]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/op.c
Correctly initialize Arm CPU for Thumb entry points.
[mirror_qemu.git] / target-arm / op.c
CommitLineData
2c0262af
FB
1/*
2 * ARM micro operations
3 *
4 * Copyright (c) 2003 Fabrice Bellard
b7bcbe95 5 * Copyright (c) 2005 CodeSourcery, LLC
2c0262af
FB
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21#include "exec.h"
22
23#define REGNAME r0
24#define REG (env->regs[0])
25#include "op_template.h"
26
27#define REGNAME r1
28#define REG (env->regs[1])
29#include "op_template.h"
30
31#define REGNAME r2
32#define REG (env->regs[2])
33#include "op_template.h"
34
35#define REGNAME r3
36#define REG (env->regs[3])
37#include "op_template.h"
38
39#define REGNAME r4
40#define REG (env->regs[4])
41#include "op_template.h"
42
43#define REGNAME r5
44#define REG (env->regs[5])
45#include "op_template.h"
46
47#define REGNAME r6
48#define REG (env->regs[6])
49#include "op_template.h"
50
51#define REGNAME r7
52#define REG (env->regs[7])
53#include "op_template.h"
54
55#define REGNAME r8
56#define REG (env->regs[8])
57#include "op_template.h"
58
59#define REGNAME r9
60#define REG (env->regs[9])
61#include "op_template.h"
62
63#define REGNAME r10
64#define REG (env->regs[10])
65#include "op_template.h"
66
67#define REGNAME r11
68#define REG (env->regs[11])
69#include "op_template.h"
70
71#define REGNAME r12
72#define REG (env->regs[12])
73#include "op_template.h"
74
75#define REGNAME r13
76#define REG (env->regs[13])
77#include "op_template.h"
78
79#define REGNAME r14
80#define REG (env->regs[14])
81#include "op_template.h"
82
83#define REGNAME r15
84#define REG (env->regs[15])
99c475ab 85#define SET_REG(x) REG = x & ~(uint32_t)1
2c0262af
FB
86#include "op_template.h"
87
99c475ab
FB
88void OPPROTO op_bx_T0(void)
89{
90 env->regs[15] = T0 & ~(uint32_t)1;
91 env->thumb = (T0 & 1) != 0;
92}
93
2c0262af
FB
94void OPPROTO op_movl_T0_0(void)
95{
96 T0 = 0;
97}
98
99void OPPROTO op_movl_T0_im(void)
100{
101 T0 = PARAM1;
102}
103
b5ff1b31
FB
104void OPPROTO op_movl_T0_T1(void)
105{
106 T0 = T1;
107}
108
2c0262af
FB
109void OPPROTO op_movl_T1_im(void)
110{
111 T1 = PARAM1;
112}
113
7ff4d218
FB
114void OPPROTO op_mov_CF_T1(void)
115{
116 env->CF = ((uint32_t)T1) >> 31;
117}
118
2c0262af
FB
119void OPPROTO op_movl_T2_im(void)
120{
121 T2 = PARAM1;
122}
123
124void OPPROTO op_addl_T1_im(void)
125{
126 T1 += PARAM1;
127}
128
129void OPPROTO op_addl_T1_T2(void)
130{
131 T1 += T2;
132}
133
134void OPPROTO op_subl_T1_T2(void)
135{
136 T1 -= T2;
137}
138
139void OPPROTO op_addl_T0_T1(void)
140{
141 T0 += T1;
142}
143
144void OPPROTO op_addl_T0_T1_cc(void)
145{
146 unsigned int src1;
147 src1 = T0;
148 T0 += T1;
149 env->NZF = T0;
150 env->CF = T0 < src1;
151 env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
152}
153
154void OPPROTO op_adcl_T0_T1(void)
155{
156 T0 += T1 + env->CF;
157}
158
159void OPPROTO op_adcl_T0_T1_cc(void)
160{
161 unsigned int src1;
162 src1 = T0;
163 if (!env->CF) {
164 T0 += T1;
165 env->CF = T0 < src1;
166 } else {
167 T0 += T1 + 1;
168 env->CF = T0 <= src1;
169 }
170 env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
171 env->NZF = T0;
172 FORCE_RET();
173}
174
175#define OPSUB(sub, sbc, res, T0, T1) \
176 \
177void OPPROTO op_ ## sub ## l_T0_T1(void) \
178{ \
179 res = T0 - T1; \
180} \
181 \
182void OPPROTO op_ ## sub ## l_T0_T1_cc(void) \
183{ \
184 unsigned int src1; \
185 src1 = T0; \
186 T0 -= T1; \
187 env->NZF = T0; \
188 env->CF = src1 >= T1; \
189 env->VF = (src1 ^ T1) & (src1 ^ T0); \
190 res = T0; \
191} \
192 \
193void OPPROTO op_ ## sbc ## l_T0_T1(void) \
194{ \
195 res = T0 - T1 + env->CF - 1; \
196} \
197 \
198void OPPROTO op_ ## sbc ## l_T0_T1_cc(void) \
199{ \
200 unsigned int src1; \
201 src1 = T0; \
202 if (!env->CF) { \
203 T0 = T0 - T1 - 1; \
78573df6 204 env->CF = src1 > T1; \
2c0262af
FB
205 } else { \
206 T0 = T0 - T1; \
78573df6 207 env->CF = src1 >= T1; \
2c0262af
FB
208 } \
209 env->VF = (src1 ^ T1) & (src1 ^ T0); \
210 env->NZF = T0; \
211 res = T0; \
212 FORCE_RET(); \
213}
214
215OPSUB(sub, sbc, T0, T0, T1)
216
217OPSUB(rsb, rsc, T0, T1, T0)
218
219void OPPROTO op_andl_T0_T1(void)
220{
221 T0 &= T1;
222}
223
224void OPPROTO op_xorl_T0_T1(void)
225{
226 T0 ^= T1;
227}
228
229void OPPROTO op_orl_T0_T1(void)
230{
231 T0 |= T1;
232}
233
234void OPPROTO op_bicl_T0_T1(void)
235{
236 T0 &= ~T1;
237}
238
239void OPPROTO op_notl_T1(void)
240{
241 T1 = ~T1;
242}
243
244void OPPROTO op_logic_T0_cc(void)
245{
246 env->NZF = T0;
247}
248
249void OPPROTO op_logic_T1_cc(void)
250{
251 env->NZF = T1;
252}
253
254#define EIP (env->regs[15])
255
256void OPPROTO op_test_eq(void)
257{
258 if (env->NZF == 0)
e50e6a20 259 GOTO_LABEL_PARAM(1);;
2c0262af
FB
260 FORCE_RET();
261}
262
263void OPPROTO op_test_ne(void)
264{
265 if (env->NZF != 0)
e50e6a20 266 GOTO_LABEL_PARAM(1);;
2c0262af
FB
267 FORCE_RET();
268}
269
270void OPPROTO op_test_cs(void)
271{
272 if (env->CF != 0)
e50e6a20 273 GOTO_LABEL_PARAM(1);
2c0262af
FB
274 FORCE_RET();
275}
276
277void OPPROTO op_test_cc(void)
278{
279 if (env->CF == 0)
e50e6a20 280 GOTO_LABEL_PARAM(1);
2c0262af
FB
281 FORCE_RET();
282}
283
284void OPPROTO op_test_mi(void)
285{
286 if ((env->NZF & 0x80000000) != 0)
e50e6a20 287 GOTO_LABEL_PARAM(1);
2c0262af
FB
288 FORCE_RET();
289}
290
291void OPPROTO op_test_pl(void)
292{
293 if ((env->NZF & 0x80000000) == 0)
e50e6a20 294 GOTO_LABEL_PARAM(1);
2c0262af
FB
295 FORCE_RET();
296}
297
298void OPPROTO op_test_vs(void)
299{
300 if ((env->VF & 0x80000000) != 0)
e50e6a20 301 GOTO_LABEL_PARAM(1);
2c0262af
FB
302 FORCE_RET();
303}
304
305void OPPROTO op_test_vc(void)
306{
307 if ((env->VF & 0x80000000) == 0)
e50e6a20 308 GOTO_LABEL_PARAM(1);
2c0262af
FB
309 FORCE_RET();
310}
311
312void OPPROTO op_test_hi(void)
313{
314 if (env->CF != 0 && env->NZF != 0)
e50e6a20 315 GOTO_LABEL_PARAM(1);
2c0262af
FB
316 FORCE_RET();
317}
318
319void OPPROTO op_test_ls(void)
320{
321 if (env->CF == 0 || env->NZF == 0)
e50e6a20 322 GOTO_LABEL_PARAM(1);
2c0262af
FB
323 FORCE_RET();
324}
325
326void OPPROTO op_test_ge(void)
327{
328 if (((env->VF ^ env->NZF) & 0x80000000) == 0)
e50e6a20 329 GOTO_LABEL_PARAM(1);
2c0262af
FB
330 FORCE_RET();
331}
332
333void OPPROTO op_test_lt(void)
334{
335 if (((env->VF ^ env->NZF) & 0x80000000) != 0)
e50e6a20 336 GOTO_LABEL_PARAM(1);
2c0262af
FB
337 FORCE_RET();
338}
339
340void OPPROTO op_test_gt(void)
341{
342 if (env->NZF != 0 && ((env->VF ^ env->NZF) & 0x80000000) == 0)
e50e6a20 343 GOTO_LABEL_PARAM(1);
2c0262af
FB
344 FORCE_RET();
345}
346
347void OPPROTO op_test_le(void)
348{
349 if (env->NZF == 0 || ((env->VF ^ env->NZF) & 0x80000000) != 0)
e50e6a20 350 GOTO_LABEL_PARAM(1);
2c0262af
FB
351 FORCE_RET();
352}
353
c53be334 354void OPPROTO op_goto_tb0(void)
2c0262af 355{
c53be334 356 GOTO_TB(op_goto_tb0, PARAM1, 0);
e50e6a20
FB
357}
358
c53be334 359void OPPROTO op_goto_tb1(void)
e50e6a20 360{
c53be334 361 GOTO_TB(op_goto_tb1, PARAM1, 1);
2c0262af
FB
362}
363
364void OPPROTO op_exit_tb(void)
365{
366 EXIT_TB();
367}
368
b5ff1b31 369void OPPROTO op_movl_T0_cpsr(void)
2c0262af 370{
b5ff1b31
FB
371 T0 = cpsr_read(env);
372 FORCE_RET();
2c0262af
FB
373}
374
b5ff1b31 375void OPPROTO op_movl_T0_spsr(void)
2c0262af 376{
b5ff1b31
FB
377 T0 = env->spsr;
378}
379
380void OPPROTO op_movl_spsr_T0(void)
381{
382 uint32_t mask = PARAM1;
383 env->spsr = (env->spsr & ~mask) | (T0 & mask);
384}
385
386void OPPROTO op_movl_cpsr_T0(void)
387{
388 cpsr_write(env, T0, PARAM1);
389 FORCE_RET();
2c0262af
FB
390}
391
392void OPPROTO op_mul_T0_T1(void)
393{
394 T0 = T0 * T1;
395}
396
397/* 64 bit unsigned mul */
398void OPPROTO op_mull_T0_T1(void)
399{
400 uint64_t res;
2e134c9c 401 res = (uint64_t)T0 * (uint64_t)T1;
2c0262af
FB
402 T1 = res >> 32;
403 T0 = res;
404}
405
406/* 64 bit signed mul */
407void OPPROTO op_imull_T0_T1(void)
408{
409 uint64_t res;
163a7cb6 410 res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
2c0262af
FB
411 T1 = res >> 32;
412 T0 = res;
413}
414
99c475ab
FB
415/* 48 bit signed mul, top 32 bits */
416void OPPROTO op_imulw_T0_T1(void)
417{
418 uint64_t res;
419 res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
420 T0 = res >> 16;
421}
422
2c0262af
FB
423void OPPROTO op_addq_T0_T1(void)
424{
425 uint64_t res;
426 res = ((uint64_t)T1 << 32) | T0;
427 res += ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
428 T1 = res >> 32;
429 T0 = res;
430}
431
99c475ab
FB
432void OPPROTO op_addq_lo_T0_T1(void)
433{
434 uint64_t res;
435 res = ((uint64_t)T1 << 32) | T0;
436 res += (uint64_t)(env->regs[PARAM1]);
437 T1 = res >> 32;
438 T0 = res;
439}
440
2c0262af
FB
441void OPPROTO op_logicq_cc(void)
442{
443 env->NZF = (T1 & 0x80000000) | ((T0 | T1) != 0);
444}
445
446/* memory access */
447
b5ff1b31
FB
448#define MEMSUFFIX _raw
449#include "op_mem.h"
2c0262af 450
b5ff1b31
FB
451#if !defined(CONFIG_USER_ONLY)
452#define MEMSUFFIX _user
453#include "op_mem.h"
454#define MEMSUFFIX _kernel
455#include "op_mem.h"
456#endif
2c0262af
FB
457
458/* shifts */
459
460/* T1 based */
1e8d4eec 461
2c0262af
FB
462void OPPROTO op_shll_T1_im(void)
463{
464 T1 = T1 << PARAM1;
465}
466
467void OPPROTO op_shrl_T1_im(void)
468{
469 T1 = (uint32_t)T1 >> PARAM1;
470}
471
1e8d4eec
FB
472void OPPROTO op_shrl_T1_0(void)
473{
474 T1 = 0;
475}
476
2c0262af
FB
477void OPPROTO op_sarl_T1_im(void)
478{
479 T1 = (int32_t)T1 >> PARAM1;
480}
481
1e8d4eec
FB
482void OPPROTO op_sarl_T1_0(void)
483{
484 T1 = (int32_t)T1 >> 31;
485}
486
2c0262af
FB
487void OPPROTO op_rorl_T1_im(void)
488{
489 int shift;
490 shift = PARAM1;
491 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
492}
493
88920f34
FB
494void OPPROTO op_rrxl_T1(void)
495{
496 T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31);
497}
498
2c0262af
FB
499/* T1 based, set C flag */
500void OPPROTO op_shll_T1_im_cc(void)
501{
502 env->CF = (T1 >> (32 - PARAM1)) & 1;
503 T1 = T1 << PARAM1;
504}
505
506void OPPROTO op_shrl_T1_im_cc(void)
507{
508 env->CF = (T1 >> (PARAM1 - 1)) & 1;
509 T1 = (uint32_t)T1 >> PARAM1;
510}
511
1e8d4eec
FB
512void OPPROTO op_shrl_T1_0_cc(void)
513{
514 env->CF = (T1 >> 31) & 1;
515 T1 = 0;
516}
517
2c0262af
FB
518void OPPROTO op_sarl_T1_im_cc(void)
519{
520 env->CF = (T1 >> (PARAM1 - 1)) & 1;
521 T1 = (int32_t)T1 >> PARAM1;
522}
523
1e8d4eec
FB
524void OPPROTO op_sarl_T1_0_cc(void)
525{
526 env->CF = (T1 >> 31) & 1;
527 T1 = (int32_t)T1 >> 31;
528}
529
2c0262af
FB
530void OPPROTO op_rorl_T1_im_cc(void)
531{
532 int shift;
533 shift = PARAM1;
534 env->CF = (T1 >> (shift - 1)) & 1;
535 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
536}
537
88920f34
FB
538void OPPROTO op_rrxl_T1_cc(void)
539{
540 uint32_t c;
541 c = T1 & 1;
542 T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31);
543 env->CF = c;
544}
545
2c0262af
FB
546/* T2 based */
547void OPPROTO op_shll_T2_im(void)
548{
549 T2 = T2 << PARAM1;
550}
551
552void OPPROTO op_shrl_T2_im(void)
553{
554 T2 = (uint32_t)T2 >> PARAM1;
555}
556
1e8d4eec
FB
557void OPPROTO op_shrl_T2_0(void)
558{
559 T2 = 0;
560}
561
2c0262af
FB
562void OPPROTO op_sarl_T2_im(void)
563{
564 T2 = (int32_t)T2 >> PARAM1;
565}
566
1e8d4eec
FB
567void OPPROTO op_sarl_T2_0(void)
568{
569 T2 = (int32_t)T2 >> 31;
570}
571
2c0262af
FB
572void OPPROTO op_rorl_T2_im(void)
573{
574 int shift;
575 shift = PARAM1;
576 T2 = ((uint32_t)T2 >> shift) | (T2 << (32 - shift));
577}
578
1e8d4eec
FB
579void OPPROTO op_rrxl_T2(void)
580{
581 T2 = ((uint32_t)T2 >> 1) | ((uint32_t)env->CF << 31);
582}
583
2c0262af
FB
584/* T1 based, use T0 as shift count */
585
586void OPPROTO op_shll_T1_T0(void)
587{
588 int shift;
589 shift = T0 & 0xff;
590 if (shift >= 32)
591 T1 = 0;
592 else
593 T1 = T1 << shift;
594 FORCE_RET();
595}
596
597void OPPROTO op_shrl_T1_T0(void)
598{
599 int shift;
600 shift = T0 & 0xff;
601 if (shift >= 32)
602 T1 = 0;
603 else
604 T1 = (uint32_t)T1 >> shift;
605 FORCE_RET();
606}
607
608void OPPROTO op_sarl_T1_T0(void)
609{
610 int shift;
611 shift = T0 & 0xff;
612 if (shift >= 32)
613 shift = 31;
614 T1 = (int32_t)T1 >> shift;
615}
616
617void OPPROTO op_rorl_T1_T0(void)
618{
619 int shift;
620 shift = T0 & 0x1f;
621 if (shift) {
622 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
623 }
624 FORCE_RET();
625}
626
627/* T1 based, use T0 as shift count and compute CF */
628
629void OPPROTO op_shll_T1_T0_cc(void)
630{
631 int shift;
632 shift = T0 & 0xff;
633 if (shift >= 32) {
634 if (shift == 32)
635 env->CF = T1 & 1;
636 else
637 env->CF = 0;
638 T1 = 0;
639 } else if (shift != 0) {
640 env->CF = (T1 >> (32 - shift)) & 1;
641 T1 = T1 << shift;
642 }
643 FORCE_RET();
644}
645
646void OPPROTO op_shrl_T1_T0_cc(void)
647{
648 int shift;
649 shift = T0 & 0xff;
650 if (shift >= 32) {
651 if (shift == 32)
652 env->CF = (T1 >> 31) & 1;
653 else
654 env->CF = 0;
655 T1 = 0;
656 } else if (shift != 0) {
657 env->CF = (T1 >> (shift - 1)) & 1;
658 T1 = (uint32_t)T1 >> shift;
659 }
660 FORCE_RET();
661}
662
663void OPPROTO op_sarl_T1_T0_cc(void)
664{
665 int shift;
666 shift = T0 & 0xff;
667 if (shift >= 32) {
668 env->CF = (T1 >> 31) & 1;
669 T1 = (int32_t)T1 >> 31;
670 } else {
671 env->CF = (T1 >> (shift - 1)) & 1;
672 T1 = (int32_t)T1 >> shift;
673 }
674 FORCE_RET();
675}
676
677void OPPROTO op_rorl_T1_T0_cc(void)
678{
679 int shift1, shift;
680 shift1 = T0 & 0xff;
681 shift = shift1 & 0x1f;
682 if (shift == 0) {
683 if (shift1 != 0)
684 env->CF = (T1 >> 31) & 1;
685 } else {
686 env->CF = (T1 >> (shift - 1)) & 1;
687 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
688 }
689 FORCE_RET();
690}
691
99c475ab
FB
692/* misc */
693void OPPROTO op_clz_T0(void)
694{
695 int count;
696 for (count = 32; T0 > 0; count--)
697 T0 = T0 >> 1;
698 T0 = count;
699 FORCE_RET();
700}
701
702void OPPROTO op_sarl_T0_im(void)
703{
704 T0 = (int32_t)T0 >> PARAM1;
705}
706
b5ff1b31
FB
707/* Sign/zero extend */
708void OPPROTO op_sxth_T0(void)
99c475ab
FB
709{
710 T0 = (int16_t)T0;
711}
712
b5ff1b31 713void OPPROTO op_sxth_T1(void)
99c475ab
FB
714{
715 T1 = (int16_t)T1;
716}
717
b5ff1b31
FB
718void OPPROTO op_sxtb_T1(void)
719{
720 T1 = (int8_t)T1;
721}
722
723void OPPROTO op_uxtb_T1(void)
724{
725 T1 = (uint8_t)T1;
726}
727
728void OPPROTO op_uxth_T1(void)
729{
730 T1 = (uint16_t)T1;
731}
732
733void OPPROTO op_sxtb16_T1(void)
734{
735 uint32_t res;
736 res = (uint16_t)(int8_t)T1;
737 res |= (uint32_t)(int8_t)(T1 >> 16) << 16;
738 T1 = res;
739}
740
741void OPPROTO op_uxtb16_T1(void)
742{
743 uint32_t res;
744 res = (uint16_t)(uint8_t)T1;
745 res |= (uint32_t)(uint8_t)(T1 >> 16) << 16;
746 T1 = res;
747}
748
99c475ab
FB
749#define SIGNBIT (uint32_t)0x80000000
750/* saturating arithmetic */
751void OPPROTO op_addl_T0_T1_setq(void)
752{
753 uint32_t res;
754
755 res = T0 + T1;
756 if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT))
757 env->QF = 1;
758
759 T0 = res;
760 FORCE_RET();
761}
762
763void OPPROTO op_addl_T0_T1_saturate(void)
764{
765 uint32_t res;
766
767 res = T0 + T1;
768 if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT)) {
769 env->QF = 1;
770 if (T0 & SIGNBIT)
771 T0 = 0x80000000;
772 else
773 T0 = 0x7fffffff;
774 }
775 else
776 T0 = res;
777
778 FORCE_RET();
779}
780
781void OPPROTO op_subl_T0_T1_saturate(void)
782{
783 uint32_t res;
784
785 res = T0 - T1;
786 if (((res ^ T0) & SIGNBIT) && ((T0 ^ T1) & SIGNBIT)) {
787 env->QF = 1;
788 if (T0 & SIGNBIT)
789 T0 = 0x8000000;
790 else
791 T0 = 0x7fffffff;
792 }
793 else
794 T0 = res;
795
796 FORCE_RET();
797}
798
ff8263a9
FB
799void OPPROTO op_double_T1_saturate(void)
800{
801 int32_t val;
802
803 val = T1;
804 if (val >= 0x40000000) {
805 T1 = 0x7fffffff;
806 env->QF = 1;
807 } else if (val <= (int32_t)0xc0000000) {
808 T1 = 0x80000000;
809 env->QF = 1;
810 } else {
811 T1 = val << 1;
812 }
813 FORCE_RET();
814}
815
99c475ab
FB
816/* thumb shift by immediate */
817void OPPROTO op_shll_T0_im_thumb(void)
818{
819 int shift;
820 shift = PARAM1;
821 if (shift != 0) {
822 env->CF = (T1 >> (32 - shift)) & 1;
823 T0 = T0 << shift;
824 }
825 env->NZF = T0;
826 FORCE_RET();
827}
828
829void OPPROTO op_shrl_T0_im_thumb(void)
830{
831 int shift;
832
833 shift = PARAM1;
834 if (shift == 0) {
5899f386 835 env->CF = ((uint32_t)shift) >> 31;
99c475ab
FB
836 T0 = 0;
837 } else {
838 env->CF = (T0 >> (shift - 1)) & 1;
839 T0 = T0 >> shift;
840 }
5899f386 841 env->NZF = T0;
99c475ab
FB
842 FORCE_RET();
843}
844
845void OPPROTO op_sarl_T0_im_thumb(void)
846{
847 int shift;
848
849 shift = PARAM1;
850 if (shift == 0) {
851 T0 = ((int32_t)T0) >> 31;
852 env->CF = T0 & 1;
853 } else {
854 env->CF = (T0 >> (shift - 1)) & 1;
855 T0 = ((int32_t)T0) >> shift;
856 }
857 env->NZF = T0;
858 FORCE_RET();
859}
860
2c0262af
FB
861/* exceptions */
862
863void OPPROTO op_swi(void)
864{
865 env->exception_index = EXCP_SWI;
866 cpu_loop_exit();
867}
868
869void OPPROTO op_undef_insn(void)
870{
871 env->exception_index = EXCP_UDEF;
872 cpu_loop_exit();
873}
874
1fddef4b
FB
875void OPPROTO op_debug(void)
876{
877 env->exception_index = EXCP_DEBUG;
878 cpu_loop_exit();
879}
880
9332f9da
FB
881void OPPROTO op_wfi(void)
882{
883 env->exception_index = EXCP_HLT;
884 env->halted = 1;
885 cpu_loop_exit();
886}
887
b7bcbe95
FB
888/* VFP support. We follow the convention used for VFP instrunctions:
889 Single precition routines have a "s" suffix, double precision a
890 "d" suffix. */
2c0262af 891
b7bcbe95 892#define VFP_OP(name, p) void OPPROTO op_vfp_##name##p(void)
2c0262af 893
53cd6637 894#define VFP_BINOP(name) \
b7bcbe95
FB
895VFP_OP(name, s) \
896{ \
53cd6637 897 FT0s = float32_ ## name (FT0s, FT1s, &env->vfp.fp_status); \
b7bcbe95
FB
898} \
899VFP_OP(name, d) \
900{ \
53cd6637 901 FT0d = float64_ ## name (FT0d, FT1d, &env->vfp.fp_status); \
b7bcbe95 902}
53cd6637
FB
903VFP_BINOP(add)
904VFP_BINOP(sub)
905VFP_BINOP(mul)
906VFP_BINOP(div)
b7bcbe95
FB
907#undef VFP_BINOP
908
909#define VFP_HELPER(name) \
910VFP_OP(name, s) \
911{ \
912 do_vfp_##name##s(); \
913} \
914VFP_OP(name, d) \
915{ \
916 do_vfp_##name##d(); \
917}
918VFP_HELPER(abs)
919VFP_HELPER(sqrt)
920VFP_HELPER(cmp)
921VFP_HELPER(cmpe)
922#undef VFP_HELPER
923
924/* XXX: Will this do the right thing for NANs. Should invert the signbit
925 without looking at the rest of the value. */
926VFP_OP(neg, s)
927{
53cd6637 928 FT0s = float32_chs(FT0s);
b7bcbe95
FB
929}
930
931VFP_OP(neg, d)
932{
53cd6637 933 FT0d = float64_chs(FT0d);
b7bcbe95
FB
934}
935
936VFP_OP(F1_ld0, s)
937{
53cd6637
FB
938 union {
939 uint32_t i;
940 float32 s;
941 } v;
942 v.i = 0;
943 FT1s = v.s;
b7bcbe95
FB
944}
945
946VFP_OP(F1_ld0, d)
947{
53cd6637
FB
948 union {
949 uint64_t i;
950 float64 d;
951 } v;
952 v.i = 0;
953 FT1d = v.d;
b7bcbe95
FB
954}
955
956/* Helper routines to perform bitwise copies between float and int. */
53cd6637 957static inline float32 vfp_itos(uint32_t i)
b7bcbe95
FB
958{
959 union {
960 uint32_t i;
53cd6637 961 float32 s;
b7bcbe95
FB
962 } v;
963
964 v.i = i;
965 return v.s;
966}
967
53cd6637 968static inline uint32_t vfp_stoi(float32 s)
b7bcbe95
FB
969{
970 union {
971 uint32_t i;
53cd6637 972 float32 s;
b7bcbe95
FB
973 } v;
974
975 v.s = s;
976 return v.i;
977}
978
979/* Integer to float conversion. */
980VFP_OP(uito, s)
981{
53cd6637 982 FT0s = uint32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
b7bcbe95
FB
983}
984
985VFP_OP(uito, d)
986{
53cd6637 987 FT0d = uint32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
b7bcbe95
FB
988}
989
990VFP_OP(sito, s)
991{
53cd6637 992 FT0s = int32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
b7bcbe95
FB
993}
994
995VFP_OP(sito, d)
996{
53cd6637 997 FT0d = int32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
b7bcbe95
FB
998}
999
1000/* Float to integer conversion. */
1001VFP_OP(toui, s)
1002{
53cd6637 1003 FT0s = vfp_itos(float32_to_uint32(FT0s, &env->vfp.fp_status));
b7bcbe95
FB
1004}
1005
1006VFP_OP(toui, d)
1007{
53cd6637 1008 FT0s = vfp_itos(float64_to_uint32(FT0d, &env->vfp.fp_status));
b7bcbe95
FB
1009}
1010
1011VFP_OP(tosi, s)
1012{
53cd6637 1013 FT0s = vfp_itos(float32_to_int32(FT0s, &env->vfp.fp_status));
b7bcbe95
FB
1014}
1015
1016VFP_OP(tosi, d)
1017{
53cd6637 1018 FT0s = vfp_itos(float64_to_int32(FT0d, &env->vfp.fp_status));
b7bcbe95
FB
1019}
1020
1021/* TODO: Set rounding mode properly. */
1022VFP_OP(touiz, s)
1023{
53cd6637 1024 FT0s = vfp_itos(float32_to_uint32_round_to_zero(FT0s, &env->vfp.fp_status));
b7bcbe95
FB
1025}
1026
1027VFP_OP(touiz, d)
1028{
53cd6637 1029 FT0s = vfp_itos(float64_to_uint32_round_to_zero(FT0d, &env->vfp.fp_status));
b7bcbe95
FB
1030}
1031
1032VFP_OP(tosiz, s)
1033{
53cd6637 1034 FT0s = vfp_itos(float32_to_int32_round_to_zero(FT0s, &env->vfp.fp_status));
b7bcbe95
FB
1035}
1036
1037VFP_OP(tosiz, d)
2c0262af 1038{
53cd6637 1039 FT0s = vfp_itos(float64_to_int32_round_to_zero(FT0d, &env->vfp.fp_status));
2c0262af
FB
1040}
1041
b7bcbe95
FB
1042/* floating point conversion */
1043VFP_OP(fcvtd, s)
2c0262af 1044{
53cd6637 1045 FT0d = float32_to_float64(FT0s, &env->vfp.fp_status);
2c0262af
FB
1046}
1047
b7bcbe95
FB
1048VFP_OP(fcvts, d)
1049{
53cd6637 1050 FT0s = float64_to_float32(FT0d, &env->vfp.fp_status);
b7bcbe95
FB
1051}
1052
1053/* Get and Put values from registers. */
1054VFP_OP(getreg_F0, d)
1055{
53cd6637 1056 FT0d = *(float64 *)((char *) env + PARAM1);
b7bcbe95
FB
1057}
1058
1059VFP_OP(getreg_F0, s)
1060{
53cd6637 1061 FT0s = *(float32 *)((char *) env + PARAM1);
b7bcbe95
FB
1062}
1063
1064VFP_OP(getreg_F1, d)
1065{
53cd6637 1066 FT1d = *(float64 *)((char *) env + PARAM1);
b7bcbe95
FB
1067}
1068
1069VFP_OP(getreg_F1, s)
1070{
53cd6637 1071 FT1s = *(float32 *)((char *) env + PARAM1);
b7bcbe95
FB
1072}
1073
1074VFP_OP(setreg_F0, d)
1075{
53cd6637 1076 *(float64 *)((char *) env + PARAM1) = FT0d;
b7bcbe95
FB
1077}
1078
1079VFP_OP(setreg_F0, s)
1080{
53cd6637 1081 *(float32 *)((char *) env + PARAM1) = FT0s;
b7bcbe95
FB
1082}
1083
1084void OPPROTO op_vfp_movl_T0_fpscr(void)
1085{
1086 do_vfp_get_fpscr ();
1087}
1088
1089void OPPROTO op_vfp_movl_T0_fpscr_flags(void)
1090{
1091 T0 = env->vfp.fpscr & (0xf << 28);
1092}
1093
1094void OPPROTO op_vfp_movl_fpscr_T0(void)
1095{
1096 do_vfp_set_fpscr();
1097}
1098
1099/* Move between FT0s to T0 */
1100void OPPROTO op_vfp_mrs(void)
1101{
1102 T0 = vfp_stoi(FT0s);
1103}
1104
1105void OPPROTO op_vfp_msr(void)
1106{
1107 FT0s = vfp_itos(T0);
1108}
1109
1110/* Move between FT0d and {T0,T1} */
1111void OPPROTO op_vfp_mrrd(void)
1112{
1113 CPU_DoubleU u;
1114
1115 u.d = FT0d;
1116 T0 = u.l.lower;
1117 T1 = u.l.upper;
1118}
1119
1120void OPPROTO op_vfp_mdrr(void)
1121{
1122 CPU_DoubleU u;
1123
1124 u.l.lower = T0;
1125 u.l.upper = T1;
1126 FT0d = u.d;
1127}
1128
b5ff1b31
FB
1129/* Copy the most significant bit to T0 to all bits of T1. */
1130void OPPROTO op_signbit_T1_T0(void)
b7bcbe95 1131{
b5ff1b31 1132 T1 = (int32_t)T0 >> 31;
b7bcbe95
FB
1133}
1134
b5ff1b31 1135void OPPROTO op_movl_cp15_T0(void)
b7bcbe95 1136{
b5ff1b31
FB
1137 helper_set_cp15(env, PARAM1, T0);
1138 FORCE_RET();
b7bcbe95
FB
1139}
1140
b5ff1b31 1141void OPPROTO op_movl_T0_cp15(void)
b7bcbe95 1142{
b5ff1b31
FB
1143 T0 = helper_get_cp15(env, PARAM1);
1144 FORCE_RET();
b7bcbe95
FB
1145}
1146
b5ff1b31
FB
1147/* Access to user mode registers from privileged modes. */
1148void OPPROTO op_movl_T0_user(void)
b7bcbe95 1149{
b5ff1b31
FB
1150 int regno = PARAM1;
1151 if (regno == 13) {
1152 T0 = env->banked_r13[0];
1153 } else if (regno == 14) {
1154 T0 = env->banked_r14[0];
1155 } else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
1156 T0 = env->usr_regs[regno - 8];
1157 } else {
1158 T0 = env->regs[regno];
1159 }
1160 FORCE_RET();
1161}
1162
1163
1164void OPPROTO op_movl_user_T0(void)
1165{
1166 int regno = PARAM1;
1167 if (regno == 13) {
1168 env->banked_r13[0] = T0;
1169 } else if (regno == 14) {
1170 env->banked_r14[0] = T0;
1171 } else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
1172 env->usr_regs[regno - 8] = T0;
1173 } else {
1174 env->regs[regno] = T0;
1175 }
1176 FORCE_RET();
b7bcbe95 1177}