]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
kvm: handle internal error
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
18
19#include <linux/kvm.h>
20
21#include "qemu-common.h"
22#include "sysemu.h"
23#include "kvm.h"
24#include "cpu.h"
e22a25c9 25#include "gdbstub.h"
0e607a80 26#include "host-utils.h"
4c5b10b7 27#include "hw/pc.h"
35bed8ee 28#include "ioport.h"
05330448 29
bb0300dc
GN
30#ifdef CONFIG_KVM_PARA
31#include <linux/kvm_para.h>
32#endif
33//
05330448
AL
34//#define DEBUG_KVM
35
36#ifdef DEBUG_KVM
8c0d577e 37#define DPRINTF(fmt, ...) \
05330448
AL
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39#else
8c0d577e 40#define DPRINTF(fmt, ...) \
05330448
AL
41 do { } while (0)
42#endif
43
1a03675d
GC
44#define MSR_KVM_WALL_CLOCK 0x11
45#define MSR_KVM_SYSTEM_TIME 0x12
46
b827df58
AK
47#ifdef KVM_CAP_EXT_CPUID
48
49static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
50{
51 struct kvm_cpuid2 *cpuid;
52 int r, size;
53
54 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56 cpuid->nent = max;
57 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
58 if (r == 0 && cpuid->nent >= max) {
59 r = -E2BIG;
60 }
b827df58
AK
61 if (r < 0) {
62 if (r == -E2BIG) {
63 qemu_free(cpuid);
64 return NULL;
65 } else {
66 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67 strerror(-r));
68 exit(1);
69 }
70 }
71 return cpuid;
72}
73
74uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
75{
76 struct kvm_cpuid2 *cpuid;
77 int i, max;
78 uint32_t ret = 0;
79 uint32_t cpuid_1_edx;
80
81 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
82 return -1U;
83 }
84
85 max = 1;
86 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
87 max *= 2;
88 }
89
90 for (i = 0; i < cpuid->nent; ++i) {
91 if (cpuid->entries[i].function == function) {
92 switch (reg) {
93 case R_EAX:
94 ret = cpuid->entries[i].eax;
95 break;
96 case R_EBX:
97 ret = cpuid->entries[i].ebx;
98 break;
99 case R_ECX:
100 ret = cpuid->entries[i].ecx;
101 break;
102 case R_EDX:
103 ret = cpuid->entries[i].edx;
19ccb8ea
JK
104 switch (function) {
105 case 1:
106 /* KVM before 2.6.30 misreports the following features */
107 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
108 break;
109 case 0x80000001:
b827df58
AK
110 /* On Intel, kvm returns cpuid according to the Intel spec,
111 * so add missing bits according to the AMD spec:
112 */
113 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
114 ret |= cpuid_1_edx & 0xdfeff7ff;
19ccb8ea 115 break;
b827df58
AK
116 }
117 break;
118 }
119 }
120 }
121
122 qemu_free(cpuid);
123
124 return ret;
125}
126
127#else
128
129uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
130{
131 return -1U;
132}
133
134#endif
135
bb0300dc
GN
136#ifdef CONFIG_KVM_PARA
137struct kvm_para_features {
138 int cap;
139 int feature;
140} para_features[] = {
141#ifdef KVM_CAP_CLOCKSOURCE
142 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
143#endif
144#ifdef KVM_CAP_NOP_IO_DELAY
145 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
146#endif
147#ifdef KVM_CAP_PV_MMU
148 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
bb0300dc
GN
149#endif
150 { -1, -1 }
151};
152
153static int get_para_features(CPUState *env)
154{
155 int i, features = 0;
156
157 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
158 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
159 features |= (1 << para_features[i].feature);
160 }
161
162 return features;
163}
164#endif
165
05330448
AL
166int kvm_arch_init_vcpu(CPUState *env)
167{
168 struct {
486bd5a2
AL
169 struct kvm_cpuid2 cpuid;
170 struct kvm_cpuid_entry2 entries[100];
05330448 171 } __attribute__((packed)) cpuid_data;
486bd5a2 172 uint32_t limit, i, j, cpuid_i;
a33609ca 173 uint32_t unused;
bb0300dc
GN
174 struct kvm_cpuid_entry2 *c;
175#ifdef KVM_CPUID_SIGNATURE
176 uint32_t signature[3];
177#endif
05330448 178
f8d926e9
JK
179 env->mp_state = KVM_MP_STATE_RUNNABLE;
180
457dfed6 181 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, R_EDX);
6c0d7ee8
AP
182
183 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
457dfed6 184 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, R_ECX);
6c0d7ee8
AP
185 env->cpuid_ext_features |= i;
186
457dfed6
AP
187 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
188 R_EDX);
189 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
190 R_ECX);
6c1f42fe 191
05330448
AL
192 cpuid_i = 0;
193
bb0300dc
GN
194#ifdef CONFIG_KVM_PARA
195 /* Paravirtualization CPUIDs */
196 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
197 c = &cpuid_data.entries[cpuid_i++];
198 memset(c, 0, sizeof(*c));
199 c->function = KVM_CPUID_SIGNATURE;
200 c->eax = 0;
201 c->ebx = signature[0];
202 c->ecx = signature[1];
203 c->edx = signature[2];
204
205 c = &cpuid_data.entries[cpuid_i++];
206 memset(c, 0, sizeof(*c));
207 c->function = KVM_CPUID_FEATURES;
208 c->eax = env->cpuid_kvm_features & get_para_features(env);
209#endif
210
a33609ca 211 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
212
213 for (i = 0; i <= limit; i++) {
bb0300dc 214 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
215
216 switch (i) {
a36b1029
AL
217 case 2: {
218 /* Keep reading function 2 till all the input is received */
219 int times;
220
a36b1029 221 c->function = i;
a33609ca
AL
222 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
223 KVM_CPUID_FLAG_STATE_READ_NEXT;
224 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
225 times = c->eax & 0xff;
a36b1029
AL
226
227 for (j = 1; j < times; ++j) {
a33609ca 228 c = &cpuid_data.entries[cpuid_i++];
a36b1029 229 c->function = i;
a33609ca
AL
230 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
231 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
232 }
233 break;
234 }
486bd5a2
AL
235 case 4:
236 case 0xb:
237 case 0xd:
238 for (j = 0; ; j++) {
486bd5a2
AL
239 c->function = i;
240 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
241 c->index = j;
a33609ca 242 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 243
a33609ca 244 if (i == 4 && c->eax == 0)
486bd5a2 245 break;
a33609ca 246 if (i == 0xb && !(c->ecx & 0xff00))
486bd5a2 247 break;
a33609ca 248 if (i == 0xd && c->eax == 0)
486bd5a2 249 break;
a33609ca
AL
250
251 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
252 }
253 break;
254 default:
486bd5a2 255 c->function = i;
a33609ca
AL
256 c->flags = 0;
257 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
258 break;
259 }
05330448 260 }
a33609ca 261 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
262
263 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 264 c = &cpuid_data.entries[cpuid_i++];
05330448 265
05330448 266 c->function = i;
a33609ca
AL
267 c->flags = 0;
268 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
269 }
270
271 cpuid_data.cpuid.nent = cpuid_i;
272
486bd5a2 273 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
05330448
AL
274}
275
caa5af0f
JK
276void kvm_arch_reset_vcpu(CPUState *env)
277{
e73223a5 278 env->exception_injected = -1;
0e607a80 279 env->interrupt_injected = -1;
a0fb002c
JK
280 env->nmi_injected = 0;
281 env->nmi_pending = 0;
caa5af0f
JK
282}
283
05330448
AL
284static int kvm_has_msr_star(CPUState *env)
285{
286 static int has_msr_star;
287 int ret;
288
289 /* first time */
290 if (has_msr_star == 0) {
291 struct kvm_msr_list msr_list, *kvm_msr_list;
292
293 has_msr_star = -1;
294
295 /* Obtain MSR list from KVM. These are the MSRs that we must
296 * save/restore */
4c9f7372 297 msr_list.nmsrs = 0;
05330448 298 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 299 if (ret < 0 && ret != -E2BIG) {
05330448 300 return 0;
6fb6d245 301 }
d9db889f
JK
302 /* Old kernel modules had a bug and could write beyond the provided
303 memory. Allocate at least a safe amount of 1K. */
304 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
305 msr_list.nmsrs *
306 sizeof(msr_list.indices[0])));
05330448 307
55308450 308 kvm_msr_list->nmsrs = msr_list.nmsrs;
05330448
AL
309 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
310 if (ret >= 0) {
311 int i;
312
313 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
314 if (kvm_msr_list->indices[i] == MSR_STAR) {
315 has_msr_star = 1;
316 break;
317 }
318 }
319 }
320
321 free(kvm_msr_list);
322 }
323
324 if (has_msr_star == 1)
325 return 1;
326 return 0;
327}
328
329int kvm_arch_init(KVMState *s, int smp_cpus)
330{
331 int ret;
332
333 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
334 * directly. In order to use vm86 mode, a TSS is needed. Since this
335 * must be part of guest physical memory, we need to allocate it. Older
336 * versions of KVM just assumed that it would be at the end of physical
337 * memory but that doesn't work with more than 4GB of memory. We simply
338 * refuse to work with those older versions of KVM. */
984b5181 339 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
05330448
AL
340 if (ret <= 0) {
341 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
342 return ret;
343 }
344
345 /* this address is 3 pages before the bios, and the bios should present
346 * as unavaible memory. FIXME, need to ensure the e820 map deals with
347 * this?
348 */
4c5b10b7
JS
349 /*
350 * Tell fw_cfg to notify the BIOS to reserve the range.
351 */
352 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
353 perror("e820_add_entry() table is full");
354 exit(1);
355 }
984b5181 356 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
05330448
AL
357}
358
359static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
360{
361 lhs->selector = rhs->selector;
362 lhs->base = rhs->base;
363 lhs->limit = rhs->limit;
364 lhs->type = 3;
365 lhs->present = 1;
366 lhs->dpl = 3;
367 lhs->db = 0;
368 lhs->s = 1;
369 lhs->l = 0;
370 lhs->g = 0;
371 lhs->avl = 0;
372 lhs->unusable = 0;
373}
374
375static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
376{
377 unsigned flags = rhs->flags;
378 lhs->selector = rhs->selector;
379 lhs->base = rhs->base;
380 lhs->limit = rhs->limit;
381 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
382 lhs->present = (flags & DESC_P_MASK) != 0;
383 lhs->dpl = rhs->selector & 3;
384 lhs->db = (flags >> DESC_B_SHIFT) & 1;
385 lhs->s = (flags & DESC_S_MASK) != 0;
386 lhs->l = (flags >> DESC_L_SHIFT) & 1;
387 lhs->g = (flags & DESC_G_MASK) != 0;
388 lhs->avl = (flags & DESC_AVL_MASK) != 0;
389 lhs->unusable = 0;
390}
391
392static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
393{
394 lhs->selector = rhs->selector;
395 lhs->base = rhs->base;
396 lhs->limit = rhs->limit;
397 lhs->flags =
398 (rhs->type << DESC_TYPE_SHIFT)
399 | (rhs->present * DESC_P_MASK)
400 | (rhs->dpl << DESC_DPL_SHIFT)
401 | (rhs->db << DESC_B_SHIFT)
402 | (rhs->s * DESC_S_MASK)
403 | (rhs->l << DESC_L_SHIFT)
404 | (rhs->g * DESC_G_MASK)
405 | (rhs->avl * DESC_AVL_MASK);
406}
407
408static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
409{
410 if (set)
411 *kvm_reg = *qemu_reg;
412 else
413 *qemu_reg = *kvm_reg;
414}
415
416static int kvm_getput_regs(CPUState *env, int set)
417{
418 struct kvm_regs regs;
419 int ret = 0;
420
421 if (!set) {
422 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
423 if (ret < 0)
424 return ret;
425 }
426
427 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
428 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
429 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
430 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
431 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
432 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
433 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
434 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
435#ifdef TARGET_X86_64
436 kvm_getput_reg(&regs.r8, &env->regs[8], set);
437 kvm_getput_reg(&regs.r9, &env->regs[9], set);
438 kvm_getput_reg(&regs.r10, &env->regs[10], set);
439 kvm_getput_reg(&regs.r11, &env->regs[11], set);
440 kvm_getput_reg(&regs.r12, &env->regs[12], set);
441 kvm_getput_reg(&regs.r13, &env->regs[13], set);
442 kvm_getput_reg(&regs.r14, &env->regs[14], set);
443 kvm_getput_reg(&regs.r15, &env->regs[15], set);
444#endif
445
446 kvm_getput_reg(&regs.rflags, &env->eflags, set);
447 kvm_getput_reg(&regs.rip, &env->eip, set);
448
449 if (set)
450 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
451
452 return ret;
453}
454
455static int kvm_put_fpu(CPUState *env)
456{
457 struct kvm_fpu fpu;
458 int i;
459
460 memset(&fpu, 0, sizeof fpu);
461 fpu.fsw = env->fpus & ~(7 << 11);
462 fpu.fsw |= (env->fpstt & 7) << 11;
463 fpu.fcw = env->fpuc;
464 for (i = 0; i < 8; ++i)
465 fpu.ftwx |= (!env->fptags[i]) << i;
466 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
467 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
468 fpu.mxcsr = env->mxcsr;
469
470 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
471}
472
473static int kvm_put_sregs(CPUState *env)
474{
475 struct kvm_sregs sregs;
476
0e607a80
JK
477 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
478 if (env->interrupt_injected >= 0) {
479 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
480 (uint64_t)1 << (env->interrupt_injected % 64);
481 }
05330448
AL
482
483 if ((env->eflags & VM_MASK)) {
484 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
485 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
486 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
487 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
488 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
489 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
490 } else {
491 set_seg(&sregs.cs, &env->segs[R_CS]);
492 set_seg(&sregs.ds, &env->segs[R_DS]);
493 set_seg(&sregs.es, &env->segs[R_ES]);
494 set_seg(&sregs.fs, &env->segs[R_FS]);
495 set_seg(&sregs.gs, &env->segs[R_GS]);
496 set_seg(&sregs.ss, &env->segs[R_SS]);
497
498 if (env->cr[0] & CR0_PE_MASK) {
499 /* force ss cpl to cs cpl */
500 sregs.ss.selector = (sregs.ss.selector & ~3) |
501 (sregs.cs.selector & 3);
502 sregs.ss.dpl = sregs.ss.selector & 3;
503 }
504 }
505
506 set_seg(&sregs.tr, &env->tr);
507 set_seg(&sregs.ldt, &env->ldt);
508
509 sregs.idt.limit = env->idt.limit;
510 sregs.idt.base = env->idt.base;
511 sregs.gdt.limit = env->gdt.limit;
512 sregs.gdt.base = env->gdt.base;
513
514 sregs.cr0 = env->cr[0];
515 sregs.cr2 = env->cr[2];
516 sregs.cr3 = env->cr[3];
517 sregs.cr4 = env->cr[4];
518
519 sregs.cr8 = cpu_get_apic_tpr(env);
520 sregs.apic_base = cpu_get_apic_base(env);
521
522 sregs.efer = env->efer;
523
524 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
525}
526
527static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
528 uint32_t index, uint64_t value)
529{
530 entry->index = index;
531 entry->data = value;
532}
533
ea643051 534static int kvm_put_msrs(CPUState *env, int level)
05330448
AL
535{
536 struct {
537 struct kvm_msrs info;
538 struct kvm_msr_entry entries[100];
539 } msr_data;
540 struct kvm_msr_entry *msrs = msr_data.entries;
541 int n = 0;
542
543 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
544 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
545 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
546 if (kvm_has_msr_star(env))
547 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
05330448
AL
548#ifdef TARGET_X86_64
549 /* FIXME if lm capable */
550 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
551 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
552 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
553 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
554#endif
ea643051
JK
555 if (level == KVM_PUT_FULL_STATE) {
556 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
557 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
558 env->system_time_msr);
559 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
560 }
1a03675d 561
05330448
AL
562 msr_data.info.nmsrs = n;
563
564 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
565
566}
567
568
569static int kvm_get_fpu(CPUState *env)
570{
571 struct kvm_fpu fpu;
572 int i, ret;
573
574 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
575 if (ret < 0)
576 return ret;
577
578 env->fpstt = (fpu.fsw >> 11) & 7;
579 env->fpus = fpu.fsw;
580 env->fpuc = fpu.fcw;
581 for (i = 0; i < 8; ++i)
582 env->fptags[i] = !((fpu.ftwx >> i) & 1);
583 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
584 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
585 env->mxcsr = fpu.mxcsr;
586
587 return 0;
588}
589
590static int kvm_get_sregs(CPUState *env)
591{
592 struct kvm_sregs sregs;
593 uint32_t hflags;
0e607a80 594 int bit, i, ret;
05330448
AL
595
596 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
597 if (ret < 0)
598 return ret;
599
0e607a80
JK
600 /* There can only be one pending IRQ set in the bitmap at a time, so try
601 to find it and save its number instead (-1 for none). */
602 env->interrupt_injected = -1;
603 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
604 if (sregs.interrupt_bitmap[i]) {
605 bit = ctz64(sregs.interrupt_bitmap[i]);
606 env->interrupt_injected = i * 64 + bit;
607 break;
608 }
609 }
05330448
AL
610
611 get_seg(&env->segs[R_CS], &sregs.cs);
612 get_seg(&env->segs[R_DS], &sregs.ds);
613 get_seg(&env->segs[R_ES], &sregs.es);
614 get_seg(&env->segs[R_FS], &sregs.fs);
615 get_seg(&env->segs[R_GS], &sregs.gs);
616 get_seg(&env->segs[R_SS], &sregs.ss);
617
618 get_seg(&env->tr, &sregs.tr);
619 get_seg(&env->ldt, &sregs.ldt);
620
621 env->idt.limit = sregs.idt.limit;
622 env->idt.base = sregs.idt.base;
623 env->gdt.limit = sregs.gdt.limit;
624 env->gdt.base = sregs.gdt.base;
625
626 env->cr[0] = sregs.cr0;
627 env->cr[2] = sregs.cr2;
628 env->cr[3] = sregs.cr3;
629 env->cr[4] = sregs.cr4;
630
631 cpu_set_apic_base(env, sregs.apic_base);
632
633 env->efer = sregs.efer;
634 //cpu_set_apic_tpr(env, sregs.cr8);
635
636#define HFLAG_COPY_MASK ~( \
637 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
638 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
639 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
640 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
641
642
643
644 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
645 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
646 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
647 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
648 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
649 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
650 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
651
652 if (env->efer & MSR_EFER_LMA) {
653 hflags |= HF_LMA_MASK;
654 }
655
656 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
657 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
658 } else {
659 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
660 (DESC_B_SHIFT - HF_CS32_SHIFT);
661 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
662 (DESC_B_SHIFT - HF_SS32_SHIFT);
663 if (!(env->cr[0] & CR0_PE_MASK) ||
664 (env->eflags & VM_MASK) ||
665 !(hflags & HF_CS32_MASK)) {
666 hflags |= HF_ADDSEG_MASK;
667 } else {
668 hflags |= ((env->segs[R_DS].base |
669 env->segs[R_ES].base |
670 env->segs[R_SS].base) != 0) <<
671 HF_ADDSEG_SHIFT;
672 }
673 }
674 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
675
676 return 0;
677}
678
679static int kvm_get_msrs(CPUState *env)
680{
681 struct {
682 struct kvm_msrs info;
683 struct kvm_msr_entry entries[100];
684 } msr_data;
685 struct kvm_msr_entry *msrs = msr_data.entries;
686 int ret, i, n;
687
688 n = 0;
689 msrs[n++].index = MSR_IA32_SYSENTER_CS;
690 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
691 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
692 if (kvm_has_msr_star(env))
693 msrs[n++].index = MSR_STAR;
694 msrs[n++].index = MSR_IA32_TSC;
695#ifdef TARGET_X86_64
696 /* FIXME lm_capable_kernel */
697 msrs[n++].index = MSR_CSTAR;
698 msrs[n++].index = MSR_KERNELGSBASE;
699 msrs[n++].index = MSR_FMASK;
700 msrs[n++].index = MSR_LSTAR;
701#endif
1a03675d
GC
702 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
703 msrs[n++].index = MSR_KVM_WALL_CLOCK;
704
05330448
AL
705 msr_data.info.nmsrs = n;
706 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
707 if (ret < 0)
708 return ret;
709
710 for (i = 0; i < ret; i++) {
711 switch (msrs[i].index) {
712 case MSR_IA32_SYSENTER_CS:
713 env->sysenter_cs = msrs[i].data;
714 break;
715 case MSR_IA32_SYSENTER_ESP:
716 env->sysenter_esp = msrs[i].data;
717 break;
718 case MSR_IA32_SYSENTER_EIP:
719 env->sysenter_eip = msrs[i].data;
720 break;
721 case MSR_STAR:
722 env->star = msrs[i].data;
723 break;
724#ifdef TARGET_X86_64
725 case MSR_CSTAR:
726 env->cstar = msrs[i].data;
727 break;
728 case MSR_KERNELGSBASE:
729 env->kernelgsbase = msrs[i].data;
730 break;
731 case MSR_FMASK:
732 env->fmask = msrs[i].data;
733 break;
734 case MSR_LSTAR:
735 env->lstar = msrs[i].data;
736 break;
737#endif
738 case MSR_IA32_TSC:
739 env->tsc = msrs[i].data;
740 break;
1a03675d
GC
741 case MSR_KVM_SYSTEM_TIME:
742 env->system_time_msr = msrs[i].data;
743 break;
744 case MSR_KVM_WALL_CLOCK:
745 env->wall_clock_msr = msrs[i].data;
746 break;
05330448
AL
747 }
748 }
749
750 return 0;
751}
752
9bdbe550
HB
753static int kvm_put_mp_state(CPUState *env)
754{
755 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
756
757 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
758}
759
760static int kvm_get_mp_state(CPUState *env)
761{
762 struct kvm_mp_state mp_state;
763 int ret;
764
765 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
766 if (ret < 0) {
767 return ret;
768 }
769 env->mp_state = mp_state.mp_state;
770 return 0;
771}
772
ea643051 773static int kvm_put_vcpu_events(CPUState *env, int level)
a0fb002c
JK
774{
775#ifdef KVM_CAP_VCPU_EVENTS
776 struct kvm_vcpu_events events;
777
778 if (!kvm_has_vcpu_events()) {
779 return 0;
780 }
781
31827373
JK
782 events.exception.injected = (env->exception_injected >= 0);
783 events.exception.nr = env->exception_injected;
a0fb002c
JK
784 events.exception.has_error_code = env->has_error_code;
785 events.exception.error_code = env->error_code;
786
787 events.interrupt.injected = (env->interrupt_injected >= 0);
788 events.interrupt.nr = env->interrupt_injected;
789 events.interrupt.soft = env->soft_interrupt;
790
791 events.nmi.injected = env->nmi_injected;
792 events.nmi.pending = env->nmi_pending;
793 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
794
795 events.sipi_vector = env->sipi_vector;
796
ea643051
JK
797 events.flags = 0;
798 if (level >= KVM_PUT_RESET_STATE) {
799 events.flags |=
800 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
801 }
aee028b9 802
a0fb002c
JK
803 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
804#else
805 return 0;
806#endif
807}
808
809static int kvm_get_vcpu_events(CPUState *env)
810{
811#ifdef KVM_CAP_VCPU_EVENTS
812 struct kvm_vcpu_events events;
813 int ret;
814
815 if (!kvm_has_vcpu_events()) {
816 return 0;
817 }
818
819 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
820 if (ret < 0) {
821 return ret;
822 }
31827373 823 env->exception_injected =
a0fb002c
JK
824 events.exception.injected ? events.exception.nr : -1;
825 env->has_error_code = events.exception.has_error_code;
826 env->error_code = events.exception.error_code;
827
828 env->interrupt_injected =
829 events.interrupt.injected ? events.interrupt.nr : -1;
830 env->soft_interrupt = events.interrupt.soft;
831
832 env->nmi_injected = events.nmi.injected;
833 env->nmi_pending = events.nmi.pending;
834 if (events.nmi.masked) {
835 env->hflags2 |= HF2_NMI_MASK;
836 } else {
837 env->hflags2 &= ~HF2_NMI_MASK;
838 }
839
840 env->sipi_vector = events.sipi_vector;
841#endif
842
843 return 0;
844}
845
b0b1d690
JK
846static int kvm_guest_debug_workarounds(CPUState *env)
847{
848 int ret = 0;
849#ifdef KVM_CAP_SET_GUEST_DEBUG
850 unsigned long reinject_trap = 0;
851
852 if (!kvm_has_vcpu_events()) {
853 if (env->exception_injected == 1) {
854 reinject_trap = KVM_GUESTDBG_INJECT_DB;
855 } else if (env->exception_injected == 3) {
856 reinject_trap = KVM_GUESTDBG_INJECT_BP;
857 }
858 env->exception_injected = -1;
859 }
860
861 /*
862 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
863 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
864 * by updating the debug state once again if single-stepping is on.
865 * Another reason to call kvm_update_guest_debug here is a pending debug
866 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
867 * reinject them via SET_GUEST_DEBUG.
868 */
869 if (reinject_trap ||
870 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
871 ret = kvm_update_guest_debug(env, reinject_trap);
872 }
873#endif /* KVM_CAP_SET_GUEST_DEBUG */
874 return ret;
875}
876
ff44f1a3
JK
877static int kvm_put_debugregs(CPUState *env)
878{
879#ifdef KVM_CAP_DEBUGREGS
880 struct kvm_debugregs dbgregs;
881 int i;
882
883 if (!kvm_has_debugregs()) {
884 return 0;
885 }
886
887 for (i = 0; i < 4; i++) {
888 dbgregs.db[i] = env->dr[i];
889 }
890 dbgregs.dr6 = env->dr[6];
891 dbgregs.dr7 = env->dr[7];
892 dbgregs.flags = 0;
893
894 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
895#else
896 return 0;
897#endif
898}
899
900static int kvm_get_debugregs(CPUState *env)
901{
902#ifdef KVM_CAP_DEBUGREGS
903 struct kvm_debugregs dbgregs;
904 int i, ret;
905
906 if (!kvm_has_debugregs()) {
907 return 0;
908 }
909
910 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
911 if (ret < 0) {
912 return ret;
913 }
914 for (i = 0; i < 4; i++) {
915 env->dr[i] = dbgregs.db[i];
916 }
917 env->dr[4] = env->dr[6] = dbgregs.dr6;
918 env->dr[5] = env->dr[7] = dbgregs.dr7;
919#endif
920
921 return 0;
922}
923
ea375f9a 924int kvm_arch_put_registers(CPUState *env, int level)
05330448
AL
925{
926 int ret;
927
928 ret = kvm_getput_regs(env, 1);
929 if (ret < 0)
930 return ret;
931
932 ret = kvm_put_fpu(env);
933 if (ret < 0)
934 return ret;
935
936 ret = kvm_put_sregs(env);
937 if (ret < 0)
938 return ret;
939
ea643051 940 ret = kvm_put_msrs(env, level);
05330448
AL
941 if (ret < 0)
942 return ret;
943
ea643051
JK
944 if (level >= KVM_PUT_RESET_STATE) {
945 ret = kvm_put_mp_state(env);
946 if (ret < 0)
947 return ret;
948 }
f8d926e9 949
ea643051 950 ret = kvm_put_vcpu_events(env, level);
a0fb002c
JK
951 if (ret < 0)
952 return ret;
953
b0b1d690
JK
954 /* must be last */
955 ret = kvm_guest_debug_workarounds(env);
956 if (ret < 0)
957 return ret;
958
ff44f1a3
JK
959 ret = kvm_put_debugregs(env);
960 if (ret < 0)
961 return ret;
962
05330448
AL
963 return 0;
964}
965
966int kvm_arch_get_registers(CPUState *env)
967{
968 int ret;
969
970 ret = kvm_getput_regs(env, 0);
971 if (ret < 0)
972 return ret;
973
974 ret = kvm_get_fpu(env);
975 if (ret < 0)
976 return ret;
977
978 ret = kvm_get_sregs(env);
979 if (ret < 0)
980 return ret;
981
982 ret = kvm_get_msrs(env);
983 if (ret < 0)
984 return ret;
985
5a2e3c2e
JK
986 ret = kvm_get_mp_state(env);
987 if (ret < 0)
988 return ret;
989
a0fb002c
JK
990 ret = kvm_get_vcpu_events(env);
991 if (ret < 0)
992 return ret;
993
ff44f1a3
JK
994 ret = kvm_get_debugregs(env);
995 if (ret < 0)
996 return ret;
997
05330448
AL
998 return 0;
999}
1000
1001int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1002{
1003 /* Try to inject an interrupt if the guest can accept it */
1004 if (run->ready_for_interrupt_injection &&
1005 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1006 (env->eflags & IF_MASK)) {
1007 int irq;
1008
1009 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1010 irq = cpu_get_pic_interrupt(env);
1011 if (irq >= 0) {
1012 struct kvm_interrupt intr;
1013 intr.irq = irq;
1014 /* FIXME: errors */
8c0d577e 1015 DPRINTF("injected interrupt %d\n", irq);
05330448
AL
1016 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1017 }
1018 }
1019
1020 /* If we have an interrupt but the guest is not ready to receive an
1021 * interrupt, request an interrupt window exit. This will
1022 * cause a return to userspace as soon as the guest is ready to
1023 * receive interrupts. */
1024 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1025 run->request_interrupt_window = 1;
1026 else
1027 run->request_interrupt_window = 0;
1028
8c0d577e 1029 DPRINTF("setting tpr\n");
05330448
AL
1030 run->cr8 = cpu_get_apic_tpr(env);
1031
1032 return 0;
1033}
1034
1035int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1036{
1037 if (run->if_flag)
1038 env->eflags |= IF_MASK;
1039 else
1040 env->eflags &= ~IF_MASK;
1041
1042 cpu_set_apic_tpr(env, run->cr8);
1043 cpu_set_apic_base(env, run->apic_base);
1044
1045 return 0;
1046}
1047
1048static int kvm_handle_halt(CPUState *env)
1049{
1050 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1051 (env->eflags & IF_MASK)) &&
1052 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1053 env->halted = 1;
1054 env->exception_index = EXCP_HLT;
1055 return 0;
1056 }
1057
1058 return 1;
1059}
1060
1061int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1062{
1063 int ret = 0;
1064
1065 switch (run->exit_reason) {
1066 case KVM_EXIT_HLT:
8c0d577e 1067 DPRINTF("handle_hlt\n");
05330448
AL
1068 ret = kvm_handle_halt(env);
1069 break;
1070 }
1071
1072 return ret;
1073}
e22a25c9
AL
1074
1075#ifdef KVM_CAP_SET_GUEST_DEBUG
e22a25c9
AL
1076int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1077{
38972938 1078 static const uint8_t int3 = 0xcc;
64bf3f4e 1079
e22a25c9 1080 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
64bf3f4e 1081 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
e22a25c9
AL
1082 return -EINVAL;
1083 return 0;
1084}
1085
1086int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1087{
1088 uint8_t int3;
1089
1090 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
64bf3f4e 1091 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
e22a25c9
AL
1092 return -EINVAL;
1093 return 0;
1094}
1095
1096static struct {
1097 target_ulong addr;
1098 int len;
1099 int type;
1100} hw_breakpoint[4];
1101
1102static int nb_hw_breakpoint;
1103
1104static int find_hw_breakpoint(target_ulong addr, int len, int type)
1105{
1106 int n;
1107
1108 for (n = 0; n < nb_hw_breakpoint; n++)
1109 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1110 (hw_breakpoint[n].len == len || len == -1))
1111 return n;
1112 return -1;
1113}
1114
1115int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1116 target_ulong len, int type)
1117{
1118 switch (type) {
1119 case GDB_BREAKPOINT_HW:
1120 len = 1;
1121 break;
1122 case GDB_WATCHPOINT_WRITE:
1123 case GDB_WATCHPOINT_ACCESS:
1124 switch (len) {
1125 case 1:
1126 break;
1127 case 2:
1128 case 4:
1129 case 8:
1130 if (addr & (len - 1))
1131 return -EINVAL;
1132 break;
1133 default:
1134 return -EINVAL;
1135 }
1136 break;
1137 default:
1138 return -ENOSYS;
1139 }
1140
1141 if (nb_hw_breakpoint == 4)
1142 return -ENOBUFS;
1143
1144 if (find_hw_breakpoint(addr, len, type) >= 0)
1145 return -EEXIST;
1146
1147 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1148 hw_breakpoint[nb_hw_breakpoint].len = len;
1149 hw_breakpoint[nb_hw_breakpoint].type = type;
1150 nb_hw_breakpoint++;
1151
1152 return 0;
1153}
1154
1155int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1156 target_ulong len, int type)
1157{
1158 int n;
1159
1160 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1161 if (n < 0)
1162 return -ENOENT;
1163
1164 nb_hw_breakpoint--;
1165 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1166
1167 return 0;
1168}
1169
1170void kvm_arch_remove_all_hw_breakpoints(void)
1171{
1172 nb_hw_breakpoint = 0;
1173}
1174
1175static CPUWatchpoint hw_watchpoint;
1176
1177int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1178{
1179 int handle = 0;
1180 int n;
1181
1182 if (arch_info->exception == 1) {
1183 if (arch_info->dr6 & (1 << 14)) {
1184 if (cpu_single_env->singlestep_enabled)
1185 handle = 1;
1186 } else {
1187 for (n = 0; n < 4; n++)
1188 if (arch_info->dr6 & (1 << n))
1189 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1190 case 0x0:
1191 handle = 1;
1192 break;
1193 case 0x1:
1194 handle = 1;
1195 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1196 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1197 hw_watchpoint.flags = BP_MEM_WRITE;
1198 break;
1199 case 0x3:
1200 handle = 1;
1201 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1202 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1203 hw_watchpoint.flags = BP_MEM_ACCESS;
1204 break;
1205 }
1206 }
1207 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1208 handle = 1;
1209
b0b1d690
JK
1210 if (!handle) {
1211 cpu_synchronize_state(cpu_single_env);
1212 assert(cpu_single_env->exception_injected == -1);
1213
1214 cpu_single_env->exception_injected = arch_info->exception;
1215 cpu_single_env->has_error_code = 0;
1216 }
e22a25c9
AL
1217
1218 return handle;
1219}
1220
1221void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1222{
1223 const uint8_t type_code[] = {
1224 [GDB_BREAKPOINT_HW] = 0x0,
1225 [GDB_WATCHPOINT_WRITE] = 0x1,
1226 [GDB_WATCHPOINT_ACCESS] = 0x3
1227 };
1228 const uint8_t len_code[] = {
1229 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1230 };
1231 int n;
1232
1233 if (kvm_sw_breakpoints_active(env))
1234 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1235
1236 if (nb_hw_breakpoint > 0) {
1237 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1238 dbg->arch.debugreg[7] = 0x0600;
1239 for (n = 0; n < nb_hw_breakpoint; n++) {
1240 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1241 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1242 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1243 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1244 }
1245 }
1246}
1247#endif /* KVM_CAP_SET_GUEST_DEBUG */