]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
Add savevm/loadvm support for MCE
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
18
19#include <linux/kvm.h>
20
21#include "qemu-common.h"
22#include "sysemu.h"
23#include "kvm.h"
24#include "cpu.h"
e22a25c9 25#include "gdbstub.h"
0e607a80 26#include "host-utils.h"
4c5b10b7 27#include "hw/pc.h"
408392b3 28#include "hw/apic.h"
35bed8ee 29#include "ioport.h"
e7701825 30#include "kvm_x86.h"
05330448 31
bb0300dc
GN
32#ifdef CONFIG_KVM_PARA
33#include <linux/kvm_para.h>
34#endif
35//
05330448
AL
36//#define DEBUG_KVM
37
38#ifdef DEBUG_KVM
8c0d577e 39#define DPRINTF(fmt, ...) \
05330448
AL
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41#else
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { } while (0)
44#endif
45
1a03675d
GC
46#define MSR_KVM_WALL_CLOCK 0x11
47#define MSR_KVM_SYSTEM_TIME 0x12
48
c0532a76
MT
49#ifndef BUS_MCEERR_AR
50#define BUS_MCEERR_AR 4
51#endif
52#ifndef BUS_MCEERR_AO
53#define BUS_MCEERR_AO 5
54#endif
55
b827df58
AK
56#ifdef KVM_CAP_EXT_CPUID
57
58static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
59{
60 struct kvm_cpuid2 *cpuid;
61 int r, size;
62
63 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
64 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
65 cpuid->nent = max;
66 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
67 if (r == 0 && cpuid->nent >= max) {
68 r = -E2BIG;
69 }
b827df58
AK
70 if (r < 0) {
71 if (r == -E2BIG) {
72 qemu_free(cpuid);
73 return NULL;
74 } else {
75 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
76 strerror(-r));
77 exit(1);
78 }
79 }
80 return cpuid;
81}
82
c958a8bd
SY
83uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
84 uint32_t index, int reg)
b827df58
AK
85{
86 struct kvm_cpuid2 *cpuid;
87 int i, max;
88 uint32_t ret = 0;
89 uint32_t cpuid_1_edx;
90
91 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
92 return -1U;
93 }
94
95 max = 1;
96 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
97 max *= 2;
98 }
99
100 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
101 if (cpuid->entries[i].function == function &&
102 cpuid->entries[i].index == index) {
b827df58
AK
103 switch (reg) {
104 case R_EAX:
105 ret = cpuid->entries[i].eax;
106 break;
107 case R_EBX:
108 ret = cpuid->entries[i].ebx;
109 break;
110 case R_ECX:
111 ret = cpuid->entries[i].ecx;
112 break;
113 case R_EDX:
114 ret = cpuid->entries[i].edx;
19ccb8ea
JK
115 switch (function) {
116 case 1:
117 /* KVM before 2.6.30 misreports the following features */
118 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
119 break;
120 case 0x80000001:
b827df58
AK
121 /* On Intel, kvm returns cpuid according to the Intel spec,
122 * so add missing bits according to the AMD spec:
123 */
c958a8bd 124 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
c1667e40 125 ret |= cpuid_1_edx & 0x183f7ff;
19ccb8ea 126 break;
b827df58
AK
127 }
128 break;
129 }
130 }
131 }
132
133 qemu_free(cpuid);
134
135 return ret;
136}
137
138#else
139
c958a8bd
SY
140uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
141 uint32_t index, int reg)
b827df58
AK
142{
143 return -1U;
144}
145
146#endif
147
bb0300dc
GN
148#ifdef CONFIG_KVM_PARA
149struct kvm_para_features {
150 int cap;
151 int feature;
152} para_features[] = {
153#ifdef KVM_CAP_CLOCKSOURCE
154 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
155#endif
156#ifdef KVM_CAP_NOP_IO_DELAY
157 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
158#endif
159#ifdef KVM_CAP_PV_MMU
160 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
bb0300dc
GN
161#endif
162 { -1, -1 }
163};
164
165static int get_para_features(CPUState *env)
166{
167 int i, features = 0;
168
169 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
170 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
171 features |= (1 << para_features[i].feature);
172 }
173
174 return features;
175}
176#endif
177
e7701825
MT
178#ifdef KVM_CAP_MCE
179static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
180 int *max_banks)
181{
182 int r;
183
184 r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
185 if (r > 0) {
186 *max_banks = r;
187 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
188 }
189 return -ENOSYS;
190}
191
192static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
193{
194 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
195}
196
197static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
198{
199 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
200}
201
c0532a76
MT
202static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
203{
204 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
205 int r;
206
207 kmsrs->nmsrs = n;
208 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
209 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
210 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
211 free(kmsrs);
212 return r;
213}
214
215/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
216static int kvm_mce_in_exception(CPUState *env)
217{
218 struct kvm_msr_entry msr_mcg_status = {
219 .index = MSR_MCG_STATUS,
220 };
221 int r;
222
223 r = kvm_get_msr(env, &msr_mcg_status, 1);
224 if (r == -1 || r == 0) {
225 return -1;
226 }
227 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
228}
229
e7701825
MT
230struct kvm_x86_mce_data
231{
232 CPUState *env;
233 struct kvm_x86_mce *mce;
c0532a76 234 int abort_on_error;
e7701825
MT
235};
236
237static void kvm_do_inject_x86_mce(void *_data)
238{
239 struct kvm_x86_mce_data *data = _data;
240 int r;
241
c0532a76
MT
242 /* If there is an MCE excpetion being processed, ignore this SRAO MCE */
243 r = kvm_mce_in_exception(data->env);
244 if (r == -1)
245 fprintf(stderr, "Failed to get MCE status\n");
246 else if (r && !(data->mce->status & MCI_STATUS_AR))
247 return;
248
e7701825 249 r = kvm_set_mce(data->env, data->mce);
c0532a76 250 if (r < 0) {
e7701825 251 perror("kvm_set_mce FAILED");
c0532a76
MT
252 if (data->abort_on_error) {
253 abort();
254 }
255 }
e7701825
MT
256}
257#endif
258
259void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
c0532a76
MT
260 uint64_t mcg_status, uint64_t addr, uint64_t misc,
261 int abort_on_error)
e7701825
MT
262{
263#ifdef KVM_CAP_MCE
264 struct kvm_x86_mce mce = {
265 .bank = bank,
266 .status = status,
267 .mcg_status = mcg_status,
268 .addr = addr,
269 .misc = misc,
270 };
271 struct kvm_x86_mce_data data = {
272 .env = cenv,
273 .mce = &mce,
274 };
275
c0532a76
MT
276 if (!cenv->mcg_cap) {
277 fprintf(stderr, "MCE support is not enabled!\n");
278 return;
279 }
280
e7701825 281 run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
c0532a76
MT
282#else
283 if (abort_on_error)
284 abort();
e7701825
MT
285#endif
286}
287
05330448
AL
288int kvm_arch_init_vcpu(CPUState *env)
289{
290 struct {
486bd5a2
AL
291 struct kvm_cpuid2 cpuid;
292 struct kvm_cpuid_entry2 entries[100];
05330448 293 } __attribute__((packed)) cpuid_data;
486bd5a2 294 uint32_t limit, i, j, cpuid_i;
a33609ca 295 uint32_t unused;
bb0300dc
GN
296 struct kvm_cpuid_entry2 *c;
297#ifdef KVM_CPUID_SIGNATURE
298 uint32_t signature[3];
299#endif
05330448 300
f8d926e9
JK
301 env->mp_state = KVM_MP_STATE_RUNNABLE;
302
c958a8bd 303 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
6c0d7ee8
AP
304
305 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
c958a8bd 306 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
6c0d7ee8
AP
307 env->cpuid_ext_features |= i;
308
457dfed6 309 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 310 0, R_EDX);
457dfed6 311 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 312 0, R_ECX);
296acb64
JR
313 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
314 0, R_EDX);
315
6c1f42fe 316
05330448
AL
317 cpuid_i = 0;
318
bb0300dc
GN
319#ifdef CONFIG_KVM_PARA
320 /* Paravirtualization CPUIDs */
321 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
322 c = &cpuid_data.entries[cpuid_i++];
323 memset(c, 0, sizeof(*c));
324 c->function = KVM_CPUID_SIGNATURE;
325 c->eax = 0;
326 c->ebx = signature[0];
327 c->ecx = signature[1];
328 c->edx = signature[2];
329
330 c = &cpuid_data.entries[cpuid_i++];
331 memset(c, 0, sizeof(*c));
332 c->function = KVM_CPUID_FEATURES;
333 c->eax = env->cpuid_kvm_features & get_para_features(env);
334#endif
335
a33609ca 336 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
337
338 for (i = 0; i <= limit; i++) {
bb0300dc 339 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
340
341 switch (i) {
a36b1029
AL
342 case 2: {
343 /* Keep reading function 2 till all the input is received */
344 int times;
345
a36b1029 346 c->function = i;
a33609ca
AL
347 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
348 KVM_CPUID_FLAG_STATE_READ_NEXT;
349 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
350 times = c->eax & 0xff;
a36b1029
AL
351
352 for (j = 1; j < times; ++j) {
a33609ca 353 c = &cpuid_data.entries[cpuid_i++];
a36b1029 354 c->function = i;
a33609ca
AL
355 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
356 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
357 }
358 break;
359 }
486bd5a2
AL
360 case 4:
361 case 0xb:
362 case 0xd:
363 for (j = 0; ; j++) {
486bd5a2
AL
364 c->function = i;
365 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
366 c->index = j;
a33609ca 367 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 368
a33609ca 369 if (i == 4 && c->eax == 0)
486bd5a2 370 break;
a33609ca 371 if (i == 0xb && !(c->ecx & 0xff00))
486bd5a2 372 break;
a33609ca 373 if (i == 0xd && c->eax == 0)
486bd5a2 374 break;
a33609ca
AL
375
376 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
377 }
378 break;
379 default:
486bd5a2 380 c->function = i;
a33609ca
AL
381 c->flags = 0;
382 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
383 break;
384 }
05330448 385 }
a33609ca 386 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
387
388 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 389 c = &cpuid_data.entries[cpuid_i++];
05330448 390
05330448 391 c->function = i;
a33609ca
AL
392 c->flags = 0;
393 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
394 }
395
396 cpuid_data.cpuid.nent = cpuid_i;
397
e7701825
MT
398#ifdef KVM_CAP_MCE
399 if (((env->cpuid_version >> 8)&0xF) >= 6
400 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
401 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
402 uint64_t mcg_cap;
403 int banks;
404
405 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
406 perror("kvm_get_mce_cap_supported FAILED");
407 else {
408 if (banks > MCE_BANKS_DEF)
409 banks = MCE_BANKS_DEF;
410 mcg_cap &= MCE_CAP_DEF;
411 mcg_cap |= banks;
412 if (kvm_setup_mce(env, &mcg_cap))
413 perror("kvm_setup_mce FAILED");
414 else
415 env->mcg_cap = mcg_cap;
416 }
417 }
418#endif
419
486bd5a2 420 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
05330448
AL
421}
422
caa5af0f
JK
423void kvm_arch_reset_vcpu(CPUState *env)
424{
e73223a5 425 env->exception_injected = -1;
0e607a80 426 env->interrupt_injected = -1;
a0fb002c
JK
427 env->nmi_injected = 0;
428 env->nmi_pending = 0;
ddced198
MT
429 if (kvm_irqchip_in_kernel()) {
430 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
431 KVM_MP_STATE_UNINITIALIZED;
432 } else {
433 env->mp_state = KVM_MP_STATE_RUNNABLE;
434 }
caa5af0f
JK
435}
436
05330448
AL
437static int kvm_has_msr_star(CPUState *env)
438{
439 static int has_msr_star;
440 int ret;
441
442 /* first time */
443 if (has_msr_star == 0) {
444 struct kvm_msr_list msr_list, *kvm_msr_list;
445
446 has_msr_star = -1;
447
448 /* Obtain MSR list from KVM. These are the MSRs that we must
449 * save/restore */
4c9f7372 450 msr_list.nmsrs = 0;
05330448 451 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 452 if (ret < 0 && ret != -E2BIG) {
05330448 453 return 0;
6fb6d245 454 }
d9db889f
JK
455 /* Old kernel modules had a bug and could write beyond the provided
456 memory. Allocate at least a safe amount of 1K. */
457 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
458 msr_list.nmsrs *
459 sizeof(msr_list.indices[0])));
05330448 460
55308450 461 kvm_msr_list->nmsrs = msr_list.nmsrs;
05330448
AL
462 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
463 if (ret >= 0) {
464 int i;
465
466 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
467 if (kvm_msr_list->indices[i] == MSR_STAR) {
468 has_msr_star = 1;
469 break;
470 }
471 }
472 }
473
474 free(kvm_msr_list);
475 }
476
477 if (has_msr_star == 1)
478 return 1;
479 return 0;
480}
481
20420430
SY
482static int kvm_init_identity_map_page(KVMState *s)
483{
484#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
485 int ret;
486 uint64_t addr = 0xfffbc000;
487
488 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
489 return 0;
490 }
491
492 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
493 if (ret < 0) {
494 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
495 return ret;
496 }
497#endif
498 return 0;
499}
500
05330448
AL
501int kvm_arch_init(KVMState *s, int smp_cpus)
502{
503 int ret;
504
505 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
506 * directly. In order to use vm86 mode, a TSS is needed. Since this
507 * must be part of guest physical memory, we need to allocate it. Older
508 * versions of KVM just assumed that it would be at the end of physical
509 * memory but that doesn't work with more than 4GB of memory. We simply
510 * refuse to work with those older versions of KVM. */
984b5181 511 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
05330448
AL
512 if (ret <= 0) {
513 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
514 return ret;
515 }
516
517 /* this address is 3 pages before the bios, and the bios should present
518 * as unavaible memory. FIXME, need to ensure the e820 map deals with
519 * this?
520 */
4c5b10b7
JS
521 /*
522 * Tell fw_cfg to notify the BIOS to reserve the range.
523 */
524 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
525 perror("e820_add_entry() table is full");
526 exit(1);
527 }
20420430
SY
528 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
529 if (ret < 0) {
530 return ret;
531 }
532
533 return kvm_init_identity_map_page(s);
05330448
AL
534}
535
536static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
537{
538 lhs->selector = rhs->selector;
539 lhs->base = rhs->base;
540 lhs->limit = rhs->limit;
541 lhs->type = 3;
542 lhs->present = 1;
543 lhs->dpl = 3;
544 lhs->db = 0;
545 lhs->s = 1;
546 lhs->l = 0;
547 lhs->g = 0;
548 lhs->avl = 0;
549 lhs->unusable = 0;
550}
551
552static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
553{
554 unsigned flags = rhs->flags;
555 lhs->selector = rhs->selector;
556 lhs->base = rhs->base;
557 lhs->limit = rhs->limit;
558 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
559 lhs->present = (flags & DESC_P_MASK) != 0;
560 lhs->dpl = rhs->selector & 3;
561 lhs->db = (flags >> DESC_B_SHIFT) & 1;
562 lhs->s = (flags & DESC_S_MASK) != 0;
563 lhs->l = (flags >> DESC_L_SHIFT) & 1;
564 lhs->g = (flags & DESC_G_MASK) != 0;
565 lhs->avl = (flags & DESC_AVL_MASK) != 0;
566 lhs->unusable = 0;
567}
568
569static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
570{
571 lhs->selector = rhs->selector;
572 lhs->base = rhs->base;
573 lhs->limit = rhs->limit;
574 lhs->flags =
575 (rhs->type << DESC_TYPE_SHIFT)
576 | (rhs->present * DESC_P_MASK)
577 | (rhs->dpl << DESC_DPL_SHIFT)
578 | (rhs->db << DESC_B_SHIFT)
579 | (rhs->s * DESC_S_MASK)
580 | (rhs->l << DESC_L_SHIFT)
581 | (rhs->g * DESC_G_MASK)
582 | (rhs->avl * DESC_AVL_MASK);
583}
584
585static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
586{
587 if (set)
588 *kvm_reg = *qemu_reg;
589 else
590 *qemu_reg = *kvm_reg;
591}
592
593static int kvm_getput_regs(CPUState *env, int set)
594{
595 struct kvm_regs regs;
596 int ret = 0;
597
598 if (!set) {
599 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
600 if (ret < 0)
601 return ret;
602 }
603
604 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
605 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
606 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
607 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
608 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
609 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
610 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
611 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
612#ifdef TARGET_X86_64
613 kvm_getput_reg(&regs.r8, &env->regs[8], set);
614 kvm_getput_reg(&regs.r9, &env->regs[9], set);
615 kvm_getput_reg(&regs.r10, &env->regs[10], set);
616 kvm_getput_reg(&regs.r11, &env->regs[11], set);
617 kvm_getput_reg(&regs.r12, &env->regs[12], set);
618 kvm_getput_reg(&regs.r13, &env->regs[13], set);
619 kvm_getput_reg(&regs.r14, &env->regs[14], set);
620 kvm_getput_reg(&regs.r15, &env->regs[15], set);
621#endif
622
623 kvm_getput_reg(&regs.rflags, &env->eflags, set);
624 kvm_getput_reg(&regs.rip, &env->eip, set);
625
626 if (set)
627 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
628
629 return ret;
630}
631
632static int kvm_put_fpu(CPUState *env)
633{
634 struct kvm_fpu fpu;
635 int i;
636
637 memset(&fpu, 0, sizeof fpu);
638 fpu.fsw = env->fpus & ~(7 << 11);
639 fpu.fsw |= (env->fpstt & 7) << 11;
640 fpu.fcw = env->fpuc;
641 for (i = 0; i < 8; ++i)
642 fpu.ftwx |= (!env->fptags[i]) << i;
643 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
644 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
645 fpu.mxcsr = env->mxcsr;
646
647 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
648}
649
f1665b21
SY
650#ifdef KVM_CAP_XSAVE
651#define XSAVE_CWD_RIP 2
652#define XSAVE_CWD_RDP 4
653#define XSAVE_MXCSR 6
654#define XSAVE_ST_SPACE 8
655#define XSAVE_XMM_SPACE 40
656#define XSAVE_XSTATE_BV 128
657#define XSAVE_YMMH_SPACE 144
658#endif
659
660static int kvm_put_xsave(CPUState *env)
661{
662#ifdef KVM_CAP_XSAVE
663 int i;
664 struct kvm_xsave* xsave;
665 uint16_t cwd, swd, twd, fop;
666
667 if (!kvm_has_xsave())
668 return kvm_put_fpu(env);
669
670 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
671 memset(xsave, 0, sizeof(struct kvm_xsave));
672 cwd = swd = twd = fop = 0;
673 swd = env->fpus & ~(7 << 11);
674 swd |= (env->fpstt & 7) << 11;
675 cwd = env->fpuc;
676 for (i = 0; i < 8; ++i)
677 twd |= (!env->fptags[i]) << i;
678 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
679 xsave->region[1] = (uint32_t)(fop << 16) + twd;
680 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
681 sizeof env->fpregs);
682 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
683 sizeof env->xmm_regs);
684 xsave->region[XSAVE_MXCSR] = env->mxcsr;
685 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
686 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
687 sizeof env->ymmh_regs);
688 return kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
689#else
690 return kvm_put_fpu(env);
691#endif
692}
693
694static int kvm_put_xcrs(CPUState *env)
695{
696#ifdef KVM_CAP_XCRS
697 struct kvm_xcrs xcrs;
698
699 if (!kvm_has_xcrs())
700 return 0;
701
702 xcrs.nr_xcrs = 1;
703 xcrs.flags = 0;
704 xcrs.xcrs[0].xcr = 0;
705 xcrs.xcrs[0].value = env->xcr0;
706 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
707#else
708 return 0;
709#endif
710}
711
05330448
AL
712static int kvm_put_sregs(CPUState *env)
713{
714 struct kvm_sregs sregs;
715
0e607a80
JK
716 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
717 if (env->interrupt_injected >= 0) {
718 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
719 (uint64_t)1 << (env->interrupt_injected % 64);
720 }
05330448
AL
721
722 if ((env->eflags & VM_MASK)) {
723 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
724 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
725 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
726 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
727 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
728 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
729 } else {
730 set_seg(&sregs.cs, &env->segs[R_CS]);
731 set_seg(&sregs.ds, &env->segs[R_DS]);
732 set_seg(&sregs.es, &env->segs[R_ES]);
733 set_seg(&sregs.fs, &env->segs[R_FS]);
734 set_seg(&sregs.gs, &env->segs[R_GS]);
735 set_seg(&sregs.ss, &env->segs[R_SS]);
736
737 if (env->cr[0] & CR0_PE_MASK) {
738 /* force ss cpl to cs cpl */
739 sregs.ss.selector = (sregs.ss.selector & ~3) |
740 (sregs.cs.selector & 3);
741 sregs.ss.dpl = sregs.ss.selector & 3;
742 }
743 }
744
745 set_seg(&sregs.tr, &env->tr);
746 set_seg(&sregs.ldt, &env->ldt);
747
748 sregs.idt.limit = env->idt.limit;
749 sregs.idt.base = env->idt.base;
750 sregs.gdt.limit = env->gdt.limit;
751 sregs.gdt.base = env->gdt.base;
752
753 sregs.cr0 = env->cr[0];
754 sregs.cr2 = env->cr[2];
755 sregs.cr3 = env->cr[3];
756 sregs.cr4 = env->cr[4];
757
4a942cea
BS
758 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
759 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
760
761 sregs.efer = env->efer;
762
763 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
764}
765
766static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
767 uint32_t index, uint64_t value)
768{
769 entry->index = index;
770 entry->data = value;
771}
772
ea643051 773static int kvm_put_msrs(CPUState *env, int level)
05330448
AL
774{
775 struct {
776 struct kvm_msrs info;
777 struct kvm_msr_entry entries[100];
778 } msr_data;
779 struct kvm_msr_entry *msrs = msr_data.entries;
57780495 780 int i, n = 0;
05330448
AL
781
782 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
783 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
784 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
785 if (kvm_has_msr_star(env))
786 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
05330448
AL
787#ifdef TARGET_X86_64
788 /* FIXME if lm capable */
789 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
790 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
791 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
792 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
793#endif
ea643051
JK
794 if (level == KVM_PUT_FULL_STATE) {
795 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
796 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
797 env->system_time_msr);
798 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
799 }
57780495
MT
800#ifdef KVM_CAP_MCE
801 if (env->mcg_cap) {
802 if (level == KVM_PUT_RESET_STATE)
803 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
804 else if (level == KVM_PUT_FULL_STATE) {
805 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
806 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
807 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
808 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
809 }
810 }
811#endif
1a03675d 812
05330448
AL
813 msr_data.info.nmsrs = n;
814
815 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
816
817}
818
819
820static int kvm_get_fpu(CPUState *env)
821{
822 struct kvm_fpu fpu;
823 int i, ret;
824
825 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
826 if (ret < 0)
827 return ret;
828
829 env->fpstt = (fpu.fsw >> 11) & 7;
830 env->fpus = fpu.fsw;
831 env->fpuc = fpu.fcw;
832 for (i = 0; i < 8; ++i)
833 env->fptags[i] = !((fpu.ftwx >> i) & 1);
834 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
835 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
836 env->mxcsr = fpu.mxcsr;
837
838 return 0;
839}
840
f1665b21
SY
841static int kvm_get_xsave(CPUState *env)
842{
843#ifdef KVM_CAP_XSAVE
844 struct kvm_xsave* xsave;
845 int ret, i;
846 uint16_t cwd, swd, twd, fop;
847
848 if (!kvm_has_xsave())
849 return kvm_get_fpu(env);
850
851 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
852 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
853 if (ret < 0)
854 return ret;
855
856 cwd = (uint16_t)xsave->region[0];
857 swd = (uint16_t)(xsave->region[0] >> 16);
858 twd = (uint16_t)xsave->region[1];
859 fop = (uint16_t)(xsave->region[1] >> 16);
860 env->fpstt = (swd >> 11) & 7;
861 env->fpus = swd;
862 env->fpuc = cwd;
863 for (i = 0; i < 8; ++i)
864 env->fptags[i] = !((twd >> i) & 1);
865 env->mxcsr = xsave->region[XSAVE_MXCSR];
866 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
867 sizeof env->fpregs);
868 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
869 sizeof env->xmm_regs);
870 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
871 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
872 sizeof env->ymmh_regs);
873 return 0;
874#else
875 return kvm_get_fpu(env);
876#endif
877}
878
879static int kvm_get_xcrs(CPUState *env)
880{
881#ifdef KVM_CAP_XCRS
882 int i, ret;
883 struct kvm_xcrs xcrs;
884
885 if (!kvm_has_xcrs())
886 return 0;
887
888 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
889 if (ret < 0)
890 return ret;
891
892 for (i = 0; i < xcrs.nr_xcrs; i++)
893 /* Only support xcr0 now */
894 if (xcrs.xcrs[0].xcr == 0) {
895 env->xcr0 = xcrs.xcrs[0].value;
896 break;
897 }
898 return 0;
899#else
900 return 0;
901#endif
902}
903
05330448
AL
904static int kvm_get_sregs(CPUState *env)
905{
906 struct kvm_sregs sregs;
907 uint32_t hflags;
0e607a80 908 int bit, i, ret;
05330448
AL
909
910 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
911 if (ret < 0)
912 return ret;
913
0e607a80
JK
914 /* There can only be one pending IRQ set in the bitmap at a time, so try
915 to find it and save its number instead (-1 for none). */
916 env->interrupt_injected = -1;
917 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
918 if (sregs.interrupt_bitmap[i]) {
919 bit = ctz64(sregs.interrupt_bitmap[i]);
920 env->interrupt_injected = i * 64 + bit;
921 break;
922 }
923 }
05330448
AL
924
925 get_seg(&env->segs[R_CS], &sregs.cs);
926 get_seg(&env->segs[R_DS], &sregs.ds);
927 get_seg(&env->segs[R_ES], &sregs.es);
928 get_seg(&env->segs[R_FS], &sregs.fs);
929 get_seg(&env->segs[R_GS], &sregs.gs);
930 get_seg(&env->segs[R_SS], &sregs.ss);
931
932 get_seg(&env->tr, &sregs.tr);
933 get_seg(&env->ldt, &sregs.ldt);
934
935 env->idt.limit = sregs.idt.limit;
936 env->idt.base = sregs.idt.base;
937 env->gdt.limit = sregs.gdt.limit;
938 env->gdt.base = sregs.gdt.base;
939
940 env->cr[0] = sregs.cr0;
941 env->cr[2] = sregs.cr2;
942 env->cr[3] = sregs.cr3;
943 env->cr[4] = sregs.cr4;
944
4a942cea 945 cpu_set_apic_base(env->apic_state, sregs.apic_base);
05330448
AL
946
947 env->efer = sregs.efer;
4a942cea 948 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
05330448
AL
949
950#define HFLAG_COPY_MASK ~( \
951 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
952 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
953 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
954 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
955
956
957
958 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
959 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
960 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
961 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
962 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
963 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
964 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
965
966 if (env->efer & MSR_EFER_LMA) {
967 hflags |= HF_LMA_MASK;
968 }
969
970 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
971 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
972 } else {
973 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
974 (DESC_B_SHIFT - HF_CS32_SHIFT);
975 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
976 (DESC_B_SHIFT - HF_SS32_SHIFT);
977 if (!(env->cr[0] & CR0_PE_MASK) ||
978 (env->eflags & VM_MASK) ||
979 !(hflags & HF_CS32_MASK)) {
980 hflags |= HF_ADDSEG_MASK;
981 } else {
982 hflags |= ((env->segs[R_DS].base |
983 env->segs[R_ES].base |
984 env->segs[R_SS].base) != 0) <<
985 HF_ADDSEG_SHIFT;
986 }
987 }
988 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
989
990 return 0;
991}
992
993static int kvm_get_msrs(CPUState *env)
994{
995 struct {
996 struct kvm_msrs info;
997 struct kvm_msr_entry entries[100];
998 } msr_data;
999 struct kvm_msr_entry *msrs = msr_data.entries;
1000 int ret, i, n;
1001
1002 n = 0;
1003 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1004 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1005 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1006 if (kvm_has_msr_star(env))
1007 msrs[n++].index = MSR_STAR;
1008 msrs[n++].index = MSR_IA32_TSC;
1009#ifdef TARGET_X86_64
1010 /* FIXME lm_capable_kernel */
1011 msrs[n++].index = MSR_CSTAR;
1012 msrs[n++].index = MSR_KERNELGSBASE;
1013 msrs[n++].index = MSR_FMASK;
1014 msrs[n++].index = MSR_LSTAR;
1015#endif
1a03675d
GC
1016 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1017 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1018
57780495
MT
1019#ifdef KVM_CAP_MCE
1020 if (env->mcg_cap) {
1021 msrs[n++].index = MSR_MCG_STATUS;
1022 msrs[n++].index = MSR_MCG_CTL;
1023 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1024 msrs[n++].index = MSR_MC0_CTL + i;
1025 }
1026#endif
1027
05330448
AL
1028 msr_data.info.nmsrs = n;
1029 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1030 if (ret < 0)
1031 return ret;
1032
1033 for (i = 0; i < ret; i++) {
1034 switch (msrs[i].index) {
1035 case MSR_IA32_SYSENTER_CS:
1036 env->sysenter_cs = msrs[i].data;
1037 break;
1038 case MSR_IA32_SYSENTER_ESP:
1039 env->sysenter_esp = msrs[i].data;
1040 break;
1041 case MSR_IA32_SYSENTER_EIP:
1042 env->sysenter_eip = msrs[i].data;
1043 break;
1044 case MSR_STAR:
1045 env->star = msrs[i].data;
1046 break;
1047#ifdef TARGET_X86_64
1048 case MSR_CSTAR:
1049 env->cstar = msrs[i].data;
1050 break;
1051 case MSR_KERNELGSBASE:
1052 env->kernelgsbase = msrs[i].data;
1053 break;
1054 case MSR_FMASK:
1055 env->fmask = msrs[i].data;
1056 break;
1057 case MSR_LSTAR:
1058 env->lstar = msrs[i].data;
1059 break;
1060#endif
1061 case MSR_IA32_TSC:
1062 env->tsc = msrs[i].data;
1063 break;
1a03675d
GC
1064 case MSR_KVM_SYSTEM_TIME:
1065 env->system_time_msr = msrs[i].data;
1066 break;
1067 case MSR_KVM_WALL_CLOCK:
1068 env->wall_clock_msr = msrs[i].data;
1069 break;
57780495
MT
1070#ifdef KVM_CAP_MCE
1071 case MSR_MCG_STATUS:
1072 env->mcg_status = msrs[i].data;
1073 break;
1074 case MSR_MCG_CTL:
1075 env->mcg_ctl = msrs[i].data;
1076 break;
1077#endif
1078 default:
1079#ifdef KVM_CAP_MCE
1080 if (msrs[i].index >= MSR_MC0_CTL &&
1081 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1082 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1083 break;
1084 }
1085#endif
05330448
AL
1086 }
1087 }
1088
1089 return 0;
1090}
1091
9bdbe550
HB
1092static int kvm_put_mp_state(CPUState *env)
1093{
1094 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1095
1096 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1097}
1098
1099static int kvm_get_mp_state(CPUState *env)
1100{
1101 struct kvm_mp_state mp_state;
1102 int ret;
1103
1104 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1105 if (ret < 0) {
1106 return ret;
1107 }
1108 env->mp_state = mp_state.mp_state;
1109 return 0;
1110}
1111
ea643051 1112static int kvm_put_vcpu_events(CPUState *env, int level)
a0fb002c
JK
1113{
1114#ifdef KVM_CAP_VCPU_EVENTS
1115 struct kvm_vcpu_events events;
1116
1117 if (!kvm_has_vcpu_events()) {
1118 return 0;
1119 }
1120
31827373
JK
1121 events.exception.injected = (env->exception_injected >= 0);
1122 events.exception.nr = env->exception_injected;
a0fb002c
JK
1123 events.exception.has_error_code = env->has_error_code;
1124 events.exception.error_code = env->error_code;
1125
1126 events.interrupt.injected = (env->interrupt_injected >= 0);
1127 events.interrupt.nr = env->interrupt_injected;
1128 events.interrupt.soft = env->soft_interrupt;
1129
1130 events.nmi.injected = env->nmi_injected;
1131 events.nmi.pending = env->nmi_pending;
1132 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1133
1134 events.sipi_vector = env->sipi_vector;
1135
ea643051
JK
1136 events.flags = 0;
1137 if (level >= KVM_PUT_RESET_STATE) {
1138 events.flags |=
1139 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1140 }
aee028b9 1141
a0fb002c
JK
1142 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1143#else
1144 return 0;
1145#endif
1146}
1147
1148static int kvm_get_vcpu_events(CPUState *env)
1149{
1150#ifdef KVM_CAP_VCPU_EVENTS
1151 struct kvm_vcpu_events events;
1152 int ret;
1153
1154 if (!kvm_has_vcpu_events()) {
1155 return 0;
1156 }
1157
1158 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1159 if (ret < 0) {
1160 return ret;
1161 }
31827373 1162 env->exception_injected =
a0fb002c
JK
1163 events.exception.injected ? events.exception.nr : -1;
1164 env->has_error_code = events.exception.has_error_code;
1165 env->error_code = events.exception.error_code;
1166
1167 env->interrupt_injected =
1168 events.interrupt.injected ? events.interrupt.nr : -1;
1169 env->soft_interrupt = events.interrupt.soft;
1170
1171 env->nmi_injected = events.nmi.injected;
1172 env->nmi_pending = events.nmi.pending;
1173 if (events.nmi.masked) {
1174 env->hflags2 |= HF2_NMI_MASK;
1175 } else {
1176 env->hflags2 &= ~HF2_NMI_MASK;
1177 }
1178
1179 env->sipi_vector = events.sipi_vector;
1180#endif
1181
1182 return 0;
1183}
1184
b0b1d690
JK
1185static int kvm_guest_debug_workarounds(CPUState *env)
1186{
1187 int ret = 0;
1188#ifdef KVM_CAP_SET_GUEST_DEBUG
1189 unsigned long reinject_trap = 0;
1190
1191 if (!kvm_has_vcpu_events()) {
1192 if (env->exception_injected == 1) {
1193 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1194 } else if (env->exception_injected == 3) {
1195 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1196 }
1197 env->exception_injected = -1;
1198 }
1199
1200 /*
1201 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1202 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1203 * by updating the debug state once again if single-stepping is on.
1204 * Another reason to call kvm_update_guest_debug here is a pending debug
1205 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1206 * reinject them via SET_GUEST_DEBUG.
1207 */
1208 if (reinject_trap ||
1209 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1210 ret = kvm_update_guest_debug(env, reinject_trap);
1211 }
1212#endif /* KVM_CAP_SET_GUEST_DEBUG */
1213 return ret;
1214}
1215
ff44f1a3
JK
1216static int kvm_put_debugregs(CPUState *env)
1217{
1218#ifdef KVM_CAP_DEBUGREGS
1219 struct kvm_debugregs dbgregs;
1220 int i;
1221
1222 if (!kvm_has_debugregs()) {
1223 return 0;
1224 }
1225
1226 for (i = 0; i < 4; i++) {
1227 dbgregs.db[i] = env->dr[i];
1228 }
1229 dbgregs.dr6 = env->dr[6];
1230 dbgregs.dr7 = env->dr[7];
1231 dbgregs.flags = 0;
1232
1233 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1234#else
1235 return 0;
1236#endif
1237}
1238
1239static int kvm_get_debugregs(CPUState *env)
1240{
1241#ifdef KVM_CAP_DEBUGREGS
1242 struct kvm_debugregs dbgregs;
1243 int i, ret;
1244
1245 if (!kvm_has_debugregs()) {
1246 return 0;
1247 }
1248
1249 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1250 if (ret < 0) {
1251 return ret;
1252 }
1253 for (i = 0; i < 4; i++) {
1254 env->dr[i] = dbgregs.db[i];
1255 }
1256 env->dr[4] = env->dr[6] = dbgregs.dr6;
1257 env->dr[5] = env->dr[7] = dbgregs.dr7;
1258#endif
1259
1260 return 0;
1261}
1262
ea375f9a 1263int kvm_arch_put_registers(CPUState *env, int level)
05330448
AL
1264{
1265 int ret;
1266
dbaa07c4
JK
1267 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1268
05330448
AL
1269 ret = kvm_getput_regs(env, 1);
1270 if (ret < 0)
1271 return ret;
1272
f1665b21
SY
1273 ret = kvm_put_xsave(env);
1274 if (ret < 0)
1275 return ret;
1276
1277 ret = kvm_put_xcrs(env);
05330448
AL
1278 if (ret < 0)
1279 return ret;
1280
1281 ret = kvm_put_sregs(env);
1282 if (ret < 0)
1283 return ret;
1284
ea643051 1285 ret = kvm_put_msrs(env, level);
05330448
AL
1286 if (ret < 0)
1287 return ret;
1288
ea643051
JK
1289 if (level >= KVM_PUT_RESET_STATE) {
1290 ret = kvm_put_mp_state(env);
1291 if (ret < 0)
1292 return ret;
1293 }
f8d926e9 1294
ea643051 1295 ret = kvm_put_vcpu_events(env, level);
a0fb002c
JK
1296 if (ret < 0)
1297 return ret;
1298
b0b1d690
JK
1299 /* must be last */
1300 ret = kvm_guest_debug_workarounds(env);
1301 if (ret < 0)
1302 return ret;
1303
ff44f1a3
JK
1304 ret = kvm_put_debugregs(env);
1305 if (ret < 0)
1306 return ret;
1307
05330448
AL
1308 return 0;
1309}
1310
1311int kvm_arch_get_registers(CPUState *env)
1312{
1313 int ret;
1314
dbaa07c4
JK
1315 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1316
05330448
AL
1317 ret = kvm_getput_regs(env, 0);
1318 if (ret < 0)
1319 return ret;
1320
f1665b21
SY
1321 ret = kvm_get_xsave(env);
1322 if (ret < 0)
1323 return ret;
1324
1325 ret = kvm_get_xcrs(env);
05330448
AL
1326 if (ret < 0)
1327 return ret;
1328
1329 ret = kvm_get_sregs(env);
1330 if (ret < 0)
1331 return ret;
1332
1333 ret = kvm_get_msrs(env);
1334 if (ret < 0)
1335 return ret;
1336
5a2e3c2e
JK
1337 ret = kvm_get_mp_state(env);
1338 if (ret < 0)
1339 return ret;
1340
a0fb002c
JK
1341 ret = kvm_get_vcpu_events(env);
1342 if (ret < 0)
1343 return ret;
1344
ff44f1a3
JK
1345 ret = kvm_get_debugregs(env);
1346 if (ret < 0)
1347 return ret;
1348
05330448
AL
1349 return 0;
1350}
1351
1352int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1353{
1354 /* Try to inject an interrupt if the guest can accept it */
1355 if (run->ready_for_interrupt_injection &&
1356 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1357 (env->eflags & IF_MASK)) {
1358 int irq;
1359
1360 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1361 irq = cpu_get_pic_interrupt(env);
1362 if (irq >= 0) {
1363 struct kvm_interrupt intr;
1364 intr.irq = irq;
1365 /* FIXME: errors */
8c0d577e 1366 DPRINTF("injected interrupt %d\n", irq);
05330448
AL
1367 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1368 }
1369 }
1370
1371 /* If we have an interrupt but the guest is not ready to receive an
1372 * interrupt, request an interrupt window exit. This will
1373 * cause a return to userspace as soon as the guest is ready to
1374 * receive interrupts. */
1375 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1376 run->request_interrupt_window = 1;
1377 else
1378 run->request_interrupt_window = 0;
1379
8c0d577e 1380 DPRINTF("setting tpr\n");
4a942cea 1381 run->cr8 = cpu_get_apic_tpr(env->apic_state);
05330448
AL
1382
1383 return 0;
1384}
1385
1386int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1387{
1388 if (run->if_flag)
1389 env->eflags |= IF_MASK;
1390 else
1391 env->eflags &= ~IF_MASK;
1392
4a942cea
BS
1393 cpu_set_apic_tpr(env->apic_state, run->cr8);
1394 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1395
1396 return 0;
1397}
1398
0af691d7
MT
1399int kvm_arch_process_irqchip_events(CPUState *env)
1400{
1401 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1402 kvm_cpu_synchronize_state(env);
1403 do_cpu_init(env);
1404 env->exception_index = EXCP_HALTED;
1405 }
1406
1407 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1408 kvm_cpu_synchronize_state(env);
1409 do_cpu_sipi(env);
1410 }
1411
1412 return env->halted;
1413}
1414
05330448
AL
1415static int kvm_handle_halt(CPUState *env)
1416{
1417 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1418 (env->eflags & IF_MASK)) &&
1419 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1420 env->halted = 1;
1421 env->exception_index = EXCP_HLT;
1422 return 0;
1423 }
1424
1425 return 1;
1426}
1427
1428int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1429{
1430 int ret = 0;
1431
1432 switch (run->exit_reason) {
1433 case KVM_EXIT_HLT:
8c0d577e 1434 DPRINTF("handle_hlt\n");
05330448
AL
1435 ret = kvm_handle_halt(env);
1436 break;
1437 }
1438
1439 return ret;
1440}
e22a25c9
AL
1441
1442#ifdef KVM_CAP_SET_GUEST_DEBUG
e22a25c9
AL
1443int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1444{
38972938 1445 static const uint8_t int3 = 0xcc;
64bf3f4e 1446
e22a25c9 1447 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
64bf3f4e 1448 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
e22a25c9
AL
1449 return -EINVAL;
1450 return 0;
1451}
1452
1453int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1454{
1455 uint8_t int3;
1456
1457 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
64bf3f4e 1458 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
e22a25c9
AL
1459 return -EINVAL;
1460 return 0;
1461}
1462
1463static struct {
1464 target_ulong addr;
1465 int len;
1466 int type;
1467} hw_breakpoint[4];
1468
1469static int nb_hw_breakpoint;
1470
1471static int find_hw_breakpoint(target_ulong addr, int len, int type)
1472{
1473 int n;
1474
1475 for (n = 0; n < nb_hw_breakpoint; n++)
1476 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1477 (hw_breakpoint[n].len == len || len == -1))
1478 return n;
1479 return -1;
1480}
1481
1482int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1483 target_ulong len, int type)
1484{
1485 switch (type) {
1486 case GDB_BREAKPOINT_HW:
1487 len = 1;
1488 break;
1489 case GDB_WATCHPOINT_WRITE:
1490 case GDB_WATCHPOINT_ACCESS:
1491 switch (len) {
1492 case 1:
1493 break;
1494 case 2:
1495 case 4:
1496 case 8:
1497 if (addr & (len - 1))
1498 return -EINVAL;
1499 break;
1500 default:
1501 return -EINVAL;
1502 }
1503 break;
1504 default:
1505 return -ENOSYS;
1506 }
1507
1508 if (nb_hw_breakpoint == 4)
1509 return -ENOBUFS;
1510
1511 if (find_hw_breakpoint(addr, len, type) >= 0)
1512 return -EEXIST;
1513
1514 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1515 hw_breakpoint[nb_hw_breakpoint].len = len;
1516 hw_breakpoint[nb_hw_breakpoint].type = type;
1517 nb_hw_breakpoint++;
1518
1519 return 0;
1520}
1521
1522int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1523 target_ulong len, int type)
1524{
1525 int n;
1526
1527 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1528 if (n < 0)
1529 return -ENOENT;
1530
1531 nb_hw_breakpoint--;
1532 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1533
1534 return 0;
1535}
1536
1537void kvm_arch_remove_all_hw_breakpoints(void)
1538{
1539 nb_hw_breakpoint = 0;
1540}
1541
1542static CPUWatchpoint hw_watchpoint;
1543
1544int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1545{
1546 int handle = 0;
1547 int n;
1548
1549 if (arch_info->exception == 1) {
1550 if (arch_info->dr6 & (1 << 14)) {
1551 if (cpu_single_env->singlestep_enabled)
1552 handle = 1;
1553 } else {
1554 for (n = 0; n < 4; n++)
1555 if (arch_info->dr6 & (1 << n))
1556 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1557 case 0x0:
1558 handle = 1;
1559 break;
1560 case 0x1:
1561 handle = 1;
1562 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1563 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1564 hw_watchpoint.flags = BP_MEM_WRITE;
1565 break;
1566 case 0x3:
1567 handle = 1;
1568 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1569 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1570 hw_watchpoint.flags = BP_MEM_ACCESS;
1571 break;
1572 }
1573 }
1574 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1575 handle = 1;
1576
b0b1d690
JK
1577 if (!handle) {
1578 cpu_synchronize_state(cpu_single_env);
1579 assert(cpu_single_env->exception_injected == -1);
1580
1581 cpu_single_env->exception_injected = arch_info->exception;
1582 cpu_single_env->has_error_code = 0;
1583 }
e22a25c9
AL
1584
1585 return handle;
1586}
1587
1588void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1589{
1590 const uint8_t type_code[] = {
1591 [GDB_BREAKPOINT_HW] = 0x0,
1592 [GDB_WATCHPOINT_WRITE] = 0x1,
1593 [GDB_WATCHPOINT_ACCESS] = 0x3
1594 };
1595 const uint8_t len_code[] = {
1596 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1597 };
1598 int n;
1599
1600 if (kvm_sw_breakpoints_active(env))
1601 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1602
1603 if (nb_hw_breakpoint > 0) {
1604 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1605 dbg->arch.debugreg[7] = 0x0600;
1606 for (n = 0; n < nb_hw_breakpoint; n++) {
1607 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1608 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1609 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1610 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1611 }
1612 }
f1665b21
SY
1613 /* Legal xcr0 for loading */
1614 env->xcr0 = 1;
e22a25c9
AL
1615}
1616#endif /* KVM_CAP_SET_GUEST_DEBUG */
4513d923
GN
1617
1618bool kvm_arch_stop_on_emulation_error(CPUState *env)
1619{
1620 return !(env->cr[0] & CR0_PE_MASK) ||
1621 ((env->segs[R_CS].selector & 3) != 3);
1622}
1623
c0532a76
MT
1624static void hardware_memory_error(void)
1625{
1626 fprintf(stderr, "Hardware memory error!\n");
1627 exit(1);
1628}
1629
1630int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1631{
1632#if defined(KVM_CAP_MCE)
1633 struct kvm_x86_mce mce = {
1634 .bank = 9,
1635 };
1636 void *vaddr;
1637 ram_addr_t ram_addr;
1638 target_phys_addr_t paddr;
1639 int r;
1640
1641 if ((env->mcg_cap & MCG_SER_P) && addr
1642 && (code == BUS_MCEERR_AR
1643 || code == BUS_MCEERR_AO)) {
1644 if (code == BUS_MCEERR_AR) {
1645 /* Fake an Intel architectural Data Load SRAR UCR */
1646 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1647 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1648 | MCI_STATUS_AR | 0x134;
1649 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1650 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1651 } else {
1652 /*
1653 * If there is an MCE excpetion being processed, ignore
1654 * this SRAO MCE
1655 */
1656 r = kvm_mce_in_exception(env);
1657 if (r == -1) {
1658 fprintf(stderr, "Failed to get MCE status\n");
1659 } else if (r) {
1660 return 0;
1661 }
1662 /* Fake an Intel architectural Memory scrubbing UCR */
1663 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1664 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1665 | 0xc0;
1666 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1667 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1668 }
1669 vaddr = (void *)addr;
1670 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1671 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1672 fprintf(stderr, "Hardware memory error for memory used by "
1673 "QEMU itself instead of guest system!\n");
1674 /* Hope we are lucky for AO MCE */
1675 if (code == BUS_MCEERR_AO) {
1676 return 0;
1677 } else {
1678 hardware_memory_error();
1679 }
1680 }
1681 mce.addr = paddr;
1682 r = kvm_set_mce(env, &mce);
1683 if (r < 0) {
1684 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1685 abort();
1686 }
1687 } else
1688#endif
1689 {
1690 if (code == BUS_MCEERR_AO) {
1691 return 0;
1692 } else if (code == BUS_MCEERR_AR) {
1693 hardware_memory_error();
1694 } else {
1695 return 1;
1696 }
1697 }
1698 return 0;
1699}
1700
1701int kvm_on_sigbus(int code, void *addr)
1702{
1703#if defined(KVM_CAP_MCE)
1704 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1705 uint64_t status;
1706 void *vaddr;
1707 ram_addr_t ram_addr;
1708 target_phys_addr_t paddr;
1709 CPUState *cenv;
1710
1711 /* Hope we are lucky for AO MCE */
1712 vaddr = addr;
1713 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1714 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1715 fprintf(stderr, "Hardware memory error for memory used by "
1716 "QEMU itself instead of guest system!: %p\n", addr);
1717 return 0;
1718 }
1719 status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1720 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1721 | 0xc0;
1722 kvm_inject_x86_mce(first_cpu, 9, status,
1723 MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1724 (MCM_ADDR_PHYS << 6) | 0xc, 1);
1725 for (cenv = first_cpu->next_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1726 kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1727 MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1);
1728 }
1729 } else
1730#endif
1731 {
1732 if (code == BUS_MCEERR_AO) {
1733 return 0;
1734 } else if (code == BUS_MCEERR_AR) {
1735 hardware_memory_error();
1736 } else {
1737 return 1;
1738 }
1739 }
1740 return 0;
1741}