]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/kvm32.c
target-arm/kvm: Split 32 bit only code into its own file
[mirror_qemu.git] / target-arm / kvm32.c
CommitLineData
b197ebd4
PM
1/*
2 * ARM implementation of KVM hooks, 32 bit specific code.
3 *
4 * Copyright Christoffer Dall 2009-2010
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 *
9 */
10
11#include <stdio.h>
12#include <sys/types.h>
13#include <sys/ioctl.h>
14#include <sys/mman.h>
15
16#include <linux/kvm.h>
17
18#include "qemu-common.h"
19#include "qemu/timer.h"
20#include "sysemu/sysemu.h"
21#include "sysemu/kvm.h"
22#include "kvm_arm.h"
23#include "cpu.h"
24#include "hw/arm/arm.h"
25
26static inline void set_feature(uint64_t *features, int feature)
27{
28 *features |= 1ULL << feature;
29}
30
31bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
32{
33 /* Identify the feature bits corresponding to the host CPU, and
34 * fill out the ARMHostCPUClass fields accordingly. To do this
35 * we have to create a scratch VM, create a single CPU inside it,
36 * and then query that CPU for the relevant ID registers.
37 */
38 int i, ret, fdarray[3];
39 uint32_t midr, id_pfr0, id_isar0, mvfr1;
40 uint64_t features = 0;
41 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
42 * we know these will only support creating one kind of guest CPU,
43 * which is its preferred CPU type.
44 */
45 static const uint32_t cpus_to_try[] = {
46 QEMU_KVM_ARM_TARGET_CORTEX_A15,
47 QEMU_KVM_ARM_TARGET_NONE
48 };
49 struct kvm_vcpu_init init;
50 struct kvm_one_reg idregs[] = {
51 {
52 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
53 | ENCODE_CP_REG(15, 0, 0, 0, 0, 0),
54 .addr = (uintptr_t)&midr,
55 },
56 {
57 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
58 | ENCODE_CP_REG(15, 0, 0, 1, 0, 0),
59 .addr = (uintptr_t)&id_pfr0,
60 },
61 {
62 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
63 | ENCODE_CP_REG(15, 0, 0, 2, 0, 0),
64 .addr = (uintptr_t)&id_isar0,
65 },
66 {
67 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
68 | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1,
69 .addr = (uintptr_t)&mvfr1,
70 },
71 };
72
73 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
74 return false;
75 }
76
77 ahcc->target = init.target;
78
79 /* This is not strictly blessed by the device tree binding docs yet,
80 * but in practice the kernel does not care about this string so
81 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
82 */
83 ahcc->dtb_compatible = "arm,arm-v7";
84
85 for (i = 0; i < ARRAY_SIZE(idregs); i++) {
86 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]);
87 if (ret) {
88 break;
89 }
90 }
91
92 kvm_arm_destroy_scratch_host_vcpu(fdarray);
93
94 if (ret) {
95 return false;
96 }
97
98 /* Now we've retrieved all the register information we can
99 * set the feature bits based on the ID register fields.
100 * We can assume any KVM supporting CPU is at least a v7
101 * with VFPv3, LPAE and the generic timers; this in turn implies
102 * most of the other feature bits, but a few must be tested.
103 */
104 set_feature(&features, ARM_FEATURE_V7);
105 set_feature(&features, ARM_FEATURE_VFP3);
106 set_feature(&features, ARM_FEATURE_LPAE);
107 set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
108
109 switch (extract32(id_isar0, 24, 4)) {
110 case 1:
111 set_feature(&features, ARM_FEATURE_THUMB_DIV);
112 break;
113 case 2:
114 set_feature(&features, ARM_FEATURE_ARM_DIV);
115 set_feature(&features, ARM_FEATURE_THUMB_DIV);
116 break;
117 default:
118 break;
119 }
120
121 if (extract32(id_pfr0, 12, 4) == 1) {
122 set_feature(&features, ARM_FEATURE_THUMB2EE);
123 }
124 if (extract32(mvfr1, 20, 4) == 1) {
125 set_feature(&features, ARM_FEATURE_VFP_FP16);
126 }
127 if (extract32(mvfr1, 12, 4) == 1) {
128 set_feature(&features, ARM_FEATURE_NEON);
129 }
130 if (extract32(mvfr1, 28, 4) == 1) {
131 /* FMAC support implies VFPv4 */
132 set_feature(&features, ARM_FEATURE_VFP4);
133 }
134
135 ahcc->features = features;
136
137 return true;
138}
139
140static bool reg_syncs_via_tuple_list(uint64_t regidx)
141{
142 /* Return true if the regidx is a register we should synchronize
143 * via the cpreg_tuples array (ie is not a core reg we sync by
144 * hand in kvm_arch_get/put_registers())
145 */
146 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
147 case KVM_REG_ARM_CORE:
148 case KVM_REG_ARM_VFP:
149 return false;
150 default:
151 return true;
152 }
153}
154
155static int compare_u64(const void *a, const void *b)
156{
157 if (*(uint64_t *)a > *(uint64_t *)b) {
158 return 1;
159 }
160 if (*(uint64_t *)a < *(uint64_t *)b) {
161 return -1;
162 }
163 return 0;
164}
165
166int kvm_arch_init_vcpu(CPUState *cs)
167{
168 struct kvm_vcpu_init init;
169 int i, ret, arraylen;
170 uint64_t v;
171 struct kvm_one_reg r;
172 struct kvm_reg_list rl;
173 struct kvm_reg_list *rlp;
174 ARMCPU *cpu = ARM_CPU(cs);
175
176 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
177 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
178 return -EINVAL;
179 }
180
181 init.target = cpu->kvm_target;
182 memset(init.features, 0, sizeof(init.features));
183 if (cpu->start_powered_off) {
184 init.features[0] = 1 << KVM_ARM_VCPU_POWER_OFF;
185 }
186 ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
187 if (ret) {
188 return ret;
189 }
190 /* Query the kernel to make sure it supports 32 VFP
191 * registers: QEMU's "cortex-a15" CPU is always a
192 * VFP-D32 core. The simplest way to do this is just
193 * to attempt to read register d31.
194 */
195 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
196 r.addr = (uintptr_t)(&v);
197 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
198 if (ret == -ENOENT) {
199 return -EINVAL;
200 }
201
202 /* Populate the cpreg list based on the kernel's idea
203 * of what registers exist (and throw away the TCG-created list).
204 */
205 rl.n = 0;
206 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
207 if (ret != -E2BIG) {
208 return ret;
209 }
210 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
211 rlp->n = rl.n;
212 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
213 if (ret) {
214 goto out;
215 }
216 /* Sort the list we get back from the kernel, since cpreg_tuples
217 * must be in strictly ascending order.
218 */
219 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
220
221 for (i = 0, arraylen = 0; i < rlp->n; i++) {
222 if (!reg_syncs_via_tuple_list(rlp->reg[i])) {
223 continue;
224 }
225 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
226 case KVM_REG_SIZE_U32:
227 case KVM_REG_SIZE_U64:
228 break;
229 default:
230 fprintf(stderr, "Can't handle size of register in kernel list\n");
231 ret = -EINVAL;
232 goto out;
233 }
234
235 arraylen++;
236 }
237
238 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
239 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
240 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
241 arraylen);
242 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
243 arraylen);
244 cpu->cpreg_array_len = arraylen;
245 cpu->cpreg_vmstate_array_len = arraylen;
246
247 for (i = 0, arraylen = 0; i < rlp->n; i++) {
248 uint64_t regidx = rlp->reg[i];
249 if (!reg_syncs_via_tuple_list(regidx)) {
250 continue;
251 }
252 cpu->cpreg_indexes[arraylen] = regidx;
253 arraylen++;
254 }
255 assert(cpu->cpreg_array_len == arraylen);
256
257 if (!write_kvmstate_to_list(cpu)) {
258 /* Shouldn't happen unless kernel is inconsistent about
259 * what registers exist.
260 */
261 fprintf(stderr, "Initial read of kernel register state failed\n");
262 ret = -EINVAL;
263 goto out;
264 }
265
266 /* Save a copy of the initial register values so that we can
267 * feed it back to the kernel on VCPU reset.
268 */
269 cpu->cpreg_reset_values = g_memdup(cpu->cpreg_values,
270 cpu->cpreg_array_len *
271 sizeof(cpu->cpreg_values[0]));
272
273out:
274 g_free(rlp);
275 return ret;
276}
277
278typedef struct Reg {
279 uint64_t id;
280 int offset;
281} Reg;
282
283#define COREREG(KERNELNAME, QEMUFIELD) \
284 { \
285 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
286 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
287 offsetof(CPUARMState, QEMUFIELD) \
288 }
289
290#define VFPSYSREG(R) \
291 { \
292 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
293 KVM_REG_ARM_VFP_##R, \
294 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
295 }
296
297static const Reg regs[] = {
298 /* R0_usr .. R14_usr */
299 COREREG(usr_regs.uregs[0], regs[0]),
300 COREREG(usr_regs.uregs[1], regs[1]),
301 COREREG(usr_regs.uregs[2], regs[2]),
302 COREREG(usr_regs.uregs[3], regs[3]),
303 COREREG(usr_regs.uregs[4], regs[4]),
304 COREREG(usr_regs.uregs[5], regs[5]),
305 COREREG(usr_regs.uregs[6], regs[6]),
306 COREREG(usr_regs.uregs[7], regs[7]),
307 COREREG(usr_regs.uregs[8], usr_regs[0]),
308 COREREG(usr_regs.uregs[9], usr_regs[1]),
309 COREREG(usr_regs.uregs[10], usr_regs[2]),
310 COREREG(usr_regs.uregs[11], usr_regs[3]),
311 COREREG(usr_regs.uregs[12], usr_regs[4]),
312 COREREG(usr_regs.uregs[13], banked_r13[0]),
313 COREREG(usr_regs.uregs[14], banked_r14[0]),
314 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
315 COREREG(svc_regs[0], banked_r13[1]),
316 COREREG(svc_regs[1], banked_r14[1]),
317 COREREG(svc_regs[2], banked_spsr[1]),
318 COREREG(abt_regs[0], banked_r13[2]),
319 COREREG(abt_regs[1], banked_r14[2]),
320 COREREG(abt_regs[2], banked_spsr[2]),
321 COREREG(und_regs[0], banked_r13[3]),
322 COREREG(und_regs[1], banked_r14[3]),
323 COREREG(und_regs[2], banked_spsr[3]),
324 COREREG(irq_regs[0], banked_r13[4]),
325 COREREG(irq_regs[1], banked_r14[4]),
326 COREREG(irq_regs[2], banked_spsr[4]),
327 /* R8_fiq .. R14_fiq and SPSR_fiq */
328 COREREG(fiq_regs[0], fiq_regs[0]),
329 COREREG(fiq_regs[1], fiq_regs[1]),
330 COREREG(fiq_regs[2], fiq_regs[2]),
331 COREREG(fiq_regs[3], fiq_regs[3]),
332 COREREG(fiq_regs[4], fiq_regs[4]),
333 COREREG(fiq_regs[5], banked_r13[5]),
334 COREREG(fiq_regs[6], banked_r14[5]),
335 COREREG(fiq_regs[7], banked_spsr[5]),
336 /* R15 */
337 COREREG(usr_regs.uregs[15], regs[15]),
338 /* VFP system registers */
339 VFPSYSREG(FPSID),
340 VFPSYSREG(MVFR1),
341 VFPSYSREG(MVFR0),
342 VFPSYSREG(FPEXC),
343 VFPSYSREG(FPINST),
344 VFPSYSREG(FPINST2),
345};
346
347int kvm_arch_put_registers(CPUState *cs, int level)
348{
349 ARMCPU *cpu = ARM_CPU(cs);
350 CPUARMState *env = &cpu->env;
351 struct kvm_one_reg r;
352 int mode, bn;
353 int ret, i;
354 uint32_t cpsr, fpscr;
355
356 /* Make sure the banked regs are properly set */
357 mode = env->uncached_cpsr & CPSR_M;
358 bn = bank_number(mode);
359 if (mode == ARM_CPU_MODE_FIQ) {
360 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
361 } else {
362 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
363 }
364 env->banked_r13[bn] = env->regs[13];
365 env->banked_r14[bn] = env->regs[14];
366 env->banked_spsr[bn] = env->spsr;
367
368 /* Now we can safely copy stuff down to the kernel */
369 for (i = 0; i < ARRAY_SIZE(regs); i++) {
370 r.id = regs[i].id;
371 r.addr = (uintptr_t)(env) + regs[i].offset;
372 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
373 if (ret) {
374 return ret;
375 }
376 }
377
378 /* Special cases which aren't a single CPUARMState field */
379 cpsr = cpsr_read(env);
380 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
381 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
382 r.addr = (uintptr_t)(&cpsr);
383 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
384 if (ret) {
385 return ret;
386 }
387
388 /* VFP registers */
389 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
390 for (i = 0; i < 32; i++) {
391 r.addr = (uintptr_t)(&env->vfp.regs[i]);
392 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
393 if (ret) {
394 return ret;
395 }
396 r.id++;
397 }
398
399 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
400 KVM_REG_ARM_VFP_FPSCR;
401 fpscr = vfp_get_fpscr(env);
402 r.addr = (uintptr_t)&fpscr;
403 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
404 if (ret) {
405 return ret;
406 }
407
408 /* Note that we do not call write_cpustate_to_list()
409 * here, so we are only writing the tuple list back to
410 * KVM. This is safe because nothing can change the
411 * CPUARMState cp15 fields (in particular gdb accesses cannot)
412 * and so there are no changes to sync. In fact syncing would
413 * be wrong at this point: for a constant register where TCG and
414 * KVM disagree about its value, the preceding write_list_to_cpustate()
415 * would not have had any effect on the CPUARMState value (since the
416 * register is read-only), and a write_cpustate_to_list() here would
417 * then try to write the TCG value back into KVM -- this would either
418 * fail or incorrectly change the value the guest sees.
419 *
420 * If we ever want to allow the user to modify cp15 registers via
421 * the gdb stub, we would need to be more clever here (for instance
422 * tracking the set of registers kvm_arch_get_registers() successfully
423 * managed to update the CPUARMState with, and only allowing those
424 * to be written back up into the kernel).
425 */
426 if (!write_list_to_kvmstate(cpu)) {
427 return EINVAL;
428 }
429
430 return ret;
431}
432
433int kvm_arch_get_registers(CPUState *cs)
434{
435 ARMCPU *cpu = ARM_CPU(cs);
436 CPUARMState *env = &cpu->env;
437 struct kvm_one_reg r;
438 int mode, bn;
439 int ret, i;
440 uint32_t cpsr, fpscr;
441
442 for (i = 0; i < ARRAY_SIZE(regs); i++) {
443 r.id = regs[i].id;
444 r.addr = (uintptr_t)(env) + regs[i].offset;
445 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
446 if (ret) {
447 return ret;
448 }
449 }
450
451 /* Special cases which aren't a single CPUARMState field */
452 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
453 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
454 r.addr = (uintptr_t)(&cpsr);
455 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
456 if (ret) {
457 return ret;
458 }
459 cpsr_write(env, cpsr, 0xffffffff);
460
461 /* Make sure the current mode regs are properly set */
462 mode = env->uncached_cpsr & CPSR_M;
463 bn = bank_number(mode);
464 if (mode == ARM_CPU_MODE_FIQ) {
465 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
466 } else {
467 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
468 }
469 env->regs[13] = env->banked_r13[bn];
470 env->regs[14] = env->banked_r14[bn];
471 env->spsr = env->banked_spsr[bn];
472
473 /* VFP registers */
474 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
475 for (i = 0; i < 32; i++) {
476 r.addr = (uintptr_t)(&env->vfp.regs[i]);
477 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
478 if (ret) {
479 return ret;
480 }
481 r.id++;
482 }
483
484 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
485 KVM_REG_ARM_VFP_FPSCR;
486 r.addr = (uintptr_t)&fpscr;
487 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
488 if (ret) {
489 return ret;
490 }
491 vfp_set_fpscr(env, fpscr);
492
493 if (!write_kvmstate_to_list(cpu)) {
494 return EINVAL;
495 }
496 /* Note that it's OK to have registers which aren't in CPUState,
497 * so we can ignore a failure return here.
498 */
499 write_list_to_cpustate(cpu);
500
501 return 0;
502}
503
504void kvm_arch_reset_vcpu(CPUState *cs)
505{
506 /* Feed the kernel back its initial register state */
507 ARMCPU *cpu = ARM_CPU(cs);
508
509 memmove(cpu->cpreg_values, cpu->cpreg_reset_values,
510 cpu->cpreg_array_len * sizeof(cpu->cpreg_values[0]));
511
512 if (!write_list_to_kvmstate(cpu)) {
513 abort();
514 }
515}