]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
kvm: Drop return values from kvm_arch_pre/post_run
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
21
22#include "qemu-common.h"
23#include "sysemu.h"
24#include "kvm.h"
25#include "cpu.h"
e22a25c9 26#include "gdbstub.h"
0e607a80 27#include "host-utils.h"
4c5b10b7 28#include "hw/pc.h"
408392b3 29#include "hw/apic.h"
35bed8ee 30#include "ioport.h"
e7701825 31#include "kvm_x86.h"
05330448 32
bb0300dc
GN
33#ifdef CONFIG_KVM_PARA
34#include <linux/kvm_para.h>
35#endif
36//
05330448
AL
37//#define DEBUG_KVM
38
39#ifdef DEBUG_KVM
8c0d577e 40#define DPRINTF(fmt, ...) \
05330448
AL
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42#else
8c0d577e 43#define DPRINTF(fmt, ...) \
05330448
AL
44 do { } while (0)
45#endif
46
1a03675d
GC
47#define MSR_KVM_WALL_CLOCK 0x11
48#define MSR_KVM_SYSTEM_TIME 0x12
49
c0532a76
MT
50#ifndef BUS_MCEERR_AR
51#define BUS_MCEERR_AR 4
52#endif
53#ifndef BUS_MCEERR_AO
54#define BUS_MCEERR_AO 5
55#endif
56
94a8d39a
JK
57const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62};
25d2e361 63
c3a3a7d3
JK
64static bool has_msr_star;
65static bool has_msr_hsave_pa;
c5999bfc
JK
66#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
67static bool has_msr_async_pf_en;
68#endif
25d2e361 69static int lm_capable_kernel;
b827df58
AK
70
71static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
72{
73 struct kvm_cpuid2 *cpuid;
74 int r, size;
75
76 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
77 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
78 cpuid->nent = max;
79 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
80 if (r == 0 && cpuid->nent >= max) {
81 r = -E2BIG;
82 }
b827df58
AK
83 if (r < 0) {
84 if (r == -E2BIG) {
85 qemu_free(cpuid);
86 return NULL;
87 } else {
88 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
89 strerror(-r));
90 exit(1);
91 }
92 }
93 return cpuid;
94}
95
c958a8bd
SY
96uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
97 uint32_t index, int reg)
b827df58
AK
98{
99 struct kvm_cpuid2 *cpuid;
100 int i, max;
101 uint32_t ret = 0;
102 uint32_t cpuid_1_edx;
103
b827df58
AK
104 max = 1;
105 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
106 max *= 2;
107 }
108
109 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
110 if (cpuid->entries[i].function == function &&
111 cpuid->entries[i].index == index) {
b827df58
AK
112 switch (reg) {
113 case R_EAX:
114 ret = cpuid->entries[i].eax;
115 break;
116 case R_EBX:
117 ret = cpuid->entries[i].ebx;
118 break;
119 case R_ECX:
120 ret = cpuid->entries[i].ecx;
121 break;
122 case R_EDX:
123 ret = cpuid->entries[i].edx;
19ccb8ea
JK
124 switch (function) {
125 case 1:
126 /* KVM before 2.6.30 misreports the following features */
127 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
128 break;
129 case 0x80000001:
b827df58
AK
130 /* On Intel, kvm returns cpuid according to the Intel spec,
131 * so add missing bits according to the AMD spec:
132 */
c958a8bd 133 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
c1667e40 134 ret |= cpuid_1_edx & 0x183f7ff;
19ccb8ea 135 break;
b827df58
AK
136 }
137 break;
138 }
139 }
140 }
141
142 qemu_free(cpuid);
143
144 return ret;
145}
146
bb0300dc
GN
147#ifdef CONFIG_KVM_PARA
148struct kvm_para_features {
b9bec74b
JK
149 int cap;
150 int feature;
bb0300dc 151} para_features[] = {
b9bec74b 152 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
b9bec74b 153 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
b9bec74b 154 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
f6584ee2 155#ifdef KVM_CAP_ASYNC_PF
b9bec74b 156 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
bb0300dc 157#endif
b9bec74b 158 { -1, -1 }
bb0300dc
GN
159};
160
161static int get_para_features(CPUState *env)
162{
b9bec74b 163 int i, features = 0;
bb0300dc 164
b9bec74b
JK
165 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
166 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
167 features |= (1 << para_features[i].feature);
bb0300dc 168 }
b9bec74b 169 }
b3a98367 170#ifdef KVM_CAP_ASYNC_PF
c5999bfc 171 has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
b3a98367 172#endif
b9bec74b 173 return features;
bb0300dc
GN
174}
175#endif
176
e7701825
MT
177#ifdef KVM_CAP_MCE
178static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
179 int *max_banks)
180{
181 int r;
182
14a09518 183 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
184 if (r > 0) {
185 *max_banks = r;
186 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
187 }
188 return -ENOSYS;
189}
190
191static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
192{
193 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
194}
195
196static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
197{
198 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
199}
200
c0532a76
MT
201static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
202{
203 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
204 int r;
205
206 kmsrs->nmsrs = n;
207 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
208 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
209 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
210 free(kmsrs);
211 return r;
212}
213
214/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
6643e2f0 215static int kvm_mce_in_progress(CPUState *env)
c0532a76
MT
216{
217 struct kvm_msr_entry msr_mcg_status = {
218 .index = MSR_MCG_STATUS,
219 };
220 int r;
221
222 r = kvm_get_msr(env, &msr_mcg_status, 1);
223 if (r == -1 || r == 0) {
6643e2f0
JD
224 fprintf(stderr, "Failed to get MCE status\n");
225 return 0;
c0532a76
MT
226 }
227 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
228}
229
e7701825
MT
230struct kvm_x86_mce_data
231{
232 CPUState *env;
233 struct kvm_x86_mce *mce;
c0532a76 234 int abort_on_error;
e7701825
MT
235};
236
237static void kvm_do_inject_x86_mce(void *_data)
238{
239 struct kvm_x86_mce_data *data = _data;
240 int r;
241
f8502cfb
HS
242 /* If there is an MCE exception being processed, ignore this SRAO MCE */
243 if ((data->env->mcg_cap & MCG_SER_P) &&
244 !(data->mce->status & MCI_STATUS_AR)) {
6643e2f0 245 if (kvm_mce_in_progress(data->env)) {
f8502cfb
HS
246 return;
247 }
248 }
c0532a76 249
e7701825 250 r = kvm_set_mce(data->env, data->mce);
c0532a76 251 if (r < 0) {
e7701825 252 perror("kvm_set_mce FAILED");
c0532a76
MT
253 if (data->abort_on_error) {
254 abort();
255 }
256 }
e7701825 257}
31ce5e0c 258
7cc2cc3e
JD
259static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
260 int flag)
261{
262 struct kvm_x86_mce_data data = {
263 .env = env,
264 .mce = mce,
265 .abort_on_error = (flag & ABORT_ON_ERROR),
266 };
267
268 if (!env->mcg_cap) {
269 fprintf(stderr, "MCE support is not enabled!\n");
270 return;
271 }
272
273 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
274}
275
31ce5e0c 276static void kvm_mce_broadcast_rest(CPUState *env);
e7701825
MT
277#endif
278
279void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
c0532a76 280 uint64_t mcg_status, uint64_t addr, uint64_t misc,
31ce5e0c 281 int flag)
e7701825
MT
282{
283#ifdef KVM_CAP_MCE
284 struct kvm_x86_mce mce = {
285 .bank = bank,
286 .status = status,
287 .mcg_status = mcg_status,
288 .addr = addr,
289 .misc = misc,
290 };
e7701825 291
31ce5e0c
JD
292 if (flag & MCE_BROADCAST) {
293 kvm_mce_broadcast_rest(cenv);
c0532a76
MT
294 }
295
7cc2cc3e 296 kvm_inject_x86_mce_on(cenv, &mce, flag);
c0532a76 297#else
31ce5e0c 298 if (flag & ABORT_ON_ERROR) {
c0532a76 299 abort();
31ce5e0c 300 }
e7701825
MT
301#endif
302}
303
b8cc45d6
GC
304static void cpu_update_state(void *opaque, int running, int reason)
305{
306 CPUState *env = opaque;
307
308 if (running) {
309 env->tsc_valid = false;
310 }
311}
312
05330448
AL
313int kvm_arch_init_vcpu(CPUState *env)
314{
315 struct {
486bd5a2
AL
316 struct kvm_cpuid2 cpuid;
317 struct kvm_cpuid_entry2 entries[100];
05330448 318 } __attribute__((packed)) cpuid_data;
486bd5a2 319 uint32_t limit, i, j, cpuid_i;
a33609ca 320 uint32_t unused;
bb0300dc 321 struct kvm_cpuid_entry2 *c;
521f0798 322#ifdef CONFIG_KVM_PARA
bb0300dc
GN
323 uint32_t signature[3];
324#endif
05330448 325
c958a8bd 326 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
6c0d7ee8
AP
327
328 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
c958a8bd 329 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
6c0d7ee8
AP
330 env->cpuid_ext_features |= i;
331
457dfed6 332 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 333 0, R_EDX);
457dfed6 334 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 335 0, R_ECX);
296acb64
JR
336 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
337 0, R_EDX);
338
6c1f42fe 339
05330448
AL
340 cpuid_i = 0;
341
bb0300dc
GN
342#ifdef CONFIG_KVM_PARA
343 /* Paravirtualization CPUIDs */
344 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
345 c = &cpuid_data.entries[cpuid_i++];
346 memset(c, 0, sizeof(*c));
347 c->function = KVM_CPUID_SIGNATURE;
348 c->eax = 0;
349 c->ebx = signature[0];
350 c->ecx = signature[1];
351 c->edx = signature[2];
352
353 c = &cpuid_data.entries[cpuid_i++];
354 memset(c, 0, sizeof(*c));
355 c->function = KVM_CPUID_FEATURES;
356 c->eax = env->cpuid_kvm_features & get_para_features(env);
357#endif
358
a33609ca 359 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
360
361 for (i = 0; i <= limit; i++) {
bb0300dc 362 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
363
364 switch (i) {
a36b1029
AL
365 case 2: {
366 /* Keep reading function 2 till all the input is received */
367 int times;
368
a36b1029 369 c->function = i;
a33609ca
AL
370 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
371 KVM_CPUID_FLAG_STATE_READ_NEXT;
372 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
373 times = c->eax & 0xff;
a36b1029
AL
374
375 for (j = 1; j < times; ++j) {
a33609ca 376 c = &cpuid_data.entries[cpuid_i++];
a36b1029 377 c->function = i;
a33609ca
AL
378 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
379 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
380 }
381 break;
382 }
486bd5a2
AL
383 case 4:
384 case 0xb:
385 case 0xd:
386 for (j = 0; ; j++) {
486bd5a2
AL
387 c->function = i;
388 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
389 c->index = j;
a33609ca 390 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 391
b9bec74b 392 if (i == 4 && c->eax == 0) {
486bd5a2 393 break;
b9bec74b
JK
394 }
395 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 396 break;
b9bec74b
JK
397 }
398 if (i == 0xd && c->eax == 0) {
486bd5a2 399 break;
b9bec74b 400 }
a33609ca 401 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
402 }
403 break;
404 default:
486bd5a2 405 c->function = i;
a33609ca
AL
406 c->flags = 0;
407 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
408 break;
409 }
05330448 410 }
a33609ca 411 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
412
413 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 414 c = &cpuid_data.entries[cpuid_i++];
05330448 415
05330448 416 c->function = i;
a33609ca
AL
417 c->flags = 0;
418 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
419 }
420
421 cpuid_data.cpuid.nent = cpuid_i;
422
e7701825
MT
423#ifdef KVM_CAP_MCE
424 if (((env->cpuid_version >> 8)&0xF) >= 6
425 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
426 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
427 uint64_t mcg_cap;
428 int banks;
429
b9bec74b 430 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
e7701825 431 perror("kvm_get_mce_cap_supported FAILED");
b9bec74b 432 } else {
e7701825
MT
433 if (banks > MCE_BANKS_DEF)
434 banks = MCE_BANKS_DEF;
435 mcg_cap &= MCE_CAP_DEF;
436 mcg_cap |= banks;
b9bec74b 437 if (kvm_setup_mce(env, &mcg_cap)) {
e7701825 438 perror("kvm_setup_mce FAILED");
b9bec74b 439 } else {
e7701825 440 env->mcg_cap = mcg_cap;
b9bec74b 441 }
e7701825
MT
442 }
443 }
444#endif
445
b8cc45d6
GC
446 qemu_add_vm_change_state_handler(cpu_update_state, env);
447
486bd5a2 448 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
05330448
AL
449}
450
caa5af0f
JK
451void kvm_arch_reset_vcpu(CPUState *env)
452{
e73223a5 453 env->exception_injected = -1;
0e607a80 454 env->interrupt_injected = -1;
1a5e9d2f 455 env->xcr0 = 1;
ddced198
MT
456 if (kvm_irqchip_in_kernel()) {
457 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
458 KVM_MP_STATE_UNINITIALIZED;
459 } else {
460 env->mp_state = KVM_MP_STATE_RUNNABLE;
461 }
caa5af0f
JK
462}
463
c3a3a7d3 464static int kvm_get_supported_msrs(KVMState *s)
05330448 465{
75b10c43 466 static int kvm_supported_msrs;
c3a3a7d3 467 int ret = 0;
05330448
AL
468
469 /* first time */
75b10c43 470 if (kvm_supported_msrs == 0) {
05330448
AL
471 struct kvm_msr_list msr_list, *kvm_msr_list;
472
75b10c43 473 kvm_supported_msrs = -1;
05330448
AL
474
475 /* Obtain MSR list from KVM. These are the MSRs that we must
476 * save/restore */
4c9f7372 477 msr_list.nmsrs = 0;
c3a3a7d3 478 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 479 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 480 return ret;
6fb6d245 481 }
d9db889f
JK
482 /* Old kernel modules had a bug and could write beyond the provided
483 memory. Allocate at least a safe amount of 1K. */
484 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
485 msr_list.nmsrs *
486 sizeof(msr_list.indices[0])));
05330448 487
55308450 488 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 489 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
490 if (ret >= 0) {
491 int i;
492
493 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
494 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 495 has_msr_star = true;
75b10c43
MT
496 continue;
497 }
498 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 499 has_msr_hsave_pa = true;
75b10c43 500 continue;
05330448
AL
501 }
502 }
503 }
504
505 free(kvm_msr_list);
506 }
507
c3a3a7d3 508 return ret;
05330448
AL
509}
510
cad1e282 511int kvm_arch_init(KVMState *s)
20420430 512{
11076198 513 uint64_t identity_base = 0xfffbc000;
20420430 514 int ret;
25d2e361 515 struct utsname utsname;
20420430 516
c3a3a7d3 517 ret = kvm_get_supported_msrs(s);
20420430 518 if (ret < 0) {
20420430
SY
519 return ret;
520 }
25d2e361
MT
521
522 uname(&utsname);
523 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
524
4c5b10b7 525 /*
11076198
JK
526 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
527 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
528 * Since these must be part of guest physical memory, we need to allocate
529 * them, both by setting their start addresses in the kernel and by
530 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
531 *
532 * Older KVM versions may not support setting the identity map base. In
533 * that case we need to stick with the default, i.e. a 256K maximum BIOS
534 * size.
4c5b10b7 535 */
11076198
JK
536#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
537 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
538 /* Allows up to 16M BIOSes. */
539 identity_base = 0xfeffc000;
540
541 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
542 if (ret < 0) {
543 return ret;
544 }
4c5b10b7 545 }
11076198
JK
546#endif
547 /* Set TSS base one page after EPT identity map. */
548 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
549 if (ret < 0) {
550 return ret;
551 }
552
11076198
JK
553 /* Tell fw_cfg to notify the BIOS to reserve the range. */
554 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 555 if (ret < 0) {
11076198 556 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
557 return ret;
558 }
559
11076198 560 return 0;
05330448 561}
b9bec74b 562
05330448
AL
563static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
564{
565 lhs->selector = rhs->selector;
566 lhs->base = rhs->base;
567 lhs->limit = rhs->limit;
568 lhs->type = 3;
569 lhs->present = 1;
570 lhs->dpl = 3;
571 lhs->db = 0;
572 lhs->s = 1;
573 lhs->l = 0;
574 lhs->g = 0;
575 lhs->avl = 0;
576 lhs->unusable = 0;
577}
578
579static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
580{
581 unsigned flags = rhs->flags;
582 lhs->selector = rhs->selector;
583 lhs->base = rhs->base;
584 lhs->limit = rhs->limit;
585 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
586 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 587 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
588 lhs->db = (flags >> DESC_B_SHIFT) & 1;
589 lhs->s = (flags & DESC_S_MASK) != 0;
590 lhs->l = (flags >> DESC_L_SHIFT) & 1;
591 lhs->g = (flags & DESC_G_MASK) != 0;
592 lhs->avl = (flags & DESC_AVL_MASK) != 0;
593 lhs->unusable = 0;
594}
595
596static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
597{
598 lhs->selector = rhs->selector;
599 lhs->base = rhs->base;
600 lhs->limit = rhs->limit;
b9bec74b
JK
601 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
602 (rhs->present * DESC_P_MASK) |
603 (rhs->dpl << DESC_DPL_SHIFT) |
604 (rhs->db << DESC_B_SHIFT) |
605 (rhs->s * DESC_S_MASK) |
606 (rhs->l << DESC_L_SHIFT) |
607 (rhs->g * DESC_G_MASK) |
608 (rhs->avl * DESC_AVL_MASK);
05330448
AL
609}
610
611static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
612{
b9bec74b 613 if (set) {
05330448 614 *kvm_reg = *qemu_reg;
b9bec74b 615 } else {
05330448 616 *qemu_reg = *kvm_reg;
b9bec74b 617 }
05330448
AL
618}
619
620static int kvm_getput_regs(CPUState *env, int set)
621{
622 struct kvm_regs regs;
623 int ret = 0;
624
625 if (!set) {
626 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 627 if (ret < 0) {
05330448 628 return ret;
b9bec74b 629 }
05330448
AL
630 }
631
632 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
633 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
634 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
635 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
636 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
637 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
638 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
639 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
640#ifdef TARGET_X86_64
641 kvm_getput_reg(&regs.r8, &env->regs[8], set);
642 kvm_getput_reg(&regs.r9, &env->regs[9], set);
643 kvm_getput_reg(&regs.r10, &env->regs[10], set);
644 kvm_getput_reg(&regs.r11, &env->regs[11], set);
645 kvm_getput_reg(&regs.r12, &env->regs[12], set);
646 kvm_getput_reg(&regs.r13, &env->regs[13], set);
647 kvm_getput_reg(&regs.r14, &env->regs[14], set);
648 kvm_getput_reg(&regs.r15, &env->regs[15], set);
649#endif
650
651 kvm_getput_reg(&regs.rflags, &env->eflags, set);
652 kvm_getput_reg(&regs.rip, &env->eip, set);
653
b9bec74b 654 if (set) {
05330448 655 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 656 }
05330448
AL
657
658 return ret;
659}
660
661static int kvm_put_fpu(CPUState *env)
662{
663 struct kvm_fpu fpu;
664 int i;
665
666 memset(&fpu, 0, sizeof fpu);
667 fpu.fsw = env->fpus & ~(7 << 11);
668 fpu.fsw |= (env->fpstt & 7) << 11;
669 fpu.fcw = env->fpuc;
b9bec74b
JK
670 for (i = 0; i < 8; ++i) {
671 fpu.ftwx |= (!env->fptags[i]) << i;
672 }
05330448
AL
673 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
674 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
675 fpu.mxcsr = env->mxcsr;
676
677 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
678}
679
f1665b21
SY
680#ifdef KVM_CAP_XSAVE
681#define XSAVE_CWD_RIP 2
682#define XSAVE_CWD_RDP 4
683#define XSAVE_MXCSR 6
684#define XSAVE_ST_SPACE 8
685#define XSAVE_XMM_SPACE 40
686#define XSAVE_XSTATE_BV 128
687#define XSAVE_YMMH_SPACE 144
688#endif
689
690static int kvm_put_xsave(CPUState *env)
691{
692#ifdef KVM_CAP_XSAVE
0f53994f 693 int i, r;
f1665b21
SY
694 struct kvm_xsave* xsave;
695 uint16_t cwd, swd, twd, fop;
696
b9bec74b 697 if (!kvm_has_xsave()) {
f1665b21 698 return kvm_put_fpu(env);
b9bec74b 699 }
f1665b21
SY
700
701 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
702 memset(xsave, 0, sizeof(struct kvm_xsave));
703 cwd = swd = twd = fop = 0;
704 swd = env->fpus & ~(7 << 11);
705 swd |= (env->fpstt & 7) << 11;
706 cwd = env->fpuc;
b9bec74b 707 for (i = 0; i < 8; ++i) {
f1665b21 708 twd |= (!env->fptags[i]) << i;
b9bec74b 709 }
f1665b21
SY
710 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
711 xsave->region[1] = (uint32_t)(fop << 16) + twd;
712 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
713 sizeof env->fpregs);
714 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
715 sizeof env->xmm_regs);
716 xsave->region[XSAVE_MXCSR] = env->mxcsr;
717 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
718 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
719 sizeof env->ymmh_regs);
0f53994f
MT
720 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
721 qemu_free(xsave);
722 return r;
f1665b21
SY
723#else
724 return kvm_put_fpu(env);
725#endif
726}
727
728static int kvm_put_xcrs(CPUState *env)
729{
730#ifdef KVM_CAP_XCRS
731 struct kvm_xcrs xcrs;
732
b9bec74b 733 if (!kvm_has_xcrs()) {
f1665b21 734 return 0;
b9bec74b 735 }
f1665b21
SY
736
737 xcrs.nr_xcrs = 1;
738 xcrs.flags = 0;
739 xcrs.xcrs[0].xcr = 0;
740 xcrs.xcrs[0].value = env->xcr0;
741 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
742#else
743 return 0;
744#endif
745}
746
05330448
AL
747static int kvm_put_sregs(CPUState *env)
748{
749 struct kvm_sregs sregs;
750
0e607a80
JK
751 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
752 if (env->interrupt_injected >= 0) {
753 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
754 (uint64_t)1 << (env->interrupt_injected % 64);
755 }
05330448
AL
756
757 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
758 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
759 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
760 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
761 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
762 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
763 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 764 } else {
b9bec74b
JK
765 set_seg(&sregs.cs, &env->segs[R_CS]);
766 set_seg(&sregs.ds, &env->segs[R_DS]);
767 set_seg(&sregs.es, &env->segs[R_ES]);
768 set_seg(&sregs.fs, &env->segs[R_FS]);
769 set_seg(&sregs.gs, &env->segs[R_GS]);
770 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
771 }
772
773 set_seg(&sregs.tr, &env->tr);
774 set_seg(&sregs.ldt, &env->ldt);
775
776 sregs.idt.limit = env->idt.limit;
777 sregs.idt.base = env->idt.base;
778 sregs.gdt.limit = env->gdt.limit;
779 sregs.gdt.base = env->gdt.base;
780
781 sregs.cr0 = env->cr[0];
782 sregs.cr2 = env->cr[2];
783 sregs.cr3 = env->cr[3];
784 sregs.cr4 = env->cr[4];
785
4a942cea
BS
786 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
787 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
788
789 sregs.efer = env->efer;
790
791 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
792}
793
794static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
795 uint32_t index, uint64_t value)
796{
797 entry->index = index;
798 entry->data = value;
799}
800
ea643051 801static int kvm_put_msrs(CPUState *env, int level)
05330448
AL
802{
803 struct {
804 struct kvm_msrs info;
805 struct kvm_msr_entry entries[100];
806 } msr_data;
807 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 808 int n = 0;
05330448
AL
809
810 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
811 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
812 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
c3a3a7d3 813 if (has_msr_star) {
b9bec74b
JK
814 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
815 }
c3a3a7d3 816 if (has_msr_hsave_pa) {
75b10c43 817 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 818 }
05330448 819#ifdef TARGET_X86_64
25d2e361
MT
820 if (lm_capable_kernel) {
821 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
822 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
823 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
824 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
825 }
05330448 826#endif
ea643051 827 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
828 /*
829 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
830 * writeback. Until this is fixed, we only write the offset to SMP
831 * guests after migration, desynchronizing the VCPUs, but avoiding
832 * huge jump-backs that would occur without any writeback at all.
833 */
834 if (smp_cpus == 1 || env->tsc != 0) {
835 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
836 }
ff5c186b
JK
837 }
838 /*
839 * The following paravirtual MSRs have side effects on the guest or are
840 * too heavy for normal writeback. Limit them to reset or full state
841 * updates.
842 */
843 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
844 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
845 env->system_time_msr);
846 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
521f0798 847#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
c5999bfc
JK
848 if (has_msr_async_pf_en) {
849 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
850 env->async_pf_en_msr);
851 }
f6584ee2 852#endif
ea643051 853 }
57780495
MT
854#ifdef KVM_CAP_MCE
855 if (env->mcg_cap) {
d8da8574 856 int i;
b9bec74b
JK
857
858 if (level == KVM_PUT_RESET_STATE) {
57780495 859 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
b9bec74b 860 } else if (level == KVM_PUT_FULL_STATE) {
57780495
MT
861 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
862 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
b9bec74b 863 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 864 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
b9bec74b 865 }
57780495
MT
866 }
867 }
868#endif
1a03675d 869
05330448
AL
870 msr_data.info.nmsrs = n;
871
872 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
873
874}
875
876
877static int kvm_get_fpu(CPUState *env)
878{
879 struct kvm_fpu fpu;
880 int i, ret;
881
882 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 883 if (ret < 0) {
05330448 884 return ret;
b9bec74b 885 }
05330448
AL
886
887 env->fpstt = (fpu.fsw >> 11) & 7;
888 env->fpus = fpu.fsw;
889 env->fpuc = fpu.fcw;
b9bec74b
JK
890 for (i = 0; i < 8; ++i) {
891 env->fptags[i] = !((fpu.ftwx >> i) & 1);
892 }
05330448
AL
893 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
894 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
895 env->mxcsr = fpu.mxcsr;
896
897 return 0;
898}
899
f1665b21
SY
900static int kvm_get_xsave(CPUState *env)
901{
902#ifdef KVM_CAP_XSAVE
903 struct kvm_xsave* xsave;
904 int ret, i;
905 uint16_t cwd, swd, twd, fop;
906
b9bec74b 907 if (!kvm_has_xsave()) {
f1665b21 908 return kvm_get_fpu(env);
b9bec74b 909 }
f1665b21
SY
910
911 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
912 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f
MT
913 if (ret < 0) {
914 qemu_free(xsave);
f1665b21 915 return ret;
0f53994f 916 }
f1665b21
SY
917
918 cwd = (uint16_t)xsave->region[0];
919 swd = (uint16_t)(xsave->region[0] >> 16);
920 twd = (uint16_t)xsave->region[1];
921 fop = (uint16_t)(xsave->region[1] >> 16);
922 env->fpstt = (swd >> 11) & 7;
923 env->fpus = swd;
924 env->fpuc = cwd;
b9bec74b 925 for (i = 0; i < 8; ++i) {
f1665b21 926 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 927 }
f1665b21
SY
928 env->mxcsr = xsave->region[XSAVE_MXCSR];
929 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
930 sizeof env->fpregs);
931 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
932 sizeof env->xmm_regs);
933 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
934 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
935 sizeof env->ymmh_regs);
0f53994f 936 qemu_free(xsave);
f1665b21
SY
937 return 0;
938#else
939 return kvm_get_fpu(env);
940#endif
941}
942
943static int kvm_get_xcrs(CPUState *env)
944{
945#ifdef KVM_CAP_XCRS
946 int i, ret;
947 struct kvm_xcrs xcrs;
948
b9bec74b 949 if (!kvm_has_xcrs()) {
f1665b21 950 return 0;
b9bec74b 951 }
f1665b21
SY
952
953 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 954 if (ret < 0) {
f1665b21 955 return ret;
b9bec74b 956 }
f1665b21 957
b9bec74b 958 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
959 /* Only support xcr0 now */
960 if (xcrs.xcrs[0].xcr == 0) {
961 env->xcr0 = xcrs.xcrs[0].value;
962 break;
963 }
b9bec74b 964 }
f1665b21
SY
965 return 0;
966#else
967 return 0;
968#endif
969}
970
05330448
AL
971static int kvm_get_sregs(CPUState *env)
972{
973 struct kvm_sregs sregs;
974 uint32_t hflags;
0e607a80 975 int bit, i, ret;
05330448
AL
976
977 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 978 if (ret < 0) {
05330448 979 return ret;
b9bec74b 980 }
05330448 981
0e607a80
JK
982 /* There can only be one pending IRQ set in the bitmap at a time, so try
983 to find it and save its number instead (-1 for none). */
984 env->interrupt_injected = -1;
985 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
986 if (sregs.interrupt_bitmap[i]) {
987 bit = ctz64(sregs.interrupt_bitmap[i]);
988 env->interrupt_injected = i * 64 + bit;
989 break;
990 }
991 }
05330448
AL
992
993 get_seg(&env->segs[R_CS], &sregs.cs);
994 get_seg(&env->segs[R_DS], &sregs.ds);
995 get_seg(&env->segs[R_ES], &sregs.es);
996 get_seg(&env->segs[R_FS], &sregs.fs);
997 get_seg(&env->segs[R_GS], &sregs.gs);
998 get_seg(&env->segs[R_SS], &sregs.ss);
999
1000 get_seg(&env->tr, &sregs.tr);
1001 get_seg(&env->ldt, &sregs.ldt);
1002
1003 env->idt.limit = sregs.idt.limit;
1004 env->idt.base = sregs.idt.base;
1005 env->gdt.limit = sregs.gdt.limit;
1006 env->gdt.base = sregs.gdt.base;
1007
1008 env->cr[0] = sregs.cr0;
1009 env->cr[2] = sregs.cr2;
1010 env->cr[3] = sregs.cr3;
1011 env->cr[4] = sregs.cr4;
1012
4a942cea 1013 cpu_set_apic_base(env->apic_state, sregs.apic_base);
05330448
AL
1014
1015 env->efer = sregs.efer;
4a942cea 1016 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
05330448 1017
b9bec74b
JK
1018#define HFLAG_COPY_MASK \
1019 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1020 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1021 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1022 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1023
1024 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1025 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1026 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1027 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1028 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1029 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1030 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1031
1032 if (env->efer & MSR_EFER_LMA) {
1033 hflags |= HF_LMA_MASK;
1034 }
1035
1036 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1037 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1038 } else {
1039 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1040 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1041 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1042 (DESC_B_SHIFT - HF_SS32_SHIFT);
1043 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1044 !(hflags & HF_CS32_MASK)) {
1045 hflags |= HF_ADDSEG_MASK;
1046 } else {
1047 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1048 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1049 }
05330448
AL
1050 }
1051 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1052
1053 return 0;
1054}
1055
1056static int kvm_get_msrs(CPUState *env)
1057{
1058 struct {
1059 struct kvm_msrs info;
1060 struct kvm_msr_entry entries[100];
1061 } msr_data;
1062 struct kvm_msr_entry *msrs = msr_data.entries;
1063 int ret, i, n;
1064
1065 n = 0;
1066 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1067 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1068 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
c3a3a7d3 1069 if (has_msr_star) {
b9bec74b
JK
1070 msrs[n++].index = MSR_STAR;
1071 }
c3a3a7d3 1072 if (has_msr_hsave_pa) {
75b10c43 1073 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1074 }
b8cc45d6
GC
1075
1076 if (!env->tsc_valid) {
1077 msrs[n++].index = MSR_IA32_TSC;
1078 env->tsc_valid = !vm_running;
1079 }
1080
05330448 1081#ifdef TARGET_X86_64
25d2e361
MT
1082 if (lm_capable_kernel) {
1083 msrs[n++].index = MSR_CSTAR;
1084 msrs[n++].index = MSR_KERNELGSBASE;
1085 msrs[n++].index = MSR_FMASK;
1086 msrs[n++].index = MSR_LSTAR;
1087 }
05330448 1088#endif
1a03675d
GC
1089 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1090 msrs[n++].index = MSR_KVM_WALL_CLOCK;
521f0798 1091#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
c5999bfc
JK
1092 if (has_msr_async_pf_en) {
1093 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1094 }
f6584ee2 1095#endif
1a03675d 1096
57780495
MT
1097#ifdef KVM_CAP_MCE
1098 if (env->mcg_cap) {
1099 msrs[n++].index = MSR_MCG_STATUS;
1100 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1101 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1102 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1103 }
57780495
MT
1104 }
1105#endif
1106
05330448
AL
1107 msr_data.info.nmsrs = n;
1108 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1109 if (ret < 0) {
05330448 1110 return ret;
b9bec74b 1111 }
05330448
AL
1112
1113 for (i = 0; i < ret; i++) {
1114 switch (msrs[i].index) {
1115 case MSR_IA32_SYSENTER_CS:
1116 env->sysenter_cs = msrs[i].data;
1117 break;
1118 case MSR_IA32_SYSENTER_ESP:
1119 env->sysenter_esp = msrs[i].data;
1120 break;
1121 case MSR_IA32_SYSENTER_EIP:
1122 env->sysenter_eip = msrs[i].data;
1123 break;
1124 case MSR_STAR:
1125 env->star = msrs[i].data;
1126 break;
1127#ifdef TARGET_X86_64
1128 case MSR_CSTAR:
1129 env->cstar = msrs[i].data;
1130 break;
1131 case MSR_KERNELGSBASE:
1132 env->kernelgsbase = msrs[i].data;
1133 break;
1134 case MSR_FMASK:
1135 env->fmask = msrs[i].data;
1136 break;
1137 case MSR_LSTAR:
1138 env->lstar = msrs[i].data;
1139 break;
1140#endif
1141 case MSR_IA32_TSC:
1142 env->tsc = msrs[i].data;
1143 break;
aa851e36
MT
1144 case MSR_VM_HSAVE_PA:
1145 env->vm_hsave = msrs[i].data;
1146 break;
1a03675d
GC
1147 case MSR_KVM_SYSTEM_TIME:
1148 env->system_time_msr = msrs[i].data;
1149 break;
1150 case MSR_KVM_WALL_CLOCK:
1151 env->wall_clock_msr = msrs[i].data;
1152 break;
57780495
MT
1153#ifdef KVM_CAP_MCE
1154 case MSR_MCG_STATUS:
1155 env->mcg_status = msrs[i].data;
1156 break;
1157 case MSR_MCG_CTL:
1158 env->mcg_ctl = msrs[i].data;
1159 break;
1160#endif
1161 default:
1162#ifdef KVM_CAP_MCE
1163 if (msrs[i].index >= MSR_MC0_CTL &&
1164 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1165 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495
MT
1166 }
1167#endif
d8da8574 1168 break;
521f0798 1169#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
f6584ee2
GN
1170 case MSR_KVM_ASYNC_PF_EN:
1171 env->async_pf_en_msr = msrs[i].data;
1172 break;
1173#endif
05330448
AL
1174 }
1175 }
1176
1177 return 0;
1178}
1179
9bdbe550
HB
1180static int kvm_put_mp_state(CPUState *env)
1181{
1182 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1183
1184 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1185}
1186
1187static int kvm_get_mp_state(CPUState *env)
1188{
1189 struct kvm_mp_state mp_state;
1190 int ret;
1191
1192 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1193 if (ret < 0) {
1194 return ret;
1195 }
1196 env->mp_state = mp_state.mp_state;
c14750e8
JK
1197 if (kvm_irqchip_in_kernel()) {
1198 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1199 }
9bdbe550
HB
1200 return 0;
1201}
1202
ea643051 1203static int kvm_put_vcpu_events(CPUState *env, int level)
a0fb002c
JK
1204{
1205#ifdef KVM_CAP_VCPU_EVENTS
1206 struct kvm_vcpu_events events;
1207
1208 if (!kvm_has_vcpu_events()) {
1209 return 0;
1210 }
1211
31827373
JK
1212 events.exception.injected = (env->exception_injected >= 0);
1213 events.exception.nr = env->exception_injected;
a0fb002c
JK
1214 events.exception.has_error_code = env->has_error_code;
1215 events.exception.error_code = env->error_code;
1216
1217 events.interrupt.injected = (env->interrupt_injected >= 0);
1218 events.interrupt.nr = env->interrupt_injected;
1219 events.interrupt.soft = env->soft_interrupt;
1220
1221 events.nmi.injected = env->nmi_injected;
1222 events.nmi.pending = env->nmi_pending;
1223 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1224
1225 events.sipi_vector = env->sipi_vector;
1226
ea643051
JK
1227 events.flags = 0;
1228 if (level >= KVM_PUT_RESET_STATE) {
1229 events.flags |=
1230 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1231 }
aee028b9 1232
a0fb002c
JK
1233 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1234#else
1235 return 0;
1236#endif
1237}
1238
1239static int kvm_get_vcpu_events(CPUState *env)
1240{
1241#ifdef KVM_CAP_VCPU_EVENTS
1242 struct kvm_vcpu_events events;
1243 int ret;
1244
1245 if (!kvm_has_vcpu_events()) {
1246 return 0;
1247 }
1248
1249 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1250 if (ret < 0) {
1251 return ret;
1252 }
31827373 1253 env->exception_injected =
a0fb002c
JK
1254 events.exception.injected ? events.exception.nr : -1;
1255 env->has_error_code = events.exception.has_error_code;
1256 env->error_code = events.exception.error_code;
1257
1258 env->interrupt_injected =
1259 events.interrupt.injected ? events.interrupt.nr : -1;
1260 env->soft_interrupt = events.interrupt.soft;
1261
1262 env->nmi_injected = events.nmi.injected;
1263 env->nmi_pending = events.nmi.pending;
1264 if (events.nmi.masked) {
1265 env->hflags2 |= HF2_NMI_MASK;
1266 } else {
1267 env->hflags2 &= ~HF2_NMI_MASK;
1268 }
1269
1270 env->sipi_vector = events.sipi_vector;
1271#endif
1272
1273 return 0;
1274}
1275
b0b1d690
JK
1276static int kvm_guest_debug_workarounds(CPUState *env)
1277{
1278 int ret = 0;
1279#ifdef KVM_CAP_SET_GUEST_DEBUG
1280 unsigned long reinject_trap = 0;
1281
1282 if (!kvm_has_vcpu_events()) {
1283 if (env->exception_injected == 1) {
1284 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1285 } else if (env->exception_injected == 3) {
1286 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1287 }
1288 env->exception_injected = -1;
1289 }
1290
1291 /*
1292 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1293 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1294 * by updating the debug state once again if single-stepping is on.
1295 * Another reason to call kvm_update_guest_debug here is a pending debug
1296 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1297 * reinject them via SET_GUEST_DEBUG.
1298 */
1299 if (reinject_trap ||
1300 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1301 ret = kvm_update_guest_debug(env, reinject_trap);
1302 }
1303#endif /* KVM_CAP_SET_GUEST_DEBUG */
1304 return ret;
1305}
1306
ff44f1a3
JK
1307static int kvm_put_debugregs(CPUState *env)
1308{
1309#ifdef KVM_CAP_DEBUGREGS
1310 struct kvm_debugregs dbgregs;
1311 int i;
1312
1313 if (!kvm_has_debugregs()) {
1314 return 0;
1315 }
1316
1317 for (i = 0; i < 4; i++) {
1318 dbgregs.db[i] = env->dr[i];
1319 }
1320 dbgregs.dr6 = env->dr[6];
1321 dbgregs.dr7 = env->dr[7];
1322 dbgregs.flags = 0;
1323
1324 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1325#else
1326 return 0;
1327#endif
1328}
1329
1330static int kvm_get_debugregs(CPUState *env)
1331{
1332#ifdef KVM_CAP_DEBUGREGS
1333 struct kvm_debugregs dbgregs;
1334 int i, ret;
1335
1336 if (!kvm_has_debugregs()) {
1337 return 0;
1338 }
1339
1340 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1341 if (ret < 0) {
b9bec74b 1342 return ret;
ff44f1a3
JK
1343 }
1344 for (i = 0; i < 4; i++) {
1345 env->dr[i] = dbgregs.db[i];
1346 }
1347 env->dr[4] = env->dr[6] = dbgregs.dr6;
1348 env->dr[5] = env->dr[7] = dbgregs.dr7;
1349#endif
1350
1351 return 0;
1352}
1353
ea375f9a 1354int kvm_arch_put_registers(CPUState *env, int level)
05330448
AL
1355{
1356 int ret;
1357
dbaa07c4
JK
1358 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1359
05330448 1360 ret = kvm_getput_regs(env, 1);
b9bec74b 1361 if (ret < 0) {
05330448 1362 return ret;
b9bec74b 1363 }
f1665b21 1364 ret = kvm_put_xsave(env);
b9bec74b 1365 if (ret < 0) {
f1665b21 1366 return ret;
b9bec74b 1367 }
f1665b21 1368 ret = kvm_put_xcrs(env);
b9bec74b 1369 if (ret < 0) {
05330448 1370 return ret;
b9bec74b 1371 }
05330448 1372 ret = kvm_put_sregs(env);
b9bec74b 1373 if (ret < 0) {
05330448 1374 return ret;
b9bec74b 1375 }
ea643051 1376 ret = kvm_put_msrs(env, level);
b9bec74b 1377 if (ret < 0) {
05330448 1378 return ret;
b9bec74b 1379 }
ea643051
JK
1380 if (level >= KVM_PUT_RESET_STATE) {
1381 ret = kvm_put_mp_state(env);
b9bec74b 1382 if (ret < 0) {
ea643051 1383 return ret;
b9bec74b 1384 }
ea643051 1385 }
ea643051 1386 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1387 if (ret < 0) {
a0fb002c 1388 return ret;
b9bec74b 1389 }
0d75a9ec 1390 ret = kvm_put_debugregs(env);
b9bec74b 1391 if (ret < 0) {
b0b1d690 1392 return ret;
b9bec74b 1393 }
b0b1d690
JK
1394 /* must be last */
1395 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1396 if (ret < 0) {
ff44f1a3 1397 return ret;
b9bec74b 1398 }
05330448
AL
1399 return 0;
1400}
1401
1402int kvm_arch_get_registers(CPUState *env)
1403{
1404 int ret;
1405
dbaa07c4
JK
1406 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1407
05330448 1408 ret = kvm_getput_regs(env, 0);
b9bec74b 1409 if (ret < 0) {
05330448 1410 return ret;
b9bec74b 1411 }
f1665b21 1412 ret = kvm_get_xsave(env);
b9bec74b 1413 if (ret < 0) {
f1665b21 1414 return ret;
b9bec74b 1415 }
f1665b21 1416 ret = kvm_get_xcrs(env);
b9bec74b 1417 if (ret < 0) {
05330448 1418 return ret;
b9bec74b 1419 }
05330448 1420 ret = kvm_get_sregs(env);
b9bec74b 1421 if (ret < 0) {
05330448 1422 return ret;
b9bec74b 1423 }
05330448 1424 ret = kvm_get_msrs(env);
b9bec74b 1425 if (ret < 0) {
05330448 1426 return ret;
b9bec74b 1427 }
5a2e3c2e 1428 ret = kvm_get_mp_state(env);
b9bec74b 1429 if (ret < 0) {
5a2e3c2e 1430 return ret;
b9bec74b 1431 }
a0fb002c 1432 ret = kvm_get_vcpu_events(env);
b9bec74b 1433 if (ret < 0) {
a0fb002c 1434 return ret;
b9bec74b 1435 }
ff44f1a3 1436 ret = kvm_get_debugregs(env);
b9bec74b 1437 if (ret < 0) {
ff44f1a3 1438 return ret;
b9bec74b 1439 }
05330448
AL
1440 return 0;
1441}
1442
7a39fe58 1443void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
05330448 1444{
276ce815
LJ
1445 /* Inject NMI */
1446 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1447 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1448 DPRINTF("injected NMI\n");
1449 kvm_vcpu_ioctl(env, KVM_NMI);
1450 }
1451
db1669bc
JK
1452 if (!kvm_irqchip_in_kernel()) {
1453 /* Force the VCPU out of its inner loop to process the INIT request */
1454 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1455 env->exit_request = 1;
05330448 1456 }
05330448 1457
db1669bc
JK
1458 /* Try to inject an interrupt if the guest can accept it */
1459 if (run->ready_for_interrupt_injection &&
1460 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1461 (env->eflags & IF_MASK)) {
1462 int irq;
1463
1464 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1465 irq = cpu_get_pic_interrupt(env);
1466 if (irq >= 0) {
1467 struct kvm_interrupt intr;
1468
1469 intr.irq = irq;
1470 /* FIXME: errors */
1471 DPRINTF("injected interrupt %d\n", irq);
1472 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1473 }
1474 }
05330448 1475
db1669bc
JK
1476 /* If we have an interrupt but the guest is not ready to receive an
1477 * interrupt, request an interrupt window exit. This will
1478 * cause a return to userspace as soon as the guest is ready to
1479 * receive interrupts. */
1480 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1481 run->request_interrupt_window = 1;
1482 } else {
1483 run->request_interrupt_window = 0;
1484 }
1485
1486 DPRINTF("setting tpr\n");
1487 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1488 }
05330448
AL
1489}
1490
7a39fe58 1491void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
05330448 1492{
b9bec74b 1493 if (run->if_flag) {
05330448 1494 env->eflags |= IF_MASK;
b9bec74b 1495 } else {
05330448 1496 env->eflags &= ~IF_MASK;
b9bec74b 1497 }
4a942cea
BS
1498 cpu_set_apic_tpr(env->apic_state, run->cr8);
1499 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1500}
1501
0af691d7
MT
1502int kvm_arch_process_irqchip_events(CPUState *env)
1503{
db1669bc
JK
1504 if (kvm_irqchip_in_kernel()) {
1505 return 0;
1506 }
1507
6792a57b
JK
1508 if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI)) {
1509 env->halted = 0;
1510 }
0af691d7
MT
1511 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1512 kvm_cpu_synchronize_state(env);
1513 do_cpu_init(env);
0af691d7 1514 }
0af691d7
MT
1515 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1516 kvm_cpu_synchronize_state(env);
1517 do_cpu_sipi(env);
1518 }
1519
1520 return env->halted;
1521}
1522
05330448
AL
1523static int kvm_handle_halt(CPUState *env)
1524{
1525 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1526 (env->eflags & IF_MASK)) &&
1527 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1528 env->halted = 1;
05330448
AL
1529 return 0;
1530 }
1531
1532 return 1;
1533}
1534
bb44e0d1
JK
1535static bool host_supports_vmx(void)
1536{
1537 uint32_t ecx, unused;
1538
1539 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1540 return ecx & CPUID_EXT_VMX;
1541}
1542
1543#define VMX_INVALID_GUEST_STATE 0x80000021
1544
05330448
AL
1545int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1546{
bb44e0d1 1547 uint64_t code;
05330448
AL
1548 int ret = 0;
1549
1550 switch (run->exit_reason) {
1551 case KVM_EXIT_HLT:
8c0d577e 1552 DPRINTF("handle_hlt\n");
05330448
AL
1553 ret = kvm_handle_halt(env);
1554 break;
646042e1
JK
1555 case KVM_EXIT_SET_TPR:
1556 ret = 1;
1557 break;
bb44e0d1
JK
1558 case KVM_EXIT_FAIL_ENTRY:
1559 code = run->fail_entry.hardware_entry_failure_reason;
1560 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1561 code);
1562 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1563 fprintf(stderr,
1564 "\nIf you're runnning a guest on an Intel machine without "
1565 "unrestricted mode\n"
1566 "support, the failure can be most likely due to the guest "
1567 "entering an invalid\n"
1568 "state for Intel VT. For example, the guest maybe running "
1569 "in big real mode\n"
1570 "which is not supported on less recent Intel processors."
1571 "\n\n");
1572 }
1573 ret = -1;
1574 break;
1575 case KVM_EXIT_EXCEPTION:
1576 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1577 run->ex.exception, run->ex.error_code);
1578 ret = -1;
1579 break;
73aaec4a
JK
1580 default:
1581 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1582 ret = -1;
1583 break;
05330448
AL
1584 }
1585
1586 return ret;
1587}
e22a25c9
AL
1588
1589#ifdef KVM_CAP_SET_GUEST_DEBUG
e22a25c9
AL
1590int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1591{
38972938 1592 static const uint8_t int3 = 0xcc;
64bf3f4e 1593
e22a25c9 1594 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1595 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1596 return -EINVAL;
b9bec74b 1597 }
e22a25c9
AL
1598 return 0;
1599}
1600
1601int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1602{
1603 uint8_t int3;
1604
1605 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1606 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1607 return -EINVAL;
b9bec74b 1608 }
e22a25c9
AL
1609 return 0;
1610}
1611
1612static struct {
1613 target_ulong addr;
1614 int len;
1615 int type;
1616} hw_breakpoint[4];
1617
1618static int nb_hw_breakpoint;
1619
1620static int find_hw_breakpoint(target_ulong addr, int len, int type)
1621{
1622 int n;
1623
b9bec74b 1624 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1625 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1626 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1627 return n;
b9bec74b
JK
1628 }
1629 }
e22a25c9
AL
1630 return -1;
1631}
1632
1633int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1634 target_ulong len, int type)
1635{
1636 switch (type) {
1637 case GDB_BREAKPOINT_HW:
1638 len = 1;
1639 break;
1640 case GDB_WATCHPOINT_WRITE:
1641 case GDB_WATCHPOINT_ACCESS:
1642 switch (len) {
1643 case 1:
1644 break;
1645 case 2:
1646 case 4:
1647 case 8:
b9bec74b 1648 if (addr & (len - 1)) {
e22a25c9 1649 return -EINVAL;
b9bec74b 1650 }
e22a25c9
AL
1651 break;
1652 default:
1653 return -EINVAL;
1654 }
1655 break;
1656 default:
1657 return -ENOSYS;
1658 }
1659
b9bec74b 1660 if (nb_hw_breakpoint == 4) {
e22a25c9 1661 return -ENOBUFS;
b9bec74b
JK
1662 }
1663 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1664 return -EEXIST;
b9bec74b 1665 }
e22a25c9
AL
1666 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1667 hw_breakpoint[nb_hw_breakpoint].len = len;
1668 hw_breakpoint[nb_hw_breakpoint].type = type;
1669 nb_hw_breakpoint++;
1670
1671 return 0;
1672}
1673
1674int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1675 target_ulong len, int type)
1676{
1677 int n;
1678
1679 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1680 if (n < 0) {
e22a25c9 1681 return -ENOENT;
b9bec74b 1682 }
e22a25c9
AL
1683 nb_hw_breakpoint--;
1684 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1685
1686 return 0;
1687}
1688
1689void kvm_arch_remove_all_hw_breakpoints(void)
1690{
1691 nb_hw_breakpoint = 0;
1692}
1693
1694static CPUWatchpoint hw_watchpoint;
1695
1696int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1697{
1698 int handle = 0;
1699 int n;
1700
1701 if (arch_info->exception == 1) {
1702 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1703 if (cpu_single_env->singlestep_enabled) {
e22a25c9 1704 handle = 1;
b9bec74b 1705 }
e22a25c9 1706 } else {
b9bec74b
JK
1707 for (n = 0; n < 4; n++) {
1708 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1709 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1710 case 0x0:
1711 handle = 1;
1712 break;
1713 case 0x1:
1714 handle = 1;
1715 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1716 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1717 hw_watchpoint.flags = BP_MEM_WRITE;
1718 break;
1719 case 0x3:
1720 handle = 1;
1721 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1722 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1723 hw_watchpoint.flags = BP_MEM_ACCESS;
1724 break;
1725 }
b9bec74b
JK
1726 }
1727 }
e22a25c9 1728 }
b9bec74b 1729 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
e22a25c9 1730 handle = 1;
b9bec74b 1731 }
b0b1d690
JK
1732 if (!handle) {
1733 cpu_synchronize_state(cpu_single_env);
1734 assert(cpu_single_env->exception_injected == -1);
1735
1736 cpu_single_env->exception_injected = arch_info->exception;
1737 cpu_single_env->has_error_code = 0;
1738 }
e22a25c9
AL
1739
1740 return handle;
1741}
1742
1743void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1744{
1745 const uint8_t type_code[] = {
1746 [GDB_BREAKPOINT_HW] = 0x0,
1747 [GDB_WATCHPOINT_WRITE] = 0x1,
1748 [GDB_WATCHPOINT_ACCESS] = 0x3
1749 };
1750 const uint8_t len_code[] = {
1751 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1752 };
1753 int n;
1754
b9bec74b 1755 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 1756 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 1757 }
e22a25c9
AL
1758 if (nb_hw_breakpoint > 0) {
1759 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1760 dbg->arch.debugreg[7] = 0x0600;
1761 for (n = 0; n < nb_hw_breakpoint; n++) {
1762 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1763 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1764 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 1765 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
1766 }
1767 }
1768}
1769#endif /* KVM_CAP_SET_GUEST_DEBUG */
4513d923
GN
1770
1771bool kvm_arch_stop_on_emulation_error(CPUState *env)
1772{
b9bec74b
JK
1773 return !(env->cr[0] & CR0_PE_MASK) ||
1774 ((env->segs[R_CS].selector & 3) != 3);
4513d923
GN
1775}
1776
c0532a76
MT
1777static void hardware_memory_error(void)
1778{
1779 fprintf(stderr, "Hardware memory error!\n");
1780 exit(1);
1781}
1782
f71ac88f
HS
1783#ifdef KVM_CAP_MCE
1784static void kvm_mce_broadcast_rest(CPUState *env)
1785{
7cc2cc3e
JD
1786 struct kvm_x86_mce mce = {
1787 .bank = 1,
1788 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1789 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1790 .addr = 0,
1791 .misc = 0,
1792 };
f71ac88f 1793 CPUState *cenv;
f71ac88f
HS
1794
1795 /* Broadcast MCA signal for processor version 06H_EH and above */
2bd3e04c 1796 if (cpu_x86_support_mca_broadcast(env)) {
f71ac88f
HS
1797 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1798 if (cenv == env) {
1799 continue;
1800 }
7cc2cc3e 1801 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
f71ac88f
HS
1802 }
1803 }
1804}
e387c338
JD
1805
1806static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1807{
1808 struct kvm_x86_mce mce = {
1809 .bank = 9,
1810 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1811 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1812 | MCI_STATUS_AR | 0x134,
1813 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1814 .addr = paddr,
1815 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1816 };
1817 int r;
1818
1819 r = kvm_set_mce(env, &mce);
1820 if (r < 0) {
1821 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1822 abort();
1823 }
1824 kvm_mce_broadcast_rest(env);
1825}
1826
1827static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1828{
1829 struct kvm_x86_mce mce = {
1830 .bank = 9,
1831 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1832 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1833 | 0xc0,
1834 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1835 .addr = paddr,
1836 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1837 };
1838 int r;
1839
1840 r = kvm_set_mce(env, &mce);
1841 if (r < 0) {
1842 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1843 abort();
1844 }
1845 kvm_mce_broadcast_rest(env);
1846}
1847
1848static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1849{
7cc2cc3e
JD
1850 struct kvm_x86_mce mce = {
1851 .bank = 9,
1852 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1853 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1854 | 0xc0,
1855 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1856 .addr = paddr,
1857 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1858 };
e387c338 1859
7cc2cc3e 1860 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
e387c338
JD
1861 kvm_mce_broadcast_rest(env);
1862}
1863
f71ac88f
HS
1864#endif
1865
a1b87fe0 1866int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
c0532a76
MT
1867{
1868#if defined(KVM_CAP_MCE)
c0532a76
MT
1869 void *vaddr;
1870 ram_addr_t ram_addr;
1871 target_phys_addr_t paddr;
c0532a76
MT
1872
1873 if ((env->mcg_cap & MCG_SER_P) && addr
1874 && (code == BUS_MCEERR_AR
1875 || code == BUS_MCEERR_AO)) {
c0532a76
MT
1876 vaddr = (void *)addr;
1877 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1878 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1879 fprintf(stderr, "Hardware memory error for memory used by "
1880 "QEMU itself instead of guest system!\n");
1881 /* Hope we are lucky for AO MCE */
1882 if (code == BUS_MCEERR_AO) {
1883 return 0;
1884 } else {
1885 hardware_memory_error();
1886 }
1887 }
e387c338
JD
1888
1889 if (code == BUS_MCEERR_AR) {
1890 /* Fake an Intel architectural Data Load SRAR UCR */
1891 kvm_mce_inj_srar_dataload(env, paddr);
1892 } else {
1893 /*
1894 * If there is an MCE excpetion being processed, ignore
1895 * this SRAO MCE
1896 */
1897 if (!kvm_mce_in_progress(env)) {
1898 /* Fake an Intel architectural Memory scrubbing UCR */
1899 kvm_mce_inj_srao_memscrub(env, paddr);
1900 }
c0532a76
MT
1901 }
1902 } else
1903#endif
1904 {
1905 if (code == BUS_MCEERR_AO) {
1906 return 0;
1907 } else if (code == BUS_MCEERR_AR) {
1908 hardware_memory_error();
1909 } else {
1910 return 1;
1911 }
1912 }
1913 return 0;
1914}
1915
a1b87fe0 1916int kvm_arch_on_sigbus(int code, void *addr)
c0532a76
MT
1917{
1918#if defined(KVM_CAP_MCE)
1919 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
c0532a76
MT
1920 void *vaddr;
1921 ram_addr_t ram_addr;
1922 target_phys_addr_t paddr;
c0532a76
MT
1923
1924 /* Hope we are lucky for AO MCE */
1925 vaddr = addr;
1926 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1927 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1928 fprintf(stderr, "Hardware memory error for memory used by "
1929 "QEMU itself instead of guest system!: %p\n", addr);
1930 return 0;
1931 }
e387c338 1932 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
c0532a76
MT
1933 } else
1934#endif
1935 {
1936 if (code == BUS_MCEERR_AO) {
1937 return 0;
1938 } else if (code == BUS_MCEERR_AR) {
1939 hardware_memory_error();
1940 } else {
1941 return 1;
1942 }
1943 }
1944 return 0;
1945}