]> git.proxmox.com Git - mirror_qemu.git/blame - target-arm/op.c
ARMv7 support.
[mirror_qemu.git] / target-arm / op.c
CommitLineData
2c0262af
FB
1/*
2 * ARM micro operations
5fafdf24 3 *
2c0262af 4 * Copyright (c) 2003 Fabrice Bellard
9ee6e8bb 5 * Copyright (c) 2005-2007 CodeSourcery, LLC
2c0262af
FB
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21#include "exec.h"
22
23#define REGNAME r0
24#define REG (env->regs[0])
25#include "op_template.h"
26
27#define REGNAME r1
28#define REG (env->regs[1])
29#include "op_template.h"
30
31#define REGNAME r2
32#define REG (env->regs[2])
33#include "op_template.h"
34
35#define REGNAME r3
36#define REG (env->regs[3])
37#include "op_template.h"
38
39#define REGNAME r4
40#define REG (env->regs[4])
41#include "op_template.h"
42
43#define REGNAME r5
44#define REG (env->regs[5])
45#include "op_template.h"
46
47#define REGNAME r6
48#define REG (env->regs[6])
49#include "op_template.h"
50
51#define REGNAME r7
52#define REG (env->regs[7])
53#include "op_template.h"
54
55#define REGNAME r8
56#define REG (env->regs[8])
57#include "op_template.h"
58
59#define REGNAME r9
60#define REG (env->regs[9])
61#include "op_template.h"
62
63#define REGNAME r10
64#define REG (env->regs[10])
65#include "op_template.h"
66
67#define REGNAME r11
68#define REG (env->regs[11])
69#include "op_template.h"
70
71#define REGNAME r12
72#define REG (env->regs[12])
73#include "op_template.h"
74
75#define REGNAME r13
76#define REG (env->regs[13])
77#include "op_template.h"
78
79#define REGNAME r14
80#define REG (env->regs[14])
81#include "op_template.h"
82
83#define REGNAME r15
84#define REG (env->regs[15])
99c475ab 85#define SET_REG(x) REG = x & ~(uint32_t)1
2c0262af
FB
86#include "op_template.h"
87
99c475ab
FB
88void OPPROTO op_bx_T0(void)
89{
90 env->regs[15] = T0 & ~(uint32_t)1;
91 env->thumb = (T0 & 1) != 0;
92}
93
2c0262af
FB
94void OPPROTO op_movl_T0_0(void)
95{
96 T0 = 0;
97}
98
99void OPPROTO op_movl_T0_im(void)
100{
101 T0 = PARAM1;
102}
103
104void OPPROTO op_movl_T1_im(void)
105{
106 T1 = PARAM1;
107}
108
7ff4d218
FB
109void OPPROTO op_mov_CF_T1(void)
110{
111 env->CF = ((uint32_t)T1) >> 31;
112}
113
2c0262af
FB
114void OPPROTO op_movl_T2_im(void)
115{
116 T2 = PARAM1;
117}
118
119void OPPROTO op_addl_T1_im(void)
120{
121 T1 += PARAM1;
122}
123
124void OPPROTO op_addl_T1_T2(void)
125{
126 T1 += T2;
127}
128
129void OPPROTO op_subl_T1_T2(void)
130{
131 T1 -= T2;
132}
133
134void OPPROTO op_addl_T0_T1(void)
135{
136 T0 += T1;
137}
138
139void OPPROTO op_addl_T0_T1_cc(void)
140{
141 unsigned int src1;
142 src1 = T0;
143 T0 += T1;
144 env->NZF = T0;
145 env->CF = T0 < src1;
146 env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
147}
148
149void OPPROTO op_adcl_T0_T1(void)
150{
151 T0 += T1 + env->CF;
152}
153
154void OPPROTO op_adcl_T0_T1_cc(void)
155{
156 unsigned int src1;
157 src1 = T0;
158 if (!env->CF) {
159 T0 += T1;
160 env->CF = T0 < src1;
161 } else {
162 T0 += T1 + 1;
163 env->CF = T0 <= src1;
164 }
165 env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
166 env->NZF = T0;
167 FORCE_RET();
168}
169
170#define OPSUB(sub, sbc, res, T0, T1) \
171 \
172void OPPROTO op_ ## sub ## l_T0_T1(void) \
173{ \
174 res = T0 - T1; \
175} \
176 \
177void OPPROTO op_ ## sub ## l_T0_T1_cc(void) \
178{ \
179 unsigned int src1; \
180 src1 = T0; \
181 T0 -= T1; \
182 env->NZF = T0; \
183 env->CF = src1 >= T1; \
184 env->VF = (src1 ^ T1) & (src1 ^ T0); \
185 res = T0; \
186} \
187 \
188void OPPROTO op_ ## sbc ## l_T0_T1(void) \
189{ \
190 res = T0 - T1 + env->CF - 1; \
191} \
192 \
193void OPPROTO op_ ## sbc ## l_T0_T1_cc(void) \
194{ \
195 unsigned int src1; \
196 src1 = T0; \
197 if (!env->CF) { \
198 T0 = T0 - T1 - 1; \
78573df6 199 env->CF = src1 > T1; \
2c0262af
FB
200 } else { \
201 T0 = T0 - T1; \
78573df6 202 env->CF = src1 >= T1; \
2c0262af
FB
203 } \
204 env->VF = (src1 ^ T1) & (src1 ^ T0); \
205 env->NZF = T0; \
206 res = T0; \
207 FORCE_RET(); \
208}
209
210OPSUB(sub, sbc, T0, T0, T1)
211
212OPSUB(rsb, rsc, T0, T1, T0)
213
214void OPPROTO op_andl_T0_T1(void)
215{
216 T0 &= T1;
217}
218
219void OPPROTO op_xorl_T0_T1(void)
220{
221 T0 ^= T1;
222}
223
224void OPPROTO op_orl_T0_T1(void)
225{
226 T0 |= T1;
227}
228
229void OPPROTO op_bicl_T0_T1(void)
230{
231 T0 &= ~T1;
232}
233
9ee6e8bb
PB
234void OPPROTO op_notl_T0(void)
235{
236 T0 = ~T0;
237}
238
2c0262af
FB
239void OPPROTO op_notl_T1(void)
240{
241 T1 = ~T1;
242}
243
244void OPPROTO op_logic_T0_cc(void)
245{
246 env->NZF = T0;
247}
248
249void OPPROTO op_logic_T1_cc(void)
250{
251 env->NZF = T1;
252}
253
254#define EIP (env->regs[15])
255
256void OPPROTO op_test_eq(void)
257{
258 if (env->NZF == 0)
e50e6a20 259 GOTO_LABEL_PARAM(1);;
2c0262af
FB
260 FORCE_RET();
261}
262
263void OPPROTO op_test_ne(void)
264{
265 if (env->NZF != 0)
e50e6a20 266 GOTO_LABEL_PARAM(1);;
2c0262af
FB
267 FORCE_RET();
268}
269
270void OPPROTO op_test_cs(void)
271{
272 if (env->CF != 0)
e50e6a20 273 GOTO_LABEL_PARAM(1);
2c0262af
FB
274 FORCE_RET();
275}
276
277void OPPROTO op_test_cc(void)
278{
279 if (env->CF == 0)
e50e6a20 280 GOTO_LABEL_PARAM(1);
2c0262af
FB
281 FORCE_RET();
282}
283
284void OPPROTO op_test_mi(void)
285{
286 if ((env->NZF & 0x80000000) != 0)
e50e6a20 287 GOTO_LABEL_PARAM(1);
2c0262af
FB
288 FORCE_RET();
289}
290
291void OPPROTO op_test_pl(void)
292{
293 if ((env->NZF & 0x80000000) == 0)
e50e6a20 294 GOTO_LABEL_PARAM(1);
2c0262af
FB
295 FORCE_RET();
296}
297
298void OPPROTO op_test_vs(void)
299{
300 if ((env->VF & 0x80000000) != 0)
e50e6a20 301 GOTO_LABEL_PARAM(1);
2c0262af
FB
302 FORCE_RET();
303}
304
305void OPPROTO op_test_vc(void)
306{
307 if ((env->VF & 0x80000000) == 0)
e50e6a20 308 GOTO_LABEL_PARAM(1);
2c0262af
FB
309 FORCE_RET();
310}
311
312void OPPROTO op_test_hi(void)
313{
314 if (env->CF != 0 && env->NZF != 0)
e50e6a20 315 GOTO_LABEL_PARAM(1);
2c0262af
FB
316 FORCE_RET();
317}
318
319void OPPROTO op_test_ls(void)
320{
321 if (env->CF == 0 || env->NZF == 0)
e50e6a20 322 GOTO_LABEL_PARAM(1);
2c0262af
FB
323 FORCE_RET();
324}
325
326void OPPROTO op_test_ge(void)
327{
328 if (((env->VF ^ env->NZF) & 0x80000000) == 0)
e50e6a20 329 GOTO_LABEL_PARAM(1);
2c0262af
FB
330 FORCE_RET();
331}
332
333void OPPROTO op_test_lt(void)
334{
335 if (((env->VF ^ env->NZF) & 0x80000000) != 0)
e50e6a20 336 GOTO_LABEL_PARAM(1);
2c0262af
FB
337 FORCE_RET();
338}
339
340void OPPROTO op_test_gt(void)
341{
342 if (env->NZF != 0 && ((env->VF ^ env->NZF) & 0x80000000) == 0)
e50e6a20 343 GOTO_LABEL_PARAM(1);
2c0262af
FB
344 FORCE_RET();
345}
346
347void OPPROTO op_test_le(void)
348{
349 if (env->NZF == 0 || ((env->VF ^ env->NZF) & 0x80000000) != 0)
e50e6a20 350 GOTO_LABEL_PARAM(1);
2c0262af
FB
351 FORCE_RET();
352}
353
9ee6e8bb
PB
354void OPPROTO op_test_T0(void)
355{
356 if (T0)
357 GOTO_LABEL_PARAM(1);
358 FORCE_RET();
359}
360void OPPROTO op_testn_T0(void)
361{
362 if (!T0)
363 GOTO_LABEL_PARAM(1);
364 FORCE_RET();
365}
366
c53be334 367void OPPROTO op_goto_tb0(void)
2c0262af 368{
c53be334 369 GOTO_TB(op_goto_tb0, PARAM1, 0);
e50e6a20
FB
370}
371
c53be334 372void OPPROTO op_goto_tb1(void)
e50e6a20 373{
c53be334 374 GOTO_TB(op_goto_tb1, PARAM1, 1);
2c0262af
FB
375}
376
377void OPPROTO op_exit_tb(void)
378{
379 EXIT_TB();
380}
381
b5ff1b31 382void OPPROTO op_movl_T0_cpsr(void)
2c0262af 383{
9ee6e8bb
PB
384 /* Execution state bits always read as zero. */
385 T0 = cpsr_read(env) & ~CPSR_EXEC;
b5ff1b31 386 FORCE_RET();
2c0262af
FB
387}
388
b5ff1b31 389void OPPROTO op_movl_T0_spsr(void)
2c0262af 390{
b5ff1b31
FB
391 T0 = env->spsr;
392}
393
394void OPPROTO op_movl_spsr_T0(void)
395{
396 uint32_t mask = PARAM1;
397 env->spsr = (env->spsr & ~mask) | (T0 & mask);
398}
399
400void OPPROTO op_movl_cpsr_T0(void)
401{
402 cpsr_write(env, T0, PARAM1);
403 FORCE_RET();
2c0262af
FB
404}
405
406void OPPROTO op_mul_T0_T1(void)
407{
408 T0 = T0 * T1;
409}
410
411/* 64 bit unsigned mul */
412void OPPROTO op_mull_T0_T1(void)
413{
414 uint64_t res;
2e134c9c 415 res = (uint64_t)T0 * (uint64_t)T1;
2c0262af
FB
416 T1 = res >> 32;
417 T0 = res;
418}
419
420/* 64 bit signed mul */
421void OPPROTO op_imull_T0_T1(void)
422{
423 uint64_t res;
163a7cb6 424 res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
2c0262af
FB
425 T1 = res >> 32;
426 T0 = res;
427}
428
99c475ab
FB
429/* 48 bit signed mul, top 32 bits */
430void OPPROTO op_imulw_T0_T1(void)
431{
432 uint64_t res;
433 res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
434 T0 = res >> 16;
435}
436
2c0262af
FB
437void OPPROTO op_addq_T0_T1(void)
438{
439 uint64_t res;
440 res = ((uint64_t)T1 << 32) | T0;
441 res += ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
442 T1 = res >> 32;
443 T0 = res;
444}
445
99c475ab
FB
446void OPPROTO op_addq_lo_T0_T1(void)
447{
448 uint64_t res;
449 res = ((uint64_t)T1 << 32) | T0;
450 res += (uint64_t)(env->regs[PARAM1]);
451 T1 = res >> 32;
452 T0 = res;
453}
454
9ee6e8bb
PB
455/* Dual 16-bit accumulate. */
456void OPPROTO op_addq_T0_T1_dual(void)
457{
458 uint64_t res;
459 res = ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
460 res += (int32_t)T0;
461 res += (int32_t)T1;
462 env->regs[PARAM1] = (uint32_t)res;
463 env->regs[PARAM2] = res >> 32;
464}
465
466/* Dual 16-bit subtract accumulate. */
467void OPPROTO op_subq_T0_T1_dual(void)
468{
469 uint64_t res;
470 res = ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
471 res += (int32_t)T0;
472 res -= (int32_t)T1;
473 env->regs[PARAM1] = (uint32_t)res;
474 env->regs[PARAM2] = res >> 32;
475}
476
2c0262af
FB
477void OPPROTO op_logicq_cc(void)
478{
479 env->NZF = (T1 & 0x80000000) | ((T0 | T1) != 0);
480}
481
482/* memory access */
483
b5ff1b31
FB
484#define MEMSUFFIX _raw
485#include "op_mem.h"
2c0262af 486
b5ff1b31
FB
487#if !defined(CONFIG_USER_ONLY)
488#define MEMSUFFIX _user
489#include "op_mem.h"
490#define MEMSUFFIX _kernel
491#include "op_mem.h"
492#endif
2c0262af 493
9ee6e8bb
PB
494void OPPROTO op_clrex(void)
495{
496 cpu_lock();
497 helper_clrex(env);
498 cpu_unlock();
499}
500
2c0262af
FB
501/* shifts */
502
9ee6e8bb
PB
503/* Used by NEON. */
504void OPPROTO op_shll_T0_im(void)
505{
506 T1 = T1 << PARAM1;
507}
508
2c0262af 509/* T1 based */
1e8d4eec 510
2c0262af
FB
511void OPPROTO op_shll_T1_im(void)
512{
513 T1 = T1 << PARAM1;
514}
515
516void OPPROTO op_shrl_T1_im(void)
517{
518 T1 = (uint32_t)T1 >> PARAM1;
519}
520
1e8d4eec
FB
521void OPPROTO op_shrl_T1_0(void)
522{
523 T1 = 0;
524}
525
2c0262af
FB
526void OPPROTO op_sarl_T1_im(void)
527{
528 T1 = (int32_t)T1 >> PARAM1;
529}
530
1e8d4eec
FB
531void OPPROTO op_sarl_T1_0(void)
532{
533 T1 = (int32_t)T1 >> 31;
534}
535
2c0262af
FB
536void OPPROTO op_rorl_T1_im(void)
537{
538 int shift;
539 shift = PARAM1;
540 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
541}
542
88920f34
FB
543void OPPROTO op_rrxl_T1(void)
544{
545 T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31);
546}
547
2c0262af
FB
548/* T1 based, set C flag */
549void OPPROTO op_shll_T1_im_cc(void)
550{
551 env->CF = (T1 >> (32 - PARAM1)) & 1;
552 T1 = T1 << PARAM1;
553}
554
555void OPPROTO op_shrl_T1_im_cc(void)
556{
557 env->CF = (T1 >> (PARAM1 - 1)) & 1;
558 T1 = (uint32_t)T1 >> PARAM1;
559}
560
1e8d4eec
FB
561void OPPROTO op_shrl_T1_0_cc(void)
562{
563 env->CF = (T1 >> 31) & 1;
564 T1 = 0;
565}
566
2c0262af
FB
567void OPPROTO op_sarl_T1_im_cc(void)
568{
569 env->CF = (T1 >> (PARAM1 - 1)) & 1;
570 T1 = (int32_t)T1 >> PARAM1;
571}
572
1e8d4eec
FB
573void OPPROTO op_sarl_T1_0_cc(void)
574{
575 env->CF = (T1 >> 31) & 1;
576 T1 = (int32_t)T1 >> 31;
577}
578
2c0262af
FB
579void OPPROTO op_rorl_T1_im_cc(void)
580{
581 int shift;
582 shift = PARAM1;
583 env->CF = (T1 >> (shift - 1)) & 1;
584 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
585}
586
88920f34
FB
587void OPPROTO op_rrxl_T1_cc(void)
588{
589 uint32_t c;
590 c = T1 & 1;
591 T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31);
592 env->CF = c;
593}
594
2c0262af
FB
595/* T2 based */
596void OPPROTO op_shll_T2_im(void)
597{
598 T2 = T2 << PARAM1;
599}
600
601void OPPROTO op_shrl_T2_im(void)
602{
603 T2 = (uint32_t)T2 >> PARAM1;
604}
605
1e8d4eec
FB
606void OPPROTO op_shrl_T2_0(void)
607{
608 T2 = 0;
609}
610
2c0262af
FB
611void OPPROTO op_sarl_T2_im(void)
612{
613 T2 = (int32_t)T2 >> PARAM1;
614}
615
1e8d4eec
FB
616void OPPROTO op_sarl_T2_0(void)
617{
618 T2 = (int32_t)T2 >> 31;
619}
620
2c0262af
FB
621void OPPROTO op_rorl_T2_im(void)
622{
623 int shift;
624 shift = PARAM1;
625 T2 = ((uint32_t)T2 >> shift) | (T2 << (32 - shift));
626}
627
1e8d4eec
FB
628void OPPROTO op_rrxl_T2(void)
629{
630 T2 = ((uint32_t)T2 >> 1) | ((uint32_t)env->CF << 31);
631}
632
2c0262af
FB
633/* T1 based, use T0 as shift count */
634
635void OPPROTO op_shll_T1_T0(void)
636{
637 int shift;
638 shift = T0 & 0xff;
639 if (shift >= 32)
640 T1 = 0;
641 else
642 T1 = T1 << shift;
643 FORCE_RET();
644}
645
646void OPPROTO op_shrl_T1_T0(void)
647{
648 int shift;
649 shift = T0 & 0xff;
650 if (shift >= 32)
651 T1 = 0;
652 else
653 T1 = (uint32_t)T1 >> shift;
654 FORCE_RET();
655}
656
657void OPPROTO op_sarl_T1_T0(void)
658{
659 int shift;
660 shift = T0 & 0xff;
661 if (shift >= 32)
662 shift = 31;
663 T1 = (int32_t)T1 >> shift;
664}
665
666void OPPROTO op_rorl_T1_T0(void)
667{
668 int shift;
669 shift = T0 & 0x1f;
670 if (shift) {
671 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
672 }
673 FORCE_RET();
674}
675
676/* T1 based, use T0 as shift count and compute CF */
677
678void OPPROTO op_shll_T1_T0_cc(void)
679{
680 int shift;
681 shift = T0 & 0xff;
682 if (shift >= 32) {
683 if (shift == 32)
684 env->CF = T1 & 1;
685 else
686 env->CF = 0;
687 T1 = 0;
688 } else if (shift != 0) {
689 env->CF = (T1 >> (32 - shift)) & 1;
690 T1 = T1 << shift;
691 }
692 FORCE_RET();
693}
694
695void OPPROTO op_shrl_T1_T0_cc(void)
696{
697 int shift;
698 shift = T0 & 0xff;
699 if (shift >= 32) {
700 if (shift == 32)
701 env->CF = (T1 >> 31) & 1;
702 else
703 env->CF = 0;
704 T1 = 0;
705 } else if (shift != 0) {
706 env->CF = (T1 >> (shift - 1)) & 1;
707 T1 = (uint32_t)T1 >> shift;
708 }
709 FORCE_RET();
710}
711
712void OPPROTO op_sarl_T1_T0_cc(void)
713{
714 int shift;
715 shift = T0 & 0xff;
716 if (shift >= 32) {
717 env->CF = (T1 >> 31) & 1;
718 T1 = (int32_t)T1 >> 31;
1b1afeb9 719 } else if (shift != 0) {
2c0262af
FB
720 env->CF = (T1 >> (shift - 1)) & 1;
721 T1 = (int32_t)T1 >> shift;
722 }
723 FORCE_RET();
724}
725
726void OPPROTO op_rorl_T1_T0_cc(void)
727{
728 int shift1, shift;
729 shift1 = T0 & 0xff;
730 shift = shift1 & 0x1f;
731 if (shift == 0) {
732 if (shift1 != 0)
733 env->CF = (T1 >> 31) & 1;
734 } else {
735 env->CF = (T1 >> (shift - 1)) & 1;
736 T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
737 }
738 FORCE_RET();
739}
740
99c475ab
FB
741/* misc */
742void OPPROTO op_clz_T0(void)
743{
744 int count;
745 for (count = 32; T0 > 0; count--)
746 T0 = T0 >> 1;
747 T0 = count;
748 FORCE_RET();
749}
750
751void OPPROTO op_sarl_T0_im(void)
752{
753 T0 = (int32_t)T0 >> PARAM1;
754}
755
b5ff1b31
FB
756/* Sign/zero extend */
757void OPPROTO op_sxth_T0(void)
99c475ab
FB
758{
759 T0 = (int16_t)T0;
760}
761
b5ff1b31 762void OPPROTO op_sxth_T1(void)
99c475ab
FB
763{
764 T1 = (int16_t)T1;
765}
766
b5ff1b31
FB
767void OPPROTO op_sxtb_T1(void)
768{
769 T1 = (int8_t)T1;
770}
771
772void OPPROTO op_uxtb_T1(void)
773{
774 T1 = (uint8_t)T1;
775}
776
777void OPPROTO op_uxth_T1(void)
778{
779 T1 = (uint16_t)T1;
780}
781
782void OPPROTO op_sxtb16_T1(void)
783{
784 uint32_t res;
785 res = (uint16_t)(int8_t)T1;
786 res |= (uint32_t)(int8_t)(T1 >> 16) << 16;
787 T1 = res;
788}
789
790void OPPROTO op_uxtb16_T1(void)
791{
792 uint32_t res;
793 res = (uint16_t)(uint8_t)T1;
794 res |= (uint32_t)(uint8_t)(T1 >> 16) << 16;
795 T1 = res;
796}
797
99c475ab
FB
798#define SIGNBIT (uint32_t)0x80000000
799/* saturating arithmetic */
800void OPPROTO op_addl_T0_T1_setq(void)
801{
802 uint32_t res;
803
804 res = T0 + T1;
805 if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT))
806 env->QF = 1;
807
808 T0 = res;
809 FORCE_RET();
810}
811
812void OPPROTO op_addl_T0_T1_saturate(void)
813{
814 uint32_t res;
815
816 res = T0 + T1;
817 if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT)) {
818 env->QF = 1;
819 if (T0 & SIGNBIT)
820 T0 = 0x80000000;
821 else
822 T0 = 0x7fffffff;
823 }
824 else
825 T0 = res;
3b46e624 826
99c475ab
FB
827 FORCE_RET();
828}
829
830void OPPROTO op_subl_T0_T1_saturate(void)
831{
832 uint32_t res;
833
834 res = T0 - T1;
835 if (((res ^ T0) & SIGNBIT) && ((T0 ^ T1) & SIGNBIT)) {
836 env->QF = 1;
837 if (T0 & SIGNBIT)
567d4107 838 T0 = 0x80000000;
99c475ab
FB
839 else
840 T0 = 0x7fffffff;
841 }
842 else
843 T0 = res;
3b46e624 844
99c475ab
FB
845 FORCE_RET();
846}
847
ff8263a9
FB
848void OPPROTO op_double_T1_saturate(void)
849{
850 int32_t val;
851
852 val = T1;
853 if (val >= 0x40000000) {
854 T1 = 0x7fffffff;
855 env->QF = 1;
856 } else if (val <= (int32_t)0xc0000000) {
857 T1 = 0x80000000;
858 env->QF = 1;
859 } else {
860 T1 = val << 1;
861 }
862 FORCE_RET();
863}
864
9ee6e8bb
PB
865/* Unsigned saturating arithmetic for NEON. */
866void OPPROTO op_addl_T0_T1_usaturate(void)
867{
868 uint32_t res;
869
870 res = T0 + T1;
871 if (res < T0) {
872 env->QF = 1;
873 T0 = 0xffffffff;
874 } else {
875 T0 = res;
876 }
877
878 FORCE_RET();
879}
880
881void OPPROTO op_subl_T0_T1_usaturate(void)
882{
883 uint32_t res;
884
885 res = T0 - T1;
886 if (res > T0) {
887 env->QF = 1;
888 T0 = 0;
889 } else {
890 T0 = res;
891 }
892
893 FORCE_RET();
894}
895
896/* Thumb shift by immediate */
897void OPPROTO op_shll_T0_im_thumb_cc(void)
99c475ab
FB
898{
899 int shift;
900 shift = PARAM1;
901 if (shift != 0) {
aa268ea6 902 env->CF = (T0 >> (32 - shift)) & 1;
99c475ab
FB
903 T0 = T0 << shift;
904 }
905 env->NZF = T0;
906 FORCE_RET();
907}
908
9ee6e8bb
PB
909void OPPROTO op_shll_T0_im_thumb(void)
910{
911 T0 = T0 << PARAM1;
912 FORCE_RET();
913}
914
915void OPPROTO op_shrl_T0_im_thumb_cc(void)
99c475ab
FB
916{
917 int shift;
918
919 shift = PARAM1;
920 if (shift == 0) {
aa268ea6 921 env->CF = ((uint32_t)T0) >> 31;
99c475ab
FB
922 T0 = 0;
923 } else {
924 env->CF = (T0 >> (shift - 1)) & 1;
925 T0 = T0 >> shift;
926 }
5899f386 927 env->NZF = T0;
99c475ab
FB
928 FORCE_RET();
929}
930
9ee6e8bb
PB
931void OPPROTO op_shrl_T0_im_thumb(void)
932{
933 int shift;
934
935 shift = PARAM1;
936 if (shift == 0) {
937 T0 = 0;
938 } else {
939 T0 = T0 >> shift;
940 }
941 FORCE_RET();
942}
943
944void OPPROTO op_sarl_T0_im_thumb_cc(void)
99c475ab
FB
945{
946 int shift;
947
948 shift = PARAM1;
949 if (shift == 0) {
950 T0 = ((int32_t)T0) >> 31;
951 env->CF = T0 & 1;
952 } else {
953 env->CF = (T0 >> (shift - 1)) & 1;
954 T0 = ((int32_t)T0) >> shift;
955 }
956 env->NZF = T0;
957 FORCE_RET();
958}
959
9ee6e8bb
PB
960void OPPROTO op_sarl_T0_im_thumb(void)
961{
962 int shift;
963
964 shift = PARAM1;
965 if (shift == 0) {
966 env->CF = T0 & 1;
967 } else {
968 T0 = ((int32_t)T0) >> shift;
969 }
970 FORCE_RET();
971}
972
2c0262af
FB
973/* exceptions */
974
975void OPPROTO op_swi(void)
976{
977 env->exception_index = EXCP_SWI;
978 cpu_loop_exit();
979}
980
981void OPPROTO op_undef_insn(void)
982{
983 env->exception_index = EXCP_UDEF;
984 cpu_loop_exit();
985}
986
1fddef4b
FB
987void OPPROTO op_debug(void)
988{
989 env->exception_index = EXCP_DEBUG;
990 cpu_loop_exit();
991}
992
9332f9da
FB
993void OPPROTO op_wfi(void)
994{
995 env->exception_index = EXCP_HLT;
996 env->halted = 1;
997 cpu_loop_exit();
998}
999
06c949e6
PB
1000void OPPROTO op_bkpt(void)
1001{
1002 env->exception_index = EXCP_BKPT;
1003 cpu_loop_exit();
1004}
1005
9ee6e8bb
PB
1006void OPPROTO op_exception_exit(void)
1007{
1008 env->exception_index = EXCP_EXCEPTION_EXIT;
1009 cpu_loop_exit();
1010}
1011
b7bcbe95
FB
1012/* VFP support. We follow the convention used for VFP instrunctions:
1013 Single precition routines have a "s" suffix, double precision a
1014 "d" suffix. */
2c0262af 1015
b7bcbe95 1016#define VFP_OP(name, p) void OPPROTO op_vfp_##name##p(void)
2c0262af 1017
53cd6637 1018#define VFP_BINOP(name) \
b7bcbe95
FB
1019VFP_OP(name, s) \
1020{ \
53cd6637 1021 FT0s = float32_ ## name (FT0s, FT1s, &env->vfp.fp_status); \
b7bcbe95
FB
1022} \
1023VFP_OP(name, d) \
1024{ \
53cd6637 1025 FT0d = float64_ ## name (FT0d, FT1d, &env->vfp.fp_status); \
b7bcbe95 1026}
53cd6637
FB
1027VFP_BINOP(add)
1028VFP_BINOP(sub)
1029VFP_BINOP(mul)
1030VFP_BINOP(div)
b7bcbe95
FB
1031#undef VFP_BINOP
1032
1033#define VFP_HELPER(name) \
1034VFP_OP(name, s) \
1035{ \
1036 do_vfp_##name##s(); \
1037} \
1038VFP_OP(name, d) \
1039{ \
1040 do_vfp_##name##d(); \
1041}
1042VFP_HELPER(abs)
1043VFP_HELPER(sqrt)
1044VFP_HELPER(cmp)
1045VFP_HELPER(cmpe)
1046#undef VFP_HELPER
1047
1048/* XXX: Will this do the right thing for NANs. Should invert the signbit
1049 without looking at the rest of the value. */
1050VFP_OP(neg, s)
1051{
53cd6637 1052 FT0s = float32_chs(FT0s);
b7bcbe95
FB
1053}
1054
1055VFP_OP(neg, d)
1056{
53cd6637 1057 FT0d = float64_chs(FT0d);
b7bcbe95
FB
1058}
1059
1060VFP_OP(F1_ld0, s)
1061{
53cd6637
FB
1062 union {
1063 uint32_t i;
1064 float32 s;
1065 } v;
1066 v.i = 0;
1067 FT1s = v.s;
b7bcbe95
FB
1068}
1069
1070VFP_OP(F1_ld0, d)
1071{
53cd6637
FB
1072 union {
1073 uint64_t i;
1074 float64 d;
1075 } v;
1076 v.i = 0;
1077 FT1d = v.d;
b7bcbe95
FB
1078}
1079
1080/* Helper routines to perform bitwise copies between float and int. */
53cd6637 1081static inline float32 vfp_itos(uint32_t i)
b7bcbe95
FB
1082{
1083 union {
1084 uint32_t i;
53cd6637 1085 float32 s;
b7bcbe95
FB
1086 } v;
1087
1088 v.i = i;
1089 return v.s;
1090}
1091
53cd6637 1092static inline uint32_t vfp_stoi(float32 s)
b7bcbe95
FB
1093{
1094 union {
1095 uint32_t i;
53cd6637 1096 float32 s;
b7bcbe95
FB
1097 } v;
1098
1099 v.s = s;
1100 return v.i;
1101}
1102
9ee6e8bb
PB
1103static inline float64 vfp_itod(uint64_t i)
1104{
1105 union {
1106 uint64_t i;
1107 float64 d;
1108 } v;
1109
1110 v.i = i;
1111 return v.d;
1112}
1113
1114static inline uint64_t vfp_dtoi(float64 d)
1115{
1116 union {
1117 uint64_t i;
1118 float64 d;
1119 } v;
1120
1121 v.d = d;
1122 return v.i;
1123}
1124
b7bcbe95
FB
1125/* Integer to float conversion. */
1126VFP_OP(uito, s)
1127{
53cd6637 1128 FT0s = uint32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
b7bcbe95
FB
1129}
1130
1131VFP_OP(uito, d)
1132{
53cd6637 1133 FT0d = uint32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
b7bcbe95
FB
1134}
1135
1136VFP_OP(sito, s)
1137{
53cd6637 1138 FT0s = int32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
b7bcbe95
FB
1139}
1140
1141VFP_OP(sito, d)
1142{
53cd6637 1143 FT0d = int32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
b7bcbe95
FB
1144}
1145
1146/* Float to integer conversion. */
1147VFP_OP(toui, s)
1148{
53cd6637 1149 FT0s = vfp_itos(float32_to_uint32(FT0s, &env->vfp.fp_status));
b7bcbe95
FB
1150}
1151
1152VFP_OP(toui, d)
1153{
53cd6637 1154 FT0s = vfp_itos(float64_to_uint32(FT0d, &env->vfp.fp_status));
b7bcbe95
FB
1155}
1156
1157VFP_OP(tosi, s)
1158{
53cd6637 1159 FT0s = vfp_itos(float32_to_int32(FT0s, &env->vfp.fp_status));
b7bcbe95
FB
1160}
1161
1162VFP_OP(tosi, d)
1163{
53cd6637 1164 FT0s = vfp_itos(float64_to_int32(FT0d, &env->vfp.fp_status));
b7bcbe95
FB
1165}
1166
1167/* TODO: Set rounding mode properly. */
1168VFP_OP(touiz, s)
1169{
53cd6637 1170 FT0s = vfp_itos(float32_to_uint32_round_to_zero(FT0s, &env->vfp.fp_status));
b7bcbe95
FB
1171}
1172
1173VFP_OP(touiz, d)
1174{
53cd6637 1175 FT0s = vfp_itos(float64_to_uint32_round_to_zero(FT0d, &env->vfp.fp_status));
b7bcbe95
FB
1176}
1177
1178VFP_OP(tosiz, s)
1179{
53cd6637 1180 FT0s = vfp_itos(float32_to_int32_round_to_zero(FT0s, &env->vfp.fp_status));
b7bcbe95
FB
1181}
1182
1183VFP_OP(tosiz, d)
2c0262af 1184{
53cd6637 1185 FT0s = vfp_itos(float64_to_int32_round_to_zero(FT0d, &env->vfp.fp_status));
2c0262af
FB
1186}
1187
b7bcbe95
FB
1188/* floating point conversion */
1189VFP_OP(fcvtd, s)
2c0262af 1190{
53cd6637 1191 FT0d = float32_to_float64(FT0s, &env->vfp.fp_status);
2c0262af
FB
1192}
1193
b7bcbe95
FB
1194VFP_OP(fcvts, d)
1195{
53cd6637 1196 FT0s = float64_to_float32(FT0d, &env->vfp.fp_status);
b7bcbe95
FB
1197}
1198
9ee6e8bb
PB
1199/* VFP3 fixed point conversion. */
1200#define VFP_CONV_FIX(name, p, ftype, itype, sign) \
1201VFP_OP(name##to, p) \
1202{ \
1203 ftype tmp; \
1204 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(FT0##p), \
1205 &env->vfp.fp_status); \
1206 FT0##p = ftype##_scalbn(tmp, PARAM1, &env->vfp.fp_status); \
1207} \
1208VFP_OP(to##name, p) \
1209{ \
1210 ftype tmp; \
1211 tmp = ftype##_scalbn(FT0##p, PARAM1, &env->vfp.fp_status); \
1212 FT0##p = vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
1213 &env->vfp.fp_status)); \
1214}
1215
1216VFP_CONV_FIX(sh, d, float64, int16, )
1217VFP_CONV_FIX(sl, d, float64, int32, )
1218VFP_CONV_FIX(uh, d, float64, uint16, u)
1219VFP_CONV_FIX(ul, d, float64, uint32, u)
1220VFP_CONV_FIX(sh, s, float32, int16, )
1221VFP_CONV_FIX(sl, s, float32, int32, )
1222VFP_CONV_FIX(uh, s, float32, uint16, u)
1223VFP_CONV_FIX(ul, s, float32, uint32, u)
1224
b7bcbe95
FB
1225/* Get and Put values from registers. */
1226VFP_OP(getreg_F0, d)
1227{
53cd6637 1228 FT0d = *(float64 *)((char *) env + PARAM1);
b7bcbe95
FB
1229}
1230
1231VFP_OP(getreg_F0, s)
1232{
53cd6637 1233 FT0s = *(float32 *)((char *) env + PARAM1);
b7bcbe95
FB
1234}
1235
1236VFP_OP(getreg_F1, d)
1237{
53cd6637 1238 FT1d = *(float64 *)((char *) env + PARAM1);
b7bcbe95
FB
1239}
1240
1241VFP_OP(getreg_F1, s)
1242{
53cd6637 1243 FT1s = *(float32 *)((char *) env + PARAM1);
b7bcbe95
FB
1244}
1245
1246VFP_OP(setreg_F0, d)
1247{
53cd6637 1248 *(float64 *)((char *) env + PARAM1) = FT0d;
b7bcbe95
FB
1249}
1250
1251VFP_OP(setreg_F0, s)
1252{
53cd6637 1253 *(float32 *)((char *) env + PARAM1) = FT0s;
b7bcbe95
FB
1254}
1255
1256void OPPROTO op_vfp_movl_T0_fpscr(void)
1257{
1258 do_vfp_get_fpscr ();
1259}
1260
1261void OPPROTO op_vfp_movl_T0_fpscr_flags(void)
1262{
40f137e1 1263 T0 = env->vfp.xregs[ARM_VFP_FPSCR] & (0xf << 28);
b7bcbe95
FB
1264}
1265
1266void OPPROTO op_vfp_movl_fpscr_T0(void)
1267{
1268 do_vfp_set_fpscr();
1269}
1270
40f137e1
PB
1271void OPPROTO op_vfp_movl_T0_xreg(void)
1272{
1273 T0 = env->vfp.xregs[PARAM1];
1274}
1275
1276void OPPROTO op_vfp_movl_xreg_T0(void)
1277{
1278 env->vfp.xregs[PARAM1] = T0;
1279}
1280
b7bcbe95
FB
1281/* Move between FT0s to T0 */
1282void OPPROTO op_vfp_mrs(void)
1283{
1284 T0 = vfp_stoi(FT0s);
1285}
1286
1287void OPPROTO op_vfp_msr(void)
1288{
1289 FT0s = vfp_itos(T0);
1290}
1291
1292/* Move between FT0d and {T0,T1} */
1293void OPPROTO op_vfp_mrrd(void)
1294{
1295 CPU_DoubleU u;
3b46e624 1296
b7bcbe95
FB
1297 u.d = FT0d;
1298 T0 = u.l.lower;
1299 T1 = u.l.upper;
1300}
1301
1302void OPPROTO op_vfp_mdrr(void)
1303{
1304 CPU_DoubleU u;
3b46e624 1305
b7bcbe95
FB
1306 u.l.lower = T0;
1307 u.l.upper = T1;
1308 FT0d = u.d;
1309}
1310
9ee6e8bb
PB
1311/* Load immediate. PARAM1 is the 32 most significant bits of the value. */
1312void OPPROTO op_vfp_fconstd(void)
1313{
1314 CPU_DoubleU u;
1315 u.l.upper = PARAM1;
1316 u.l.lower = 0;
1317 FT0d = u.d;
1318}
1319
1320void OPPROTO op_vfp_fconsts(void)
1321{
1322 FT0s = vfp_itos(PARAM1);
1323}
1324
c1713132 1325/* Copy the most significant bit of T0 to all bits of T1. */
b5ff1b31 1326void OPPROTO op_signbit_T1_T0(void)
b7bcbe95 1327{
b5ff1b31 1328 T1 = (int32_t)T0 >> 31;
b7bcbe95
FB
1329}
1330
c1713132
AZ
1331void OPPROTO op_movl_cp_T0(void)
1332{
1333 helper_set_cp(env, PARAM1, T0);
1334 FORCE_RET();
1335}
1336
1337void OPPROTO op_movl_T0_cp(void)
1338{
1339 T0 = helper_get_cp(env, PARAM1);
1340 FORCE_RET();
1341}
1342
b5ff1b31 1343void OPPROTO op_movl_cp15_T0(void)
b7bcbe95 1344{
b5ff1b31
FB
1345 helper_set_cp15(env, PARAM1, T0);
1346 FORCE_RET();
b7bcbe95
FB
1347}
1348
b5ff1b31 1349void OPPROTO op_movl_T0_cp15(void)
b7bcbe95 1350{
b5ff1b31
FB
1351 T0 = helper_get_cp15(env, PARAM1);
1352 FORCE_RET();
b7bcbe95
FB
1353}
1354
b5ff1b31
FB
1355/* Access to user mode registers from privileged modes. */
1356void OPPROTO op_movl_T0_user(void)
b7bcbe95 1357{
b5ff1b31
FB
1358 int regno = PARAM1;
1359 if (regno == 13) {
1360 T0 = env->banked_r13[0];
1361 } else if (regno == 14) {
1362 T0 = env->banked_r14[0];
1363 } else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
1364 T0 = env->usr_regs[regno - 8];
1365 } else {
1366 T0 = env->regs[regno];
1367 }
1368 FORCE_RET();
1369}
1370
1371
1372void OPPROTO op_movl_user_T0(void)
1373{
1374 int regno = PARAM1;
1375 if (regno == 13) {
1376 env->banked_r13[0] = T0;
1377 } else if (regno == 14) {
1378 env->banked_r14[0] = T0;
1379 } else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
1380 env->usr_regs[regno - 8] = T0;
1381 } else {
1382 env->regs[regno] = T0;
1383 }
1384 FORCE_RET();
b7bcbe95 1385}
191abaa2 1386
9ee6e8bb 1387void OPPROTO op_movl_T0_T1(void)
191abaa2 1388{
9ee6e8bb 1389 T0 = T1;
191abaa2
PB
1390}
1391
1392void OPPROTO op_movl_T0_T2(void)
1393{
1394 T0 = T2;
1395}
18c9b560 1396
9ee6e8bb
PB
1397void OPPROTO op_movl_T1_T0(void)
1398{
1399 T1 = T0;
1400}
1401
1402void OPPROTO op_movl_T1_T2(void)
1403{
1404 T1 = T2;
1405}
1406
1407void OPPROTO op_movl_T2_T0(void)
1408{
1409 T2 = T0;
1410}
1411
1412/* ARMv6 Media instructions. */
1413
1414/* Note that signed overflow is undefined in C. The following routines are
1415 careful to use unsigned types where modulo arithmetic is required.
1416 Failure to do so _will_ break on newer gcc. */
1417
1418/* Signed saturating arithmetic. */
1419
1420/* Perform 16-bit signed satruating addition. */
1421static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1422{
1423 uint16_t res;
1424
1425 res = a + b;
1426 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
1427 if (a & 0x8000)
1428 res = 0x8000;
1429 else
1430 res = 0x7fff;
1431 }
1432 return res;
1433}
1434
1435/* Perform 8-bit signed satruating addition. */
1436static inline uint8_t add8_sat(uint8_t a, uint8_t b)
1437{
1438 uint8_t res;
1439
1440 res = a + b;
1441 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
1442 if (a & 0x80)
1443 res = 0x80;
1444 else
1445 res = 0x7f;
1446 }
1447 return res;
1448}
1449
1450/* Perform 16-bit signed satruating subtraction. */
1451static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
1452{
1453 uint16_t res;
1454
1455 res = a - b;
1456 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
1457 if (a & 0x8000)
1458 res = 0x8000;
1459 else
1460 res = 0x7fff;
1461 }
1462 return res;
1463}
1464
1465/* Perform 8-bit signed satruating subtraction. */
1466static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
1467{
1468 uint8_t res;
1469
1470 res = a - b;
1471 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
1472 if (a & 0x80)
1473 res = 0x80;
1474 else
1475 res = 0x7f;
1476 }
1477 return res;
1478}
1479
1480#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
1481#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
1482#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
1483#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
1484#define PFX q
1485
1486#include "op_addsub.h"
1487
1488/* Unsigned saturating arithmetic. */
1489static inline uint16_t add16_usat(uint16_t a, uint8_t b)
1490{
1491 uint16_t res;
1492 res = a + b;
1493 if (res < a)
1494 res = 0xffff;
1495 return res;
1496}
1497
1498static inline uint16_t sub16_usat(uint16_t a, uint8_t b)
1499{
1500 if (a < b)
1501 return a - b;
1502 else
1503 return 0;
1504}
1505
1506static inline uint8_t add8_usat(uint8_t a, uint8_t b)
1507{
1508 uint8_t res;
1509 res = a + b;
1510 if (res < a)
1511 res = 0xff;
1512 return res;
1513}
1514
1515static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
1516{
1517 if (a < b)
1518 return a - b;
1519 else
1520 return 0;
1521}
1522
1523#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
1524#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
1525#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
1526#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
1527#define PFX uq
1528
1529#include "op_addsub.h"
1530
1531/* Signed modulo arithmetic. */
1532#define SARITH16(a, b, n, op) do { \
1533 int32_t sum; \
1534 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
1535 RESULT(sum, n, 16); \
1536 if (sum >= 0) \
1537 ge |= 3 << (n * 2); \
1538 } while(0)
1539
1540#define SARITH8(a, b, n, op) do { \
1541 int32_t sum; \
1542 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
1543 RESULT(sum, n, 8); \
1544 if (sum >= 0) \
1545 ge |= 1 << n; \
1546 } while(0)
1547
1548
1549#define ADD16(a, b, n) SARITH16(a, b, n, +)
1550#define SUB16(a, b, n) SARITH16(a, b, n, -)
1551#define ADD8(a, b, n) SARITH8(a, b, n, +)
1552#define SUB8(a, b, n) SARITH8(a, b, n, -)
1553#define PFX s
1554#define ARITH_GE
1555
1556#include "op_addsub.h"
1557
1558/* Unsigned modulo arithmetic. */
1559#define ADD16(a, b, n) do { \
1560 uint32_t sum; \
1561 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
1562 RESULT(sum, n, 16); \
1563 if ((sum >> 16) == 0) \
1564 ge |= 3 << (n * 2); \
1565 } while(0)
1566
1567#define ADD8(a, b, n) do { \
1568 uint32_t sum; \
1569 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
1570 RESULT(sum, n, 8); \
1571 if ((sum >> 8) == 0) \
1572 ge |= 3 << (n * 2); \
1573 } while(0)
1574
1575#define SUB16(a, b, n) do { \
1576 uint32_t sum; \
1577 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
1578 RESULT(sum, n, 16); \
1579 if ((sum >> 16) == 0) \
1580 ge |= 3 << (n * 2); \
1581 } while(0)
1582
1583#define SUB8(a, b, n) do { \
1584 uint32_t sum; \
1585 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
1586 RESULT(sum, n, 8); \
1587 if ((sum >> 8) == 0) \
1588 ge |= 3 << (n * 2); \
1589 } while(0)
1590
1591#define PFX u
1592#define ARITH_GE
1593
1594#include "op_addsub.h"
1595
1596/* Halved signed arithmetic. */
1597#define ADD16(a, b, n) \
1598 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
1599#define SUB16(a, b, n) \
1600 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
1601#define ADD8(a, b, n) \
1602 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
1603#define SUB8(a, b, n) \
1604 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
1605#define PFX sh
1606
1607#include "op_addsub.h"
1608
1609/* Halved unsigned arithmetic. */
1610#define ADD16(a, b, n) \
1611 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
1612#define SUB16(a, b, n) \
1613 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
1614#define ADD8(a, b, n) \
1615 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
1616#define SUB8(a, b, n) \
1617 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
1618#define PFX uh
1619
1620#include "op_addsub.h"
1621
1622void OPPROTO op_pkhtb_T0_T1(void)
1623{
1624 T0 = (T0 & 0xffff0000) | (T1 & 0xffff);
1625}
1626
1627void OPPROTO op_pkhbt_T0_T1(void)
1628{
1629 T0 = (T0 & 0xffff) | (T1 & 0xffff0000);
1630}
1631void OPPROTO op_rev_T0(void)
1632{
1633 T0 = ((T0 & 0xff000000) >> 24)
1634 | ((T0 & 0x00ff0000) >> 8)
1635 | ((T0 & 0x0000ff00) << 8)
1636 | ((T0 & 0x000000ff) << 24);
1637}
1638
1639void OPPROTO op_revh_T0(void)
1640{
1641 T0 = (T0 >> 16) | (T0 << 16);
1642}
1643
1644void OPPROTO op_rev16_T0(void)
1645{
1646 T0 = ((T0 & 0xff000000) >> 8)
1647 | ((T0 & 0x00ff0000) << 8)
1648 | ((T0 & 0x0000ff00) >> 8)
1649 | ((T0 & 0x000000ff) << 8);
1650}
1651
1652void OPPROTO op_revsh_T0(void)
1653{
1654 T0 = (int16_t)( ((T0 & 0x0000ff00) >> 8)
1655 | ((T0 & 0x000000ff) << 8));
1656}
1657
1658void OPPROTO op_rbit_T0(void)
1659{
1660 T0 = ((T0 & 0xff000000) >> 24)
1661 | ((T0 & 0x00ff0000) >> 8)
1662 | ((T0 & 0x0000ff00) << 8)
1663 | ((T0 & 0x000000ff) << 24);
1664 T0 = ((T0 & 0xf0f0f0f0) >> 4)
1665 | ((T0 & 0x0f0f0f0f) << 4);
1666 T0 = ((T0 & 0x88888888) >> 3)
1667 | ((T0 & 0x44444444) >> 1)
1668 | ((T0 & 0x22222222) << 1)
1669 | ((T0 & 0x11111111) << 3);
1670}
1671
1672/* Swap low and high halfwords. */
1673void OPPROTO op_swap_half_T1(void)
1674{
1675 T1 = (T1 >> 16) | (T1 << 16);
1676 FORCE_RET();
1677}
1678
1679/* Dual 16-bit signed multiply. */
1680void OPPROTO op_mul_dual_T0_T1(void)
1681{
1682 int32_t low;
1683 int32_t high;
1684 low = (int32_t)(int16_t)T0 * (int32_t)(int16_t)T1;
1685 high = (((int32_t)T0) >> 16) * (((int32_t)T1) >> 16);
1686 T0 = low;
1687 T1 = high;
1688}
1689
1690void OPPROTO op_sel_T0_T1(void)
1691{
1692 uint32_t mask;
1693 uint32_t flags;
1694
1695 flags = env->GE;
1696 mask = 0;
1697 if (flags & 1)
1698 mask |= 0xff;
1699 if (flags & 2)
1700 mask |= 0xff00;
1701 if (flags & 4)
1702 mask |= 0xff0000;
1703 if (flags & 8)
1704 mask |= 0xff000000;
1705 T0 = (T0 & mask) | (T1 & ~mask);
1706 FORCE_RET();
1707}
1708
1709void OPPROTO op_roundqd_T0_T1(void)
1710{
1711 T0 = T1 + ((uint32_t)T0 >> 31);
1712}
1713
1714/* Signed saturation. */
1715static inline uint32_t do_ssat(int32_t val, int shift)
1716{
1717 int32_t top;
1718 uint32_t mask;
1719
1720 shift = PARAM1;
1721 top = val >> shift;
1722 mask = (1u << shift) - 1;
1723 if (top > 0) {
1724 env->QF = 1;
1725 return mask;
1726 } else if (top < -1) {
1727 env->QF = 1;
1728 return ~mask;
1729 }
1730 return val;
1731}
1732
1733/* Unsigned saturation. */
1734static inline uint32_t do_usat(int32_t val, int shift)
1735{
1736 uint32_t max;
1737
1738 shift = PARAM1;
1739 max = (1u << shift) - 1;
1740 if (val < 0) {
1741 env->QF = 1;
1742 return 0;
1743 } else if (val > max) {
1744 env->QF = 1;
1745 return max;
1746 }
1747 return val;
1748}
1749
1750/* Signed saturate. */
1751void OPPROTO op_ssat_T1(void)
1752{
1753 T0 = do_ssat(T0, PARAM1);
1754 FORCE_RET();
1755}
1756
1757/* Dual halfword signed saturate. */
1758void OPPROTO op_ssat16_T1(void)
1759{
1760 uint32_t res;
1761
1762 res = (uint16_t)do_ssat((int16_t)T0, PARAM1);
1763 res |= do_ssat(((int32_t)T0) >> 16, PARAM1) << 16;
1764 T0 = res;
1765 FORCE_RET();
1766}
1767
1768/* Unsigned saturate. */
1769void OPPROTO op_usat_T1(void)
1770{
1771 T0 = do_usat(T0, PARAM1);
1772 FORCE_RET();
1773}
1774
1775/* Dual halfword unsigned saturate. */
1776void OPPROTO op_usat16_T1(void)
1777{
1778 uint32_t res;
1779
1780 res = (uint16_t)do_usat((int16_t)T0, PARAM1);
1781 res |= do_usat(((int32_t)T0) >> 16, PARAM1) << 16;
1782 T0 = res;
1783 FORCE_RET();
1784}
1785
1786/* Dual 16-bit add. */
1787void OPPROTO op_add16_T1_T2(void)
1788{
1789 uint32_t mask;
1790 mask = (T0 & T1) & 0x8000;
1791 T0 ^= ~0x8000;
1792 T1 ^= ~0x8000;
1793 T0 = (T0 + T1) ^ mask;
1794}
1795
1796static inline uint8_t do_usad(uint8_t a, uint8_t b)
1797{
1798 if (a > b)
1799 return a - b;
1800 else
1801 return b - a;
1802}
1803
1804/* Unsigned sum of absolute byte differences. */
1805void OPPROTO op_usad8_T0_T1(void)
1806{
1807 uint32_t sum;
1808 sum = do_usad(T0, T1);
1809 sum += do_usad(T0 >> 8, T1 >> 8);
1810 sum += do_usad(T0 >> 16, T1 >>16);
1811 sum += do_usad(T0 >> 24, T1 >> 24);
1812 T0 = sum;
1813}
1814
1815/* Thumb-2 instructions. */
1816
1817/* Insert T1 into T0. Result goes in T1. */
1818void OPPROTO op_bfi_T1_T0(void)
1819{
1820 int shift = PARAM1;
1821 uint32_t mask = PARAM2;
1822 uint32_t bits;
1823
1824 bits = (T1 << shift) & mask;
1825 T1 = (T0 & ~mask) | bits;
1826}
1827
1828/* Unsigned bitfield extract. */
1829void OPPROTO op_ubfx_T1(void)
1830{
1831 uint32_t shift = PARAM1;
1832 uint32_t mask = PARAM2;
1833
1834 T1 >>= shift;
1835 T1 &= mask;
1836}
1837
1838/* Signed bitfield extract. */
1839void OPPROTO op_sbfx_T1(void)
1840{
1841 uint32_t shift = PARAM1;
1842 uint32_t width = PARAM2;
1843 int32_t val;
1844
1845 val = T1 << (32 - (shift + width));
1846 T1 = val >> (32 - width);
1847}
1848
1849void OPPROTO op_movtop_T0_im(void)
1850{
1851 T0 = (T0 & 0xffff) | PARAM1;
1852}
1853
1854/* Used by table branch instructions. */
1855void OPPROTO op_jmp_T0_im(void)
1856{
1857 env->regs[15] = PARAM1 + (T0 << 1);
1858}
1859
1860void OPPROTO op_set_condexec(void)
1861{
1862 env->condexec_bits = PARAM1;
1863}
1864
1865void OPPROTO op_sdivl_T0_T1(void)
1866{
1867 int32_t num;
1868 int32_t den;
1869 num = T0;
1870 den = T1;
1871 if (den == 0)
1872 T0 = 0;
1873 else
1874 T0 = num / den;
1875 FORCE_RET();
1876}
1877
1878void OPPROTO op_udivl_T0_T1(void)
1879{
1880 uint32_t num;
1881 uint32_t den;
1882 num = T0;
1883 den = T1;
1884 if (den == 0)
1885 T0 = 0;
1886 else
1887 T0 = num / den;
1888 FORCE_RET();
1889}
1890
1891void OPPROTO op_movl_T1_r13_banked(void)
1892{
1893 T1 = helper_get_r13_banked(env, PARAM1);
1894}
1895
1896void OPPROTO op_movl_r13_T1_banked(void)
1897{
1898 helper_set_r13_banked(env, PARAM1, T1);
1899}
1900
1901void OPPROTO op_v7m_mrs_T0(void)
1902{
1903 T0 = helper_v7m_mrs(env, PARAM1);
1904}
1905
1906void OPPROTO op_v7m_msr_T0(void)
1907{
1908 helper_v7m_msr(env, PARAM1, T0);
1909}
1910
1911void OPPROTO op_movl_T0_sp(void)
1912{
1913 if (PARAM1 == env->v7m.current_sp)
1914 T0 = env->regs[13];
1915 else
1916 T0 = env->v7m.other_sp;
1917 FORCE_RET();
1918}
1919
1920#include "op_neon.h"
1921
18c9b560
AZ
1922/* iwMMXt support */
1923#include "op_iwmmxt.c"