]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
kvm: x86: Fix xcr0 reset mismerge
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
21
22#include "qemu-common.h"
23#include "sysemu.h"
24#include "kvm.h"
25#include "cpu.h"
e22a25c9 26#include "gdbstub.h"
0e607a80 27#include "host-utils.h"
4c5b10b7 28#include "hw/pc.h"
408392b3 29#include "hw/apic.h"
35bed8ee 30#include "ioport.h"
e7701825 31#include "kvm_x86.h"
05330448 32
bb0300dc
GN
33#ifdef CONFIG_KVM_PARA
34#include <linux/kvm_para.h>
35#endif
36//
05330448
AL
37//#define DEBUG_KVM
38
39#ifdef DEBUG_KVM
8c0d577e 40#define DPRINTF(fmt, ...) \
05330448
AL
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42#else
8c0d577e 43#define DPRINTF(fmt, ...) \
05330448
AL
44 do { } while (0)
45#endif
46
1a03675d
GC
47#define MSR_KVM_WALL_CLOCK 0x11
48#define MSR_KVM_SYSTEM_TIME 0x12
49
c0532a76
MT
50#ifndef BUS_MCEERR_AR
51#define BUS_MCEERR_AR 4
52#endif
53#ifndef BUS_MCEERR_AO
54#define BUS_MCEERR_AO 5
55#endif
56
25d2e361
MT
57static int lm_capable_kernel;
58
b827df58
AK
59#ifdef KVM_CAP_EXT_CPUID
60
61static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
62{
63 struct kvm_cpuid2 *cpuid;
64 int r, size;
65
66 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
68 cpuid->nent = max;
69 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
70 if (r == 0 && cpuid->nent >= max) {
71 r = -E2BIG;
72 }
b827df58
AK
73 if (r < 0) {
74 if (r == -E2BIG) {
75 qemu_free(cpuid);
76 return NULL;
77 } else {
78 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
79 strerror(-r));
80 exit(1);
81 }
82 }
83 return cpuid;
84}
85
c958a8bd
SY
86uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87 uint32_t index, int reg)
b827df58
AK
88{
89 struct kvm_cpuid2 *cpuid;
90 int i, max;
91 uint32_t ret = 0;
92 uint32_t cpuid_1_edx;
93
94 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
95 return -1U;
96 }
97
98 max = 1;
99 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
100 max *= 2;
101 }
102
103 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
104 if (cpuid->entries[i].function == function &&
105 cpuid->entries[i].index == index) {
b827df58
AK
106 switch (reg) {
107 case R_EAX:
108 ret = cpuid->entries[i].eax;
109 break;
110 case R_EBX:
111 ret = cpuid->entries[i].ebx;
112 break;
113 case R_ECX:
114 ret = cpuid->entries[i].ecx;
115 break;
116 case R_EDX:
117 ret = cpuid->entries[i].edx;
19ccb8ea
JK
118 switch (function) {
119 case 1:
120 /* KVM before 2.6.30 misreports the following features */
121 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
122 break;
123 case 0x80000001:
b827df58
AK
124 /* On Intel, kvm returns cpuid according to the Intel spec,
125 * so add missing bits according to the AMD spec:
126 */
c958a8bd 127 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
c1667e40 128 ret |= cpuid_1_edx & 0x183f7ff;
19ccb8ea 129 break;
b827df58
AK
130 }
131 break;
132 }
133 }
134 }
135
136 qemu_free(cpuid);
137
138 return ret;
139}
140
141#else
142
c958a8bd
SY
143uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144 uint32_t index, int reg)
b827df58
AK
145{
146 return -1U;
147}
148
149#endif
150
bb0300dc
GN
151#ifdef CONFIG_KVM_PARA
152struct kvm_para_features {
b9bec74b
JK
153 int cap;
154 int feature;
bb0300dc
GN
155} para_features[] = {
156#ifdef KVM_CAP_CLOCKSOURCE
b9bec74b 157 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
bb0300dc
GN
158#endif
159#ifdef KVM_CAP_NOP_IO_DELAY
b9bec74b 160 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
bb0300dc
GN
161#endif
162#ifdef KVM_CAP_PV_MMU
b9bec74b 163 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
f6584ee2
GN
164#endif
165#ifdef KVM_CAP_ASYNC_PF
b9bec74b 166 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
bb0300dc 167#endif
b9bec74b 168 { -1, -1 }
bb0300dc
GN
169};
170
171static int get_para_features(CPUState *env)
172{
b9bec74b 173 int i, features = 0;
bb0300dc 174
b9bec74b
JK
175 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
177 features |= (1 << para_features[i].feature);
bb0300dc 178 }
b9bec74b
JK
179 }
180 return features;
bb0300dc
GN
181}
182#endif
183
e7701825
MT
184#ifdef KVM_CAP_MCE
185static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
186 int *max_banks)
187{
188 int r;
189
14a09518 190 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
191 if (r > 0) {
192 *max_banks = r;
193 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
194 }
195 return -ENOSYS;
196}
197
198static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
199{
200 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
201}
202
203static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
204{
205 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
206}
207
c0532a76
MT
208static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
209{
210 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
211 int r;
212
213 kmsrs->nmsrs = n;
214 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
217 free(kmsrs);
218 return r;
219}
220
221/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
6643e2f0 222static int kvm_mce_in_progress(CPUState *env)
c0532a76
MT
223{
224 struct kvm_msr_entry msr_mcg_status = {
225 .index = MSR_MCG_STATUS,
226 };
227 int r;
228
229 r = kvm_get_msr(env, &msr_mcg_status, 1);
230 if (r == -1 || r == 0) {
6643e2f0
JD
231 fprintf(stderr, "Failed to get MCE status\n");
232 return 0;
c0532a76
MT
233 }
234 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
235}
236
e7701825
MT
237struct kvm_x86_mce_data
238{
239 CPUState *env;
240 struct kvm_x86_mce *mce;
c0532a76 241 int abort_on_error;
e7701825
MT
242};
243
244static void kvm_do_inject_x86_mce(void *_data)
245{
246 struct kvm_x86_mce_data *data = _data;
247 int r;
248
f8502cfb
HS
249 /* If there is an MCE exception being processed, ignore this SRAO MCE */
250 if ((data->env->mcg_cap & MCG_SER_P) &&
251 !(data->mce->status & MCI_STATUS_AR)) {
6643e2f0 252 if (kvm_mce_in_progress(data->env)) {
f8502cfb
HS
253 return;
254 }
255 }
c0532a76 256
e7701825 257 r = kvm_set_mce(data->env, data->mce);
c0532a76 258 if (r < 0) {
e7701825 259 perror("kvm_set_mce FAILED");
c0532a76
MT
260 if (data->abort_on_error) {
261 abort();
262 }
263 }
e7701825 264}
31ce5e0c 265
7cc2cc3e
JD
266static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
267 int flag)
268{
269 struct kvm_x86_mce_data data = {
270 .env = env,
271 .mce = mce,
272 .abort_on_error = (flag & ABORT_ON_ERROR),
273 };
274
275 if (!env->mcg_cap) {
276 fprintf(stderr, "MCE support is not enabled!\n");
277 return;
278 }
279
280 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
281}
282
31ce5e0c 283static void kvm_mce_broadcast_rest(CPUState *env);
e7701825
MT
284#endif
285
286void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
c0532a76 287 uint64_t mcg_status, uint64_t addr, uint64_t misc,
31ce5e0c 288 int flag)
e7701825
MT
289{
290#ifdef KVM_CAP_MCE
291 struct kvm_x86_mce mce = {
292 .bank = bank,
293 .status = status,
294 .mcg_status = mcg_status,
295 .addr = addr,
296 .misc = misc,
297 };
c0532a76 298
31ce5e0c
JD
299 if (flag & MCE_BROADCAST) {
300 kvm_mce_broadcast_rest(cenv);
301 }
302
7cc2cc3e 303 kvm_inject_x86_mce_on(cenv, &mce, flag);
c0532a76 304#else
31ce5e0c 305 if (flag & ABORT_ON_ERROR) {
c0532a76 306 abort();
31ce5e0c 307 }
e7701825
MT
308#endif
309}
310
05330448
AL
311int kvm_arch_init_vcpu(CPUState *env)
312{
313 struct {
486bd5a2
AL
314 struct kvm_cpuid2 cpuid;
315 struct kvm_cpuid_entry2 entries[100];
05330448 316 } __attribute__((packed)) cpuid_data;
486bd5a2 317 uint32_t limit, i, j, cpuid_i;
a33609ca 318 uint32_t unused;
bb0300dc
GN
319 struct kvm_cpuid_entry2 *c;
320#ifdef KVM_CPUID_SIGNATURE
321 uint32_t signature[3];
322#endif
05330448 323
c958a8bd 324 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
6c0d7ee8
AP
325
326 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
c958a8bd 327 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
6c0d7ee8
AP
328 env->cpuid_ext_features |= i;
329
457dfed6 330 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 331 0, R_EDX);
457dfed6 332 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 333 0, R_ECX);
296acb64
JR
334 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
335 0, R_EDX);
336
6c1f42fe 337
05330448
AL
338 cpuid_i = 0;
339
bb0300dc
GN
340#ifdef CONFIG_KVM_PARA
341 /* Paravirtualization CPUIDs */
342 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
343 c = &cpuid_data.entries[cpuid_i++];
344 memset(c, 0, sizeof(*c));
345 c->function = KVM_CPUID_SIGNATURE;
346 c->eax = 0;
347 c->ebx = signature[0];
348 c->ecx = signature[1];
349 c->edx = signature[2];
350
351 c = &cpuid_data.entries[cpuid_i++];
352 memset(c, 0, sizeof(*c));
353 c->function = KVM_CPUID_FEATURES;
354 c->eax = env->cpuid_kvm_features & get_para_features(env);
355#endif
356
a33609ca 357 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
358
359 for (i = 0; i <= limit; i++) {
bb0300dc 360 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
361
362 switch (i) {
a36b1029
AL
363 case 2: {
364 /* Keep reading function 2 till all the input is received */
365 int times;
366
a36b1029 367 c->function = i;
a33609ca
AL
368 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
369 KVM_CPUID_FLAG_STATE_READ_NEXT;
370 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
371 times = c->eax & 0xff;
a36b1029
AL
372
373 for (j = 1; j < times; ++j) {
a33609ca 374 c = &cpuid_data.entries[cpuid_i++];
a36b1029 375 c->function = i;
a33609ca
AL
376 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
377 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
378 }
379 break;
380 }
486bd5a2
AL
381 case 4:
382 case 0xb:
383 case 0xd:
384 for (j = 0; ; j++) {
486bd5a2
AL
385 c->function = i;
386 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
387 c->index = j;
a33609ca 388 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 389
b9bec74b 390 if (i == 4 && c->eax == 0) {
486bd5a2 391 break;
b9bec74b
JK
392 }
393 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 394 break;
b9bec74b
JK
395 }
396 if (i == 0xd && c->eax == 0) {
486bd5a2 397 break;
b9bec74b 398 }
a33609ca 399 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
400 }
401 break;
402 default:
486bd5a2 403 c->function = i;
a33609ca
AL
404 c->flags = 0;
405 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
406 break;
407 }
05330448 408 }
a33609ca 409 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
410
411 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 412 c = &cpuid_data.entries[cpuid_i++];
05330448 413
05330448 414 c->function = i;
a33609ca
AL
415 c->flags = 0;
416 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
417 }
418
419 cpuid_data.cpuid.nent = cpuid_i;
420
e7701825
MT
421#ifdef KVM_CAP_MCE
422 if (((env->cpuid_version >> 8)&0xF) >= 6
423 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
424 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
425 uint64_t mcg_cap;
426 int banks;
427
b9bec74b 428 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
e7701825 429 perror("kvm_get_mce_cap_supported FAILED");
b9bec74b 430 } else {
e7701825
MT
431 if (banks > MCE_BANKS_DEF)
432 banks = MCE_BANKS_DEF;
433 mcg_cap &= MCE_CAP_DEF;
434 mcg_cap |= banks;
b9bec74b 435 if (kvm_setup_mce(env, &mcg_cap)) {
e7701825 436 perror("kvm_setup_mce FAILED");
b9bec74b 437 } else {
e7701825 438 env->mcg_cap = mcg_cap;
b9bec74b 439 }
e7701825
MT
440 }
441 }
442#endif
443
486bd5a2 444 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
05330448
AL
445}
446
caa5af0f
JK
447void kvm_arch_reset_vcpu(CPUState *env)
448{
e73223a5 449 env->exception_injected = -1;
0e607a80 450 env->interrupt_injected = -1;
a0fb002c
JK
451 env->nmi_injected = 0;
452 env->nmi_pending = 0;
1a5e9d2f 453 env->xcr0 = 1;
ddced198
MT
454 if (kvm_irqchip_in_kernel()) {
455 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
456 KVM_MP_STATE_UNINITIALIZED;
457 } else {
458 env->mp_state = KVM_MP_STATE_RUNNABLE;
459 }
caa5af0f
JK
460}
461
75b10c43
MT
462int has_msr_star;
463int has_msr_hsave_pa;
464
465static void kvm_supported_msrs(CPUState *env)
05330448 466{
75b10c43 467 static int kvm_supported_msrs;
05330448
AL
468 int ret;
469
470 /* first time */
75b10c43 471 if (kvm_supported_msrs == 0) {
05330448
AL
472 struct kvm_msr_list msr_list, *kvm_msr_list;
473
75b10c43 474 kvm_supported_msrs = -1;
05330448
AL
475
476 /* Obtain MSR list from KVM. These are the MSRs that we must
477 * save/restore */
4c9f7372 478 msr_list.nmsrs = 0;
05330448 479 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 480 if (ret < 0 && ret != -E2BIG) {
75b10c43 481 return;
6fb6d245 482 }
d9db889f
JK
483 /* Old kernel modules had a bug and could write beyond the provided
484 memory. Allocate at least a safe amount of 1K. */
485 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
486 msr_list.nmsrs *
487 sizeof(msr_list.indices[0])));
05330448 488
55308450 489 kvm_msr_list->nmsrs = msr_list.nmsrs;
05330448
AL
490 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
491 if (ret >= 0) {
492 int i;
493
494 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
495 if (kvm_msr_list->indices[i] == MSR_STAR) {
496 has_msr_star = 1;
75b10c43
MT
497 continue;
498 }
499 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
500 has_msr_hsave_pa = 1;
501 continue;
05330448
AL
502 }
503 }
504 }
505
506 free(kvm_msr_list);
507 }
508
75b10c43
MT
509 return;
510}
511
512static int kvm_has_msr_hsave_pa(CPUState *env)
513{
514 kvm_supported_msrs(env);
515 return has_msr_hsave_pa;
516}
517
518static int kvm_has_msr_star(CPUState *env)
519{
520 kvm_supported_msrs(env);
521 return has_msr_star;
05330448
AL
522}
523
20420430
SY
524static int kvm_init_identity_map_page(KVMState *s)
525{
526#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
527 int ret;
528 uint64_t addr = 0xfffbc000;
529
530 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
531 return 0;
532 }
533
534 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
535 if (ret < 0) {
536 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
537 return ret;
538 }
539#endif
540 return 0;
541}
542
05330448
AL
543int kvm_arch_init(KVMState *s, int smp_cpus)
544{
545 int ret;
546
25d2e361
MT
547 struct utsname utsname;
548
549 uname(&utsname);
550 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
551
05330448
AL
552 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
553 * directly. In order to use vm86 mode, a TSS is needed. Since this
554 * must be part of guest physical memory, we need to allocate it. Older
555 * versions of KVM just assumed that it would be at the end of physical
556 * memory but that doesn't work with more than 4GB of memory. We simply
557 * refuse to work with those older versions of KVM. */
14a09518 558 ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR);
05330448
AL
559 if (ret <= 0) {
560 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
561 return ret;
562 }
563
564 /* this address is 3 pages before the bios, and the bios should present
565 * as unavaible memory. FIXME, need to ensure the e820 map deals with
566 * this?
567 */
4c5b10b7
JS
568 /*
569 * Tell fw_cfg to notify the BIOS to reserve the range.
570 */
571 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
572 perror("e820_add_entry() table is full");
573 exit(1);
574 }
20420430
SY
575 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
576 if (ret < 0) {
577 return ret;
578 }
579
580 return kvm_init_identity_map_page(s);
05330448 581}
b9bec74b 582
05330448
AL
583static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
584{
585 lhs->selector = rhs->selector;
586 lhs->base = rhs->base;
587 lhs->limit = rhs->limit;
588 lhs->type = 3;
589 lhs->present = 1;
590 lhs->dpl = 3;
591 lhs->db = 0;
592 lhs->s = 1;
593 lhs->l = 0;
594 lhs->g = 0;
595 lhs->avl = 0;
596 lhs->unusable = 0;
597}
598
599static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
600{
601 unsigned flags = rhs->flags;
602 lhs->selector = rhs->selector;
603 lhs->base = rhs->base;
604 lhs->limit = rhs->limit;
605 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
606 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 607 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
608 lhs->db = (flags >> DESC_B_SHIFT) & 1;
609 lhs->s = (flags & DESC_S_MASK) != 0;
610 lhs->l = (flags >> DESC_L_SHIFT) & 1;
611 lhs->g = (flags & DESC_G_MASK) != 0;
612 lhs->avl = (flags & DESC_AVL_MASK) != 0;
613 lhs->unusable = 0;
614}
615
616static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
617{
618 lhs->selector = rhs->selector;
619 lhs->base = rhs->base;
620 lhs->limit = rhs->limit;
b9bec74b
JK
621 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
622 (rhs->present * DESC_P_MASK) |
623 (rhs->dpl << DESC_DPL_SHIFT) |
624 (rhs->db << DESC_B_SHIFT) |
625 (rhs->s * DESC_S_MASK) |
626 (rhs->l << DESC_L_SHIFT) |
627 (rhs->g * DESC_G_MASK) |
628 (rhs->avl * DESC_AVL_MASK);
05330448
AL
629}
630
631static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
632{
b9bec74b 633 if (set) {
05330448 634 *kvm_reg = *qemu_reg;
b9bec74b 635 } else {
05330448 636 *qemu_reg = *kvm_reg;
b9bec74b 637 }
05330448
AL
638}
639
640static int kvm_getput_regs(CPUState *env, int set)
641{
642 struct kvm_regs regs;
643 int ret = 0;
644
645 if (!set) {
646 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 647 if (ret < 0) {
05330448 648 return ret;
b9bec74b 649 }
05330448
AL
650 }
651
652 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
653 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
654 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
655 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
656 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
657 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
658 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
659 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
660#ifdef TARGET_X86_64
661 kvm_getput_reg(&regs.r8, &env->regs[8], set);
662 kvm_getput_reg(&regs.r9, &env->regs[9], set);
663 kvm_getput_reg(&regs.r10, &env->regs[10], set);
664 kvm_getput_reg(&regs.r11, &env->regs[11], set);
665 kvm_getput_reg(&regs.r12, &env->regs[12], set);
666 kvm_getput_reg(&regs.r13, &env->regs[13], set);
667 kvm_getput_reg(&regs.r14, &env->regs[14], set);
668 kvm_getput_reg(&regs.r15, &env->regs[15], set);
669#endif
670
671 kvm_getput_reg(&regs.rflags, &env->eflags, set);
672 kvm_getput_reg(&regs.rip, &env->eip, set);
673
b9bec74b 674 if (set) {
05330448 675 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 676 }
05330448
AL
677
678 return ret;
679}
680
681static int kvm_put_fpu(CPUState *env)
682{
683 struct kvm_fpu fpu;
684 int i;
685
686 memset(&fpu, 0, sizeof fpu);
687 fpu.fsw = env->fpus & ~(7 << 11);
688 fpu.fsw |= (env->fpstt & 7) << 11;
689 fpu.fcw = env->fpuc;
b9bec74b
JK
690 for (i = 0; i < 8; ++i) {
691 fpu.ftwx |= (!env->fptags[i]) << i;
692 }
05330448
AL
693 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
694 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
695 fpu.mxcsr = env->mxcsr;
696
697 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
698}
699
f1665b21
SY
700#ifdef KVM_CAP_XSAVE
701#define XSAVE_CWD_RIP 2
702#define XSAVE_CWD_RDP 4
703#define XSAVE_MXCSR 6
704#define XSAVE_ST_SPACE 8
705#define XSAVE_XMM_SPACE 40
706#define XSAVE_XSTATE_BV 128
707#define XSAVE_YMMH_SPACE 144
708#endif
709
710static int kvm_put_xsave(CPUState *env)
711{
712#ifdef KVM_CAP_XSAVE
0f53994f 713 int i, r;
f1665b21
SY
714 struct kvm_xsave* xsave;
715 uint16_t cwd, swd, twd, fop;
716
b9bec74b 717 if (!kvm_has_xsave()) {
f1665b21 718 return kvm_put_fpu(env);
b9bec74b 719 }
f1665b21
SY
720
721 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
722 memset(xsave, 0, sizeof(struct kvm_xsave));
723 cwd = swd = twd = fop = 0;
724 swd = env->fpus & ~(7 << 11);
725 swd |= (env->fpstt & 7) << 11;
726 cwd = env->fpuc;
b9bec74b 727 for (i = 0; i < 8; ++i) {
f1665b21 728 twd |= (!env->fptags[i]) << i;
b9bec74b 729 }
f1665b21
SY
730 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
731 xsave->region[1] = (uint32_t)(fop << 16) + twd;
732 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
733 sizeof env->fpregs);
734 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
735 sizeof env->xmm_regs);
736 xsave->region[XSAVE_MXCSR] = env->mxcsr;
737 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
738 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
739 sizeof env->ymmh_regs);
0f53994f
MT
740 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
741 qemu_free(xsave);
742 return r;
f1665b21
SY
743#else
744 return kvm_put_fpu(env);
745#endif
746}
747
748static int kvm_put_xcrs(CPUState *env)
749{
750#ifdef KVM_CAP_XCRS
751 struct kvm_xcrs xcrs;
752
b9bec74b 753 if (!kvm_has_xcrs()) {
f1665b21 754 return 0;
b9bec74b 755 }
f1665b21
SY
756
757 xcrs.nr_xcrs = 1;
758 xcrs.flags = 0;
759 xcrs.xcrs[0].xcr = 0;
760 xcrs.xcrs[0].value = env->xcr0;
761 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
762#else
763 return 0;
764#endif
765}
766
05330448
AL
767static int kvm_put_sregs(CPUState *env)
768{
769 struct kvm_sregs sregs;
770
0e607a80
JK
771 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
772 if (env->interrupt_injected >= 0) {
773 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
774 (uint64_t)1 << (env->interrupt_injected % 64);
775 }
05330448
AL
776
777 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
778 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
779 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
780 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
781 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
782 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
783 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 784 } else {
b9bec74b
JK
785 set_seg(&sregs.cs, &env->segs[R_CS]);
786 set_seg(&sregs.ds, &env->segs[R_DS]);
787 set_seg(&sregs.es, &env->segs[R_ES]);
788 set_seg(&sregs.fs, &env->segs[R_FS]);
789 set_seg(&sregs.gs, &env->segs[R_GS]);
790 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
791 }
792
793 set_seg(&sregs.tr, &env->tr);
794 set_seg(&sregs.ldt, &env->ldt);
795
796 sregs.idt.limit = env->idt.limit;
797 sregs.idt.base = env->idt.base;
798 sregs.gdt.limit = env->gdt.limit;
799 sregs.gdt.base = env->gdt.base;
800
801 sregs.cr0 = env->cr[0];
802 sregs.cr2 = env->cr[2];
803 sregs.cr3 = env->cr[3];
804 sregs.cr4 = env->cr[4];
805
4a942cea
BS
806 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
807 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
808
809 sregs.efer = env->efer;
810
811 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
812}
813
814static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
815 uint32_t index, uint64_t value)
816{
817 entry->index = index;
818 entry->data = value;
819}
820
ea643051 821static int kvm_put_msrs(CPUState *env, int level)
05330448
AL
822{
823 struct {
824 struct kvm_msrs info;
825 struct kvm_msr_entry entries[100];
826 } msr_data;
827 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 828 int n = 0;
05330448
AL
829
830 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
831 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
832 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
b9bec74b
JK
833 if (kvm_has_msr_star(env)) {
834 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
835 }
836 if (kvm_has_msr_hsave_pa(env)) {
75b10c43 837 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 838 }
05330448 839#ifdef TARGET_X86_64
25d2e361
MT
840 if (lm_capable_kernel) {
841 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
842 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
843 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
844 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
845 }
05330448 846#endif
ea643051 847 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
848 /*
849 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
850 * writeback. Until this is fixed, we only write the offset to SMP
851 * guests after migration, desynchronizing the VCPUs, but avoiding
852 * huge jump-backs that would occur without any writeback at all.
853 */
854 if (smp_cpus == 1 || env->tsc != 0) {
855 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
856 }
ea643051
JK
857 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
858 env->system_time_msr);
859 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
f6584ee2
GN
860#ifdef KVM_CAP_ASYNC_PF
861 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
862#endif
ea643051 863 }
57780495
MT
864#ifdef KVM_CAP_MCE
865 if (env->mcg_cap) {
d8da8574 866 int i;
b9bec74b
JK
867
868 if (level == KVM_PUT_RESET_STATE) {
57780495 869 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
b9bec74b 870 } else if (level == KVM_PUT_FULL_STATE) {
57780495
MT
871 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
872 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
b9bec74b 873 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 874 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
b9bec74b 875 }
57780495
MT
876 }
877 }
878#endif
1a03675d 879
05330448
AL
880 msr_data.info.nmsrs = n;
881
882 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
883
884}
885
886
887static int kvm_get_fpu(CPUState *env)
888{
889 struct kvm_fpu fpu;
890 int i, ret;
891
892 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 893 if (ret < 0) {
05330448 894 return ret;
b9bec74b 895 }
05330448
AL
896
897 env->fpstt = (fpu.fsw >> 11) & 7;
898 env->fpus = fpu.fsw;
899 env->fpuc = fpu.fcw;
b9bec74b
JK
900 for (i = 0; i < 8; ++i) {
901 env->fptags[i] = !((fpu.ftwx >> i) & 1);
902 }
05330448
AL
903 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
904 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
905 env->mxcsr = fpu.mxcsr;
906
907 return 0;
908}
909
f1665b21
SY
910static int kvm_get_xsave(CPUState *env)
911{
912#ifdef KVM_CAP_XSAVE
913 struct kvm_xsave* xsave;
914 int ret, i;
915 uint16_t cwd, swd, twd, fop;
916
b9bec74b 917 if (!kvm_has_xsave()) {
f1665b21 918 return kvm_get_fpu(env);
b9bec74b 919 }
f1665b21
SY
920
921 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
922 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f
MT
923 if (ret < 0) {
924 qemu_free(xsave);
f1665b21 925 return ret;
0f53994f 926 }
f1665b21
SY
927
928 cwd = (uint16_t)xsave->region[0];
929 swd = (uint16_t)(xsave->region[0] >> 16);
930 twd = (uint16_t)xsave->region[1];
931 fop = (uint16_t)(xsave->region[1] >> 16);
932 env->fpstt = (swd >> 11) & 7;
933 env->fpus = swd;
934 env->fpuc = cwd;
b9bec74b 935 for (i = 0; i < 8; ++i) {
f1665b21 936 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 937 }
f1665b21
SY
938 env->mxcsr = xsave->region[XSAVE_MXCSR];
939 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
940 sizeof env->fpregs);
941 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
942 sizeof env->xmm_regs);
943 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
944 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
945 sizeof env->ymmh_regs);
0f53994f 946 qemu_free(xsave);
f1665b21
SY
947 return 0;
948#else
949 return kvm_get_fpu(env);
950#endif
951}
952
953static int kvm_get_xcrs(CPUState *env)
954{
955#ifdef KVM_CAP_XCRS
956 int i, ret;
957 struct kvm_xcrs xcrs;
958
b9bec74b 959 if (!kvm_has_xcrs()) {
f1665b21 960 return 0;
b9bec74b 961 }
f1665b21
SY
962
963 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 964 if (ret < 0) {
f1665b21 965 return ret;
b9bec74b 966 }
f1665b21 967
b9bec74b 968 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
969 /* Only support xcr0 now */
970 if (xcrs.xcrs[0].xcr == 0) {
971 env->xcr0 = xcrs.xcrs[0].value;
972 break;
973 }
b9bec74b 974 }
f1665b21
SY
975 return 0;
976#else
977 return 0;
978#endif
979}
980
05330448
AL
981static int kvm_get_sregs(CPUState *env)
982{
983 struct kvm_sregs sregs;
984 uint32_t hflags;
0e607a80 985 int bit, i, ret;
05330448
AL
986
987 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 988 if (ret < 0) {
05330448 989 return ret;
b9bec74b 990 }
05330448 991
0e607a80
JK
992 /* There can only be one pending IRQ set in the bitmap at a time, so try
993 to find it and save its number instead (-1 for none). */
994 env->interrupt_injected = -1;
995 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
996 if (sregs.interrupt_bitmap[i]) {
997 bit = ctz64(sregs.interrupt_bitmap[i]);
998 env->interrupt_injected = i * 64 + bit;
999 break;
1000 }
1001 }
05330448
AL
1002
1003 get_seg(&env->segs[R_CS], &sregs.cs);
1004 get_seg(&env->segs[R_DS], &sregs.ds);
1005 get_seg(&env->segs[R_ES], &sregs.es);
1006 get_seg(&env->segs[R_FS], &sregs.fs);
1007 get_seg(&env->segs[R_GS], &sregs.gs);
1008 get_seg(&env->segs[R_SS], &sregs.ss);
1009
1010 get_seg(&env->tr, &sregs.tr);
1011 get_seg(&env->ldt, &sregs.ldt);
1012
1013 env->idt.limit = sregs.idt.limit;
1014 env->idt.base = sregs.idt.base;
1015 env->gdt.limit = sregs.gdt.limit;
1016 env->gdt.base = sregs.gdt.base;
1017
1018 env->cr[0] = sregs.cr0;
1019 env->cr[2] = sregs.cr2;
1020 env->cr[3] = sregs.cr3;
1021 env->cr[4] = sregs.cr4;
1022
4a942cea 1023 cpu_set_apic_base(env->apic_state, sregs.apic_base);
05330448
AL
1024
1025 env->efer = sregs.efer;
4a942cea 1026 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
05330448 1027
b9bec74b
JK
1028#define HFLAG_COPY_MASK \
1029 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1030 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1031 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1032 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1033
1034 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1035 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1036 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1037 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1038 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1039 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1040 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1041
1042 if (env->efer & MSR_EFER_LMA) {
1043 hflags |= HF_LMA_MASK;
1044 }
1045
1046 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1047 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1048 } else {
1049 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1050 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1051 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1052 (DESC_B_SHIFT - HF_SS32_SHIFT);
1053 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1054 !(hflags & HF_CS32_MASK)) {
1055 hflags |= HF_ADDSEG_MASK;
1056 } else {
1057 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1058 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1059 }
05330448
AL
1060 }
1061 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1062
1063 return 0;
1064}
1065
1066static int kvm_get_msrs(CPUState *env)
1067{
1068 struct {
1069 struct kvm_msrs info;
1070 struct kvm_msr_entry entries[100];
1071 } msr_data;
1072 struct kvm_msr_entry *msrs = msr_data.entries;
1073 int ret, i, n;
1074
1075 n = 0;
1076 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1077 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1078 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
b9bec74b
JK
1079 if (kvm_has_msr_star(env)) {
1080 msrs[n++].index = MSR_STAR;
1081 }
1082 if (kvm_has_msr_hsave_pa(env)) {
75b10c43 1083 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1084 }
05330448
AL
1085 msrs[n++].index = MSR_IA32_TSC;
1086#ifdef TARGET_X86_64
25d2e361
MT
1087 if (lm_capable_kernel) {
1088 msrs[n++].index = MSR_CSTAR;
1089 msrs[n++].index = MSR_KERNELGSBASE;
1090 msrs[n++].index = MSR_FMASK;
1091 msrs[n++].index = MSR_LSTAR;
1092 }
05330448 1093#endif
1a03675d
GC
1094 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1095 msrs[n++].index = MSR_KVM_WALL_CLOCK;
f6584ee2
GN
1096#ifdef KVM_CAP_ASYNC_PF
1097 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1098#endif
1a03675d 1099
57780495
MT
1100#ifdef KVM_CAP_MCE
1101 if (env->mcg_cap) {
1102 msrs[n++].index = MSR_MCG_STATUS;
1103 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1104 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1105 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1106 }
57780495
MT
1107 }
1108#endif
1109
05330448
AL
1110 msr_data.info.nmsrs = n;
1111 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1112 if (ret < 0) {
05330448 1113 return ret;
b9bec74b 1114 }
05330448
AL
1115
1116 for (i = 0; i < ret; i++) {
1117 switch (msrs[i].index) {
1118 case MSR_IA32_SYSENTER_CS:
1119 env->sysenter_cs = msrs[i].data;
1120 break;
1121 case MSR_IA32_SYSENTER_ESP:
1122 env->sysenter_esp = msrs[i].data;
1123 break;
1124 case MSR_IA32_SYSENTER_EIP:
1125 env->sysenter_eip = msrs[i].data;
1126 break;
1127 case MSR_STAR:
1128 env->star = msrs[i].data;
1129 break;
1130#ifdef TARGET_X86_64
1131 case MSR_CSTAR:
1132 env->cstar = msrs[i].data;
1133 break;
1134 case MSR_KERNELGSBASE:
1135 env->kernelgsbase = msrs[i].data;
1136 break;
1137 case MSR_FMASK:
1138 env->fmask = msrs[i].data;
1139 break;
1140 case MSR_LSTAR:
1141 env->lstar = msrs[i].data;
1142 break;
1143#endif
1144 case MSR_IA32_TSC:
1145 env->tsc = msrs[i].data;
1146 break;
aa851e36
MT
1147 case MSR_VM_HSAVE_PA:
1148 env->vm_hsave = msrs[i].data;
1149 break;
1a03675d
GC
1150 case MSR_KVM_SYSTEM_TIME:
1151 env->system_time_msr = msrs[i].data;
1152 break;
1153 case MSR_KVM_WALL_CLOCK:
1154 env->wall_clock_msr = msrs[i].data;
1155 break;
57780495
MT
1156#ifdef KVM_CAP_MCE
1157 case MSR_MCG_STATUS:
1158 env->mcg_status = msrs[i].data;
1159 break;
1160 case MSR_MCG_CTL:
1161 env->mcg_ctl = msrs[i].data;
1162 break;
1163#endif
1164 default:
1165#ifdef KVM_CAP_MCE
1166 if (msrs[i].index >= MSR_MC0_CTL &&
1167 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1168 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495
MT
1169 }
1170#endif
d8da8574 1171 break;
f6584ee2
GN
1172#ifdef KVM_CAP_ASYNC_PF
1173 case MSR_KVM_ASYNC_PF_EN:
1174 env->async_pf_en_msr = msrs[i].data;
1175 break;
1176#endif
05330448
AL
1177 }
1178 }
1179
1180 return 0;
1181}
1182
9bdbe550
HB
1183static int kvm_put_mp_state(CPUState *env)
1184{
1185 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1186
1187 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1188}
1189
1190static int kvm_get_mp_state(CPUState *env)
1191{
1192 struct kvm_mp_state mp_state;
1193 int ret;
1194
1195 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1196 if (ret < 0) {
1197 return ret;
1198 }
1199 env->mp_state = mp_state.mp_state;
c14750e8
JK
1200 if (kvm_irqchip_in_kernel()) {
1201 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1202 }
9bdbe550
HB
1203 return 0;
1204}
1205
ea643051 1206static int kvm_put_vcpu_events(CPUState *env, int level)
a0fb002c
JK
1207{
1208#ifdef KVM_CAP_VCPU_EVENTS
1209 struct kvm_vcpu_events events;
1210
1211 if (!kvm_has_vcpu_events()) {
1212 return 0;
1213 }
1214
31827373
JK
1215 events.exception.injected = (env->exception_injected >= 0);
1216 events.exception.nr = env->exception_injected;
a0fb002c
JK
1217 events.exception.has_error_code = env->has_error_code;
1218 events.exception.error_code = env->error_code;
1219
1220 events.interrupt.injected = (env->interrupt_injected >= 0);
1221 events.interrupt.nr = env->interrupt_injected;
1222 events.interrupt.soft = env->soft_interrupt;
1223
1224 events.nmi.injected = env->nmi_injected;
1225 events.nmi.pending = env->nmi_pending;
1226 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1227
1228 events.sipi_vector = env->sipi_vector;
1229
ea643051
JK
1230 events.flags = 0;
1231 if (level >= KVM_PUT_RESET_STATE) {
1232 events.flags |=
1233 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1234 }
aee028b9 1235
a0fb002c
JK
1236 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1237#else
1238 return 0;
1239#endif
1240}
1241
1242static int kvm_get_vcpu_events(CPUState *env)
1243{
1244#ifdef KVM_CAP_VCPU_EVENTS
1245 struct kvm_vcpu_events events;
1246 int ret;
1247
1248 if (!kvm_has_vcpu_events()) {
1249 return 0;
1250 }
1251
1252 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1253 if (ret < 0) {
1254 return ret;
1255 }
31827373 1256 env->exception_injected =
a0fb002c
JK
1257 events.exception.injected ? events.exception.nr : -1;
1258 env->has_error_code = events.exception.has_error_code;
1259 env->error_code = events.exception.error_code;
1260
1261 env->interrupt_injected =
1262 events.interrupt.injected ? events.interrupt.nr : -1;
1263 env->soft_interrupt = events.interrupt.soft;
1264
1265 env->nmi_injected = events.nmi.injected;
1266 env->nmi_pending = events.nmi.pending;
1267 if (events.nmi.masked) {
1268 env->hflags2 |= HF2_NMI_MASK;
1269 } else {
1270 env->hflags2 &= ~HF2_NMI_MASK;
1271 }
1272
1273 env->sipi_vector = events.sipi_vector;
1274#endif
1275
1276 return 0;
1277}
1278
b0b1d690
JK
1279static int kvm_guest_debug_workarounds(CPUState *env)
1280{
1281 int ret = 0;
1282#ifdef KVM_CAP_SET_GUEST_DEBUG
1283 unsigned long reinject_trap = 0;
1284
1285 if (!kvm_has_vcpu_events()) {
1286 if (env->exception_injected == 1) {
1287 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1288 } else if (env->exception_injected == 3) {
1289 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1290 }
1291 env->exception_injected = -1;
1292 }
1293
1294 /*
1295 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1296 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1297 * by updating the debug state once again if single-stepping is on.
1298 * Another reason to call kvm_update_guest_debug here is a pending debug
1299 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1300 * reinject them via SET_GUEST_DEBUG.
1301 */
1302 if (reinject_trap ||
1303 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1304 ret = kvm_update_guest_debug(env, reinject_trap);
1305 }
1306#endif /* KVM_CAP_SET_GUEST_DEBUG */
1307 return ret;
1308}
1309
ff44f1a3
JK
1310static int kvm_put_debugregs(CPUState *env)
1311{
1312#ifdef KVM_CAP_DEBUGREGS
1313 struct kvm_debugregs dbgregs;
1314 int i;
1315
1316 if (!kvm_has_debugregs()) {
1317 return 0;
1318 }
1319
1320 for (i = 0; i < 4; i++) {
1321 dbgregs.db[i] = env->dr[i];
1322 }
1323 dbgregs.dr6 = env->dr[6];
1324 dbgregs.dr7 = env->dr[7];
1325 dbgregs.flags = 0;
1326
1327 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1328#else
1329 return 0;
1330#endif
1331}
1332
1333static int kvm_get_debugregs(CPUState *env)
1334{
1335#ifdef KVM_CAP_DEBUGREGS
1336 struct kvm_debugregs dbgregs;
1337 int i, ret;
1338
1339 if (!kvm_has_debugregs()) {
1340 return 0;
1341 }
1342
1343 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1344 if (ret < 0) {
b9bec74b 1345 return ret;
ff44f1a3
JK
1346 }
1347 for (i = 0; i < 4; i++) {
1348 env->dr[i] = dbgregs.db[i];
1349 }
1350 env->dr[4] = env->dr[6] = dbgregs.dr6;
1351 env->dr[5] = env->dr[7] = dbgregs.dr7;
1352#endif
1353
1354 return 0;
1355}
1356
ea375f9a 1357int kvm_arch_put_registers(CPUState *env, int level)
05330448
AL
1358{
1359 int ret;
1360
dbaa07c4
JK
1361 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1362
05330448 1363 ret = kvm_getput_regs(env, 1);
b9bec74b 1364 if (ret < 0) {
05330448 1365 return ret;
b9bec74b 1366 }
f1665b21 1367 ret = kvm_put_xsave(env);
b9bec74b 1368 if (ret < 0) {
f1665b21 1369 return ret;
b9bec74b 1370 }
f1665b21 1371 ret = kvm_put_xcrs(env);
b9bec74b 1372 if (ret < 0) {
05330448 1373 return ret;
b9bec74b 1374 }
05330448 1375 ret = kvm_put_sregs(env);
b9bec74b 1376 if (ret < 0) {
05330448 1377 return ret;
b9bec74b 1378 }
ea643051 1379 ret = kvm_put_msrs(env, level);
b9bec74b 1380 if (ret < 0) {
05330448 1381 return ret;
b9bec74b 1382 }
ea643051
JK
1383 if (level >= KVM_PUT_RESET_STATE) {
1384 ret = kvm_put_mp_state(env);
b9bec74b 1385 if (ret < 0) {
ea643051 1386 return ret;
b9bec74b 1387 }
ea643051 1388 }
ea643051 1389 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1390 if (ret < 0) {
a0fb002c 1391 return ret;
b9bec74b 1392 }
0d75a9ec 1393 ret = kvm_put_debugregs(env);
b9bec74b 1394 if (ret < 0) {
b0b1d690 1395 return ret;
b9bec74b 1396 }
0d75a9ec
JK
1397 /* must be last */
1398 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1399 if (ret < 0) {
ff44f1a3 1400 return ret;
b9bec74b 1401 }
05330448
AL
1402 return 0;
1403}
1404
1405int kvm_arch_get_registers(CPUState *env)
1406{
1407 int ret;
1408
dbaa07c4
JK
1409 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1410
05330448 1411 ret = kvm_getput_regs(env, 0);
b9bec74b 1412 if (ret < 0) {
05330448 1413 return ret;
b9bec74b 1414 }
f1665b21 1415 ret = kvm_get_xsave(env);
b9bec74b 1416 if (ret < 0) {
f1665b21 1417 return ret;
b9bec74b 1418 }
f1665b21 1419 ret = kvm_get_xcrs(env);
b9bec74b 1420 if (ret < 0) {
05330448 1421 return ret;
b9bec74b 1422 }
05330448 1423 ret = kvm_get_sregs(env);
b9bec74b 1424 if (ret < 0) {
05330448 1425 return ret;
b9bec74b 1426 }
05330448 1427 ret = kvm_get_msrs(env);
b9bec74b 1428 if (ret < 0) {
05330448 1429 return ret;
b9bec74b 1430 }
5a2e3c2e 1431 ret = kvm_get_mp_state(env);
b9bec74b 1432 if (ret < 0) {
5a2e3c2e 1433 return ret;
b9bec74b 1434 }
a0fb002c 1435 ret = kvm_get_vcpu_events(env);
b9bec74b 1436 if (ret < 0) {
a0fb002c 1437 return ret;
b9bec74b 1438 }
ff44f1a3 1439 ret = kvm_get_debugregs(env);
b9bec74b 1440 if (ret < 0) {
ff44f1a3 1441 return ret;
b9bec74b 1442 }
05330448
AL
1443 return 0;
1444}
1445
1446int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1447{
276ce815
LJ
1448 /* Inject NMI */
1449 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1450 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1451 DPRINTF("injected NMI\n");
1452 kvm_vcpu_ioctl(env, KVM_NMI);
1453 }
1454
05330448
AL
1455 /* Try to inject an interrupt if the guest can accept it */
1456 if (run->ready_for_interrupt_injection &&
1457 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1458 (env->eflags & IF_MASK)) {
1459 int irq;
1460
1461 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1462 irq = cpu_get_pic_interrupt(env);
1463 if (irq >= 0) {
1464 struct kvm_interrupt intr;
1465 intr.irq = irq;
1466 /* FIXME: errors */
8c0d577e 1467 DPRINTF("injected interrupt %d\n", irq);
05330448
AL
1468 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1469 }
1470 }
1471
1472 /* If we have an interrupt but the guest is not ready to receive an
1473 * interrupt, request an interrupt window exit. This will
1474 * cause a return to userspace as soon as the guest is ready to
1475 * receive interrupts. */
b9bec74b 1476 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
05330448 1477 run->request_interrupt_window = 1;
b9bec74b 1478 } else {
05330448 1479 run->request_interrupt_window = 0;
b9bec74b 1480 }
05330448 1481
8c0d577e 1482 DPRINTF("setting tpr\n");
4a942cea 1483 run->cr8 = cpu_get_apic_tpr(env->apic_state);
05330448
AL
1484
1485 return 0;
1486}
1487
1488int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1489{
b9bec74b 1490 if (run->if_flag) {
05330448 1491 env->eflags |= IF_MASK;
b9bec74b 1492 } else {
05330448 1493 env->eflags &= ~IF_MASK;
b9bec74b 1494 }
4a942cea
BS
1495 cpu_set_apic_tpr(env->apic_state, run->cr8);
1496 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1497
1498 return 0;
1499}
1500
0af691d7
MT
1501int kvm_arch_process_irqchip_events(CPUState *env)
1502{
1503 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1504 kvm_cpu_synchronize_state(env);
1505 do_cpu_init(env);
1506 env->exception_index = EXCP_HALTED;
1507 }
1508
1509 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1510 kvm_cpu_synchronize_state(env);
1511 do_cpu_sipi(env);
1512 }
1513
1514 return env->halted;
1515}
1516
05330448
AL
1517static int kvm_handle_halt(CPUState *env)
1518{
1519 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1520 (env->eflags & IF_MASK)) &&
1521 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1522 env->halted = 1;
1523 env->exception_index = EXCP_HLT;
1524 return 0;
1525 }
1526
1527 return 1;
1528}
1529
bb44e0d1
JK
1530static bool host_supports_vmx(void)
1531{
1532 uint32_t ecx, unused;
1533
1534 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1535 return ecx & CPUID_EXT_VMX;
1536}
1537
1538#define VMX_INVALID_GUEST_STATE 0x80000021
1539
05330448
AL
1540int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1541{
bb44e0d1 1542 uint64_t code;
05330448
AL
1543 int ret = 0;
1544
1545 switch (run->exit_reason) {
1546 case KVM_EXIT_HLT:
8c0d577e 1547 DPRINTF("handle_hlt\n");
05330448
AL
1548 ret = kvm_handle_halt(env);
1549 break;
646042e1
JK
1550 case KVM_EXIT_SET_TPR:
1551 ret = 1;
1552 break;
bb44e0d1
JK
1553 case KVM_EXIT_FAIL_ENTRY:
1554 code = run->fail_entry.hardware_entry_failure_reason;
1555 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1556 code);
1557 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1558 fprintf(stderr,
1559 "\nIf you're runnning a guest on an Intel machine without "
1560 "unrestricted mode\n"
1561 "support, the failure can be most likely due to the guest "
1562 "entering an invalid\n"
1563 "state for Intel VT. For example, the guest maybe running "
1564 "in big real mode\n"
1565 "which is not supported on less recent Intel processors."
1566 "\n\n");
1567 }
1568 ret = -1;
1569 break;
1570 case KVM_EXIT_EXCEPTION:
1571 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1572 run->ex.exception, run->ex.error_code);
1573 ret = -1;
1574 break;
73aaec4a
JK
1575 default:
1576 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1577 ret = -1;
1578 break;
05330448
AL
1579 }
1580
1581 return ret;
1582}
e22a25c9
AL
1583
1584#ifdef KVM_CAP_SET_GUEST_DEBUG
e22a25c9
AL
1585int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1586{
38972938 1587 static const uint8_t int3 = 0xcc;
64bf3f4e 1588
e22a25c9 1589 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1590 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1591 return -EINVAL;
b9bec74b 1592 }
e22a25c9
AL
1593 return 0;
1594}
1595
1596int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1597{
1598 uint8_t int3;
1599
1600 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1601 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1602 return -EINVAL;
b9bec74b 1603 }
e22a25c9
AL
1604 return 0;
1605}
1606
1607static struct {
1608 target_ulong addr;
1609 int len;
1610 int type;
1611} hw_breakpoint[4];
1612
1613static int nb_hw_breakpoint;
1614
1615static int find_hw_breakpoint(target_ulong addr, int len, int type)
1616{
1617 int n;
1618
b9bec74b 1619 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1620 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1621 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1622 return n;
b9bec74b
JK
1623 }
1624 }
e22a25c9
AL
1625 return -1;
1626}
1627
1628int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1629 target_ulong len, int type)
1630{
1631 switch (type) {
1632 case GDB_BREAKPOINT_HW:
1633 len = 1;
1634 break;
1635 case GDB_WATCHPOINT_WRITE:
1636 case GDB_WATCHPOINT_ACCESS:
1637 switch (len) {
1638 case 1:
1639 break;
1640 case 2:
1641 case 4:
1642 case 8:
b9bec74b 1643 if (addr & (len - 1)) {
e22a25c9 1644 return -EINVAL;
b9bec74b 1645 }
e22a25c9
AL
1646 break;
1647 default:
1648 return -EINVAL;
1649 }
1650 break;
1651 default:
1652 return -ENOSYS;
1653 }
1654
b9bec74b 1655 if (nb_hw_breakpoint == 4) {
e22a25c9 1656 return -ENOBUFS;
b9bec74b
JK
1657 }
1658 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1659 return -EEXIST;
b9bec74b 1660 }
e22a25c9
AL
1661 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1662 hw_breakpoint[nb_hw_breakpoint].len = len;
1663 hw_breakpoint[nb_hw_breakpoint].type = type;
1664 nb_hw_breakpoint++;
1665
1666 return 0;
1667}
1668
1669int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1670 target_ulong len, int type)
1671{
1672 int n;
1673
1674 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1675 if (n < 0) {
e22a25c9 1676 return -ENOENT;
b9bec74b 1677 }
e22a25c9
AL
1678 nb_hw_breakpoint--;
1679 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1680
1681 return 0;
1682}
1683
1684void kvm_arch_remove_all_hw_breakpoints(void)
1685{
1686 nb_hw_breakpoint = 0;
1687}
1688
1689static CPUWatchpoint hw_watchpoint;
1690
1691int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1692{
1693 int handle = 0;
1694 int n;
1695
1696 if (arch_info->exception == 1) {
1697 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1698 if (cpu_single_env->singlestep_enabled) {
e22a25c9 1699 handle = 1;
b9bec74b 1700 }
e22a25c9 1701 } else {
b9bec74b
JK
1702 for (n = 0; n < 4; n++) {
1703 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1704 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1705 case 0x0:
1706 handle = 1;
1707 break;
1708 case 0x1:
1709 handle = 1;
1710 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1711 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1712 hw_watchpoint.flags = BP_MEM_WRITE;
1713 break;
1714 case 0x3:
1715 handle = 1;
1716 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1717 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1718 hw_watchpoint.flags = BP_MEM_ACCESS;
1719 break;
1720 }
b9bec74b
JK
1721 }
1722 }
e22a25c9 1723 }
b9bec74b 1724 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
e22a25c9 1725 handle = 1;
b9bec74b 1726 }
b0b1d690
JK
1727 if (!handle) {
1728 cpu_synchronize_state(cpu_single_env);
1729 assert(cpu_single_env->exception_injected == -1);
1730
1731 cpu_single_env->exception_injected = arch_info->exception;
1732 cpu_single_env->has_error_code = 0;
1733 }
e22a25c9
AL
1734
1735 return handle;
1736}
1737
1738void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1739{
1740 const uint8_t type_code[] = {
1741 [GDB_BREAKPOINT_HW] = 0x0,
1742 [GDB_WATCHPOINT_WRITE] = 0x1,
1743 [GDB_WATCHPOINT_ACCESS] = 0x3
1744 };
1745 const uint8_t len_code[] = {
1746 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1747 };
1748 int n;
1749
b9bec74b 1750 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 1751 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 1752 }
e22a25c9
AL
1753 if (nb_hw_breakpoint > 0) {
1754 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1755 dbg->arch.debugreg[7] = 0x0600;
1756 for (n = 0; n < nb_hw_breakpoint; n++) {
1757 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1758 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1759 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 1760 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
1761 }
1762 }
1763}
1764#endif /* KVM_CAP_SET_GUEST_DEBUG */
4513d923
GN
1765
1766bool kvm_arch_stop_on_emulation_error(CPUState *env)
1767{
b9bec74b
JK
1768 return !(env->cr[0] & CR0_PE_MASK) ||
1769 ((env->segs[R_CS].selector & 3) != 3);
4513d923
GN
1770}
1771
c0532a76
MT
1772static void hardware_memory_error(void)
1773{
1774 fprintf(stderr, "Hardware memory error!\n");
1775 exit(1);
1776}
1777
f71ac88f
HS
1778#ifdef KVM_CAP_MCE
1779static void kvm_mce_broadcast_rest(CPUState *env)
1780{
7cc2cc3e
JD
1781 struct kvm_x86_mce mce = {
1782 .bank = 1,
1783 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1784 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1785 .addr = 0,
1786 .misc = 0,
1787 };
f71ac88f 1788 CPUState *cenv;
f71ac88f
HS
1789
1790 /* Broadcast MCA signal for processor version 06H_EH and above */
2bd3e04c 1791 if (cpu_x86_support_mca_broadcast(env)) {
f71ac88f
HS
1792 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1793 if (cenv == env) {
1794 continue;
1795 }
7cc2cc3e 1796 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
f71ac88f
HS
1797 }
1798 }
1799}
e387c338
JD
1800
1801static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1802{
1803 struct kvm_x86_mce mce = {
1804 .bank = 9,
1805 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1806 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1807 | MCI_STATUS_AR | 0x134,
1808 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1809 .addr = paddr,
1810 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1811 };
1812 int r;
1813
1814 r = kvm_set_mce(env, &mce);
1815 if (r < 0) {
1816 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1817 abort();
1818 }
1819 kvm_mce_broadcast_rest(env);
1820}
1821
1822static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1823{
1824 struct kvm_x86_mce mce = {
1825 .bank = 9,
1826 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1827 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1828 | 0xc0,
1829 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1830 .addr = paddr,
1831 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1832 };
1833 int r;
1834
1835 r = kvm_set_mce(env, &mce);
1836 if (r < 0) {
1837 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1838 abort();
1839 }
1840 kvm_mce_broadcast_rest(env);
1841}
1842
1843static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1844{
7cc2cc3e
JD
1845 struct kvm_x86_mce mce = {
1846 .bank = 9,
1847 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1848 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1849 | 0xc0,
1850 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1851 .addr = paddr,
1852 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1853 };
e387c338 1854
7cc2cc3e 1855 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
e387c338
JD
1856 kvm_mce_broadcast_rest(env);
1857}
1858
f71ac88f
HS
1859#endif
1860
c0532a76
MT
1861int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1862{
1863#if defined(KVM_CAP_MCE)
c0532a76
MT
1864 void *vaddr;
1865 ram_addr_t ram_addr;
1866 target_phys_addr_t paddr;
c0532a76
MT
1867
1868 if ((env->mcg_cap & MCG_SER_P) && addr
1869 && (code == BUS_MCEERR_AR
1870 || code == BUS_MCEERR_AO)) {
c0532a76
MT
1871 vaddr = (void *)addr;
1872 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1873 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1874 fprintf(stderr, "Hardware memory error for memory used by "
1875 "QEMU itself instead of guest system!\n");
1876 /* Hope we are lucky for AO MCE */
1877 if (code == BUS_MCEERR_AO) {
1878 return 0;
1879 } else {
1880 hardware_memory_error();
1881 }
1882 }
e387c338
JD
1883
1884 if (code == BUS_MCEERR_AR) {
1885 /* Fake an Intel architectural Data Load SRAR UCR */
1886 kvm_mce_inj_srar_dataload(env, paddr);
1887 } else {
1888 /*
1889 * If there is an MCE excpetion being processed, ignore
1890 * this SRAO MCE
1891 */
1892 if (!kvm_mce_in_progress(env)) {
1893 /* Fake an Intel architectural Memory scrubbing UCR */
1894 kvm_mce_inj_srao_memscrub(env, paddr);
1895 }
c0532a76
MT
1896 }
1897 } else
1898#endif
1899 {
1900 if (code == BUS_MCEERR_AO) {
1901 return 0;
1902 } else if (code == BUS_MCEERR_AR) {
1903 hardware_memory_error();
1904 } else {
1905 return 1;
1906 }
1907 }
1908 return 0;
1909}
1910
1911int kvm_on_sigbus(int code, void *addr)
1912{
1913#if defined(KVM_CAP_MCE)
1914 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
c0532a76
MT
1915 void *vaddr;
1916 ram_addr_t ram_addr;
1917 target_phys_addr_t paddr;
c0532a76
MT
1918
1919 /* Hope we are lucky for AO MCE */
1920 vaddr = addr;
1921 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1922 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1923 fprintf(stderr, "Hardware memory error for memory used by "
1924 "QEMU itself instead of guest system!: %p\n", addr);
1925 return 0;
1926 }
e387c338 1927 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
c0532a76
MT
1928 } else
1929#endif
1930 {
1931 if (code == BUS_MCEERR_AO) {
1932 return 0;
1933 } else if (code == BUS_MCEERR_AR) {
1934 hardware_memory_error();
1935 } else {
1936 return 1;
1937 }
1938 }
1939 return 0;
1940}