]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
memory: add API for observing updates to the physical memory map
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
24#include "sysemu.h"
25#include "kvm.h"
26#include "cpu.h"
e22a25c9 27#include "gdbstub.h"
0e607a80 28#include "host-utils.h"
4c5b10b7 29#include "hw/pc.h"
408392b3 30#include "hw/apic.h"
35bed8ee 31#include "ioport.h"
05330448
AL
32
33//#define DEBUG_KVM
34
35#ifdef DEBUG_KVM
8c0d577e 36#define DPRINTF(fmt, ...) \
05330448
AL
37 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38#else
8c0d577e 39#define DPRINTF(fmt, ...) \
05330448
AL
40 do { } while (0)
41#endif
42
1a03675d
GC
43#define MSR_KVM_WALL_CLOCK 0x11
44#define MSR_KVM_SYSTEM_TIME 0x12
45
c0532a76
MT
46#ifndef BUS_MCEERR_AR
47#define BUS_MCEERR_AR 4
48#endif
49#ifndef BUS_MCEERR_AO
50#define BUS_MCEERR_AO 5
51#endif
52
94a8d39a
JK
53const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
54 KVM_CAP_INFO(SET_TSS_ADDR),
55 KVM_CAP_INFO(EXT_CPUID),
56 KVM_CAP_INFO(MP_STATE),
57 KVM_CAP_LAST_INFO
58};
25d2e361 59
c3a3a7d3
JK
60static bool has_msr_star;
61static bool has_msr_hsave_pa;
aa82ba54 62static bool has_msr_tsc_deadline;
c5999bfc 63static bool has_msr_async_pf_en;
21e87c46 64static bool has_msr_misc_enable;
25d2e361 65static int lm_capable_kernel;
b827df58
AK
66
67static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
68{
69 struct kvm_cpuid2 *cpuid;
70 int r, size;
71
72 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
7267c094 73 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
b827df58
AK
74 cpuid->nent = max;
75 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
76 if (r == 0 && cpuid->nent >= max) {
77 r = -E2BIG;
78 }
b827df58
AK
79 if (r < 0) {
80 if (r == -E2BIG) {
7267c094 81 g_free(cpuid);
b827df58
AK
82 return NULL;
83 } else {
84 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
85 strerror(-r));
86 exit(1);
87 }
88 }
89 return cpuid;
90}
91
0c31b744
GC
92struct kvm_para_features {
93 int cap;
94 int feature;
95} para_features[] = {
96 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
97 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
98 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 99 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
100 { -1, -1 }
101};
102
ba9bc59e 103static int get_para_features(KVMState *s)
0c31b744
GC
104{
105 int i, features = 0;
106
107 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
ba9bc59e 108 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
109 features |= (1 << para_features[i].feature);
110 }
111 }
112
113 return features;
114}
0c31b744
GC
115
116
ba9bc59e 117uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 118 uint32_t index, int reg)
b827df58
AK
119{
120 struct kvm_cpuid2 *cpuid;
121 int i, max;
122 uint32_t ret = 0;
123 uint32_t cpuid_1_edx;
0c31b744 124 int has_kvm_features = 0;
b827df58 125
b827df58 126 max = 1;
ba9bc59e 127 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
b827df58
AK
128 max *= 2;
129 }
130
131 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
132 if (cpuid->entries[i].function == function &&
133 cpuid->entries[i].index == index) {
0c31b744
GC
134 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
135 has_kvm_features = 1;
136 }
b827df58
AK
137 switch (reg) {
138 case R_EAX:
139 ret = cpuid->entries[i].eax;
140 break;
141 case R_EBX:
142 ret = cpuid->entries[i].ebx;
143 break;
144 case R_ECX:
145 ret = cpuid->entries[i].ecx;
146 break;
147 case R_EDX:
148 ret = cpuid->entries[i].edx;
19ccb8ea
JK
149 switch (function) {
150 case 1:
151 /* KVM before 2.6.30 misreports the following features */
152 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
153 break;
154 case 0x80000001:
b827df58
AK
155 /* On Intel, kvm returns cpuid according to the Intel spec,
156 * so add missing bits according to the AMD spec:
157 */
ba9bc59e 158 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
c1667e40 159 ret |= cpuid_1_edx & 0x183f7ff;
19ccb8ea 160 break;
b827df58
AK
161 }
162 break;
163 }
164 }
165 }
166
7267c094 167 g_free(cpuid);
b827df58 168
0c31b744
GC
169 /* fallback for older kernels */
170 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
ba9bc59e 171 ret = get_para_features(s);
b9bec74b 172 }
0c31b744
GC
173
174 return ret;
bb0300dc 175}
bb0300dc 176
3c85e74f
HY
177typedef struct HWPoisonPage {
178 ram_addr_t ram_addr;
179 QLIST_ENTRY(HWPoisonPage) list;
180} HWPoisonPage;
181
182static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
183 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
184
185static void kvm_unpoison_all(void *param)
186{
187 HWPoisonPage *page, *next_page;
188
189 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
190 QLIST_REMOVE(page, list);
191 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 192 g_free(page);
3c85e74f
HY
193 }
194}
195
3c85e74f
HY
196static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
197{
198 HWPoisonPage *page;
199
200 QLIST_FOREACH(page, &hwpoison_page_list, list) {
201 if (page->ram_addr == ram_addr) {
202 return;
203 }
204 }
7267c094 205 page = g_malloc(sizeof(HWPoisonPage));
3c85e74f
HY
206 page->ram_addr = ram_addr;
207 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
208}
209
e7701825
MT
210static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
211 int *max_banks)
212{
213 int r;
214
14a09518 215 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
216 if (r > 0) {
217 *max_banks = r;
218 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
219 }
220 return -ENOSYS;
221}
222
c34d440a 223static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
e7701825 224{
c34d440a
JK
225 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
226 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
227 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 228
c34d440a
JK
229 if (code == BUS_MCEERR_AR) {
230 status |= MCI_STATUS_AR | 0x134;
231 mcg_status |= MCG_STATUS_EIPV;
232 } else {
233 status |= 0xc0;
234 mcg_status |= MCG_STATUS_RIPV;
419fb20a 235 }
c34d440a
JK
236 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
237 (MCM_ADDR_PHYS << 6) | 0xc,
238 cpu_x86_support_mca_broadcast(env) ?
239 MCE_INJECT_BROADCAST : 0);
419fb20a 240}
419fb20a
JK
241
242static void hardware_memory_error(void)
243{
244 fprintf(stderr, "Hardware memory error!\n");
245 exit(1);
246}
247
248int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
249{
419fb20a
JK
250 ram_addr_t ram_addr;
251 target_phys_addr_t paddr;
252
253 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a
JK
254 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
255 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
256 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
257 &paddr)) {
419fb20a
JK
258 fprintf(stderr, "Hardware memory error for memory used by "
259 "QEMU itself instead of guest system!\n");
260 /* Hope we are lucky for AO MCE */
261 if (code == BUS_MCEERR_AO) {
262 return 0;
263 } else {
264 hardware_memory_error();
265 }
266 }
3c85e74f 267 kvm_hwpoison_page_add(ram_addr);
c34d440a 268 kvm_mce_inject(env, paddr, code);
e56ff191 269 } else {
419fb20a
JK
270 if (code == BUS_MCEERR_AO) {
271 return 0;
272 } else if (code == BUS_MCEERR_AR) {
273 hardware_memory_error();
274 } else {
275 return 1;
276 }
277 }
278 return 0;
279}
280
281int kvm_arch_on_sigbus(int code, void *addr)
282{
419fb20a 283 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a
JK
284 ram_addr_t ram_addr;
285 target_phys_addr_t paddr;
286
287 /* Hope we are lucky for AO MCE */
c34d440a 288 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
419fb20a
JK
289 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
290 &paddr)) {
291 fprintf(stderr, "Hardware memory error for memory used by "
292 "QEMU itself instead of guest system!: %p\n", addr);
293 return 0;
294 }
3c85e74f 295 kvm_hwpoison_page_add(ram_addr);
c34d440a 296 kvm_mce_inject(first_cpu, paddr, code);
e56ff191 297 } else {
419fb20a
JK
298 if (code == BUS_MCEERR_AO) {
299 return 0;
300 } else if (code == BUS_MCEERR_AR) {
301 hardware_memory_error();
302 } else {
303 return 1;
304 }
305 }
306 return 0;
307}
e7701825 308
ab443475
JK
309static int kvm_inject_mce_oldstyle(CPUState *env)
310{
ab443475
JK
311 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
312 unsigned int bank, bank_num = env->mcg_cap & 0xff;
313 struct kvm_x86_mce mce;
314
315 env->exception_injected = -1;
316
317 /*
318 * There must be at least one bank in use if an MCE is pending.
319 * Find it and use its values for the event injection.
320 */
321 for (bank = 0; bank < bank_num; bank++) {
322 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
323 break;
324 }
325 }
326 assert(bank < bank_num);
327
328 mce.bank = bank;
329 mce.status = env->mce_banks[bank * 4 + 1];
330 mce.mcg_status = env->mcg_status;
331 mce.addr = env->mce_banks[bank * 4 + 2];
332 mce.misc = env->mce_banks[bank * 4 + 3];
333
334 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
335 }
ab443475
JK
336 return 0;
337}
338
1dfb4dd9 339static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6
GC
340{
341 CPUState *env = opaque;
342
343 if (running) {
344 env->tsc_valid = false;
345 }
346}
347
05330448
AL
348int kvm_arch_init_vcpu(CPUState *env)
349{
350 struct {
486bd5a2
AL
351 struct kvm_cpuid2 cpuid;
352 struct kvm_cpuid_entry2 entries[100];
541dc0d4 353 } QEMU_PACKED cpuid_data;
ba9bc59e 354 KVMState *s = env->kvm_state;
486bd5a2 355 uint32_t limit, i, j, cpuid_i;
a33609ca 356 uint32_t unused;
bb0300dc 357 struct kvm_cpuid_entry2 *c;
bb0300dc 358 uint32_t signature[3];
e7429073 359 int r;
05330448 360
ba9bc59e 361 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
6c0d7ee8
AP
362
363 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
ba9bc59e 364 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
6c0d7ee8
AP
365 env->cpuid_ext_features |= i;
366
ba9bc59e 367 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 368 0, R_EDX);
ba9bc59e 369 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 370 0, R_ECX);
ba9bc59e 371 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
296acb64
JR
372 0, R_EDX);
373
05330448
AL
374 cpuid_i = 0;
375
bb0300dc
GN
376 /* Paravirtualization CPUIDs */
377 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
378 c = &cpuid_data.entries[cpuid_i++];
379 memset(c, 0, sizeof(*c));
380 c->function = KVM_CPUID_SIGNATURE;
381 c->eax = 0;
382 c->ebx = signature[0];
383 c->ecx = signature[1];
384 c->edx = signature[2];
385
386 c = &cpuid_data.entries[cpuid_i++];
387 memset(c, 0, sizeof(*c));
388 c->function = KVM_CPUID_FEATURES;
ba9bc59e
JK
389 c->eax = env->cpuid_kvm_features &
390 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
0c31b744 391
0c31b744 392 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 393
a33609ca 394 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
395
396 for (i = 0; i <= limit; i++) {
bb0300dc 397 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
398
399 switch (i) {
a36b1029
AL
400 case 2: {
401 /* Keep reading function 2 till all the input is received */
402 int times;
403
a36b1029 404 c->function = i;
a33609ca
AL
405 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
406 KVM_CPUID_FLAG_STATE_READ_NEXT;
407 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
408 times = c->eax & 0xff;
a36b1029
AL
409
410 for (j = 1; j < times; ++j) {
a33609ca 411 c = &cpuid_data.entries[cpuid_i++];
a36b1029 412 c->function = i;
a33609ca
AL
413 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
414 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
415 }
416 break;
417 }
486bd5a2
AL
418 case 4:
419 case 0xb:
420 case 0xd:
421 for (j = 0; ; j++) {
31e8c696
AP
422 if (i == 0xd && j == 64) {
423 break;
424 }
486bd5a2
AL
425 c->function = i;
426 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
427 c->index = j;
a33609ca 428 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 429
b9bec74b 430 if (i == 4 && c->eax == 0) {
486bd5a2 431 break;
b9bec74b
JK
432 }
433 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 434 break;
b9bec74b
JK
435 }
436 if (i == 0xd && c->eax == 0) {
31e8c696 437 continue;
b9bec74b 438 }
a33609ca 439 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
440 }
441 break;
442 default:
486bd5a2 443 c->function = i;
a33609ca
AL
444 c->flags = 0;
445 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
446 break;
447 }
05330448 448 }
a33609ca 449 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
450
451 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 452 c = &cpuid_data.entries[cpuid_i++];
05330448 453
05330448 454 c->function = i;
a33609ca
AL
455 c->flags = 0;
456 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
457 }
458
b3baa152
BW
459 /* Call Centaur's CPUID instructions they are supported. */
460 if (env->cpuid_xlevel2 > 0) {
461 env->cpuid_ext4_features &=
ba9bc59e 462 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
b3baa152
BW
463 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
464
465 for (i = 0xC0000000; i <= limit; i++) {
466 c = &cpuid_data.entries[cpuid_i++];
467
468 c->function = i;
469 c->flags = 0;
470 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
471 }
472 }
473
05330448
AL
474 cpuid_data.cpuid.nent = cpuid_i;
475
e7701825
MT
476 if (((env->cpuid_version >> 8)&0xF) >= 6
477 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
478 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
479 uint64_t mcg_cap;
480 int banks;
32a42024 481 int ret;
e7701825 482
75d49497
JK
483 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
484 if (ret < 0) {
485 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
486 return ret;
e7701825 487 }
75d49497
JK
488
489 if (banks > MCE_BANKS_DEF) {
490 banks = MCE_BANKS_DEF;
491 }
492 mcg_cap &= MCE_CAP_DEF;
493 mcg_cap |= banks;
494 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
495 if (ret < 0) {
496 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
497 return ret;
498 }
499
500 env->mcg_cap = mcg_cap;
e7701825 501 }
e7701825 502
b8cc45d6
GC
503 qemu_add_vm_change_state_handler(cpu_update_state, env);
504
e7429073 505 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
506 if (r) {
507 return r;
508 }
e7429073 509
e7429073
JR
510 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
511 if (r && env->tsc_khz) {
512 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
513 if (r < 0) {
514 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
515 return r;
516 }
517 }
e7429073
JR
518
519 return 0;
05330448
AL
520}
521
caa5af0f
JK
522void kvm_arch_reset_vcpu(CPUState *env)
523{
e73223a5 524 env->exception_injected = -1;
0e607a80 525 env->interrupt_injected = -1;
1a5e9d2f 526 env->xcr0 = 1;
ddced198
MT
527 if (kvm_irqchip_in_kernel()) {
528 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
529 KVM_MP_STATE_UNINITIALIZED;
530 } else {
531 env->mp_state = KVM_MP_STATE_RUNNABLE;
532 }
caa5af0f
JK
533}
534
c3a3a7d3 535static int kvm_get_supported_msrs(KVMState *s)
05330448 536{
75b10c43 537 static int kvm_supported_msrs;
c3a3a7d3 538 int ret = 0;
05330448
AL
539
540 /* first time */
75b10c43 541 if (kvm_supported_msrs == 0) {
05330448
AL
542 struct kvm_msr_list msr_list, *kvm_msr_list;
543
75b10c43 544 kvm_supported_msrs = -1;
05330448
AL
545
546 /* Obtain MSR list from KVM. These are the MSRs that we must
547 * save/restore */
4c9f7372 548 msr_list.nmsrs = 0;
c3a3a7d3 549 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 550 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 551 return ret;
6fb6d245 552 }
d9db889f
JK
553 /* Old kernel modules had a bug and could write beyond the provided
554 memory. Allocate at least a safe amount of 1K. */
7267c094 555 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
556 msr_list.nmsrs *
557 sizeof(msr_list.indices[0])));
05330448 558
55308450 559 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 560 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
561 if (ret >= 0) {
562 int i;
563
564 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
565 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 566 has_msr_star = true;
75b10c43
MT
567 continue;
568 }
569 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 570 has_msr_hsave_pa = true;
75b10c43 571 continue;
05330448 572 }
aa82ba54
LJ
573 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
574 has_msr_tsc_deadline = true;
575 continue;
576 }
21e87c46
AK
577 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
578 has_msr_misc_enable = true;
579 continue;
580 }
05330448
AL
581 }
582 }
583
7267c094 584 g_free(kvm_msr_list);
05330448
AL
585 }
586
c3a3a7d3 587 return ret;
05330448
AL
588}
589
cad1e282 590int kvm_arch_init(KVMState *s)
20420430 591{
11076198 592 uint64_t identity_base = 0xfffbc000;
20420430 593 int ret;
25d2e361 594 struct utsname utsname;
20420430 595
c3a3a7d3 596 ret = kvm_get_supported_msrs(s);
20420430 597 if (ret < 0) {
20420430
SY
598 return ret;
599 }
25d2e361
MT
600
601 uname(&utsname);
602 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
603
4c5b10b7 604 /*
11076198
JK
605 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
606 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
607 * Since these must be part of guest physical memory, we need to allocate
608 * them, both by setting their start addresses in the kernel and by
609 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
610 *
611 * Older KVM versions may not support setting the identity map base. In
612 * that case we need to stick with the default, i.e. a 256K maximum BIOS
613 * size.
4c5b10b7 614 */
11076198
JK
615 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
616 /* Allows up to 16M BIOSes. */
617 identity_base = 0xfeffc000;
618
619 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
620 if (ret < 0) {
621 return ret;
622 }
4c5b10b7 623 }
e56ff191 624
11076198
JK
625 /* Set TSS base one page after EPT identity map. */
626 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
627 if (ret < 0) {
628 return ret;
629 }
630
11076198
JK
631 /* Tell fw_cfg to notify the BIOS to reserve the range. */
632 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 633 if (ret < 0) {
11076198 634 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
635 return ret;
636 }
3c85e74f 637 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 638
11076198 639 return 0;
05330448 640}
b9bec74b 641
05330448
AL
642static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
643{
644 lhs->selector = rhs->selector;
645 lhs->base = rhs->base;
646 lhs->limit = rhs->limit;
647 lhs->type = 3;
648 lhs->present = 1;
649 lhs->dpl = 3;
650 lhs->db = 0;
651 lhs->s = 1;
652 lhs->l = 0;
653 lhs->g = 0;
654 lhs->avl = 0;
655 lhs->unusable = 0;
656}
657
658static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
659{
660 unsigned flags = rhs->flags;
661 lhs->selector = rhs->selector;
662 lhs->base = rhs->base;
663 lhs->limit = rhs->limit;
664 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
665 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 666 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
667 lhs->db = (flags >> DESC_B_SHIFT) & 1;
668 lhs->s = (flags & DESC_S_MASK) != 0;
669 lhs->l = (flags >> DESC_L_SHIFT) & 1;
670 lhs->g = (flags & DESC_G_MASK) != 0;
671 lhs->avl = (flags & DESC_AVL_MASK) != 0;
672 lhs->unusable = 0;
673}
674
675static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
676{
677 lhs->selector = rhs->selector;
678 lhs->base = rhs->base;
679 lhs->limit = rhs->limit;
b9bec74b
JK
680 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
681 (rhs->present * DESC_P_MASK) |
682 (rhs->dpl << DESC_DPL_SHIFT) |
683 (rhs->db << DESC_B_SHIFT) |
684 (rhs->s * DESC_S_MASK) |
685 (rhs->l << DESC_L_SHIFT) |
686 (rhs->g * DESC_G_MASK) |
687 (rhs->avl * DESC_AVL_MASK);
05330448
AL
688}
689
690static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
691{
b9bec74b 692 if (set) {
05330448 693 *kvm_reg = *qemu_reg;
b9bec74b 694 } else {
05330448 695 *qemu_reg = *kvm_reg;
b9bec74b 696 }
05330448
AL
697}
698
699static int kvm_getput_regs(CPUState *env, int set)
700{
701 struct kvm_regs regs;
702 int ret = 0;
703
704 if (!set) {
705 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 706 if (ret < 0) {
05330448 707 return ret;
b9bec74b 708 }
05330448
AL
709 }
710
711 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
712 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
713 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
714 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
715 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
716 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
717 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
718 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
719#ifdef TARGET_X86_64
720 kvm_getput_reg(&regs.r8, &env->regs[8], set);
721 kvm_getput_reg(&regs.r9, &env->regs[9], set);
722 kvm_getput_reg(&regs.r10, &env->regs[10], set);
723 kvm_getput_reg(&regs.r11, &env->regs[11], set);
724 kvm_getput_reg(&regs.r12, &env->regs[12], set);
725 kvm_getput_reg(&regs.r13, &env->regs[13], set);
726 kvm_getput_reg(&regs.r14, &env->regs[14], set);
727 kvm_getput_reg(&regs.r15, &env->regs[15], set);
728#endif
729
730 kvm_getput_reg(&regs.rflags, &env->eflags, set);
731 kvm_getput_reg(&regs.rip, &env->eip, set);
732
b9bec74b 733 if (set) {
05330448 734 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 735 }
05330448
AL
736
737 return ret;
738}
739
740static int kvm_put_fpu(CPUState *env)
741{
742 struct kvm_fpu fpu;
743 int i;
744
745 memset(&fpu, 0, sizeof fpu);
746 fpu.fsw = env->fpus & ~(7 << 11);
747 fpu.fsw |= (env->fpstt & 7) << 11;
748 fpu.fcw = env->fpuc;
42cc8fa6
JK
749 fpu.last_opcode = env->fpop;
750 fpu.last_ip = env->fpip;
751 fpu.last_dp = env->fpdp;
b9bec74b
JK
752 for (i = 0; i < 8; ++i) {
753 fpu.ftwx |= (!env->fptags[i]) << i;
754 }
05330448
AL
755 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
756 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
757 fpu.mxcsr = env->mxcsr;
758
759 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
760}
761
f1665b21
SY
762#define XSAVE_CWD_RIP 2
763#define XSAVE_CWD_RDP 4
764#define XSAVE_MXCSR 6
765#define XSAVE_ST_SPACE 8
766#define XSAVE_XMM_SPACE 40
767#define XSAVE_XSTATE_BV 128
768#define XSAVE_YMMH_SPACE 144
f1665b21
SY
769
770static int kvm_put_xsave(CPUState *env)
771{
0f53994f 772 int i, r;
f1665b21 773 struct kvm_xsave* xsave;
42cc8fa6 774 uint16_t cwd, swd, twd;
f1665b21 775
b9bec74b 776 if (!kvm_has_xsave()) {
f1665b21 777 return kvm_put_fpu(env);
b9bec74b 778 }
f1665b21
SY
779
780 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
781 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 782 twd = 0;
f1665b21
SY
783 swd = env->fpus & ~(7 << 11);
784 swd |= (env->fpstt & 7) << 11;
785 cwd = env->fpuc;
b9bec74b 786 for (i = 0; i < 8; ++i) {
f1665b21 787 twd |= (!env->fptags[i]) << i;
b9bec74b 788 }
f1665b21 789 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
42cc8fa6
JK
790 xsave->region[1] = (uint32_t)(env->fpop << 16) + twd;
791 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
792 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
793 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
794 sizeof env->fpregs);
795 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
796 sizeof env->xmm_regs);
797 xsave->region[XSAVE_MXCSR] = env->mxcsr;
798 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
799 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
800 sizeof env->ymmh_regs);
0f53994f 801 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
7267c094 802 g_free(xsave);
0f53994f 803 return r;
f1665b21
SY
804}
805
806static int kvm_put_xcrs(CPUState *env)
807{
f1665b21
SY
808 struct kvm_xcrs xcrs;
809
b9bec74b 810 if (!kvm_has_xcrs()) {
f1665b21 811 return 0;
b9bec74b 812 }
f1665b21
SY
813
814 xcrs.nr_xcrs = 1;
815 xcrs.flags = 0;
816 xcrs.xcrs[0].xcr = 0;
817 xcrs.xcrs[0].value = env->xcr0;
818 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
f1665b21
SY
819}
820
05330448
AL
821static int kvm_put_sregs(CPUState *env)
822{
823 struct kvm_sregs sregs;
824
0e607a80
JK
825 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
826 if (env->interrupt_injected >= 0) {
827 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
828 (uint64_t)1 << (env->interrupt_injected % 64);
829 }
05330448
AL
830
831 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
832 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
833 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
834 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
835 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
836 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
837 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 838 } else {
b9bec74b
JK
839 set_seg(&sregs.cs, &env->segs[R_CS]);
840 set_seg(&sregs.ds, &env->segs[R_DS]);
841 set_seg(&sregs.es, &env->segs[R_ES]);
842 set_seg(&sregs.fs, &env->segs[R_FS]);
843 set_seg(&sregs.gs, &env->segs[R_GS]);
844 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
845 }
846
847 set_seg(&sregs.tr, &env->tr);
848 set_seg(&sregs.ldt, &env->ldt);
849
850 sregs.idt.limit = env->idt.limit;
851 sregs.idt.base = env->idt.base;
852 sregs.gdt.limit = env->gdt.limit;
853 sregs.gdt.base = env->gdt.base;
854
855 sregs.cr0 = env->cr[0];
856 sregs.cr2 = env->cr[2];
857 sregs.cr3 = env->cr[3];
858 sregs.cr4 = env->cr[4];
859
4a942cea
BS
860 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
861 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
862
863 sregs.efer = env->efer;
864
865 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
866}
867
868static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
869 uint32_t index, uint64_t value)
870{
871 entry->index = index;
872 entry->data = value;
873}
874
ea643051 875static int kvm_put_msrs(CPUState *env, int level)
05330448
AL
876{
877 struct {
878 struct kvm_msrs info;
879 struct kvm_msr_entry entries[100];
880 } msr_data;
881 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 882 int n = 0;
05330448
AL
883
884 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
885 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
886 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 887 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 888 if (has_msr_star) {
b9bec74b
JK
889 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
890 }
c3a3a7d3 891 if (has_msr_hsave_pa) {
75b10c43 892 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 893 }
aa82ba54
LJ
894 if (has_msr_tsc_deadline) {
895 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
896 }
21e87c46
AK
897 if (has_msr_misc_enable) {
898 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
899 env->msr_ia32_misc_enable);
900 }
05330448 901#ifdef TARGET_X86_64
25d2e361
MT
902 if (lm_capable_kernel) {
903 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
904 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
905 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
906 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
907 }
05330448 908#endif
ea643051 909 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
910 /*
911 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
912 * writeback. Until this is fixed, we only write the offset to SMP
913 * guests after migration, desynchronizing the VCPUs, but avoiding
914 * huge jump-backs that would occur without any writeback at all.
915 */
916 if (smp_cpus == 1 || env->tsc != 0) {
917 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
918 }
ff5c186b
JK
919 }
920 /*
921 * The following paravirtual MSRs have side effects on the guest or are
922 * too heavy for normal writeback. Limit them to reset or full state
923 * updates.
924 */
925 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
926 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
927 env->system_time_msr);
928 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
929 if (has_msr_async_pf_en) {
930 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
931 env->async_pf_en_msr);
932 }
ea643051 933 }
57780495 934 if (env->mcg_cap) {
d8da8574 935 int i;
b9bec74b 936
c34d440a
JK
937 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
938 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
939 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
940 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
941 }
942 }
1a03675d 943
05330448
AL
944 msr_data.info.nmsrs = n;
945
946 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
947
948}
949
950
951static int kvm_get_fpu(CPUState *env)
952{
953 struct kvm_fpu fpu;
954 int i, ret;
955
956 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 957 if (ret < 0) {
05330448 958 return ret;
b9bec74b 959 }
05330448
AL
960
961 env->fpstt = (fpu.fsw >> 11) & 7;
962 env->fpus = fpu.fsw;
963 env->fpuc = fpu.fcw;
42cc8fa6
JK
964 env->fpop = fpu.last_opcode;
965 env->fpip = fpu.last_ip;
966 env->fpdp = fpu.last_dp;
b9bec74b
JK
967 for (i = 0; i < 8; ++i) {
968 env->fptags[i] = !((fpu.ftwx >> i) & 1);
969 }
05330448
AL
970 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
971 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
972 env->mxcsr = fpu.mxcsr;
973
974 return 0;
975}
976
f1665b21
SY
977static int kvm_get_xsave(CPUState *env)
978{
f1665b21
SY
979 struct kvm_xsave* xsave;
980 int ret, i;
42cc8fa6 981 uint16_t cwd, swd, twd;
f1665b21 982
b9bec74b 983 if (!kvm_has_xsave()) {
f1665b21 984 return kvm_get_fpu(env);
b9bec74b 985 }
f1665b21
SY
986
987 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
988 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f 989 if (ret < 0) {
7267c094 990 g_free(xsave);
f1665b21 991 return ret;
0f53994f 992 }
f1665b21
SY
993
994 cwd = (uint16_t)xsave->region[0];
995 swd = (uint16_t)(xsave->region[0] >> 16);
996 twd = (uint16_t)xsave->region[1];
42cc8fa6 997 env->fpop = (uint16_t)(xsave->region[1] >> 16);
f1665b21
SY
998 env->fpstt = (swd >> 11) & 7;
999 env->fpus = swd;
1000 env->fpuc = cwd;
b9bec74b 1001 for (i = 0; i < 8; ++i) {
f1665b21 1002 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1003 }
42cc8fa6
JK
1004 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1005 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
1006 env->mxcsr = xsave->region[XSAVE_MXCSR];
1007 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1008 sizeof env->fpregs);
1009 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1010 sizeof env->xmm_regs);
1011 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1012 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1013 sizeof env->ymmh_regs);
7267c094 1014 g_free(xsave);
f1665b21 1015 return 0;
f1665b21
SY
1016}
1017
1018static int kvm_get_xcrs(CPUState *env)
1019{
f1665b21
SY
1020 int i, ret;
1021 struct kvm_xcrs xcrs;
1022
b9bec74b 1023 if (!kvm_has_xcrs()) {
f1665b21 1024 return 0;
b9bec74b 1025 }
f1665b21
SY
1026
1027 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 1028 if (ret < 0) {
f1665b21 1029 return ret;
b9bec74b 1030 }
f1665b21 1031
b9bec74b 1032 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
1033 /* Only support xcr0 now */
1034 if (xcrs.xcrs[0].xcr == 0) {
1035 env->xcr0 = xcrs.xcrs[0].value;
1036 break;
1037 }
b9bec74b 1038 }
f1665b21 1039 return 0;
f1665b21
SY
1040}
1041
05330448
AL
1042static int kvm_get_sregs(CPUState *env)
1043{
1044 struct kvm_sregs sregs;
1045 uint32_t hflags;
0e607a80 1046 int bit, i, ret;
05330448
AL
1047
1048 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 1049 if (ret < 0) {
05330448 1050 return ret;
b9bec74b 1051 }
05330448 1052
0e607a80
JK
1053 /* There can only be one pending IRQ set in the bitmap at a time, so try
1054 to find it and save its number instead (-1 for none). */
1055 env->interrupt_injected = -1;
1056 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1057 if (sregs.interrupt_bitmap[i]) {
1058 bit = ctz64(sregs.interrupt_bitmap[i]);
1059 env->interrupt_injected = i * 64 + bit;
1060 break;
1061 }
1062 }
05330448
AL
1063
1064 get_seg(&env->segs[R_CS], &sregs.cs);
1065 get_seg(&env->segs[R_DS], &sregs.ds);
1066 get_seg(&env->segs[R_ES], &sregs.es);
1067 get_seg(&env->segs[R_FS], &sregs.fs);
1068 get_seg(&env->segs[R_GS], &sregs.gs);
1069 get_seg(&env->segs[R_SS], &sregs.ss);
1070
1071 get_seg(&env->tr, &sregs.tr);
1072 get_seg(&env->ldt, &sregs.ldt);
1073
1074 env->idt.limit = sregs.idt.limit;
1075 env->idt.base = sregs.idt.base;
1076 env->gdt.limit = sregs.gdt.limit;
1077 env->gdt.base = sregs.gdt.base;
1078
1079 env->cr[0] = sregs.cr0;
1080 env->cr[2] = sregs.cr2;
1081 env->cr[3] = sregs.cr3;
1082 env->cr[4] = sregs.cr4;
1083
4a942cea 1084 cpu_set_apic_base(env->apic_state, sregs.apic_base);
05330448
AL
1085
1086 env->efer = sregs.efer;
4a942cea 1087 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
05330448 1088
b9bec74b
JK
1089#define HFLAG_COPY_MASK \
1090 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1091 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1092 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1093 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1094
1095 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1096 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1097 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1098 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1099 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1100 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1101 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1102
1103 if (env->efer & MSR_EFER_LMA) {
1104 hflags |= HF_LMA_MASK;
1105 }
1106
1107 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1108 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1109 } else {
1110 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1111 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1112 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1113 (DESC_B_SHIFT - HF_SS32_SHIFT);
1114 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1115 !(hflags & HF_CS32_MASK)) {
1116 hflags |= HF_ADDSEG_MASK;
1117 } else {
1118 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1119 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1120 }
05330448
AL
1121 }
1122 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1123
1124 return 0;
1125}
1126
1127static int kvm_get_msrs(CPUState *env)
1128{
1129 struct {
1130 struct kvm_msrs info;
1131 struct kvm_msr_entry entries[100];
1132 } msr_data;
1133 struct kvm_msr_entry *msrs = msr_data.entries;
1134 int ret, i, n;
1135
1136 n = 0;
1137 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1138 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1139 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1140 msrs[n++].index = MSR_PAT;
c3a3a7d3 1141 if (has_msr_star) {
b9bec74b
JK
1142 msrs[n++].index = MSR_STAR;
1143 }
c3a3a7d3 1144 if (has_msr_hsave_pa) {
75b10c43 1145 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1146 }
aa82ba54
LJ
1147 if (has_msr_tsc_deadline) {
1148 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1149 }
21e87c46
AK
1150 if (has_msr_misc_enable) {
1151 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1152 }
b8cc45d6
GC
1153
1154 if (!env->tsc_valid) {
1155 msrs[n++].index = MSR_IA32_TSC;
1354869c 1156 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1157 }
1158
05330448 1159#ifdef TARGET_X86_64
25d2e361
MT
1160 if (lm_capable_kernel) {
1161 msrs[n++].index = MSR_CSTAR;
1162 msrs[n++].index = MSR_KERNELGSBASE;
1163 msrs[n++].index = MSR_FMASK;
1164 msrs[n++].index = MSR_LSTAR;
1165 }
05330448 1166#endif
1a03675d
GC
1167 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1168 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1169 if (has_msr_async_pf_en) {
1170 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1171 }
1a03675d 1172
57780495
MT
1173 if (env->mcg_cap) {
1174 msrs[n++].index = MSR_MCG_STATUS;
1175 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1176 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1177 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1178 }
57780495 1179 }
57780495 1180
05330448
AL
1181 msr_data.info.nmsrs = n;
1182 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1183 if (ret < 0) {
05330448 1184 return ret;
b9bec74b 1185 }
05330448
AL
1186
1187 for (i = 0; i < ret; i++) {
1188 switch (msrs[i].index) {
1189 case MSR_IA32_SYSENTER_CS:
1190 env->sysenter_cs = msrs[i].data;
1191 break;
1192 case MSR_IA32_SYSENTER_ESP:
1193 env->sysenter_esp = msrs[i].data;
1194 break;
1195 case MSR_IA32_SYSENTER_EIP:
1196 env->sysenter_eip = msrs[i].data;
1197 break;
0c03266a
JK
1198 case MSR_PAT:
1199 env->pat = msrs[i].data;
1200 break;
05330448
AL
1201 case MSR_STAR:
1202 env->star = msrs[i].data;
1203 break;
1204#ifdef TARGET_X86_64
1205 case MSR_CSTAR:
1206 env->cstar = msrs[i].data;
1207 break;
1208 case MSR_KERNELGSBASE:
1209 env->kernelgsbase = msrs[i].data;
1210 break;
1211 case MSR_FMASK:
1212 env->fmask = msrs[i].data;
1213 break;
1214 case MSR_LSTAR:
1215 env->lstar = msrs[i].data;
1216 break;
1217#endif
1218 case MSR_IA32_TSC:
1219 env->tsc = msrs[i].data;
1220 break;
aa82ba54
LJ
1221 case MSR_IA32_TSCDEADLINE:
1222 env->tsc_deadline = msrs[i].data;
1223 break;
aa851e36
MT
1224 case MSR_VM_HSAVE_PA:
1225 env->vm_hsave = msrs[i].data;
1226 break;
1a03675d
GC
1227 case MSR_KVM_SYSTEM_TIME:
1228 env->system_time_msr = msrs[i].data;
1229 break;
1230 case MSR_KVM_WALL_CLOCK:
1231 env->wall_clock_msr = msrs[i].data;
1232 break;
57780495
MT
1233 case MSR_MCG_STATUS:
1234 env->mcg_status = msrs[i].data;
1235 break;
1236 case MSR_MCG_CTL:
1237 env->mcg_ctl = msrs[i].data;
1238 break;
21e87c46
AK
1239 case MSR_IA32_MISC_ENABLE:
1240 env->msr_ia32_misc_enable = msrs[i].data;
1241 break;
57780495 1242 default:
57780495
MT
1243 if (msrs[i].index >= MSR_MC0_CTL &&
1244 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1245 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 1246 }
d8da8574 1247 break;
f6584ee2
GN
1248 case MSR_KVM_ASYNC_PF_EN:
1249 env->async_pf_en_msr = msrs[i].data;
1250 break;
05330448
AL
1251 }
1252 }
1253
1254 return 0;
1255}
1256
9bdbe550
HB
1257static int kvm_put_mp_state(CPUState *env)
1258{
1259 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1260
1261 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1262}
1263
1264static int kvm_get_mp_state(CPUState *env)
1265{
1266 struct kvm_mp_state mp_state;
1267 int ret;
1268
1269 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1270 if (ret < 0) {
1271 return ret;
1272 }
1273 env->mp_state = mp_state.mp_state;
c14750e8
JK
1274 if (kvm_irqchip_in_kernel()) {
1275 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1276 }
9bdbe550
HB
1277 return 0;
1278}
1279
ea643051 1280static int kvm_put_vcpu_events(CPUState *env, int level)
a0fb002c 1281{
a0fb002c
JK
1282 struct kvm_vcpu_events events;
1283
1284 if (!kvm_has_vcpu_events()) {
1285 return 0;
1286 }
1287
31827373
JK
1288 events.exception.injected = (env->exception_injected >= 0);
1289 events.exception.nr = env->exception_injected;
a0fb002c
JK
1290 events.exception.has_error_code = env->has_error_code;
1291 events.exception.error_code = env->error_code;
1292
1293 events.interrupt.injected = (env->interrupt_injected >= 0);
1294 events.interrupt.nr = env->interrupt_injected;
1295 events.interrupt.soft = env->soft_interrupt;
1296
1297 events.nmi.injected = env->nmi_injected;
1298 events.nmi.pending = env->nmi_pending;
1299 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1300
1301 events.sipi_vector = env->sipi_vector;
1302
ea643051
JK
1303 events.flags = 0;
1304 if (level >= KVM_PUT_RESET_STATE) {
1305 events.flags |=
1306 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1307 }
aee028b9 1308
a0fb002c 1309 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
1310}
1311
1312static int kvm_get_vcpu_events(CPUState *env)
1313{
a0fb002c
JK
1314 struct kvm_vcpu_events events;
1315 int ret;
1316
1317 if (!kvm_has_vcpu_events()) {
1318 return 0;
1319 }
1320
1321 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1322 if (ret < 0) {
1323 return ret;
1324 }
31827373 1325 env->exception_injected =
a0fb002c
JK
1326 events.exception.injected ? events.exception.nr : -1;
1327 env->has_error_code = events.exception.has_error_code;
1328 env->error_code = events.exception.error_code;
1329
1330 env->interrupt_injected =
1331 events.interrupt.injected ? events.interrupt.nr : -1;
1332 env->soft_interrupt = events.interrupt.soft;
1333
1334 env->nmi_injected = events.nmi.injected;
1335 env->nmi_pending = events.nmi.pending;
1336 if (events.nmi.masked) {
1337 env->hflags2 |= HF2_NMI_MASK;
1338 } else {
1339 env->hflags2 &= ~HF2_NMI_MASK;
1340 }
1341
1342 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
1343
1344 return 0;
1345}
1346
b0b1d690
JK
1347static int kvm_guest_debug_workarounds(CPUState *env)
1348{
1349 int ret = 0;
b0b1d690
JK
1350 unsigned long reinject_trap = 0;
1351
1352 if (!kvm_has_vcpu_events()) {
1353 if (env->exception_injected == 1) {
1354 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1355 } else if (env->exception_injected == 3) {
1356 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1357 }
1358 env->exception_injected = -1;
1359 }
1360
1361 /*
1362 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1363 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1364 * by updating the debug state once again if single-stepping is on.
1365 * Another reason to call kvm_update_guest_debug here is a pending debug
1366 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1367 * reinject them via SET_GUEST_DEBUG.
1368 */
1369 if (reinject_trap ||
1370 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1371 ret = kvm_update_guest_debug(env, reinject_trap);
1372 }
b0b1d690
JK
1373 return ret;
1374}
1375
ff44f1a3
JK
1376static int kvm_put_debugregs(CPUState *env)
1377{
ff44f1a3
JK
1378 struct kvm_debugregs dbgregs;
1379 int i;
1380
1381 if (!kvm_has_debugregs()) {
1382 return 0;
1383 }
1384
1385 for (i = 0; i < 4; i++) {
1386 dbgregs.db[i] = env->dr[i];
1387 }
1388 dbgregs.dr6 = env->dr[6];
1389 dbgregs.dr7 = env->dr[7];
1390 dbgregs.flags = 0;
1391
1392 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
1393}
1394
1395static int kvm_get_debugregs(CPUState *env)
1396{
ff44f1a3
JK
1397 struct kvm_debugregs dbgregs;
1398 int i, ret;
1399
1400 if (!kvm_has_debugregs()) {
1401 return 0;
1402 }
1403
1404 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1405 if (ret < 0) {
b9bec74b 1406 return ret;
ff44f1a3
JK
1407 }
1408 for (i = 0; i < 4; i++) {
1409 env->dr[i] = dbgregs.db[i];
1410 }
1411 env->dr[4] = env->dr[6] = dbgregs.dr6;
1412 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
1413
1414 return 0;
1415}
1416
ea375f9a 1417int kvm_arch_put_registers(CPUState *env, int level)
05330448
AL
1418{
1419 int ret;
1420
b7680cb6 1421 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1422
05330448 1423 ret = kvm_getput_regs(env, 1);
b9bec74b 1424 if (ret < 0) {
05330448 1425 return ret;
b9bec74b 1426 }
f1665b21 1427 ret = kvm_put_xsave(env);
b9bec74b 1428 if (ret < 0) {
f1665b21 1429 return ret;
b9bec74b 1430 }
f1665b21 1431 ret = kvm_put_xcrs(env);
b9bec74b 1432 if (ret < 0) {
05330448 1433 return ret;
b9bec74b 1434 }
05330448 1435 ret = kvm_put_sregs(env);
b9bec74b 1436 if (ret < 0) {
05330448 1437 return ret;
b9bec74b 1438 }
ab443475
JK
1439 /* must be before kvm_put_msrs */
1440 ret = kvm_inject_mce_oldstyle(env);
1441 if (ret < 0) {
1442 return ret;
1443 }
ea643051 1444 ret = kvm_put_msrs(env, level);
b9bec74b 1445 if (ret < 0) {
05330448 1446 return ret;
b9bec74b 1447 }
ea643051
JK
1448 if (level >= KVM_PUT_RESET_STATE) {
1449 ret = kvm_put_mp_state(env);
b9bec74b 1450 if (ret < 0) {
ea643051 1451 return ret;
b9bec74b 1452 }
ea643051 1453 }
ea643051 1454 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1455 if (ret < 0) {
a0fb002c 1456 return ret;
b9bec74b 1457 }
0d75a9ec 1458 ret = kvm_put_debugregs(env);
b9bec74b 1459 if (ret < 0) {
b0b1d690 1460 return ret;
b9bec74b 1461 }
b0b1d690
JK
1462 /* must be last */
1463 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1464 if (ret < 0) {
ff44f1a3 1465 return ret;
b9bec74b 1466 }
05330448
AL
1467 return 0;
1468}
1469
1470int kvm_arch_get_registers(CPUState *env)
1471{
1472 int ret;
1473
b7680cb6 1474 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1475
05330448 1476 ret = kvm_getput_regs(env, 0);
b9bec74b 1477 if (ret < 0) {
05330448 1478 return ret;
b9bec74b 1479 }
f1665b21 1480 ret = kvm_get_xsave(env);
b9bec74b 1481 if (ret < 0) {
f1665b21 1482 return ret;
b9bec74b 1483 }
f1665b21 1484 ret = kvm_get_xcrs(env);
b9bec74b 1485 if (ret < 0) {
05330448 1486 return ret;
b9bec74b 1487 }
05330448 1488 ret = kvm_get_sregs(env);
b9bec74b 1489 if (ret < 0) {
05330448 1490 return ret;
b9bec74b 1491 }
05330448 1492 ret = kvm_get_msrs(env);
b9bec74b 1493 if (ret < 0) {
05330448 1494 return ret;
b9bec74b 1495 }
5a2e3c2e 1496 ret = kvm_get_mp_state(env);
b9bec74b 1497 if (ret < 0) {
5a2e3c2e 1498 return ret;
b9bec74b 1499 }
a0fb002c 1500 ret = kvm_get_vcpu_events(env);
b9bec74b 1501 if (ret < 0) {
a0fb002c 1502 return ret;
b9bec74b 1503 }
ff44f1a3 1504 ret = kvm_get_debugregs(env);
b9bec74b 1505 if (ret < 0) {
ff44f1a3 1506 return ret;
b9bec74b 1507 }
05330448
AL
1508 return 0;
1509}
1510
7a39fe58 1511void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
05330448 1512{
ce377af3
JK
1513 int ret;
1514
276ce815
LJ
1515 /* Inject NMI */
1516 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1517 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1518 DPRINTF("injected NMI\n");
ce377af3
JK
1519 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1520 if (ret < 0) {
1521 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1522 strerror(-ret));
1523 }
276ce815
LJ
1524 }
1525
db1669bc
JK
1526 if (!kvm_irqchip_in_kernel()) {
1527 /* Force the VCPU out of its inner loop to process the INIT request */
1528 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1529 env->exit_request = 1;
05330448 1530 }
05330448 1531
db1669bc
JK
1532 /* Try to inject an interrupt if the guest can accept it */
1533 if (run->ready_for_interrupt_injection &&
1534 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1535 (env->eflags & IF_MASK)) {
1536 int irq;
1537
1538 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1539 irq = cpu_get_pic_interrupt(env);
1540 if (irq >= 0) {
1541 struct kvm_interrupt intr;
1542
1543 intr.irq = irq;
db1669bc 1544 DPRINTF("injected interrupt %d\n", irq);
ce377af3
JK
1545 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1546 if (ret < 0) {
1547 fprintf(stderr,
1548 "KVM: injection failed, interrupt lost (%s)\n",
1549 strerror(-ret));
1550 }
db1669bc
JK
1551 }
1552 }
05330448 1553
db1669bc
JK
1554 /* If we have an interrupt but the guest is not ready to receive an
1555 * interrupt, request an interrupt window exit. This will
1556 * cause a return to userspace as soon as the guest is ready to
1557 * receive interrupts. */
1558 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1559 run->request_interrupt_window = 1;
1560 } else {
1561 run->request_interrupt_window = 0;
1562 }
1563
1564 DPRINTF("setting tpr\n");
1565 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1566 }
05330448
AL
1567}
1568
7a39fe58 1569void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
05330448 1570{
b9bec74b 1571 if (run->if_flag) {
05330448 1572 env->eflags |= IF_MASK;
b9bec74b 1573 } else {
05330448 1574 env->eflags &= ~IF_MASK;
b9bec74b 1575 }
4a942cea
BS
1576 cpu_set_apic_tpr(env->apic_state, run->cr8);
1577 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1578}
1579
99036865 1580int kvm_arch_process_async_events(CPUState *env)
0af691d7 1581{
ab443475
JK
1582 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1583 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1584 assert(env->mcg_cap);
1585
1586 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1587
1588 kvm_cpu_synchronize_state(env);
1589
1590 if (env->exception_injected == EXCP08_DBLE) {
1591 /* this means triple fault */
1592 qemu_system_reset_request();
1593 env->exit_request = 1;
1594 return 0;
1595 }
1596 env->exception_injected = EXCP12_MCHK;
1597 env->has_error_code = 0;
1598
1599 env->halted = 0;
1600 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1601 env->mp_state = KVM_MP_STATE_RUNNABLE;
1602 }
1603 }
1604
db1669bc
JK
1605 if (kvm_irqchip_in_kernel()) {
1606 return 0;
1607 }
1608
4601f7b0
JK
1609 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1610 (env->eflags & IF_MASK)) ||
1611 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
6792a57b
JK
1612 env->halted = 0;
1613 }
0af691d7
MT
1614 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1615 kvm_cpu_synchronize_state(env);
1616 do_cpu_init(env);
0af691d7 1617 }
0af691d7
MT
1618 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1619 kvm_cpu_synchronize_state(env);
1620 do_cpu_sipi(env);
1621 }
1622
1623 return env->halted;
1624}
1625
05330448
AL
1626static int kvm_handle_halt(CPUState *env)
1627{
1628 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1629 (env->eflags & IF_MASK)) &&
1630 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1631 env->halted = 1;
bb4ea393 1632 return EXCP_HLT;
05330448
AL
1633 }
1634
bb4ea393 1635 return 0;
05330448
AL
1636}
1637
e22a25c9
AL
1638int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1639{
38972938 1640 static const uint8_t int3 = 0xcc;
64bf3f4e 1641
e22a25c9 1642 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1643 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1644 return -EINVAL;
b9bec74b 1645 }
e22a25c9
AL
1646 return 0;
1647}
1648
1649int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1650{
1651 uint8_t int3;
1652
1653 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1654 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1655 return -EINVAL;
b9bec74b 1656 }
e22a25c9
AL
1657 return 0;
1658}
1659
1660static struct {
1661 target_ulong addr;
1662 int len;
1663 int type;
1664} hw_breakpoint[4];
1665
1666static int nb_hw_breakpoint;
1667
1668static int find_hw_breakpoint(target_ulong addr, int len, int type)
1669{
1670 int n;
1671
b9bec74b 1672 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1673 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1674 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1675 return n;
b9bec74b
JK
1676 }
1677 }
e22a25c9
AL
1678 return -1;
1679}
1680
1681int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1682 target_ulong len, int type)
1683{
1684 switch (type) {
1685 case GDB_BREAKPOINT_HW:
1686 len = 1;
1687 break;
1688 case GDB_WATCHPOINT_WRITE:
1689 case GDB_WATCHPOINT_ACCESS:
1690 switch (len) {
1691 case 1:
1692 break;
1693 case 2:
1694 case 4:
1695 case 8:
b9bec74b 1696 if (addr & (len - 1)) {
e22a25c9 1697 return -EINVAL;
b9bec74b 1698 }
e22a25c9
AL
1699 break;
1700 default:
1701 return -EINVAL;
1702 }
1703 break;
1704 default:
1705 return -ENOSYS;
1706 }
1707
b9bec74b 1708 if (nb_hw_breakpoint == 4) {
e22a25c9 1709 return -ENOBUFS;
b9bec74b
JK
1710 }
1711 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1712 return -EEXIST;
b9bec74b 1713 }
e22a25c9
AL
1714 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1715 hw_breakpoint[nb_hw_breakpoint].len = len;
1716 hw_breakpoint[nb_hw_breakpoint].type = type;
1717 nb_hw_breakpoint++;
1718
1719 return 0;
1720}
1721
1722int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1723 target_ulong len, int type)
1724{
1725 int n;
1726
1727 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1728 if (n < 0) {
e22a25c9 1729 return -ENOENT;
b9bec74b 1730 }
e22a25c9
AL
1731 nb_hw_breakpoint--;
1732 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1733
1734 return 0;
1735}
1736
1737void kvm_arch_remove_all_hw_breakpoints(void)
1738{
1739 nb_hw_breakpoint = 0;
1740}
1741
1742static CPUWatchpoint hw_watchpoint;
1743
f2574737 1744static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
e22a25c9 1745{
f2574737 1746 int ret = 0;
e22a25c9
AL
1747 int n;
1748
1749 if (arch_info->exception == 1) {
1750 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1751 if (cpu_single_env->singlestep_enabled) {
f2574737 1752 ret = EXCP_DEBUG;
b9bec74b 1753 }
e22a25c9 1754 } else {
b9bec74b
JK
1755 for (n = 0; n < 4; n++) {
1756 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1757 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1758 case 0x0:
f2574737 1759 ret = EXCP_DEBUG;
e22a25c9
AL
1760 break;
1761 case 0x1:
f2574737 1762 ret = EXCP_DEBUG;
e22a25c9
AL
1763 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1764 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1765 hw_watchpoint.flags = BP_MEM_WRITE;
1766 break;
1767 case 0x3:
f2574737 1768 ret = EXCP_DEBUG;
e22a25c9
AL
1769 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1770 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1771 hw_watchpoint.flags = BP_MEM_ACCESS;
1772 break;
1773 }
b9bec74b
JK
1774 }
1775 }
e22a25c9 1776 }
b9bec74b 1777 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
f2574737 1778 ret = EXCP_DEBUG;
b9bec74b 1779 }
f2574737 1780 if (ret == 0) {
b0b1d690
JK
1781 cpu_synchronize_state(cpu_single_env);
1782 assert(cpu_single_env->exception_injected == -1);
1783
f2574737 1784 /* pass to guest */
b0b1d690
JK
1785 cpu_single_env->exception_injected = arch_info->exception;
1786 cpu_single_env->has_error_code = 0;
1787 }
e22a25c9 1788
f2574737 1789 return ret;
e22a25c9
AL
1790}
1791
1792void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1793{
1794 const uint8_t type_code[] = {
1795 [GDB_BREAKPOINT_HW] = 0x0,
1796 [GDB_WATCHPOINT_WRITE] = 0x1,
1797 [GDB_WATCHPOINT_ACCESS] = 0x3
1798 };
1799 const uint8_t len_code[] = {
1800 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1801 };
1802 int n;
1803
b9bec74b 1804 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 1805 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 1806 }
e22a25c9
AL
1807 if (nb_hw_breakpoint > 0) {
1808 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1809 dbg->arch.debugreg[7] = 0x0600;
1810 for (n = 0; n < nb_hw_breakpoint; n++) {
1811 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1812 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1813 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 1814 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
1815 }
1816 }
1817}
4513d923 1818
2a4dac83
JK
1819static bool host_supports_vmx(void)
1820{
1821 uint32_t ecx, unused;
1822
1823 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1824 return ecx & CPUID_EXT_VMX;
1825}
1826
1827#define VMX_INVALID_GUEST_STATE 0x80000021
1828
1829int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1830{
1831 uint64_t code;
1832 int ret;
1833
1834 switch (run->exit_reason) {
1835 case KVM_EXIT_HLT:
1836 DPRINTF("handle_hlt\n");
1837 ret = kvm_handle_halt(env);
1838 break;
1839 case KVM_EXIT_SET_TPR:
1840 ret = 0;
1841 break;
1842 case KVM_EXIT_FAIL_ENTRY:
1843 code = run->fail_entry.hardware_entry_failure_reason;
1844 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1845 code);
1846 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1847 fprintf(stderr,
12619721 1848 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
1849 "unrestricted mode\n"
1850 "support, the failure can be most likely due to the guest "
1851 "entering an invalid\n"
1852 "state for Intel VT. For example, the guest maybe running "
1853 "in big real mode\n"
1854 "which is not supported on less recent Intel processors."
1855 "\n\n");
1856 }
1857 ret = -1;
1858 break;
1859 case KVM_EXIT_EXCEPTION:
1860 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1861 run->ex.exception, run->ex.error_code);
1862 ret = -1;
1863 break;
f2574737
JK
1864 case KVM_EXIT_DEBUG:
1865 DPRINTF("kvm_exit_debug\n");
1866 ret = kvm_handle_debug(&run->debug.arch);
1867 break;
2a4dac83
JK
1868 default:
1869 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1870 ret = -1;
1871 break;
1872 }
1873
1874 return ret;
1875}
1876
4513d923
GN
1877bool kvm_arch_stop_on_emulation_error(CPUState *env)
1878{
b9bec74b
JK
1879 return !(env->cr[0] & CR0_PE_MASK) ||
1880 ((env->segs[R_CS].selector & 3) != 3);
4513d923 1881}