 xpsr_write(env, val, 0xf8000000);
7808 break;
7809 case 1: /* IAPSR */
7810 xpsr_write(env, val, 0xf8000000);
7811 break;
7812 case 2: /* EAPSR */
7813 xpsr_write(env, val, 0xfe00fc00);
7814 break;
7815 case 3: /* xPSR */
7816 xpsr_write(env, val, 0xfe00fc00);
7817 break;
7818 case 5: /* IPSR */
7819 /* IPSR bits are readonly. */
7820 break;
7821 case 6: /* EPSR */
7822 xpsr_write(env, val, 0x0600fc00);
7823 break;
7824 case 7: /* IEPSR */
7825 xpsr_write(env, val, 0x0600fc00);
7826 break;
7827 case 8: /* MSP */
7828 if (env->v7m.current_sp)
7829 env->v7m.other_sp = val;
7830 else
7831 env->regs[13] = val;
7832 break;
7833 case 9: /* PSP */
7834 if (env->v7m.current_sp)
7835 env->regs[13] = val;
7836 else
7837 env->v7m.other_sp = val;
7838 break;
7839 case 16: /* PRIMASK */
4cc35614
PM
7840 if (val & 1) {
7841 env->daif |= PSTATE_I;
7842 } else {
7843 env->daif &= ~PSTATE_I;
7844 }
9ee6e8bb 7845 break;
82845826 7846 case 17: /* BASEPRI */
9ee6e8bb
PB
7847 env->v7m.basepri = val & 0xff;
7848 break;
82845826 7849 case 18: /* BASEPRI_MAX */
9ee6e8bb
PB
7850 val &= 0xff;
7851 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
7852 env->v7m.basepri = val;
7853 break;
82845826 7854 case 19: /* FAULTMASK */
4cc35614
PM
7855 if (val & 1) {
7856 env->daif |= PSTATE_F;
7857 } else {
7858 env->daif &= ~PSTATE_F;
7859 }
82845826 7860 break;
9ee6e8bb
PB
7861 case 20: /* CONTROL */
7862 env->v7m.control = val & 3;
7863 switch_v7m_sp(env, (val & 2) != 0);
7864 break;
7865 default:
7866 /* ??? For debugging only. */
a47dddd7 7867 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
9ee6e8bb
PB
7868 return;
7869 }
7870}
7871
b5ff1b31 7872#endif
6ddbc6e4 7873
aca3f40b
PM
7874void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
7875{
7876 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
7877 * Note that we do not implement the (architecturally mandated)
7878 * alignment fault for attempts to use this on Device memory
7879 * (which matches the usual QEMU behaviour of not implementing either
7880 * alignment faults or any memory attribute handling).
7881 */
7882
7883 ARMCPU *cpu = arm_env_get_cpu(env);
7884 uint64_t blocklen = 4 << cpu->dcz_blocksize;
7885 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
7886
7887#ifndef CONFIG_USER_ONLY
7888 {
7889 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
7890 * the block size so we might have to do more than one TLB lookup.
7891 * We know that in fact for any v8 CPU the page size is at least 4K
7892 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
7893 * 1K as an artefact of legacy v5 subpage support being present in the
7894 * same QEMU executable.
7895 */
7896 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
7897 void *hostaddr[maxidx];
7898 int try, i;
97ed5ccd 7899 unsigned mmu_idx = cpu_mmu_index(env, false);
3972ef6f 7900 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
aca3f40b
PM
7901
7902 for (try = 0; try < 2; try++) {
7903
7904 for (i = 0; i < maxidx; i++) {
7905 hostaddr[i] = tlb_vaddr_to_host(env,
7906 vaddr + TARGET_PAGE_SIZE * i,
3972ef6f 7907 1, mmu_idx);
aca3f40b
PM
7908 if (!hostaddr[i]) {
7909 break;
7910 }
7911 }
7912 if (i == maxidx) {
7913 /* If it's all in the TLB it's fair game for just writing to;
7914 * we know we don't need to update dirty status, etc.
7915 */
7916 for (i = 0; i < maxidx - 1; i++) {
7917 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
7918 }
7919 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
7920 return;
7921 }
7922 /* OK, try a store and see if we can populate the tlb. This
7923 * might cause an exception if the memory isn't writable,
7924 * in which case we will longjmp out of here. We must for
7925 * this purpose use the actual register value passed to us
7926 * so that we get the fault address right.
7927 */
3972ef6f 7928 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
aca3f40b
PM
7929 /* Now we can populate the other TLB entries, if any */
7930 for (i = 0; i < maxidx; i++) {
7931 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
7932 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
3972ef6f 7933 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
aca3f40b
PM
7934 }
7935 }
7936 }
7937
7938 /* Slow path (probably attempt to do this to an I/O device or
7939 * similar, or clearing of a block of code we have translations
7940 * cached for). Just do a series of byte writes as the architecture
7941 * demands. It's not worth trying to use a cpu_physical_memory_map(),
7942 * memset(), unmap() sequence here because:
7943 * + we'd need to account for the blocksize being larger than a page
7944 * + the direct-RAM access case is almost always going to be dealt
7945 * with in the fastpath code above, so there's no speed benefit
7946 * + we would have to deal with the map returning NULL because the
7947 * bounce buffer was in use
7948 */
7949 for (i = 0; i < blocklen; i++) {
3972ef6f 7950 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
aca3f40b
PM
7951 }
7952 }
7953#else
7954 memset(g2h(vaddr), 0, blocklen);
7955#endif
7956}
7957
6ddbc6e4
PB
7958/* Note that signed overflow is undefined in C. The following routines are
7959 careful to use unsigned types where modulo arithmetic is required.
7960 Failure to do so _will_ break on newer gcc. */
7961
7962/* Signed saturating arithmetic. */
7963
1654b2d6 7964/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
7965static inline uint16_t add16_sat(uint16_t a, uint16_t b)
7966{
7967 uint16_t res;
7968
7969 res = a + b;
7970 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
7971 if (a & 0x8000)
7972 res = 0x8000;
7973 else
7974 res = 0x7fff;
7975 }
7976 return res;
7977}
7978
1654b2d6 7979/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
7980static inline uint8_t add8_sat(uint8_t a, uint8_t b)
7981{
7982 uint8_t res;
7983
7984 res = a + b;
7985 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
7986 if (a & 0x80)
7987 res = 0x80;
7988 else
7989 res = 0x7f;
7990 }
7991 return res;
7992}
7993
1654b2d6 7994/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
7995static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
7996{
7997 uint16_t res;
7998
7999 res = a - b;
8000 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8001 if (a & 0x8000)
8002 res = 0x8000;
8003 else
8004 res = 0x7fff;
8005 }
8006 return res;
8007}
8008
1654b2d6 8009/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
8010static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8011{
8012 uint8_t res;
8013
8014 res = a - b;
8015 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8016 if (a & 0x80)
8017 res = 0x80;
8018 else
8019 res = 0x7f;
8020 }
8021 return res;
8022}
8023
8024#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8025#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8026#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8027#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8028#define PFX q
8029
8030#include "op_addsub.h"
8031
8032/* Unsigned saturating arithmetic. */
460a09c1 8033static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
8034{
8035 uint16_t res;
8036 res = a + b;
8037 if (res < a)
8038 res = 0xffff;
8039 return res;
8040}
8041
460a09c1 8042static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 8043{
4c4fd3f8 8044 if (a > b)
6ddbc6e4
PB
8045 return a - b;
8046 else
8047 return 0;
8048}
8049
8050static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8051{
8052 uint8_t res;
8053 res = a + b;
8054 if (res < a)
8055 res = 0xff;
8056 return res;
8057}
8058
8059static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8060{
4c4fd3f8 8061 if (a > b)
6ddbc6e4
PB
8062 return a - b;
8063 else
8064 return 0;
8065}
8066
8067#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8068#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8069#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8070#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8071#define PFX uq
8072
8073#include "op_addsub.h"
8074
8075/* Signed modulo arithmetic. */
8076#define SARITH16(a, b, n, op) do { \
8077 int32_t sum; \
db6e2e65 8078 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
8079 RESULT(sum, n, 16); \
8080 if (sum >= 0) \
8081 ge |= 3 << (n * 2); \
8082 } while(0)
8083
8084#define SARITH8(a, b, n, op) do { \
8085 int32_t sum; \
db6e2e65 8086 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
8087 RESULT(sum, n, 8); \
8088 if (sum >= 0) \
8089 ge |= 1 << n; \
8090 } while(0)
8091
8092
8093#define ADD16(a, b, n) SARITH16(a, b, n, +)
8094#define SUB16(a, b, n) SARITH16(a, b, n, -)
8095#define ADD8(a, b, n) SARITH8(a, b, n, +)
8096#define SUB8(a, b, n) SARITH8(a, b, n, -)
8097#define PFX s
8098#define ARITH_GE
8099
8100#include "op_addsub.h"
8101
8102/* Unsigned modulo arithmetic. */
8103#define ADD16(a, b, n) do { \
8104 uint32_t sum; \
8105 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8106 RESULT(sum, n, 16); \
a87aa10b 8107 if ((sum >> 16) == 1) \
6ddbc6e4
PB
8108 ge |= 3 << (n * 2); \
8109 } while(0)
8110
8111#define ADD8(a, b, n) do { \
8112 uint32_t sum; \
8113 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8114 RESULT(sum, n, 8); \
a87aa10b
AZ
8115 if ((sum >> 8) == 1) \
8116 ge |= 1 << n; \
6ddbc6e4
PB
8117 } while(0)
8118
8119#define SUB16(a, b, n) do { \
8120 uint32_t sum; \
8121 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8122 RESULT(sum, n, 16); \
8123 if ((sum >> 16) == 0) \
8124 ge |= 3 << (n * 2); \
8125 } while(0)
8126
8127#define SUB8(a, b, n) do { \
8128 uint32_t sum; \
8129 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8130 RESULT(sum, n, 8); \
8131 if ((sum >> 8) == 0) \
a87aa10b 8132 ge |= 1 << n; \
6ddbc6e4
PB
8133 } while(0)
8134
8135#define PFX u
8136#define ARITH_GE
8137
8138#include "op_addsub.h"
8139
8140/* Halved signed arithmetic. */
8141#define ADD16(a, b, n) \
8142 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8143#define SUB16(a, b, n) \
8144 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8145#define ADD8(a, b, n) \
8146 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8147#define SUB8(a, b, n) \
8148 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8149#define PFX sh
8150
8151#include "op_addsub.h"
8152
8153/* Halved unsigned arithmetic. */
8154#define ADD16(a, b, n) \
8155 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8156#define SUB16(a, b, n) \
8157 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8158#define ADD8(a, b, n) \
8159 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8160#define SUB8(a, b, n) \
8161 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8162#define PFX uh
8163
8164#include "op_addsub.h"
8165
8166static inline uint8_t do_usad(uint8_t a, uint8_t b)
8167{
8168 if (a > b)
8169 return a - b;
8170 else
8171 return b - a;
8172}
8173
8174/* Unsigned sum of absolute byte differences. */
8175uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
8176{
8177 uint32_t sum;
8178 sum = do_usad(a, b);
8179 sum += do_usad(a >> 8, b >> 8);
8180 sum += do_usad(a >> 16, b >>16);
8181 sum += do_usad(a >> 24, b >> 24);
8182 return sum;
8183}
8184
8185/* For ARMv6 SEL instruction. */
8186uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
8187{
8188 uint32_t mask;
8189
8190 mask = 0;
8191 if (flags & 1)
8192 mask |= 0xff;
8193 if (flags & 2)
8194 mask |= 0xff00;
8195 if (flags & 4)
8196 mask |= 0xff0000;
8197 if (flags & 8)
8198 mask |= 0xff000000;
8199 return (a & mask) | (b & ~mask);
8200}
8201
b90372ad
PM
8202/* VFP support. We follow the convention used for VFP instructions:
8203 Single precision routines have a "s" suffix, double precision a
4373f3ce
PB
8204 "d" suffix. */
8205
8206/* Convert host exception flags to vfp form. */
8207static inline int vfp_exceptbits_from_host(int host_bits)
8208{
8209 int target_bits = 0;
8210
8211 if (host_bits & float_flag_invalid)
8212 target_bits |= 1;
8213 if (host_bits & float_flag_divbyzero)
8214 target_bits |= 2;
8215 if (host_bits & float_flag_overflow)
8216 target_bits |= 4;
36802b6b 8217 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4373f3ce
PB
8218 target_bits |= 8;
8219 if (host_bits & float_flag_inexact)
8220 target_bits |= 0x10;
cecd8504
PM
8221 if (host_bits & float_flag_input_denormal)
8222 target_bits |= 0x80;
4373f3ce
PB
8223 return target_bits;
8224}
8225
0ecb72a5 8226uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4373f3ce
PB
8227{
8228 int i;
8229 uint32_t fpscr;
8230
8231 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
8232 | (env->vfp.vec_len << 16)
8233 | (env->vfp.vec_stride << 20);
8234 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 8235 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
8236 fpscr |= vfp_exceptbits_from_host(i);
8237 return fpscr;
8238}
8239
0ecb72a5 8240uint32_t vfp_get_fpscr(CPUARMState *env)
01653295
PM
8241{
8242 return HELPER(vfp_get_fpscr)(env);
8243}
8244
4373f3ce
PB
8245/* Convert vfp exception flags to target form. */
8246static inline int vfp_exceptbits_to_host(int target_bits)
8247{
8248 int host_bits = 0;
8249
8250 if (target_bits & 1)
8251 host_bits |= float_flag_invalid;
8252 if (target_bits & 2)
8253 host_bits |= float_flag_divbyzero;
8254 if (target_bits & 4)
8255 host_bits |= float_flag_overflow;
8256 if (target_bits & 8)
8257 host_bits |= float_flag_underflow;
8258 if (target_bits & 0x10)
8259 host_bits |= float_flag_inexact;
cecd8504
PM
8260 if (target_bits & 0x80)
8261 host_bits |= float_flag_input_denormal;
4373f3ce
PB
8262 return host_bits;
8263}
8264
0ecb72a5 8265void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4373f3ce
PB
8266{
8267 int i;
8268 uint32_t changed;
8269
8270 changed = env->vfp.xregs[ARM_VFP_FPSCR];
8271 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
8272 env->vfp.vec_len = (val >> 16) & 7;
8273 env->vfp.vec_stride = (val >> 20) & 3;
8274
8275 changed ^= val;
8276 if (changed & (3 << 22)) {
8277 i = (val >> 22) & 3;
8278 switch (i) {
4d3da0f3 8279 case FPROUNDING_TIEEVEN:
4373f3ce
PB
8280 i = float_round_nearest_even;
8281 break;
4d3da0f3 8282 case FPROUNDING_POSINF:
4373f3ce
PB
8283 i = float_round_up;
8284 break;
4d3da0f3 8285 case FPROUNDING_NEGINF:
4373f3ce
PB
8286 i = float_round_down;
8287 break;
4d3da0f3 8288 case FPROUNDING_ZERO:
4373f3ce
PB
8289 i = float_round_to_zero;
8290 break;
8291 }
8292 set_float_rounding_mode(i, &env->vfp.fp_status);
8293 }
cecd8504 8294 if (changed & (1 << 24)) {
fe76d976 8295 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
8296 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8297 }
5c7908ed
PB
8298 if (changed & (1 << 25))
8299 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 8300
b12c390b 8301 i = vfp_exceptbits_to_host(val);
4373f3ce 8302 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 8303 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
8304}
8305
0ecb72a5 8306void vfp_set_fpscr(CPUARMState *env, uint32_t val)
01653295
PM
8307{
8308 HELPER(vfp_set_fpscr)(env, val);
8309}
8310
4373f3ce
PB
8311#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8312
8313#define VFP_BINOP(name) \
ae1857ec 8314float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4373f3ce 8315{ \
ae1857ec
PM
8316 float_status *fpst = fpstp; \
8317 return float32_ ## name(a, b, fpst); \
4373f3ce 8318} \
ae1857ec 8319float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4373f3ce 8320{ \
ae1857ec
PM
8321 float_status *fpst = fpstp; \
8322 return float64_ ## name(a, b, fpst); \
4373f3ce
PB
8323}
8324VFP_BINOP(add)
8325VFP_BINOP(sub)
8326VFP_BINOP(mul)
8327VFP_BINOP(div)
f71a2ae5
PM
8328VFP_BINOP(min)
8329VFP_BINOP(max)
8330VFP_BINOP(minnum)
8331VFP_BINOP(maxnum)
4373f3ce
PB
8332#undef VFP_BINOP
8333
8334float32 VFP_HELPER(neg, s)(float32 a)
8335{
8336 return float32_chs(a);
8337}
8338
8339float64 VFP_HELPER(neg, d)(float64 a)
8340{
66230e0d 8341 return float64_chs(a);
4373f3ce
PB
8342}
8343
8344float32 VFP_HELPER(abs, s)(float32 a)
8345{
8346 return float32_abs(a);
8347}
8348
8349float64 VFP_HELPER(abs, d)(float64 a)
8350{
66230e0d 8351 return float64_abs(a);
4373f3ce
PB
8352}
8353
0ecb72a5 8354float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4373f3ce
PB
8355{
8356 return float32_sqrt(a, &env->vfp.fp_status);
8357}
8358
0ecb72a5 8359float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4373f3ce
PB
8360{
8361 return float64_sqrt(a, &env->vfp.fp_status);
8362}
8363
8364/* XXX: check quiet/signaling case */
8365#define DO_VFP_cmp(p, type) \
0ecb72a5 8366void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
8367{ \
8368 uint32_t flags; \
8369 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8370 case 0: flags = 0x6; break; \
8371 case -1: flags = 0x8; break; \
8372 case 1: flags = 0x2; break; \
8373 default: case 2: flags = 0x3; break; \
8374 } \
8375 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8376 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8377} \
0ecb72a5 8378void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4373f3ce
PB
8379{ \
8380 uint32_t flags; \
8381 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8382 case 0: flags = 0x6; break; \
8383 case -1: flags = 0x8; break; \
8384 case 1: flags = 0x2; break; \
8385 default: case 2: flags = 0x3; break; \
8386 } \
8387 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8388 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8389}
8390DO_VFP_cmp(s, float32)
8391DO_VFP_cmp(d, float64)
8392#undef DO_VFP_cmp
8393
5500b06c 8394/* Integer to float and float to integer conversions */
4373f3ce 8395
5500b06c
PM
8396#define CONV_ITOF(name, fsz, sign) \
8397 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8398{ \
8399 float_status *fpst = fpstp; \
85836979 8400 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4373f3ce
PB
8401}
8402
5500b06c
PM
8403#define CONV_FTOI(name, fsz, sign, round) \
8404uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8405{ \
8406 float_status *fpst = fpstp; \
8407 if (float##fsz##_is_any_nan(x)) { \
8408 float_raise(float_flag_invalid, fpst); \
8409 return 0; \
8410 } \
8411 return float##fsz##_to_##sign##int32##round(x, fpst); \
4373f3ce
PB
8412}
8413
5500b06c
PM
8414#define FLOAT_CONVS(name, p, fsz, sign) \
8415CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8416CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8417CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4373f3ce 8418
5500b06c
PM
8419FLOAT_CONVS(si, s, 32, )
8420FLOAT_CONVS(si, d, 64, )
8421FLOAT_CONVS(ui, s, 32, u)
8422FLOAT_CONVS(ui, d, 64, u)
4373f3ce 8423
5500b06c
PM
8424#undef CONV_ITOF
8425#undef CONV_FTOI
8426#undef FLOAT_CONVS
4373f3ce
PB
8427
8428/* floating point conversion */
0ecb72a5 8429float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4373f3ce 8430{
2d627737
PM
8431 float64 r = float32_to_float64(x, &env->vfp.fp_status);
8432 /* ARM requires that S<->D conversion of any kind of NaN generates
8433 * a quiet NaN by forcing the most significant frac bit to 1.
8434 */
8435 return float64_maybe_silence_nan(r);
4373f3ce
PB
8436}
8437
0ecb72a5 8438float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4373f3ce 8439{
2d627737
PM
8440 float32 r = float64_to_float32(x, &env->vfp.fp_status);
8441 /* ARM requires that S<->D conversion of any kind of NaN generates
8442 * a quiet NaN by forcing the most significant frac bit to 1.
8443 */
8444 return float32_maybe_silence_nan(r);
4373f3ce
PB
8445}
8446
8447/* VFP3 fixed point conversion. */
16d5b3ca 8448#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8ed697e8
WN
8449float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8450 void *fpstp) \
4373f3ce 8451{ \
5500b06c 8452 float_status *fpst = fpstp; \
622465e1 8453 float##fsz tmp; \
8ed697e8 8454 tmp = itype##_to_##float##fsz(x, fpst); \
5500b06c 8455 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
16d5b3ca
WN
8456}
8457
abe66f70
PM
8458/* Notice that we want only input-denormal exception flags from the
8459 * scalbn operation: the other possible flags (overflow+inexact if
8460 * we overflow to infinity, output-denormal) aren't correct for the
8461 * complete scale-and-convert operation.
8462 */
16d5b3ca
WN
8463#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8464uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8465 uint32_t shift, \
8466 void *fpstp) \
4373f3ce 8467{ \
5500b06c 8468 float_status *fpst = fpstp; \
abe66f70 8469 int old_exc_flags = get_float_exception_flags(fpst); \
622465e1
PM
8470 float##fsz tmp; \
8471 if (float##fsz##_is_any_nan(x)) { \
5500b06c 8472 float_raise(float_flag_invalid, fpst); \
622465e1 8473 return 0; \
09d9487f 8474 } \
5500b06c 8475 tmp = float##fsz##_scalbn(x, shift, fpst); \
abe66f70
PM
8476 old_exc_flags |= get_float_exception_flags(fpst) \
8477 & float_flag_input_denormal; \
8478 set_float_exception_flags(old_exc_flags, fpst); \
16d5b3ca 8479 return float##fsz##_to_##itype##round(tmp, fpst); \
622465e1
PM
8480}
8481
16d5b3ca
WN
8482#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8483VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3c6a074a
WN
8484VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8485VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8486
8487#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8488VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8489VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
16d5b3ca 8490
8ed697e8
WN
8491VFP_CONV_FIX(sh, d, 64, 64, int16)
8492VFP_CONV_FIX(sl, d, 64, 64, int32)
3c6a074a 8493VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8ed697e8
WN
8494VFP_CONV_FIX(uh, d, 64, 64, uint16)
8495VFP_CONV_FIX(ul, d, 64, 64, uint32)
3c6a074a 8496VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8ed697e8
WN
8497VFP_CONV_FIX(sh, s, 32, 32, int16)
8498VFP_CONV_FIX(sl, s, 32, 32, int32)
3c6a074a 8499VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8ed697e8
WN
8500VFP_CONV_FIX(uh, s, 32, 32, uint16)
8501VFP_CONV_FIX(ul, s, 32, 32, uint32)
3c6a074a 8502VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4373f3ce 8503#undef VFP_CONV_FIX
16d5b3ca
WN
8504#undef VFP_CONV_FIX_FLOAT
8505#undef VFP_CONV_FLOAT_FIX_ROUND
4373f3ce 8506
52a1f6a3
AG
8507/* Set the current fp rounding mode and return the old one.
8508 * The argument is a softfloat float_round_ value.
8509 */
8510uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
8511{
8512 float_status *fp_status = &env->vfp.fp_status;
8513
8514 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8515 set_float_rounding_mode(rmode, fp_status);
8516
8517 return prev_rmode;
8518}
8519
43630e58
WN
8520/* Set the current fp rounding mode in the standard fp status and return
8521 * the old one. This is for NEON instructions that need to change the
8522 * rounding mode but wish to use the standard FPSCR values for everything
8523 * else. Always set the rounding mode back to the correct value after
8524 * modifying it.
8525 * The argument is a softfloat float_round_ value.
8526 */
8527uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
8528{
8529 float_status *fp_status = &env->vfp.standard_fp_status;
8530
8531 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8532 set_float_rounding_mode(rmode, fp_status);
8533
8534 return prev_rmode;
8535}
8536
60011498 8537/* Half precision conversions. */
0ecb72a5 8538static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
60011498 8539{
60011498 8540 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
8541 float32 r = float16_to_float32(make_float16(a), ieee, s);
8542 if (ieee) {
8543 return float32_maybe_silence_nan(r);
8544 }
8545 return r;
60011498
PB
8546}
8547
0ecb72a5 8548static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
60011498 8549{
60011498 8550 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
8551 float16 r = float32_to_float16(a, ieee, s);
8552 if (ieee) {
8553 r = float16_maybe_silence_nan(r);
8554 }
8555 return float16_val(r);
60011498
PB
8556}
8557
0ecb72a5 8558float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
8559{
8560 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
8561}
8562
0ecb72a5 8563uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
8564{
8565 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
8566}
8567
0ecb72a5 8568float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
2d981da7
PM
8569{
8570 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
8571}
8572
0ecb72a5 8573uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
2d981da7
PM
8574{
8575 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
8576}
8577
8900aad2
PM
8578float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
8579{
8580 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8581 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
8582 if (ieee) {
8583 return float64_maybe_silence_nan(r);
8584 }
8585 return r;
8586}
8587
8588uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
8589{
8590 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8591 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
8592 if (ieee) {
8593 r = float16_maybe_silence_nan(r);
8594 }
8595 return float16_val(r);
8596}
8597
dda3ec49 8598#define float32_two make_float32(0x40000000)
6aae3df1
PM
8599#define float32_three make_float32(0x40400000)
8600#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 8601
0ecb72a5 8602float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 8603{
dda3ec49
PM
8604 float_status *s = &env->vfp.standard_fp_status;
8605 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8606 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
8607 if (!(float32_is_zero(a) || float32_is_zero(b))) {
8608 float_raise(float_flag_input_denormal, s);
8609 }
dda3ec49
PM
8610 return float32_two;
8611 }
8612 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
8613}
8614
0ecb72a5 8615float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4373f3ce 8616{
71826966 8617 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
8618 float32 product;
8619 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8620 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
43fe9bdb
PM
8621 if (!(float32_is_zero(a) || float32_is_zero(b))) {
8622 float_raise(float_flag_input_denormal, s);
8623 }
6aae3df1 8624 return float32_one_point_five;
9ea62f57 8625 }
6aae3df1
PM
8626 product = float32_mul(a, b, s);
8627 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
8628}
8629
8f8e3aa4
PB
8630/* NEON helpers. */
8631
56bf4fe2
CL
8632/* Constants 256 and 512 are used in some helpers; we avoid relying on
8633 * int->float conversions at run-time. */
8634#define float64_256 make_float64(0x4070000000000000LL)
8635#define float64_512 make_float64(0x4080000000000000LL)
b6d4443a
AB
8636#define float32_maxnorm make_float32(0x7f7fffff)
8637#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
56bf4fe2 8638
b6d4443a
AB
8639/* Reciprocal functions
8640 *
8641 * The algorithm that must be used to calculate the estimate
8642 * is specified by the ARM ARM, see FPRecipEstimate()
fe0e4872 8643 */
b6d4443a
AB
8644
8645static float64 recip_estimate(float64 a, float_status *real_fp_status)
fe0e4872 8646{
1146a817
PM
8647 /* These calculations mustn't set any fp exception flags,
8648 * so we use a local copy of the fp_status.
8649 */
b6d4443a 8650 float_status dummy_status = *real_fp_status;
1146a817 8651 float_status *s = &dummy_status;
fe0e4872
CL
8652 /* q = (int)(a * 512.0) */
8653 float64 q = float64_mul(float64_512, a, s);
8654 int64_t q_int = float64_to_int64_round_to_zero(q, s);
8655
8656 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
8657 q = int64_to_float64(q_int, s);
8658 q = float64_add(q, float64_half, s);
8659 q = float64_div(q, float64_512, s);
8660 q = float64_div(float64_one, q, s);
8661
8662 /* s = (int)(256.0 * r + 0.5) */
8663 q = float64_mul(q, float64_256, s);
8664 q = float64_add(q, float64_half, s);
8665 q_int = float64_to_int64_round_to_zero(q, s);
8666
8667 /* return (double)s / 256.0 */
8668 return float64_div(int64_to_float64(q_int, s), float64_256, s);
8669}
8670
b6d4443a
AB
8671/* Common wrapper to call recip_estimate */
8672static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
4373f3ce 8673{
b6d4443a
AB
8674 uint64_t val64 = float64_val(num);
8675 uint64_t frac = extract64(val64, 0, 52);
8676 int64_t exp = extract64(val64, 52, 11);
8677 uint64_t sbit;
8678 float64 scaled, estimate;
fe0e4872 8679
b6d4443a
AB
8680 /* Generate the scaled number for the estimate function */
8681 if (exp == 0) {
8682 if (extract64(frac, 51, 1) == 0) {
8683 exp = -1;
8684 frac = extract64(frac, 0, 50) << 2;
8685 } else {
8686 frac = extract64(frac, 0, 51) << 1;
8687 }
8688 }
fe0e4872 8689
b6d4443a
AB
8690 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
8691 scaled = make_float64((0x3feULL << 52)
8692 | extract64(frac, 44, 8) << 44);
8693
8694 estimate = recip_estimate(scaled, fpst);
8695
8696 /* Build new result */
8697 val64 = float64_val(estimate);
8698 sbit = 0x8000000000000000ULL & val64;
8699 exp = off - exp;
8700 frac = extract64(val64, 0, 52);
8701
8702 if (exp == 0) {
8703 frac = 1ULL << 51 | extract64(frac, 1, 51);
8704 } else if (exp == -1) {
8705 frac = 1ULL << 50 | extract64(frac, 2, 50);
8706 exp = 0;
8707 }
8708
8709 return make_float64(sbit | (exp << 52) | frac);
8710}
8711
8712static bool round_to_inf(float_status *fpst, bool sign_bit)
8713{
8714 switch (fpst->float_rounding_mode) {
8715 case float_round_nearest_even: /* Round to Nearest */
8716 return true;
8717 case float_round_up: /* Round to +Inf */
8718 return !sign_bit;
8719 case float_round_down: /* Round to -Inf */
8720 return sign_bit;
8721 case float_round_to_zero: /* Round to Zero */
8722 return false;
8723 }
8724
8725 g_assert_not_reached();
8726}
8727
8728float32 HELPER(recpe_f32)(float32 input, void *fpstp)
8729{
8730 float_status *fpst = fpstp;
8731 float32 f32 = float32_squash_input_denormal(input, fpst);
8732 uint32_t f32_val = float32_val(f32);
8733 uint32_t f32_sbit = 0x80000000ULL & f32_val;
8734 int32_t f32_exp = extract32(f32_val, 23, 8);
8735 uint32_t f32_frac = extract32(f32_val, 0, 23);
8736 float64 f64, r64;
8737 uint64_t r64_val;
8738 int64_t r64_exp;
8739 uint64_t r64_frac;
8740
8741 if (float32_is_any_nan(f32)) {
8742 float32 nan = f32;
8743 if (float32_is_signaling_nan(f32)) {
8744 float_raise(float_flag_invalid, fpst);
8745 nan = float32_maybe_silence_nan(f32);
fe0e4872 8746 }
b6d4443a
AB
8747 if (fpst->default_nan_mode) {
8748 nan = float32_default_nan;
43fe9bdb 8749 }
b6d4443a
AB
8750 return nan;
8751 } else if (float32_is_infinity(f32)) {
8752 return float32_set_sign(float32_zero, float32_is_neg(f32));
8753 } else if (float32_is_zero(f32)) {
8754 float_raise(float_flag_divbyzero, fpst);
8755 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8756 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
8757 /* Abs(value) < 2.0^-128 */
8758 float_raise(float_flag_overflow | float_flag_inexact, fpst);
8759 if (round_to_inf(fpst, f32_sbit)) {
8760 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8761 } else {
8762 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
8763 }
8764 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
8765 float_raise(float_flag_underflow, fpst);
8766 return float32_set_sign(float32_zero, float32_is_neg(f32));
fe0e4872
CL
8767 }
8768
fe0e4872 8769
b6d4443a
AB
8770 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
8771 r64 = call_recip_estimate(f64, 253, fpst);
8772 r64_val = float64_val(r64);
8773 r64_exp = extract64(r64_val, 52, 11);
8774 r64_frac = extract64(r64_val, 0, 52);
8775
8776 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8777 return make_float32(f32_sbit |
8778 (r64_exp & 0xff) << 23 |
8779 extract64(r64_frac, 29, 24));
8780}
8781
8782float64 HELPER(recpe_f64)(float64 input, void *fpstp)
8783{
8784 float_status *fpst = fpstp;
8785 float64 f64 = float64_squash_input_denormal(input, fpst);
8786 uint64_t f64_val = float64_val(f64);
8787 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
8788 int64_t f64_exp = extract64(f64_val, 52, 11);
8789 float64 r64;
8790 uint64_t r64_val;
8791 int64_t r64_exp;
8792 uint64_t r64_frac;
8793
8794 /* Deal with any special cases */
8795 if (float64_is_any_nan(f64)) {
8796 float64 nan = f64;
8797 if (float64_is_signaling_nan(f64)) {
8798 float_raise(float_flag_invalid, fpst);
8799 nan = float64_maybe_silence_nan(f64);
8800 }
8801 if (fpst->default_nan_mode) {
8802 nan = float64_default_nan;
8803 }
8804 return nan;
8805 } else if (float64_is_infinity(f64)) {
8806 return float64_set_sign(float64_zero, float64_is_neg(f64));
8807 } else if (float64_is_zero(f64)) {
8808 float_raise(float_flag_divbyzero, fpst);
8809 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8810 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
8811 /* Abs(value) < 2.0^-1024 */
8812 float_raise(float_flag_overflow | float_flag_inexact, fpst);
8813 if (round_to_inf(fpst, f64_sbit)) {
8814 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8815 } else {
8816 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
8817 }
fc1792e9 8818 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
b6d4443a
AB
8819 float_raise(float_flag_underflow, fpst);
8820 return float64_set_sign(float64_zero, float64_is_neg(f64));
8821 }
fe0e4872 8822
b6d4443a
AB
8823 r64 = call_recip_estimate(f64, 2045, fpst);
8824 r64_val = float64_val(r64);
8825 r64_exp = extract64(r64_val, 52, 11);
8826 r64_frac = extract64(r64_val, 0, 52);
fe0e4872 8827
b6d4443a
AB
8828 /* result = sign : result_exp<10:0> : fraction<51:0> */
8829 return make_float64(f64_sbit |
8830 ((r64_exp & 0x7ff) << 52) |
8831 r64_frac);
4373f3ce
PB
8832}
8833
e07be5d2
CL
8834/* The algorithm that must be used to calculate the estimate
8835 * is specified by the ARM ARM.
8836 */
c2fb418e 8837static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
e07be5d2 8838{
1146a817
PM
8839 /* These calculations mustn't set any fp exception flags,
8840 * so we use a local copy of the fp_status.
8841 */
c2fb418e 8842 float_status dummy_status = *real_fp_status;
1146a817 8843 float_status *s = &dummy_status;
e07be5d2
CL
8844 float64 q;
8845 int64_t q_int;
8846
8847 if (float64_lt(a, float64_half, s)) {
8848 /* range 0.25 <= a < 0.5 */
8849
8850 /* a in units of 1/512 rounded down */
8851 /* q0 = (int)(a * 512.0); */
8852 q = float64_mul(float64_512, a, s);
8853 q_int = float64_to_int64_round_to_zero(q, s);
8854
8855 /* reciprocal root r */
8856 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
8857 q = int64_to_float64(q_int, s);
8858 q = float64_add(q, float64_half, s);
8859 q = float64_div(q, float64_512, s);
8860 q = float64_sqrt(q, s);
8861 q = float64_div(float64_one, q, s);
8862 } else {
8863 /* range 0.5 <= a < 1.0 */
8864
8865 /* a in units of 1/256 rounded down */
8866 /* q1 = (int)(a * 256.0); */
8867 q = float64_mul(float64_256, a, s);
8868 int64_t q_int = float64_to_int64_round_to_zero(q, s);
8869
8870 /* reciprocal root r */
8871 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
8872 q = int64_to_float64(q_int, s);
8873 q = float64_add(q, float64_half, s);
8874 q = float64_div(q, float64_256, s);
8875 q = float64_sqrt(q, s);
8876 q = float64_div(float64_one, q, s);
8877 }
8878 /* r in units of 1/256 rounded to nearest */
8879 /* s = (int)(256.0 * r + 0.5); */
8880
8881 q = float64_mul(q, float64_256,s );
8882 q = float64_add(q, float64_half, s);
8883 q_int = float64_to_int64_round_to_zero(q, s);
8884
8885 /* return (double)s / 256.0;*/
8886 return float64_div(int64_to_float64(q_int, s), float64_256, s);
8887}
8888
c2fb418e 8889float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
4373f3ce 8890{
c2fb418e
AB
8891 float_status *s = fpstp;
8892 float32 f32 = float32_squash_input_denormal(input, s);
8893 uint32_t val = float32_val(f32);
8894 uint32_t f32_sbit = 0x80000000 & val;
8895 int32_t f32_exp = extract32(val, 23, 8);
8896 uint32_t f32_frac = extract32(val, 0, 23);
8897 uint64_t f64_frac;
8898 uint64_t val64;
e07be5d2
CL
8899 int result_exp;
8900 float64 f64;
e07be5d2 8901
c2fb418e
AB
8902 if (float32_is_any_nan(f32)) {
8903 float32 nan = f32;
8904 if (float32_is_signaling_nan(f32)) {
e07be5d2 8905 float_raise(float_flag_invalid, s);
c2fb418e 8906 nan = float32_maybe_silence_nan(f32);
e07be5d2 8907 }
c2fb418e
AB
8908 if (s->default_nan_mode) {
8909 nan = float32_default_nan;
43fe9bdb 8910 }
c2fb418e
AB
8911 return nan;
8912 } else if (float32_is_zero(f32)) {
e07be5d2 8913 float_raise(float_flag_divbyzero, s);
c2fb418e
AB
8914 return float32_set_sign(float32_infinity, float32_is_neg(f32));
8915 } else if (float32_is_neg(f32)) {
e07be5d2
CL
8916 float_raise(float_flag_invalid, s);
8917 return float32_default_nan;
c2fb418e 8918 } else if (float32_is_infinity(f32)) {
e07be5d2
CL
8919 return float32_zero;
8920 }
8921
c2fb418e 8922 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
e07be5d2 8923 * preserving the parity of the exponent. */
c2fb418e
AB
8924
8925 f64_frac = ((uint64_t) f32_frac) << 29;
8926 if (f32_exp == 0) {
8927 while (extract64(f64_frac, 51, 1) == 0) {
8928 f64_frac = f64_frac << 1;
8929 f32_exp = f32_exp-1;
8930 }
8931 f64_frac = extract64(f64_frac, 0, 51) << 1;
8932 }
8933
8934 if (extract64(f32_exp, 0, 1) == 0) {
8935 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 8936 | (0x3feULL << 52)
c2fb418e 8937 | f64_frac);
e07be5d2 8938 } else {
c2fb418e 8939 f64 = make_float64(((uint64_t) f32_sbit) << 32
e07be5d2 8940 | (0x3fdULL << 52)
c2fb418e 8941 | f64_frac);
e07be5d2
CL
8942 }
8943
c2fb418e 8944 result_exp = (380 - f32_exp) / 2;
e07be5d2 8945
c2fb418e 8946 f64 = recip_sqrt_estimate(f64, s);
e07be5d2
CL
8947
8948 val64 = float64_val(f64);
8949
26cc6abf 8950 val = ((result_exp & 0xff) << 23)
e07be5d2
CL
8951 | ((val64 >> 29) & 0x7fffff);
8952 return make_float32(val);
4373f3ce
PB
8953}
8954
c2fb418e
AB
8955float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
8956{
8957 float_status *s = fpstp;
8958 float64 f64 = float64_squash_input_denormal(input, s);
8959 uint64_t val = float64_val(f64);
8960 uint64_t f64_sbit = 0x8000000000000000ULL & val;
8961 int64_t f64_exp = extract64(val, 52, 11);
8962 uint64_t f64_frac = extract64(val, 0, 52);
8963 int64_t result_exp;
8964 uint64_t result_frac;
8965
8966 if (float64_is_any_nan(f64)) {
8967 float64 nan = f64;
8968 if (float64_is_signaling_nan(f64)) {
8969 float_raise(float_flag_invalid, s);
8970 nan = float64_maybe_silence_nan(f64);
8971 }
8972 if (s->default_nan_mode) {
8973 nan = float64_default_nan;
8974 }
8975 return nan;
8976 } else if (float64_is_zero(f64)) {
8977 float_raise(float_flag_divbyzero, s);
8978 return float64_set_sign(float64_infinity, float64_is_neg(f64));
8979 } else if (float64_is_neg(f64)) {
8980 float_raise(float_flag_invalid, s);
8981 return float64_default_nan;
8982 } else if (float64_is_infinity(f64)) {
8983 return float64_zero;
8984 }
8985
8986 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8987 * preserving the parity of the exponent. */
8988
8989 if (f64_exp == 0) {
8990 while (extract64(f64_frac, 51, 1) == 0) {
8991 f64_frac = f64_frac << 1;
8992 f64_exp = f64_exp - 1;
8993 }
8994 f64_frac = extract64(f64_frac, 0, 51) << 1;
8995 }
8996
8997 if (extract64(f64_exp, 0, 1) == 0) {
8998 f64 = make_float64(f64_sbit
8999 | (0x3feULL << 52)
9000 | f64_frac);
9001 } else {
9002 f64 = make_float64(f64_sbit
9003 | (0x3fdULL << 52)
9004 | f64_frac);
9005 }
9006
9007 result_exp = (3068 - f64_exp) / 2;
9008
9009 f64 = recip_sqrt_estimate(f64, s);
9010
9011 result_frac = extract64(float64_val(f64), 0, 52);
9012
9013 return make_float64(f64_sbit |
9014 ((result_exp & 0x7ff) << 52) |
9015 result_frac);
9016}
9017
b6d4443a 9018uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
4373f3ce 9019{
b6d4443a 9020 float_status *s = fpstp;
fe0e4872
CL
9021 float64 f64;
9022
9023 if ((a & 0x80000000) == 0) {
9024 return 0xffffffff;
9025 }
9026
9027 f64 = make_float64((0x3feULL << 52)
9028 | ((int64_t)(a & 0x7fffffff) << 21));
9029
b6d4443a 9030 f64 = recip_estimate(f64, s);
fe0e4872
CL
9031
9032 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
9033}
9034
c2fb418e 9035uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
4373f3ce 9036{
c2fb418e 9037 float_status *fpst = fpstp;
e07be5d2
CL
9038 float64 f64;
9039
9040 if ((a & 0xc0000000) == 0) {
9041 return 0xffffffff;
9042 }
9043
9044 if (a & 0x80000000) {
9045 f64 = make_float64((0x3feULL << 52)
9046 | ((uint64_t)(a & 0x7fffffff) << 21));
9047 } else { /* bits 31-30 == '01' */
9048 f64 = make_float64((0x3fdULL << 52)
9049 | ((uint64_t)(a & 0x3fffffff) << 22));
9050 }
9051
c2fb418e 9052 f64 = recip_sqrt_estimate(f64, fpst);
e07be5d2
CL
9053
9054 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 9055}
fe1479c3 9056
da97f52c
PM
9057/* VFPv4 fused multiply-accumulate */
9058float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9059{
9060 float_status *fpst = fpstp;
9061 return float32_muladd(a, b, c, 0, fpst);
9062}
9063
9064float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9065{
9066 float_status *fpst = fpstp;
9067 return float64_muladd(a, b, c, 0, fpst);
9068}
d9b0848d
PM
9069
9070/* ARMv8 round to integral */
9071float32 HELPER(rints_exact)(float32 x, void *fp_status)
9072{
9073 return float32_round_to_int(x, fp_status);
9074}
9075
9076float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9077{
9078 return float64_round_to_int(x, fp_status);
9079}
9080
9081float32 HELPER(rints)(float32 x, void *fp_status)
9082{
9083 int old_flags = get_float_exception_flags(fp_status), new_flags;
9084 float32 ret;
9085
9086 ret = float32_round_to_int(x, fp_status);
9087
9088 /* Suppress any inexact exceptions the conversion produced */
9089 if (!(old_flags & float_flag_inexact)) {
9090 new_flags = get_float_exception_flags(fp_status);
9091 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9092 }
9093
9094 return ret;
9095}
9096
9097float64 HELPER(rintd)(float64 x, void *fp_status)
9098{
9099 int old_flags = get_float_exception_flags(fp_status), new_flags;
9100 float64 ret;
9101
9102 ret = float64_round_to_int(x, fp_status);
9103
9104 new_flags = get_float_exception_flags(fp_status);
9105
9106 /* Suppress any inexact exceptions the conversion produced */
9107 if (!(old_flags & float_flag_inexact)) {
9108 new_flags = get_float_exception_flags(fp_status);
9109 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9110 }
9111
9112 return ret;
9113}
9972da66
WN
9114
9115/* Convert ARM rounding mode to softfloat */
9116int arm_rmode_to_sf(int rmode)
9117{
9118 switch (rmode) {
9119 case FPROUNDING_TIEAWAY:
9120 rmode = float_round_ties_away;
9121 break;
9122 case FPROUNDING_ODD:
9123 /* FIXME: add support for TIEAWAY and ODD */
9124 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
9125 rmode);
9126 case FPROUNDING_TIEEVEN:
9127 default:
9128 rmode = float_round_nearest_even;
9129 break;
9130 case FPROUNDING_POSINF:
9131 rmode = float_round_up;
9132 break;
9133 case FPROUNDING_NEGINF:
9134 rmode = float_round_down;
9135 break;
9136 case FPROUNDING_ZERO:
9137 rmode = float_round_to_zero;
9138 break;
9139 }
9140 return rmode;
9141}
eb0ecd5a 9142
aa633469
PM
9143/* CRC helpers.
9144 * The upper bytes of val (above the number specified by 'bytes') must have
9145 * been zeroed out by the caller.
9146 */
eb0ecd5a
WN
9147uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
9148{
9149 uint8_t buf[4];
9150
aa633469 9151 stl_le_p(buf, val);
eb0ecd5a
WN
9152
9153 /* zlib crc32 converts the accumulator and output to one's complement. */
9154 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
9155}
9156
9157uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
9158{
9159 uint8_t buf[4];
9160
aa633469 9161 stl_le_p(buf, val);
eb0ecd5a
WN
9162
9163 /* Linux crc32c converts the output to one's complement. */
9164 return crc32c(acc, buf, bytes) ^ 0xffffffff;
9165}