]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
kvm: x86: Remove redundant mp_state initialization
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
21
22#include "qemu-common.h"
23#include "sysemu.h"
24#include "kvm.h"
25#include "cpu.h"
e22a25c9 26#include "gdbstub.h"
0e607a80 27#include "host-utils.h"
4c5b10b7 28#include "hw/pc.h"
408392b3 29#include "hw/apic.h"
35bed8ee 30#include "ioport.h"
e7701825 31#include "kvm_x86.h"
05330448 32
bb0300dc
GN
33#ifdef CONFIG_KVM_PARA
34#include <linux/kvm_para.h>
35#endif
36//
05330448
AL
37//#define DEBUG_KVM
38
39#ifdef DEBUG_KVM
8c0d577e 40#define DPRINTF(fmt, ...) \
05330448
AL
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42#else
8c0d577e 43#define DPRINTF(fmt, ...) \
05330448
AL
44 do { } while (0)
45#endif
46
1a03675d
GC
47#define MSR_KVM_WALL_CLOCK 0x11
48#define MSR_KVM_SYSTEM_TIME 0x12
49
c0532a76
MT
50#ifndef BUS_MCEERR_AR
51#define BUS_MCEERR_AR 4
52#endif
53#ifndef BUS_MCEERR_AO
54#define BUS_MCEERR_AO 5
55#endif
56
25d2e361
MT
57static int lm_capable_kernel;
58
b827df58
AK
59#ifdef KVM_CAP_EXT_CPUID
60
61static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
62{
63 struct kvm_cpuid2 *cpuid;
64 int r, size;
65
66 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
68 cpuid->nent = max;
69 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
70 if (r == 0 && cpuid->nent >= max) {
71 r = -E2BIG;
72 }
b827df58
AK
73 if (r < 0) {
74 if (r == -E2BIG) {
75 qemu_free(cpuid);
76 return NULL;
77 } else {
78 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
79 strerror(-r));
80 exit(1);
81 }
82 }
83 return cpuid;
84}
85
c958a8bd
SY
86uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87 uint32_t index, int reg)
b827df58
AK
88{
89 struct kvm_cpuid2 *cpuid;
90 int i, max;
91 uint32_t ret = 0;
92 uint32_t cpuid_1_edx;
93
94 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
95 return -1U;
96 }
97
98 max = 1;
99 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
100 max *= 2;
101 }
102
103 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
104 if (cpuid->entries[i].function == function &&
105 cpuid->entries[i].index == index) {
b827df58
AK
106 switch (reg) {
107 case R_EAX:
108 ret = cpuid->entries[i].eax;
109 break;
110 case R_EBX:
111 ret = cpuid->entries[i].ebx;
112 break;
113 case R_ECX:
114 ret = cpuid->entries[i].ecx;
115 break;
116 case R_EDX:
117 ret = cpuid->entries[i].edx;
19ccb8ea
JK
118 switch (function) {
119 case 1:
120 /* KVM before 2.6.30 misreports the following features */
121 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
122 break;
123 case 0x80000001:
b827df58
AK
124 /* On Intel, kvm returns cpuid according to the Intel spec,
125 * so add missing bits according to the AMD spec:
126 */
c958a8bd 127 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
c1667e40 128 ret |= cpuid_1_edx & 0x183f7ff;
19ccb8ea 129 break;
b827df58
AK
130 }
131 break;
132 }
133 }
134 }
135
136 qemu_free(cpuid);
137
138 return ret;
139}
140
141#else
142
c958a8bd
SY
143uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144 uint32_t index, int reg)
b827df58
AK
145{
146 return -1U;
147}
148
149#endif
150
bb0300dc
GN
151#ifdef CONFIG_KVM_PARA
152struct kvm_para_features {
b9bec74b
JK
153 int cap;
154 int feature;
bb0300dc
GN
155} para_features[] = {
156#ifdef KVM_CAP_CLOCKSOURCE
b9bec74b 157 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
bb0300dc
GN
158#endif
159#ifdef KVM_CAP_NOP_IO_DELAY
b9bec74b 160 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
bb0300dc
GN
161#endif
162#ifdef KVM_CAP_PV_MMU
b9bec74b 163 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
f6584ee2
GN
164#endif
165#ifdef KVM_CAP_ASYNC_PF
b9bec74b 166 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
bb0300dc 167#endif
b9bec74b 168 { -1, -1 }
bb0300dc
GN
169};
170
171static int get_para_features(CPUState *env)
172{
b9bec74b 173 int i, features = 0;
bb0300dc 174
b9bec74b
JK
175 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
177 features |= (1 << para_features[i].feature);
bb0300dc 178 }
b9bec74b
JK
179 }
180 return features;
bb0300dc
GN
181}
182#endif
183
e7701825
MT
184#ifdef KVM_CAP_MCE
185static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
186 int *max_banks)
187{
188 int r;
189
14a09518 190 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
191 if (r > 0) {
192 *max_banks = r;
193 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
194 }
195 return -ENOSYS;
196}
197
198static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
199{
200 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
201}
202
203static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
204{
205 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
206}
207
c0532a76
MT
208static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
209{
210 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
211 int r;
212
213 kmsrs->nmsrs = n;
214 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
217 free(kmsrs);
218 return r;
219}
220
221/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
6643e2f0 222static int kvm_mce_in_progress(CPUState *env)
c0532a76
MT
223{
224 struct kvm_msr_entry msr_mcg_status = {
225 .index = MSR_MCG_STATUS,
226 };
227 int r;
228
229 r = kvm_get_msr(env, &msr_mcg_status, 1);
230 if (r == -1 || r == 0) {
6643e2f0
JD
231 fprintf(stderr, "Failed to get MCE status\n");
232 return 0;
c0532a76
MT
233 }
234 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
235}
236
e7701825
MT
237struct kvm_x86_mce_data
238{
239 CPUState *env;
240 struct kvm_x86_mce *mce;
c0532a76 241 int abort_on_error;
e7701825
MT
242};
243
244static void kvm_do_inject_x86_mce(void *_data)
245{
246 struct kvm_x86_mce_data *data = _data;
247 int r;
248
f8502cfb
HS
249 /* If there is an MCE exception being processed, ignore this SRAO MCE */
250 if ((data->env->mcg_cap & MCG_SER_P) &&
251 !(data->mce->status & MCI_STATUS_AR)) {
6643e2f0 252 if (kvm_mce_in_progress(data->env)) {
f8502cfb
HS
253 return;
254 }
255 }
c0532a76 256
e7701825 257 r = kvm_set_mce(data->env, data->mce);
c0532a76 258 if (r < 0) {
e7701825 259 perror("kvm_set_mce FAILED");
c0532a76
MT
260 if (data->abort_on_error) {
261 abort();
262 }
263 }
e7701825 264}
31ce5e0c 265
7cc2cc3e
JD
266static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
267 int flag)
268{
269 struct kvm_x86_mce_data data = {
270 .env = env,
271 .mce = mce,
272 .abort_on_error = (flag & ABORT_ON_ERROR),
273 };
274
275 if (!env->mcg_cap) {
276 fprintf(stderr, "MCE support is not enabled!\n");
277 return;
278 }
279
280 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
281}
282
31ce5e0c 283static void kvm_mce_broadcast_rest(CPUState *env);
e7701825
MT
284#endif
285
286void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
c0532a76 287 uint64_t mcg_status, uint64_t addr, uint64_t misc,
31ce5e0c 288 int flag)
e7701825
MT
289{
290#ifdef KVM_CAP_MCE
291 struct kvm_x86_mce mce = {
292 .bank = bank,
293 .status = status,
294 .mcg_status = mcg_status,
295 .addr = addr,
296 .misc = misc,
297 };
c0532a76 298
31ce5e0c
JD
299 if (flag & MCE_BROADCAST) {
300 kvm_mce_broadcast_rest(cenv);
301 }
302
7cc2cc3e 303 kvm_inject_x86_mce_on(cenv, &mce, flag);
c0532a76 304#else
31ce5e0c 305 if (flag & ABORT_ON_ERROR) {
c0532a76 306 abort();
31ce5e0c 307 }
e7701825
MT
308#endif
309}
310
05330448
AL
311int kvm_arch_init_vcpu(CPUState *env)
312{
313 struct {
486bd5a2
AL
314 struct kvm_cpuid2 cpuid;
315 struct kvm_cpuid_entry2 entries[100];
05330448 316 } __attribute__((packed)) cpuid_data;
486bd5a2 317 uint32_t limit, i, j, cpuid_i;
a33609ca 318 uint32_t unused;
bb0300dc
GN
319 struct kvm_cpuid_entry2 *c;
320#ifdef KVM_CPUID_SIGNATURE
321 uint32_t signature[3];
322#endif
05330448 323
c958a8bd 324 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
6c0d7ee8
AP
325
326 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
c958a8bd 327 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
6c0d7ee8
AP
328 env->cpuid_ext_features |= i;
329
457dfed6 330 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 331 0, R_EDX);
457dfed6 332 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 333 0, R_ECX);
296acb64
JR
334 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
335 0, R_EDX);
336
6c1f42fe 337
05330448
AL
338 cpuid_i = 0;
339
bb0300dc
GN
340#ifdef CONFIG_KVM_PARA
341 /* Paravirtualization CPUIDs */
342 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
343 c = &cpuid_data.entries[cpuid_i++];
344 memset(c, 0, sizeof(*c));
345 c->function = KVM_CPUID_SIGNATURE;
346 c->eax = 0;
347 c->ebx = signature[0];
348 c->ecx = signature[1];
349 c->edx = signature[2];
350
351 c = &cpuid_data.entries[cpuid_i++];
352 memset(c, 0, sizeof(*c));
353 c->function = KVM_CPUID_FEATURES;
354 c->eax = env->cpuid_kvm_features & get_para_features(env);
355#endif
356
a33609ca 357 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
358
359 for (i = 0; i <= limit; i++) {
bb0300dc 360 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
361
362 switch (i) {
a36b1029
AL
363 case 2: {
364 /* Keep reading function 2 till all the input is received */
365 int times;
366
a36b1029 367 c->function = i;
a33609ca
AL
368 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
369 KVM_CPUID_FLAG_STATE_READ_NEXT;
370 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
371 times = c->eax & 0xff;
a36b1029
AL
372
373 for (j = 1; j < times; ++j) {
a33609ca 374 c = &cpuid_data.entries[cpuid_i++];
a36b1029 375 c->function = i;
a33609ca
AL
376 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
377 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
378 }
379 break;
380 }
486bd5a2
AL
381 case 4:
382 case 0xb:
383 case 0xd:
384 for (j = 0; ; j++) {
486bd5a2
AL
385 c->function = i;
386 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
387 c->index = j;
a33609ca 388 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 389
b9bec74b 390 if (i == 4 && c->eax == 0) {
486bd5a2 391 break;
b9bec74b
JK
392 }
393 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 394 break;
b9bec74b
JK
395 }
396 if (i == 0xd && c->eax == 0) {
486bd5a2 397 break;
b9bec74b 398 }
a33609ca 399 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
400 }
401 break;
402 default:
486bd5a2 403 c->function = i;
a33609ca
AL
404 c->flags = 0;
405 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
406 break;
407 }
05330448 408 }
a33609ca 409 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
410
411 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 412 c = &cpuid_data.entries[cpuid_i++];
05330448 413
05330448 414 c->function = i;
a33609ca
AL
415 c->flags = 0;
416 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
417 }
418
419 cpuid_data.cpuid.nent = cpuid_i;
420
e7701825
MT
421#ifdef KVM_CAP_MCE
422 if (((env->cpuid_version >> 8)&0xF) >= 6
423 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
424 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
425 uint64_t mcg_cap;
426 int banks;
427
b9bec74b 428 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
e7701825 429 perror("kvm_get_mce_cap_supported FAILED");
b9bec74b 430 } else {
e7701825
MT
431 if (banks > MCE_BANKS_DEF)
432 banks = MCE_BANKS_DEF;
433 mcg_cap &= MCE_CAP_DEF;
434 mcg_cap |= banks;
b9bec74b 435 if (kvm_setup_mce(env, &mcg_cap)) {
e7701825 436 perror("kvm_setup_mce FAILED");
b9bec74b 437 } else {
e7701825 438 env->mcg_cap = mcg_cap;
b9bec74b 439 }
e7701825
MT
440 }
441 }
442#endif
443
486bd5a2 444 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
05330448
AL
445}
446
caa5af0f
JK
447void kvm_arch_reset_vcpu(CPUState *env)
448{
e73223a5 449 env->exception_injected = -1;
0e607a80 450 env->interrupt_injected = -1;
a0fb002c
JK
451 env->nmi_injected = 0;
452 env->nmi_pending = 0;
ddced198
MT
453 if (kvm_irqchip_in_kernel()) {
454 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
455 KVM_MP_STATE_UNINITIALIZED;
456 } else {
457 env->mp_state = KVM_MP_STATE_RUNNABLE;
458 }
caa5af0f
JK
459}
460
75b10c43
MT
461int has_msr_star;
462int has_msr_hsave_pa;
463
464static void kvm_supported_msrs(CPUState *env)
05330448 465{
75b10c43 466 static int kvm_supported_msrs;
05330448
AL
467 int ret;
468
469 /* first time */
75b10c43 470 if (kvm_supported_msrs == 0) {
05330448
AL
471 struct kvm_msr_list msr_list, *kvm_msr_list;
472
75b10c43 473 kvm_supported_msrs = -1;
05330448
AL
474
475 /* Obtain MSR list from KVM. These are the MSRs that we must
476 * save/restore */
4c9f7372 477 msr_list.nmsrs = 0;
05330448 478 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 479 if (ret < 0 && ret != -E2BIG) {
75b10c43 480 return;
6fb6d245 481 }
d9db889f
JK
482 /* Old kernel modules had a bug and could write beyond the provided
483 memory. Allocate at least a safe amount of 1K. */
484 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
485 msr_list.nmsrs *
486 sizeof(msr_list.indices[0])));
05330448 487
55308450 488 kvm_msr_list->nmsrs = msr_list.nmsrs;
05330448
AL
489 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
490 if (ret >= 0) {
491 int i;
492
493 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
494 if (kvm_msr_list->indices[i] == MSR_STAR) {
495 has_msr_star = 1;
75b10c43
MT
496 continue;
497 }
498 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
499 has_msr_hsave_pa = 1;
500 continue;
05330448
AL
501 }
502 }
503 }
504
505 free(kvm_msr_list);
506 }
507
75b10c43
MT
508 return;
509}
510
511static int kvm_has_msr_hsave_pa(CPUState *env)
512{
513 kvm_supported_msrs(env);
514 return has_msr_hsave_pa;
515}
516
517static int kvm_has_msr_star(CPUState *env)
518{
519 kvm_supported_msrs(env);
520 return has_msr_star;
05330448
AL
521}
522
20420430
SY
523static int kvm_init_identity_map_page(KVMState *s)
524{
525#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
526 int ret;
527 uint64_t addr = 0xfffbc000;
528
529 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
530 return 0;
531 }
532
533 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
534 if (ret < 0) {
535 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
536 return ret;
537 }
538#endif
539 return 0;
540}
541
05330448
AL
542int kvm_arch_init(KVMState *s, int smp_cpus)
543{
544 int ret;
545
25d2e361
MT
546 struct utsname utsname;
547
548 uname(&utsname);
549 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
550
05330448
AL
551 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
552 * directly. In order to use vm86 mode, a TSS is needed. Since this
553 * must be part of guest physical memory, we need to allocate it. Older
554 * versions of KVM just assumed that it would be at the end of physical
555 * memory but that doesn't work with more than 4GB of memory. We simply
556 * refuse to work with those older versions of KVM. */
14a09518 557 ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR);
05330448
AL
558 if (ret <= 0) {
559 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
560 return ret;
561 }
562
563 /* this address is 3 pages before the bios, and the bios should present
564 * as unavaible memory. FIXME, need to ensure the e820 map deals with
565 * this?
566 */
4c5b10b7
JS
567 /*
568 * Tell fw_cfg to notify the BIOS to reserve the range.
569 */
570 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
571 perror("e820_add_entry() table is full");
572 exit(1);
573 }
20420430
SY
574 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
575 if (ret < 0) {
576 return ret;
577 }
578
579 return kvm_init_identity_map_page(s);
05330448 580}
b9bec74b 581
05330448
AL
582static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
583{
584 lhs->selector = rhs->selector;
585 lhs->base = rhs->base;
586 lhs->limit = rhs->limit;
587 lhs->type = 3;
588 lhs->present = 1;
589 lhs->dpl = 3;
590 lhs->db = 0;
591 lhs->s = 1;
592 lhs->l = 0;
593 lhs->g = 0;
594 lhs->avl = 0;
595 lhs->unusable = 0;
596}
597
598static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
599{
600 unsigned flags = rhs->flags;
601 lhs->selector = rhs->selector;
602 lhs->base = rhs->base;
603 lhs->limit = rhs->limit;
604 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
605 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 606 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
607 lhs->db = (flags >> DESC_B_SHIFT) & 1;
608 lhs->s = (flags & DESC_S_MASK) != 0;
609 lhs->l = (flags >> DESC_L_SHIFT) & 1;
610 lhs->g = (flags & DESC_G_MASK) != 0;
611 lhs->avl = (flags & DESC_AVL_MASK) != 0;
612 lhs->unusable = 0;
613}
614
615static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
616{
617 lhs->selector = rhs->selector;
618 lhs->base = rhs->base;
619 lhs->limit = rhs->limit;
b9bec74b
JK
620 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
621 (rhs->present * DESC_P_MASK) |
622 (rhs->dpl << DESC_DPL_SHIFT) |
623 (rhs->db << DESC_B_SHIFT) |
624 (rhs->s * DESC_S_MASK) |
625 (rhs->l << DESC_L_SHIFT) |
626 (rhs->g * DESC_G_MASK) |
627 (rhs->avl * DESC_AVL_MASK);
05330448
AL
628}
629
630static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
631{
b9bec74b 632 if (set) {
05330448 633 *kvm_reg = *qemu_reg;
b9bec74b 634 } else {
05330448 635 *qemu_reg = *kvm_reg;
b9bec74b 636 }
05330448
AL
637}
638
639static int kvm_getput_regs(CPUState *env, int set)
640{
641 struct kvm_regs regs;
642 int ret = 0;
643
644 if (!set) {
645 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 646 if (ret < 0) {
05330448 647 return ret;
b9bec74b 648 }
05330448
AL
649 }
650
651 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
652 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
653 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
654 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
655 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
656 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
657 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
658 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
659#ifdef TARGET_X86_64
660 kvm_getput_reg(&regs.r8, &env->regs[8], set);
661 kvm_getput_reg(&regs.r9, &env->regs[9], set);
662 kvm_getput_reg(&regs.r10, &env->regs[10], set);
663 kvm_getput_reg(&regs.r11, &env->regs[11], set);
664 kvm_getput_reg(&regs.r12, &env->regs[12], set);
665 kvm_getput_reg(&regs.r13, &env->regs[13], set);
666 kvm_getput_reg(&regs.r14, &env->regs[14], set);
667 kvm_getput_reg(&regs.r15, &env->regs[15], set);
668#endif
669
670 kvm_getput_reg(&regs.rflags, &env->eflags, set);
671 kvm_getput_reg(&regs.rip, &env->eip, set);
672
b9bec74b 673 if (set) {
05330448 674 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 675 }
05330448
AL
676
677 return ret;
678}
679
680static int kvm_put_fpu(CPUState *env)
681{
682 struct kvm_fpu fpu;
683 int i;
684
685 memset(&fpu, 0, sizeof fpu);
686 fpu.fsw = env->fpus & ~(7 << 11);
687 fpu.fsw |= (env->fpstt & 7) << 11;
688 fpu.fcw = env->fpuc;
b9bec74b
JK
689 for (i = 0; i < 8; ++i) {
690 fpu.ftwx |= (!env->fptags[i]) << i;
691 }
05330448
AL
692 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
693 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
694 fpu.mxcsr = env->mxcsr;
695
696 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
697}
698
f1665b21
SY
699#ifdef KVM_CAP_XSAVE
700#define XSAVE_CWD_RIP 2
701#define XSAVE_CWD_RDP 4
702#define XSAVE_MXCSR 6
703#define XSAVE_ST_SPACE 8
704#define XSAVE_XMM_SPACE 40
705#define XSAVE_XSTATE_BV 128
706#define XSAVE_YMMH_SPACE 144
707#endif
708
709static int kvm_put_xsave(CPUState *env)
710{
711#ifdef KVM_CAP_XSAVE
0f53994f 712 int i, r;
f1665b21
SY
713 struct kvm_xsave* xsave;
714 uint16_t cwd, swd, twd, fop;
715
b9bec74b 716 if (!kvm_has_xsave()) {
f1665b21 717 return kvm_put_fpu(env);
b9bec74b 718 }
f1665b21
SY
719
720 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
721 memset(xsave, 0, sizeof(struct kvm_xsave));
722 cwd = swd = twd = fop = 0;
723 swd = env->fpus & ~(7 << 11);
724 swd |= (env->fpstt & 7) << 11;
725 cwd = env->fpuc;
b9bec74b 726 for (i = 0; i < 8; ++i) {
f1665b21 727 twd |= (!env->fptags[i]) << i;
b9bec74b 728 }
f1665b21
SY
729 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
730 xsave->region[1] = (uint32_t)(fop << 16) + twd;
731 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
732 sizeof env->fpregs);
733 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
734 sizeof env->xmm_regs);
735 xsave->region[XSAVE_MXCSR] = env->mxcsr;
736 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
737 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
738 sizeof env->ymmh_regs);
0f53994f
MT
739 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
740 qemu_free(xsave);
741 return r;
f1665b21
SY
742#else
743 return kvm_put_fpu(env);
744#endif
745}
746
747static int kvm_put_xcrs(CPUState *env)
748{
749#ifdef KVM_CAP_XCRS
750 struct kvm_xcrs xcrs;
751
b9bec74b 752 if (!kvm_has_xcrs()) {
f1665b21 753 return 0;
b9bec74b 754 }
f1665b21
SY
755
756 xcrs.nr_xcrs = 1;
757 xcrs.flags = 0;
758 xcrs.xcrs[0].xcr = 0;
759 xcrs.xcrs[0].value = env->xcr0;
760 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
761#else
762 return 0;
763#endif
764}
765
05330448
AL
766static int kvm_put_sregs(CPUState *env)
767{
768 struct kvm_sregs sregs;
769
0e607a80
JK
770 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
771 if (env->interrupt_injected >= 0) {
772 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
773 (uint64_t)1 << (env->interrupt_injected % 64);
774 }
05330448
AL
775
776 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
777 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
778 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
779 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
780 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
781 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
782 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 783 } else {
b9bec74b
JK
784 set_seg(&sregs.cs, &env->segs[R_CS]);
785 set_seg(&sregs.ds, &env->segs[R_DS]);
786 set_seg(&sregs.es, &env->segs[R_ES]);
787 set_seg(&sregs.fs, &env->segs[R_FS]);
788 set_seg(&sregs.gs, &env->segs[R_GS]);
789 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
790 }
791
792 set_seg(&sregs.tr, &env->tr);
793 set_seg(&sregs.ldt, &env->ldt);
794
795 sregs.idt.limit = env->idt.limit;
796 sregs.idt.base = env->idt.base;
797 sregs.gdt.limit = env->gdt.limit;
798 sregs.gdt.base = env->gdt.base;
799
800 sregs.cr0 = env->cr[0];
801 sregs.cr2 = env->cr[2];
802 sregs.cr3 = env->cr[3];
803 sregs.cr4 = env->cr[4];
804
4a942cea
BS
805 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
806 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
807
808 sregs.efer = env->efer;
809
810 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
811}
812
813static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
814 uint32_t index, uint64_t value)
815{
816 entry->index = index;
817 entry->data = value;
818}
819
ea643051 820static int kvm_put_msrs(CPUState *env, int level)
05330448
AL
821{
822 struct {
823 struct kvm_msrs info;
824 struct kvm_msr_entry entries[100];
825 } msr_data;
826 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 827 int n = 0;
05330448
AL
828
829 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
830 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
831 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
b9bec74b
JK
832 if (kvm_has_msr_star(env)) {
833 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
834 }
835 if (kvm_has_msr_hsave_pa(env)) {
75b10c43 836 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 837 }
05330448 838#ifdef TARGET_X86_64
25d2e361
MT
839 if (lm_capable_kernel) {
840 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
841 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
842 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
843 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
844 }
05330448 845#endif
ea643051 846 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
847 /*
848 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
849 * writeback. Until this is fixed, we only write the offset to SMP
850 * guests after migration, desynchronizing the VCPUs, but avoiding
851 * huge jump-backs that would occur without any writeback at all.
852 */
853 if (smp_cpus == 1 || env->tsc != 0) {
854 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
855 }
ea643051
JK
856 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
857 env->system_time_msr);
858 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
f6584ee2
GN
859#ifdef KVM_CAP_ASYNC_PF
860 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
861#endif
ea643051 862 }
57780495
MT
863#ifdef KVM_CAP_MCE
864 if (env->mcg_cap) {
d8da8574 865 int i;
b9bec74b
JK
866
867 if (level == KVM_PUT_RESET_STATE) {
57780495 868 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
b9bec74b 869 } else if (level == KVM_PUT_FULL_STATE) {
57780495
MT
870 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
871 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
b9bec74b 872 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 873 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
b9bec74b 874 }
57780495
MT
875 }
876 }
877#endif
1a03675d 878
05330448
AL
879 msr_data.info.nmsrs = n;
880
881 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
882
883}
884
885
886static int kvm_get_fpu(CPUState *env)
887{
888 struct kvm_fpu fpu;
889 int i, ret;
890
891 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 892 if (ret < 0) {
05330448 893 return ret;
b9bec74b 894 }
05330448
AL
895
896 env->fpstt = (fpu.fsw >> 11) & 7;
897 env->fpus = fpu.fsw;
898 env->fpuc = fpu.fcw;
b9bec74b
JK
899 for (i = 0; i < 8; ++i) {
900 env->fptags[i] = !((fpu.ftwx >> i) & 1);
901 }
05330448
AL
902 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
903 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
904 env->mxcsr = fpu.mxcsr;
905
906 return 0;
907}
908
f1665b21
SY
909static int kvm_get_xsave(CPUState *env)
910{
911#ifdef KVM_CAP_XSAVE
912 struct kvm_xsave* xsave;
913 int ret, i;
914 uint16_t cwd, swd, twd, fop;
915
b9bec74b 916 if (!kvm_has_xsave()) {
f1665b21 917 return kvm_get_fpu(env);
b9bec74b 918 }
f1665b21
SY
919
920 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
921 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f
MT
922 if (ret < 0) {
923 qemu_free(xsave);
f1665b21 924 return ret;
0f53994f 925 }
f1665b21
SY
926
927 cwd = (uint16_t)xsave->region[0];
928 swd = (uint16_t)(xsave->region[0] >> 16);
929 twd = (uint16_t)xsave->region[1];
930 fop = (uint16_t)(xsave->region[1] >> 16);
931 env->fpstt = (swd >> 11) & 7;
932 env->fpus = swd;
933 env->fpuc = cwd;
b9bec74b 934 for (i = 0; i < 8; ++i) {
f1665b21 935 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 936 }
f1665b21
SY
937 env->mxcsr = xsave->region[XSAVE_MXCSR];
938 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
939 sizeof env->fpregs);
940 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
941 sizeof env->xmm_regs);
942 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
943 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
944 sizeof env->ymmh_regs);
0f53994f 945 qemu_free(xsave);
f1665b21
SY
946 return 0;
947#else
948 return kvm_get_fpu(env);
949#endif
950}
951
952static int kvm_get_xcrs(CPUState *env)
953{
954#ifdef KVM_CAP_XCRS
955 int i, ret;
956 struct kvm_xcrs xcrs;
957
b9bec74b 958 if (!kvm_has_xcrs()) {
f1665b21 959 return 0;
b9bec74b 960 }
f1665b21
SY
961
962 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 963 if (ret < 0) {
f1665b21 964 return ret;
b9bec74b 965 }
f1665b21 966
b9bec74b 967 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
968 /* Only support xcr0 now */
969 if (xcrs.xcrs[0].xcr == 0) {
970 env->xcr0 = xcrs.xcrs[0].value;
971 break;
972 }
b9bec74b 973 }
f1665b21
SY
974 return 0;
975#else
976 return 0;
977#endif
978}
979
05330448
AL
980static int kvm_get_sregs(CPUState *env)
981{
982 struct kvm_sregs sregs;
983 uint32_t hflags;
0e607a80 984 int bit, i, ret;
05330448
AL
985
986 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 987 if (ret < 0) {
05330448 988 return ret;
b9bec74b 989 }
05330448 990
0e607a80
JK
991 /* There can only be one pending IRQ set in the bitmap at a time, so try
992 to find it and save its number instead (-1 for none). */
993 env->interrupt_injected = -1;
994 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
995 if (sregs.interrupt_bitmap[i]) {
996 bit = ctz64(sregs.interrupt_bitmap[i]);
997 env->interrupt_injected = i * 64 + bit;
998 break;
999 }
1000 }
05330448
AL
1001
1002 get_seg(&env->segs[R_CS], &sregs.cs);
1003 get_seg(&env->segs[R_DS], &sregs.ds);
1004 get_seg(&env->segs[R_ES], &sregs.es);
1005 get_seg(&env->segs[R_FS], &sregs.fs);
1006 get_seg(&env->segs[R_GS], &sregs.gs);
1007 get_seg(&env->segs[R_SS], &sregs.ss);
1008
1009 get_seg(&env->tr, &sregs.tr);
1010 get_seg(&env->ldt, &sregs.ldt);
1011
1012 env->idt.limit = sregs.idt.limit;
1013 env->idt.base = sregs.idt.base;
1014 env->gdt.limit = sregs.gdt.limit;
1015 env->gdt.base = sregs.gdt.base;
1016
1017 env->cr[0] = sregs.cr0;
1018 env->cr[2] = sregs.cr2;
1019 env->cr[3] = sregs.cr3;
1020 env->cr[4] = sregs.cr4;
1021
4a942cea 1022 cpu_set_apic_base(env->apic_state, sregs.apic_base);
05330448
AL
1023
1024 env->efer = sregs.efer;
4a942cea 1025 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
05330448 1026
b9bec74b
JK
1027#define HFLAG_COPY_MASK \
1028 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1029 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1030 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1031 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1032
1033 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1034 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1035 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1036 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1037 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1038 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1039 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1040
1041 if (env->efer & MSR_EFER_LMA) {
1042 hflags |= HF_LMA_MASK;
1043 }
1044
1045 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1046 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1047 } else {
1048 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1049 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1050 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1051 (DESC_B_SHIFT - HF_SS32_SHIFT);
1052 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1053 !(hflags & HF_CS32_MASK)) {
1054 hflags |= HF_ADDSEG_MASK;
1055 } else {
1056 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1057 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1058 }
05330448
AL
1059 }
1060 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1061
1062 return 0;
1063}
1064
1065static int kvm_get_msrs(CPUState *env)
1066{
1067 struct {
1068 struct kvm_msrs info;
1069 struct kvm_msr_entry entries[100];
1070 } msr_data;
1071 struct kvm_msr_entry *msrs = msr_data.entries;
1072 int ret, i, n;
1073
1074 n = 0;
1075 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1076 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1077 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
b9bec74b
JK
1078 if (kvm_has_msr_star(env)) {
1079 msrs[n++].index = MSR_STAR;
1080 }
1081 if (kvm_has_msr_hsave_pa(env)) {
75b10c43 1082 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1083 }
05330448
AL
1084 msrs[n++].index = MSR_IA32_TSC;
1085#ifdef TARGET_X86_64
25d2e361
MT
1086 if (lm_capable_kernel) {
1087 msrs[n++].index = MSR_CSTAR;
1088 msrs[n++].index = MSR_KERNELGSBASE;
1089 msrs[n++].index = MSR_FMASK;
1090 msrs[n++].index = MSR_LSTAR;
1091 }
05330448 1092#endif
1a03675d
GC
1093 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1094 msrs[n++].index = MSR_KVM_WALL_CLOCK;
f6584ee2
GN
1095#ifdef KVM_CAP_ASYNC_PF
1096 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1097#endif
1a03675d 1098
57780495
MT
1099#ifdef KVM_CAP_MCE
1100 if (env->mcg_cap) {
1101 msrs[n++].index = MSR_MCG_STATUS;
1102 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1103 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1104 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1105 }
57780495
MT
1106 }
1107#endif
1108
05330448
AL
1109 msr_data.info.nmsrs = n;
1110 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1111 if (ret < 0) {
05330448 1112 return ret;
b9bec74b 1113 }
05330448
AL
1114
1115 for (i = 0; i < ret; i++) {
1116 switch (msrs[i].index) {
1117 case MSR_IA32_SYSENTER_CS:
1118 env->sysenter_cs = msrs[i].data;
1119 break;
1120 case MSR_IA32_SYSENTER_ESP:
1121 env->sysenter_esp = msrs[i].data;
1122 break;
1123 case MSR_IA32_SYSENTER_EIP:
1124 env->sysenter_eip = msrs[i].data;
1125 break;
1126 case MSR_STAR:
1127 env->star = msrs[i].data;
1128 break;
1129#ifdef TARGET_X86_64
1130 case MSR_CSTAR:
1131 env->cstar = msrs[i].data;
1132 break;
1133 case MSR_KERNELGSBASE:
1134 env->kernelgsbase = msrs[i].data;
1135 break;
1136 case MSR_FMASK:
1137 env->fmask = msrs[i].data;
1138 break;
1139 case MSR_LSTAR:
1140 env->lstar = msrs[i].data;
1141 break;
1142#endif
1143 case MSR_IA32_TSC:
1144 env->tsc = msrs[i].data;
1145 break;
aa851e36
MT
1146 case MSR_VM_HSAVE_PA:
1147 env->vm_hsave = msrs[i].data;
1148 break;
1a03675d
GC
1149 case MSR_KVM_SYSTEM_TIME:
1150 env->system_time_msr = msrs[i].data;
1151 break;
1152 case MSR_KVM_WALL_CLOCK:
1153 env->wall_clock_msr = msrs[i].data;
1154 break;
57780495
MT
1155#ifdef KVM_CAP_MCE
1156 case MSR_MCG_STATUS:
1157 env->mcg_status = msrs[i].data;
1158 break;
1159 case MSR_MCG_CTL:
1160 env->mcg_ctl = msrs[i].data;
1161 break;
1162#endif
1163 default:
1164#ifdef KVM_CAP_MCE
1165 if (msrs[i].index >= MSR_MC0_CTL &&
1166 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1167 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495
MT
1168 }
1169#endif
d8da8574 1170 break;
f6584ee2
GN
1171#ifdef KVM_CAP_ASYNC_PF
1172 case MSR_KVM_ASYNC_PF_EN:
1173 env->async_pf_en_msr = msrs[i].data;
1174 break;
1175#endif
05330448
AL
1176 }
1177 }
1178
1179 return 0;
1180}
1181
9bdbe550
HB
1182static int kvm_put_mp_state(CPUState *env)
1183{
1184 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1185
1186 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1187}
1188
1189static int kvm_get_mp_state(CPUState *env)
1190{
1191 struct kvm_mp_state mp_state;
1192 int ret;
1193
1194 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1195 if (ret < 0) {
1196 return ret;
1197 }
1198 env->mp_state = mp_state.mp_state;
c14750e8
JK
1199 if (kvm_irqchip_in_kernel()) {
1200 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1201 }
9bdbe550
HB
1202 return 0;
1203}
1204
ea643051 1205static int kvm_put_vcpu_events(CPUState *env, int level)
a0fb002c
JK
1206{
1207#ifdef KVM_CAP_VCPU_EVENTS
1208 struct kvm_vcpu_events events;
1209
1210 if (!kvm_has_vcpu_events()) {
1211 return 0;
1212 }
1213
31827373
JK
1214 events.exception.injected = (env->exception_injected >= 0);
1215 events.exception.nr = env->exception_injected;
a0fb002c
JK
1216 events.exception.has_error_code = env->has_error_code;
1217 events.exception.error_code = env->error_code;
1218
1219 events.interrupt.injected = (env->interrupt_injected >= 0);
1220 events.interrupt.nr = env->interrupt_injected;
1221 events.interrupt.soft = env->soft_interrupt;
1222
1223 events.nmi.injected = env->nmi_injected;
1224 events.nmi.pending = env->nmi_pending;
1225 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1226
1227 events.sipi_vector = env->sipi_vector;
1228
ea643051
JK
1229 events.flags = 0;
1230 if (level >= KVM_PUT_RESET_STATE) {
1231 events.flags |=
1232 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1233 }
aee028b9 1234
a0fb002c
JK
1235 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1236#else
1237 return 0;
1238#endif
1239}
1240
1241static int kvm_get_vcpu_events(CPUState *env)
1242{
1243#ifdef KVM_CAP_VCPU_EVENTS
1244 struct kvm_vcpu_events events;
1245 int ret;
1246
1247 if (!kvm_has_vcpu_events()) {
1248 return 0;
1249 }
1250
1251 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1252 if (ret < 0) {
1253 return ret;
1254 }
31827373 1255 env->exception_injected =
a0fb002c
JK
1256 events.exception.injected ? events.exception.nr : -1;
1257 env->has_error_code = events.exception.has_error_code;
1258 env->error_code = events.exception.error_code;
1259
1260 env->interrupt_injected =
1261 events.interrupt.injected ? events.interrupt.nr : -1;
1262 env->soft_interrupt = events.interrupt.soft;
1263
1264 env->nmi_injected = events.nmi.injected;
1265 env->nmi_pending = events.nmi.pending;
1266 if (events.nmi.masked) {
1267 env->hflags2 |= HF2_NMI_MASK;
1268 } else {
1269 env->hflags2 &= ~HF2_NMI_MASK;
1270 }
1271
1272 env->sipi_vector = events.sipi_vector;
1273#endif
1274
1275 return 0;
1276}
1277
b0b1d690
JK
1278static int kvm_guest_debug_workarounds(CPUState *env)
1279{
1280 int ret = 0;
1281#ifdef KVM_CAP_SET_GUEST_DEBUG
1282 unsigned long reinject_trap = 0;
1283
1284 if (!kvm_has_vcpu_events()) {
1285 if (env->exception_injected == 1) {
1286 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1287 } else if (env->exception_injected == 3) {
1288 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1289 }
1290 env->exception_injected = -1;
1291 }
1292
1293 /*
1294 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1295 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1296 * by updating the debug state once again if single-stepping is on.
1297 * Another reason to call kvm_update_guest_debug here is a pending debug
1298 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1299 * reinject them via SET_GUEST_DEBUG.
1300 */
1301 if (reinject_trap ||
1302 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1303 ret = kvm_update_guest_debug(env, reinject_trap);
1304 }
1305#endif /* KVM_CAP_SET_GUEST_DEBUG */
1306 return ret;
1307}
1308
ff44f1a3
JK
1309static int kvm_put_debugregs(CPUState *env)
1310{
1311#ifdef KVM_CAP_DEBUGREGS
1312 struct kvm_debugregs dbgregs;
1313 int i;
1314
1315 if (!kvm_has_debugregs()) {
1316 return 0;
1317 }
1318
1319 for (i = 0; i < 4; i++) {
1320 dbgregs.db[i] = env->dr[i];
1321 }
1322 dbgregs.dr6 = env->dr[6];
1323 dbgregs.dr7 = env->dr[7];
1324 dbgregs.flags = 0;
1325
1326 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1327#else
1328 return 0;
1329#endif
1330}
1331
1332static int kvm_get_debugregs(CPUState *env)
1333{
1334#ifdef KVM_CAP_DEBUGREGS
1335 struct kvm_debugregs dbgregs;
1336 int i, ret;
1337
1338 if (!kvm_has_debugregs()) {
1339 return 0;
1340 }
1341
1342 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1343 if (ret < 0) {
b9bec74b 1344 return ret;
ff44f1a3
JK
1345 }
1346 for (i = 0; i < 4; i++) {
1347 env->dr[i] = dbgregs.db[i];
1348 }
1349 env->dr[4] = env->dr[6] = dbgregs.dr6;
1350 env->dr[5] = env->dr[7] = dbgregs.dr7;
1351#endif
1352
1353 return 0;
1354}
1355
ea375f9a 1356int kvm_arch_put_registers(CPUState *env, int level)
05330448
AL
1357{
1358 int ret;
1359
dbaa07c4
JK
1360 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1361
05330448 1362 ret = kvm_getput_regs(env, 1);
b9bec74b 1363 if (ret < 0) {
05330448 1364 return ret;
b9bec74b 1365 }
f1665b21 1366 ret = kvm_put_xsave(env);
b9bec74b 1367 if (ret < 0) {
f1665b21 1368 return ret;
b9bec74b 1369 }
f1665b21 1370 ret = kvm_put_xcrs(env);
b9bec74b 1371 if (ret < 0) {
05330448 1372 return ret;
b9bec74b 1373 }
05330448 1374 ret = kvm_put_sregs(env);
b9bec74b 1375 if (ret < 0) {
05330448 1376 return ret;
b9bec74b 1377 }
ea643051 1378 ret = kvm_put_msrs(env, level);
b9bec74b 1379 if (ret < 0) {
05330448 1380 return ret;
b9bec74b 1381 }
ea643051
JK
1382 if (level >= KVM_PUT_RESET_STATE) {
1383 ret = kvm_put_mp_state(env);
b9bec74b 1384 if (ret < 0) {
ea643051 1385 return ret;
b9bec74b 1386 }
ea643051 1387 }
ea643051 1388 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1389 if (ret < 0) {
a0fb002c 1390 return ret;
b9bec74b 1391 }
0d75a9ec 1392 ret = kvm_put_debugregs(env);
b9bec74b 1393 if (ret < 0) {
b0b1d690 1394 return ret;
b9bec74b 1395 }
0d75a9ec
JK
1396 /* must be last */
1397 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1398 if (ret < 0) {
ff44f1a3 1399 return ret;
b9bec74b 1400 }
05330448
AL
1401 return 0;
1402}
1403
1404int kvm_arch_get_registers(CPUState *env)
1405{
1406 int ret;
1407
dbaa07c4
JK
1408 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1409
05330448 1410 ret = kvm_getput_regs(env, 0);
b9bec74b 1411 if (ret < 0) {
05330448 1412 return ret;
b9bec74b 1413 }
f1665b21 1414 ret = kvm_get_xsave(env);
b9bec74b 1415 if (ret < 0) {
f1665b21 1416 return ret;
b9bec74b 1417 }
f1665b21 1418 ret = kvm_get_xcrs(env);
b9bec74b 1419 if (ret < 0) {
05330448 1420 return ret;
b9bec74b 1421 }
05330448 1422 ret = kvm_get_sregs(env);
b9bec74b 1423 if (ret < 0) {
05330448 1424 return ret;
b9bec74b 1425 }
05330448 1426 ret = kvm_get_msrs(env);
b9bec74b 1427 if (ret < 0) {
05330448 1428 return ret;
b9bec74b 1429 }
5a2e3c2e 1430 ret = kvm_get_mp_state(env);
b9bec74b 1431 if (ret < 0) {
5a2e3c2e 1432 return ret;
b9bec74b 1433 }
a0fb002c 1434 ret = kvm_get_vcpu_events(env);
b9bec74b 1435 if (ret < 0) {
a0fb002c 1436 return ret;
b9bec74b 1437 }
ff44f1a3 1438 ret = kvm_get_debugregs(env);
b9bec74b 1439 if (ret < 0) {
ff44f1a3 1440 return ret;
b9bec74b 1441 }
05330448
AL
1442 return 0;
1443}
1444
1445int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1446{
276ce815
LJ
1447 /* Inject NMI */
1448 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1449 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1450 DPRINTF("injected NMI\n");
1451 kvm_vcpu_ioctl(env, KVM_NMI);
1452 }
1453
05330448
AL
1454 /* Try to inject an interrupt if the guest can accept it */
1455 if (run->ready_for_interrupt_injection &&
1456 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1457 (env->eflags & IF_MASK)) {
1458 int irq;
1459
1460 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1461 irq = cpu_get_pic_interrupt(env);
1462 if (irq >= 0) {
1463 struct kvm_interrupt intr;
1464 intr.irq = irq;
1465 /* FIXME: errors */
8c0d577e 1466 DPRINTF("injected interrupt %d\n", irq);
05330448
AL
1467 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1468 }
1469 }
1470
1471 /* If we have an interrupt but the guest is not ready to receive an
1472 * interrupt, request an interrupt window exit. This will
1473 * cause a return to userspace as soon as the guest is ready to
1474 * receive interrupts. */
b9bec74b 1475 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
05330448 1476 run->request_interrupt_window = 1;
b9bec74b 1477 } else {
05330448 1478 run->request_interrupt_window = 0;
b9bec74b 1479 }
05330448 1480
8c0d577e 1481 DPRINTF("setting tpr\n");
4a942cea 1482 run->cr8 = cpu_get_apic_tpr(env->apic_state);
05330448
AL
1483
1484 return 0;
1485}
1486
1487int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1488{
b9bec74b 1489 if (run->if_flag) {
05330448 1490 env->eflags |= IF_MASK;
b9bec74b 1491 } else {
05330448 1492 env->eflags &= ~IF_MASK;
b9bec74b 1493 }
4a942cea
BS
1494 cpu_set_apic_tpr(env->apic_state, run->cr8);
1495 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1496
1497 return 0;
1498}
1499
0af691d7
MT
1500int kvm_arch_process_irqchip_events(CPUState *env)
1501{
1502 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1503 kvm_cpu_synchronize_state(env);
1504 do_cpu_init(env);
1505 env->exception_index = EXCP_HALTED;
1506 }
1507
1508 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1509 kvm_cpu_synchronize_state(env);
1510 do_cpu_sipi(env);
1511 }
1512
1513 return env->halted;
1514}
1515
05330448
AL
1516static int kvm_handle_halt(CPUState *env)
1517{
1518 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1519 (env->eflags & IF_MASK)) &&
1520 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1521 env->halted = 1;
1522 env->exception_index = EXCP_HLT;
1523 return 0;
1524 }
1525
1526 return 1;
1527}
1528
bb44e0d1
JK
1529static bool host_supports_vmx(void)
1530{
1531 uint32_t ecx, unused;
1532
1533 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1534 return ecx & CPUID_EXT_VMX;
1535}
1536
1537#define VMX_INVALID_GUEST_STATE 0x80000021
1538
05330448
AL
1539int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1540{
bb44e0d1 1541 uint64_t code;
05330448
AL
1542 int ret = 0;
1543
1544 switch (run->exit_reason) {
1545 case KVM_EXIT_HLT:
8c0d577e 1546 DPRINTF("handle_hlt\n");
05330448
AL
1547 ret = kvm_handle_halt(env);
1548 break;
646042e1
JK
1549 case KVM_EXIT_SET_TPR:
1550 ret = 1;
1551 break;
bb44e0d1
JK
1552 case KVM_EXIT_FAIL_ENTRY:
1553 code = run->fail_entry.hardware_entry_failure_reason;
1554 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1555 code);
1556 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1557 fprintf(stderr,
1558 "\nIf you're runnning a guest on an Intel machine without "
1559 "unrestricted mode\n"
1560 "support, the failure can be most likely due to the guest "
1561 "entering an invalid\n"
1562 "state for Intel VT. For example, the guest maybe running "
1563 "in big real mode\n"
1564 "which is not supported on less recent Intel processors."
1565 "\n\n");
1566 }
1567 ret = -1;
1568 break;
1569 case KVM_EXIT_EXCEPTION:
1570 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1571 run->ex.exception, run->ex.error_code);
1572 ret = -1;
1573 break;
73aaec4a
JK
1574 default:
1575 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1576 ret = -1;
1577 break;
05330448
AL
1578 }
1579
1580 return ret;
1581}
e22a25c9
AL
1582
1583#ifdef KVM_CAP_SET_GUEST_DEBUG
e22a25c9
AL
1584int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1585{
38972938 1586 static const uint8_t int3 = 0xcc;
64bf3f4e 1587
e22a25c9 1588 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1589 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1590 return -EINVAL;
b9bec74b 1591 }
e22a25c9
AL
1592 return 0;
1593}
1594
1595int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1596{
1597 uint8_t int3;
1598
1599 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1600 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1601 return -EINVAL;
b9bec74b 1602 }
e22a25c9
AL
1603 return 0;
1604}
1605
1606static struct {
1607 target_ulong addr;
1608 int len;
1609 int type;
1610} hw_breakpoint[4];
1611
1612static int nb_hw_breakpoint;
1613
1614static int find_hw_breakpoint(target_ulong addr, int len, int type)
1615{
1616 int n;
1617
b9bec74b 1618 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1619 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1620 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1621 return n;
b9bec74b
JK
1622 }
1623 }
e22a25c9
AL
1624 return -1;
1625}
1626
1627int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1628 target_ulong len, int type)
1629{
1630 switch (type) {
1631 case GDB_BREAKPOINT_HW:
1632 len = 1;
1633 break;
1634 case GDB_WATCHPOINT_WRITE:
1635 case GDB_WATCHPOINT_ACCESS:
1636 switch (len) {
1637 case 1:
1638 break;
1639 case 2:
1640 case 4:
1641 case 8:
b9bec74b 1642 if (addr & (len - 1)) {
e22a25c9 1643 return -EINVAL;
b9bec74b 1644 }
e22a25c9
AL
1645 break;
1646 default:
1647 return -EINVAL;
1648 }
1649 break;
1650 default:
1651 return -ENOSYS;
1652 }
1653
b9bec74b 1654 if (nb_hw_breakpoint == 4) {
e22a25c9 1655 return -ENOBUFS;
b9bec74b
JK
1656 }
1657 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1658 return -EEXIST;
b9bec74b 1659 }
e22a25c9
AL
1660 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1661 hw_breakpoint[nb_hw_breakpoint].len = len;
1662 hw_breakpoint[nb_hw_breakpoint].type = type;
1663 nb_hw_breakpoint++;
1664
1665 return 0;
1666}
1667
1668int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1669 target_ulong len, int type)
1670{
1671 int n;
1672
1673 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1674 if (n < 0) {
e22a25c9 1675 return -ENOENT;
b9bec74b 1676 }
e22a25c9
AL
1677 nb_hw_breakpoint--;
1678 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1679
1680 return 0;
1681}
1682
1683void kvm_arch_remove_all_hw_breakpoints(void)
1684{
1685 nb_hw_breakpoint = 0;
1686}
1687
1688static CPUWatchpoint hw_watchpoint;
1689
1690int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1691{
1692 int handle = 0;
1693 int n;
1694
1695 if (arch_info->exception == 1) {
1696 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1697 if (cpu_single_env->singlestep_enabled) {
e22a25c9 1698 handle = 1;
b9bec74b 1699 }
e22a25c9 1700 } else {
b9bec74b
JK
1701 for (n = 0; n < 4; n++) {
1702 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1703 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1704 case 0x0:
1705 handle = 1;
1706 break;
1707 case 0x1:
1708 handle = 1;
1709 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1710 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1711 hw_watchpoint.flags = BP_MEM_WRITE;
1712 break;
1713 case 0x3:
1714 handle = 1;
1715 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1716 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1717 hw_watchpoint.flags = BP_MEM_ACCESS;
1718 break;
1719 }
b9bec74b
JK
1720 }
1721 }
e22a25c9 1722 }
b9bec74b 1723 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
e22a25c9 1724 handle = 1;
b9bec74b 1725 }
b0b1d690
JK
1726 if (!handle) {
1727 cpu_synchronize_state(cpu_single_env);
1728 assert(cpu_single_env->exception_injected == -1);
1729
1730 cpu_single_env->exception_injected = arch_info->exception;
1731 cpu_single_env->has_error_code = 0;
1732 }
e22a25c9
AL
1733
1734 return handle;
1735}
1736
1737void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1738{
1739 const uint8_t type_code[] = {
1740 [GDB_BREAKPOINT_HW] = 0x0,
1741 [GDB_WATCHPOINT_WRITE] = 0x1,
1742 [GDB_WATCHPOINT_ACCESS] = 0x3
1743 };
1744 const uint8_t len_code[] = {
1745 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1746 };
1747 int n;
1748
b9bec74b 1749 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 1750 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 1751 }
e22a25c9
AL
1752 if (nb_hw_breakpoint > 0) {
1753 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1754 dbg->arch.debugreg[7] = 0x0600;
1755 for (n = 0; n < nb_hw_breakpoint; n++) {
1756 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1757 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1758 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 1759 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
1760 }
1761 }
f1665b21
SY
1762 /* Legal xcr0 for loading */
1763 env->xcr0 = 1;
e22a25c9
AL
1764}
1765#endif /* KVM_CAP_SET_GUEST_DEBUG */
4513d923
GN
1766
1767bool kvm_arch_stop_on_emulation_error(CPUState *env)
1768{
b9bec74b
JK
1769 return !(env->cr[0] & CR0_PE_MASK) ||
1770 ((env->segs[R_CS].selector & 3) != 3);
4513d923
GN
1771}
1772
c0532a76
MT
1773static void hardware_memory_error(void)
1774{
1775 fprintf(stderr, "Hardware memory error!\n");
1776 exit(1);
1777}
1778
f71ac88f
HS
1779#ifdef KVM_CAP_MCE
1780static void kvm_mce_broadcast_rest(CPUState *env)
1781{
7cc2cc3e
JD
1782 struct kvm_x86_mce mce = {
1783 .bank = 1,
1784 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1785 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1786 .addr = 0,
1787 .misc = 0,
1788 };
f71ac88f 1789 CPUState *cenv;
f71ac88f
HS
1790
1791 /* Broadcast MCA signal for processor version 06H_EH and above */
2bd3e04c 1792 if (cpu_x86_support_mca_broadcast(env)) {
f71ac88f
HS
1793 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1794 if (cenv == env) {
1795 continue;
1796 }
7cc2cc3e 1797 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
f71ac88f
HS
1798 }
1799 }
1800}
e387c338
JD
1801
1802static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1803{
1804 struct kvm_x86_mce mce = {
1805 .bank = 9,
1806 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1807 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1808 | MCI_STATUS_AR | 0x134,
1809 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1810 .addr = paddr,
1811 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1812 };
1813 int r;
1814
1815 r = kvm_set_mce(env, &mce);
1816 if (r < 0) {
1817 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1818 abort();
1819 }
1820 kvm_mce_broadcast_rest(env);
1821}
1822
1823static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1824{
1825 struct kvm_x86_mce mce = {
1826 .bank = 9,
1827 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1828 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1829 | 0xc0,
1830 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1831 .addr = paddr,
1832 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1833 };
1834 int r;
1835
1836 r = kvm_set_mce(env, &mce);
1837 if (r < 0) {
1838 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1839 abort();
1840 }
1841 kvm_mce_broadcast_rest(env);
1842}
1843
1844static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1845{
7cc2cc3e
JD
1846 struct kvm_x86_mce mce = {
1847 .bank = 9,
1848 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1849 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1850 | 0xc0,
1851 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1852 .addr = paddr,
1853 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1854 };
e387c338 1855
7cc2cc3e 1856 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
e387c338
JD
1857 kvm_mce_broadcast_rest(env);
1858}
1859
f71ac88f
HS
1860#endif
1861
c0532a76
MT
1862int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1863{
1864#if defined(KVM_CAP_MCE)
c0532a76
MT
1865 void *vaddr;
1866 ram_addr_t ram_addr;
1867 target_phys_addr_t paddr;
c0532a76
MT
1868
1869 if ((env->mcg_cap & MCG_SER_P) && addr
1870 && (code == BUS_MCEERR_AR
1871 || code == BUS_MCEERR_AO)) {
c0532a76
MT
1872 vaddr = (void *)addr;
1873 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1874 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1875 fprintf(stderr, "Hardware memory error for memory used by "
1876 "QEMU itself instead of guest system!\n");
1877 /* Hope we are lucky for AO MCE */
1878 if (code == BUS_MCEERR_AO) {
1879 return 0;
1880 } else {
1881 hardware_memory_error();
1882 }
1883 }
e387c338
JD
1884
1885 if (code == BUS_MCEERR_AR) {
1886 /* Fake an Intel architectural Data Load SRAR UCR */
1887 kvm_mce_inj_srar_dataload(env, paddr);
1888 } else {
1889 /*
1890 * If there is an MCE excpetion being processed, ignore
1891 * this SRAO MCE
1892 */
1893 if (!kvm_mce_in_progress(env)) {
1894 /* Fake an Intel architectural Memory scrubbing UCR */
1895 kvm_mce_inj_srao_memscrub(env, paddr);
1896 }
c0532a76
MT
1897 }
1898 } else
1899#endif
1900 {
1901 if (code == BUS_MCEERR_AO) {
1902 return 0;
1903 } else if (code == BUS_MCEERR_AR) {
1904 hardware_memory_error();
1905 } else {
1906 return 1;
1907 }
1908 }
1909 return 0;
1910}
1911
1912int kvm_on_sigbus(int code, void *addr)
1913{
1914#if defined(KVM_CAP_MCE)
1915 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
c0532a76
MT
1916 void *vaddr;
1917 ram_addr_t ram_addr;
1918 target_phys_addr_t paddr;
c0532a76
MT
1919
1920 /* Hope we are lucky for AO MCE */
1921 vaddr = addr;
1922 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1923 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1924 fprintf(stderr, "Hardware memory error for memory used by "
1925 "QEMU itself instead of guest system!: %p\n", addr);
1926 return 0;
1927 }
e387c338 1928 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
c0532a76
MT
1929 } else
1930#endif
1931 {
1932 if (code == BUS_MCEERR_AO) {
1933 return 0;
1934 } else if (code == BUS_MCEERR_AR) {
1935 hardware_memory_error();
1936 } else {
1937 return 1;
1938 }
1939 }
1940 return 0;
1941}