]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
kvm: Rename kvm_arch_process_irqchip_events to async_events
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
21
22#include "qemu-common.h"
23#include "sysemu.h"
24#include "kvm.h"
25#include "cpu.h"
e22a25c9 26#include "gdbstub.h"
0e607a80 27#include "host-utils.h"
4c5b10b7 28#include "hw/pc.h"
408392b3 29#include "hw/apic.h"
35bed8ee 30#include "ioport.h"
e7701825 31#include "kvm_x86.h"
05330448 32
bb0300dc
GN
33#ifdef CONFIG_KVM_PARA
34#include <linux/kvm_para.h>
35#endif
36//
05330448
AL
37//#define DEBUG_KVM
38
39#ifdef DEBUG_KVM
8c0d577e 40#define DPRINTF(fmt, ...) \
05330448
AL
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42#else
8c0d577e 43#define DPRINTF(fmt, ...) \
05330448
AL
44 do { } while (0)
45#endif
46
1a03675d
GC
47#define MSR_KVM_WALL_CLOCK 0x11
48#define MSR_KVM_SYSTEM_TIME 0x12
49
c0532a76
MT
50#ifndef BUS_MCEERR_AR
51#define BUS_MCEERR_AR 4
52#endif
53#ifndef BUS_MCEERR_AO
54#define BUS_MCEERR_AO 5
55#endif
56
94a8d39a
JK
57const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62};
25d2e361 63
c3a3a7d3
JK
64static bool has_msr_star;
65static bool has_msr_hsave_pa;
c5999bfc
JK
66#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
67static bool has_msr_async_pf_en;
68#endif
25d2e361 69static int lm_capable_kernel;
b827df58
AK
70
71static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
72{
73 struct kvm_cpuid2 *cpuid;
74 int r, size;
75
76 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
77 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
78 cpuid->nent = max;
79 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
80 if (r == 0 && cpuid->nent >= max) {
81 r = -E2BIG;
82 }
b827df58
AK
83 if (r < 0) {
84 if (r == -E2BIG) {
85 qemu_free(cpuid);
86 return NULL;
87 } else {
88 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
89 strerror(-r));
90 exit(1);
91 }
92 }
93 return cpuid;
94}
95
c958a8bd
SY
96uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
97 uint32_t index, int reg)
b827df58
AK
98{
99 struct kvm_cpuid2 *cpuid;
100 int i, max;
101 uint32_t ret = 0;
102 uint32_t cpuid_1_edx;
103
b827df58
AK
104 max = 1;
105 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
106 max *= 2;
107 }
108
109 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
110 if (cpuid->entries[i].function == function &&
111 cpuid->entries[i].index == index) {
b827df58
AK
112 switch (reg) {
113 case R_EAX:
114 ret = cpuid->entries[i].eax;
115 break;
116 case R_EBX:
117 ret = cpuid->entries[i].ebx;
118 break;
119 case R_ECX:
120 ret = cpuid->entries[i].ecx;
121 break;
122 case R_EDX:
123 ret = cpuid->entries[i].edx;
19ccb8ea
JK
124 switch (function) {
125 case 1:
126 /* KVM before 2.6.30 misreports the following features */
127 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
128 break;
129 case 0x80000001:
b827df58
AK
130 /* On Intel, kvm returns cpuid according to the Intel spec,
131 * so add missing bits according to the AMD spec:
132 */
c958a8bd 133 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
c1667e40 134 ret |= cpuid_1_edx & 0x183f7ff;
19ccb8ea 135 break;
b827df58
AK
136 }
137 break;
138 }
139 }
140 }
141
142 qemu_free(cpuid);
143
144 return ret;
145}
146
bb0300dc
GN
147#ifdef CONFIG_KVM_PARA
148struct kvm_para_features {
b9bec74b
JK
149 int cap;
150 int feature;
bb0300dc 151} para_features[] = {
b9bec74b 152 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
b9bec74b 153 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
b9bec74b 154 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
f6584ee2 155#ifdef KVM_CAP_ASYNC_PF
b9bec74b 156 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
bb0300dc 157#endif
b9bec74b 158 { -1, -1 }
bb0300dc
GN
159};
160
161static int get_para_features(CPUState *env)
162{
b9bec74b 163 int i, features = 0;
bb0300dc 164
b9bec74b
JK
165 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
166 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
167 features |= (1 << para_features[i].feature);
bb0300dc 168 }
b9bec74b 169 }
b3a98367 170#ifdef KVM_CAP_ASYNC_PF
c5999bfc 171 has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
b3a98367 172#endif
b9bec74b 173 return features;
bb0300dc 174}
419fb20a 175#endif /* CONFIG_KVM_PARA */
bb0300dc 176
e7701825
MT
177#ifdef KVM_CAP_MCE
178static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
179 int *max_banks)
180{
181 int r;
182
14a09518 183 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
184 if (r > 0) {
185 *max_banks = r;
186 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
187 }
188 return -ENOSYS;
189}
190
191static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
192{
193 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
194}
195
196static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
197{
198 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
199}
200
c0532a76
MT
201static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
202{
203 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
204 int r;
205
206 kmsrs->nmsrs = n;
207 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
208 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
209 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
210 free(kmsrs);
211 return r;
212}
213
214/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
6643e2f0 215static int kvm_mce_in_progress(CPUState *env)
c0532a76
MT
216{
217 struct kvm_msr_entry msr_mcg_status = {
218 .index = MSR_MCG_STATUS,
219 };
220 int r;
221
222 r = kvm_get_msr(env, &msr_mcg_status, 1);
223 if (r == -1 || r == 0) {
6643e2f0
JD
224 fprintf(stderr, "Failed to get MCE status\n");
225 return 0;
c0532a76
MT
226 }
227 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
228}
229
e7701825
MT
230struct kvm_x86_mce_data
231{
232 CPUState *env;
233 struct kvm_x86_mce *mce;
c0532a76 234 int abort_on_error;
e7701825
MT
235};
236
237static void kvm_do_inject_x86_mce(void *_data)
238{
239 struct kvm_x86_mce_data *data = _data;
240 int r;
241
f8502cfb
HS
242 /* If there is an MCE exception being processed, ignore this SRAO MCE */
243 if ((data->env->mcg_cap & MCG_SER_P) &&
244 !(data->mce->status & MCI_STATUS_AR)) {
6643e2f0 245 if (kvm_mce_in_progress(data->env)) {
f8502cfb
HS
246 return;
247 }
248 }
c0532a76 249
e7701825 250 r = kvm_set_mce(data->env, data->mce);
c0532a76 251 if (r < 0) {
e7701825 252 perror("kvm_set_mce FAILED");
c0532a76
MT
253 if (data->abort_on_error) {
254 abort();
255 }
256 }
e7701825 257}
31ce5e0c 258
7cc2cc3e
JD
259static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
260 int flag)
261{
262 struct kvm_x86_mce_data data = {
263 .env = env,
264 .mce = mce,
265 .abort_on_error = (flag & ABORT_ON_ERROR),
266 };
267
268 if (!env->mcg_cap) {
269 fprintf(stderr, "MCE support is not enabled!\n");
270 return;
271 }
272
273 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
274}
275
419fb20a
JK
276static void kvm_mce_broadcast_rest(CPUState *env)
277{
278 struct kvm_x86_mce mce = {
279 .bank = 1,
280 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
281 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
282 .addr = 0,
283 .misc = 0,
284 };
285 CPUState *cenv;
286
287 /* Broadcast MCA signal for processor version 06H_EH and above */
288 if (cpu_x86_support_mca_broadcast(env)) {
289 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
290 if (cenv == env) {
291 continue;
292 }
293 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
294 }
295 }
296}
297
298static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
299{
300 struct kvm_x86_mce mce = {
301 .bank = 9,
302 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
303 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
304 | MCI_STATUS_AR | 0x134,
305 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
306 .addr = paddr,
307 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
308 };
309 int r;
310
311 r = kvm_set_mce(env, &mce);
312 if (r < 0) {
313 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
314 abort();
315 }
316 kvm_mce_broadcast_rest(env);
317}
318
319static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
320{
321 struct kvm_x86_mce mce = {
322 .bank = 9,
323 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
324 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
325 | 0xc0,
326 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
327 .addr = paddr,
328 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
329 };
330 int r;
331
332 r = kvm_set_mce(env, &mce);
333 if (r < 0) {
334 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
335 abort();
336 }
337 kvm_mce_broadcast_rest(env);
338}
339
340static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
341{
342 struct kvm_x86_mce mce = {
343 .bank = 9,
344 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
345 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
346 | 0xc0,
347 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
348 .addr = paddr,
349 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
350 };
351
352 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
353 kvm_mce_broadcast_rest(env);
354}
355#endif /* KVM_CAP_MCE */
356
357static void hardware_memory_error(void)
358{
359 fprintf(stderr, "Hardware memory error!\n");
360 exit(1);
361}
362
363int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
364{
365#ifdef KVM_CAP_MCE
366 void *vaddr;
367 ram_addr_t ram_addr;
368 target_phys_addr_t paddr;
369
370 if ((env->mcg_cap & MCG_SER_P) && addr
371 && (code == BUS_MCEERR_AR
372 || code == BUS_MCEERR_AO)) {
373 vaddr = (void *)addr;
374 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
375 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
376 fprintf(stderr, "Hardware memory error for memory used by "
377 "QEMU itself instead of guest system!\n");
378 /* Hope we are lucky for AO MCE */
379 if (code == BUS_MCEERR_AO) {
380 return 0;
381 } else {
382 hardware_memory_error();
383 }
384 }
385
386 if (code == BUS_MCEERR_AR) {
387 /* Fake an Intel architectural Data Load SRAR UCR */
388 kvm_mce_inj_srar_dataload(env, paddr);
389 } else {
390 /*
391 * If there is an MCE excpetion being processed, ignore
392 * this SRAO MCE
393 */
394 if (!kvm_mce_in_progress(env)) {
395 /* Fake an Intel architectural Memory scrubbing UCR */
396 kvm_mce_inj_srao_memscrub(env, paddr);
397 }
398 }
399 } else
400#endif /* KVM_CAP_MCE */
401 {
402 if (code == BUS_MCEERR_AO) {
403 return 0;
404 } else if (code == BUS_MCEERR_AR) {
405 hardware_memory_error();
406 } else {
407 return 1;
408 }
409 }
410 return 0;
411}
412
413int kvm_arch_on_sigbus(int code, void *addr)
414{
415#ifdef KVM_CAP_MCE
416 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
417 void *vaddr;
418 ram_addr_t ram_addr;
419 target_phys_addr_t paddr;
420
421 /* Hope we are lucky for AO MCE */
422 vaddr = addr;
423 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
424 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
425 &paddr)) {
426 fprintf(stderr, "Hardware memory error for memory used by "
427 "QEMU itself instead of guest system!: %p\n", addr);
428 return 0;
429 }
430 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
431 } else
432#endif /* KVM_CAP_MCE */
433 {
434 if (code == BUS_MCEERR_AO) {
435 return 0;
436 } else if (code == BUS_MCEERR_AR) {
437 hardware_memory_error();
438 } else {
439 return 1;
440 }
441 }
442 return 0;
443}
e7701825
MT
444
445void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
c0532a76 446 uint64_t mcg_status, uint64_t addr, uint64_t misc,
31ce5e0c 447 int flag)
e7701825
MT
448{
449#ifdef KVM_CAP_MCE
450 struct kvm_x86_mce mce = {
451 .bank = bank,
452 .status = status,
453 .mcg_status = mcg_status,
454 .addr = addr,
455 .misc = misc,
456 };
e7701825 457
31ce5e0c
JD
458 if (flag & MCE_BROADCAST) {
459 kvm_mce_broadcast_rest(cenv);
c0532a76
MT
460 }
461
7cc2cc3e 462 kvm_inject_x86_mce_on(cenv, &mce, flag);
419fb20a 463#else /* !KVM_CAP_MCE*/
31ce5e0c 464 if (flag & ABORT_ON_ERROR) {
c0532a76 465 abort();
31ce5e0c 466 }
419fb20a 467#endif /* !KVM_CAP_MCE*/
e7701825
MT
468}
469
b8cc45d6
GC
470static void cpu_update_state(void *opaque, int running, int reason)
471{
472 CPUState *env = opaque;
473
474 if (running) {
475 env->tsc_valid = false;
476 }
477}
478
05330448
AL
479int kvm_arch_init_vcpu(CPUState *env)
480{
481 struct {
486bd5a2
AL
482 struct kvm_cpuid2 cpuid;
483 struct kvm_cpuid_entry2 entries[100];
05330448 484 } __attribute__((packed)) cpuid_data;
486bd5a2 485 uint32_t limit, i, j, cpuid_i;
a33609ca 486 uint32_t unused;
bb0300dc 487 struct kvm_cpuid_entry2 *c;
521f0798 488#ifdef CONFIG_KVM_PARA
bb0300dc
GN
489 uint32_t signature[3];
490#endif
05330448 491
c958a8bd 492 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
6c0d7ee8
AP
493
494 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
c958a8bd 495 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
6c0d7ee8
AP
496 env->cpuid_ext_features |= i;
497
457dfed6 498 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 499 0, R_EDX);
457dfed6 500 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 501 0, R_ECX);
296acb64
JR
502 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
503 0, R_EDX);
504
6c1f42fe 505
05330448
AL
506 cpuid_i = 0;
507
bb0300dc
GN
508#ifdef CONFIG_KVM_PARA
509 /* Paravirtualization CPUIDs */
510 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
511 c = &cpuid_data.entries[cpuid_i++];
512 memset(c, 0, sizeof(*c));
513 c->function = KVM_CPUID_SIGNATURE;
514 c->eax = 0;
515 c->ebx = signature[0];
516 c->ecx = signature[1];
517 c->edx = signature[2];
518
519 c = &cpuid_data.entries[cpuid_i++];
520 memset(c, 0, sizeof(*c));
521 c->function = KVM_CPUID_FEATURES;
522 c->eax = env->cpuid_kvm_features & get_para_features(env);
523#endif
524
a33609ca 525 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
526
527 for (i = 0; i <= limit; i++) {
bb0300dc 528 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
529
530 switch (i) {
a36b1029
AL
531 case 2: {
532 /* Keep reading function 2 till all the input is received */
533 int times;
534
a36b1029 535 c->function = i;
a33609ca
AL
536 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
537 KVM_CPUID_FLAG_STATE_READ_NEXT;
538 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
539 times = c->eax & 0xff;
a36b1029
AL
540
541 for (j = 1; j < times; ++j) {
a33609ca 542 c = &cpuid_data.entries[cpuid_i++];
a36b1029 543 c->function = i;
a33609ca
AL
544 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
545 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
546 }
547 break;
548 }
486bd5a2
AL
549 case 4:
550 case 0xb:
551 case 0xd:
552 for (j = 0; ; j++) {
486bd5a2
AL
553 c->function = i;
554 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
555 c->index = j;
a33609ca 556 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 557
b9bec74b 558 if (i == 4 && c->eax == 0) {
486bd5a2 559 break;
b9bec74b
JK
560 }
561 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 562 break;
b9bec74b
JK
563 }
564 if (i == 0xd && c->eax == 0) {
486bd5a2 565 break;
b9bec74b 566 }
a33609ca 567 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
568 }
569 break;
570 default:
486bd5a2 571 c->function = i;
a33609ca
AL
572 c->flags = 0;
573 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
574 break;
575 }
05330448 576 }
a33609ca 577 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
578
579 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 580 c = &cpuid_data.entries[cpuid_i++];
05330448 581
05330448 582 c->function = i;
a33609ca
AL
583 c->flags = 0;
584 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
585 }
586
587 cpuid_data.cpuid.nent = cpuid_i;
588
e7701825
MT
589#ifdef KVM_CAP_MCE
590 if (((env->cpuid_version >> 8)&0xF) >= 6
591 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
592 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
593 uint64_t mcg_cap;
594 int banks;
595
b9bec74b 596 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
e7701825 597 perror("kvm_get_mce_cap_supported FAILED");
b9bec74b 598 } else {
e7701825
MT
599 if (banks > MCE_BANKS_DEF)
600 banks = MCE_BANKS_DEF;
601 mcg_cap &= MCE_CAP_DEF;
602 mcg_cap |= banks;
b9bec74b 603 if (kvm_setup_mce(env, &mcg_cap)) {
e7701825 604 perror("kvm_setup_mce FAILED");
b9bec74b 605 } else {
e7701825 606 env->mcg_cap = mcg_cap;
b9bec74b 607 }
e7701825
MT
608 }
609 }
610#endif
611
b8cc45d6
GC
612 qemu_add_vm_change_state_handler(cpu_update_state, env);
613
486bd5a2 614 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
05330448
AL
615}
616
caa5af0f
JK
617void kvm_arch_reset_vcpu(CPUState *env)
618{
e73223a5 619 env->exception_injected = -1;
0e607a80 620 env->interrupt_injected = -1;
1a5e9d2f 621 env->xcr0 = 1;
ddced198
MT
622 if (kvm_irqchip_in_kernel()) {
623 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
624 KVM_MP_STATE_UNINITIALIZED;
625 } else {
626 env->mp_state = KVM_MP_STATE_RUNNABLE;
627 }
caa5af0f
JK
628}
629
c3a3a7d3 630static int kvm_get_supported_msrs(KVMState *s)
05330448 631{
75b10c43 632 static int kvm_supported_msrs;
c3a3a7d3 633 int ret = 0;
05330448
AL
634
635 /* first time */
75b10c43 636 if (kvm_supported_msrs == 0) {
05330448
AL
637 struct kvm_msr_list msr_list, *kvm_msr_list;
638
75b10c43 639 kvm_supported_msrs = -1;
05330448
AL
640
641 /* Obtain MSR list from KVM. These are the MSRs that we must
642 * save/restore */
4c9f7372 643 msr_list.nmsrs = 0;
c3a3a7d3 644 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 645 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 646 return ret;
6fb6d245 647 }
d9db889f
JK
648 /* Old kernel modules had a bug and could write beyond the provided
649 memory. Allocate at least a safe amount of 1K. */
650 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
651 msr_list.nmsrs *
652 sizeof(msr_list.indices[0])));
05330448 653
55308450 654 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 655 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
656 if (ret >= 0) {
657 int i;
658
659 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
660 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 661 has_msr_star = true;
75b10c43
MT
662 continue;
663 }
664 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 665 has_msr_hsave_pa = true;
75b10c43 666 continue;
05330448
AL
667 }
668 }
669 }
670
671 free(kvm_msr_list);
672 }
673
c3a3a7d3 674 return ret;
05330448
AL
675}
676
cad1e282 677int kvm_arch_init(KVMState *s)
20420430 678{
11076198 679 uint64_t identity_base = 0xfffbc000;
20420430 680 int ret;
25d2e361 681 struct utsname utsname;
20420430 682
c3a3a7d3 683 ret = kvm_get_supported_msrs(s);
20420430 684 if (ret < 0) {
20420430
SY
685 return ret;
686 }
25d2e361
MT
687
688 uname(&utsname);
689 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
690
4c5b10b7 691 /*
11076198
JK
692 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
693 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
694 * Since these must be part of guest physical memory, we need to allocate
695 * them, both by setting their start addresses in the kernel and by
696 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
697 *
698 * Older KVM versions may not support setting the identity map base. In
699 * that case we need to stick with the default, i.e. a 256K maximum BIOS
700 * size.
4c5b10b7 701 */
11076198
JK
702#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
703 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
704 /* Allows up to 16M BIOSes. */
705 identity_base = 0xfeffc000;
706
707 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
708 if (ret < 0) {
709 return ret;
710 }
4c5b10b7 711 }
11076198
JK
712#endif
713 /* Set TSS base one page after EPT identity map. */
714 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
715 if (ret < 0) {
716 return ret;
717 }
718
11076198
JK
719 /* Tell fw_cfg to notify the BIOS to reserve the range. */
720 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 721 if (ret < 0) {
11076198 722 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
723 return ret;
724 }
725
11076198 726 return 0;
05330448 727}
b9bec74b 728
05330448
AL
729static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
730{
731 lhs->selector = rhs->selector;
732 lhs->base = rhs->base;
733 lhs->limit = rhs->limit;
734 lhs->type = 3;
735 lhs->present = 1;
736 lhs->dpl = 3;
737 lhs->db = 0;
738 lhs->s = 1;
739 lhs->l = 0;
740 lhs->g = 0;
741 lhs->avl = 0;
742 lhs->unusable = 0;
743}
744
745static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
746{
747 unsigned flags = rhs->flags;
748 lhs->selector = rhs->selector;
749 lhs->base = rhs->base;
750 lhs->limit = rhs->limit;
751 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
752 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 753 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
754 lhs->db = (flags >> DESC_B_SHIFT) & 1;
755 lhs->s = (flags & DESC_S_MASK) != 0;
756 lhs->l = (flags >> DESC_L_SHIFT) & 1;
757 lhs->g = (flags & DESC_G_MASK) != 0;
758 lhs->avl = (flags & DESC_AVL_MASK) != 0;
759 lhs->unusable = 0;
760}
761
762static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
763{
764 lhs->selector = rhs->selector;
765 lhs->base = rhs->base;
766 lhs->limit = rhs->limit;
b9bec74b
JK
767 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
768 (rhs->present * DESC_P_MASK) |
769 (rhs->dpl << DESC_DPL_SHIFT) |
770 (rhs->db << DESC_B_SHIFT) |
771 (rhs->s * DESC_S_MASK) |
772 (rhs->l << DESC_L_SHIFT) |
773 (rhs->g * DESC_G_MASK) |
774 (rhs->avl * DESC_AVL_MASK);
05330448
AL
775}
776
777static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
778{
b9bec74b 779 if (set) {
05330448 780 *kvm_reg = *qemu_reg;
b9bec74b 781 } else {
05330448 782 *qemu_reg = *kvm_reg;
b9bec74b 783 }
05330448
AL
784}
785
786static int kvm_getput_regs(CPUState *env, int set)
787{
788 struct kvm_regs regs;
789 int ret = 0;
790
791 if (!set) {
792 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 793 if (ret < 0) {
05330448 794 return ret;
b9bec74b 795 }
05330448
AL
796 }
797
798 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
799 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
800 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
801 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
802 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
803 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
804 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
805 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
806#ifdef TARGET_X86_64
807 kvm_getput_reg(&regs.r8, &env->regs[8], set);
808 kvm_getput_reg(&regs.r9, &env->regs[9], set);
809 kvm_getput_reg(&regs.r10, &env->regs[10], set);
810 kvm_getput_reg(&regs.r11, &env->regs[11], set);
811 kvm_getput_reg(&regs.r12, &env->regs[12], set);
812 kvm_getput_reg(&regs.r13, &env->regs[13], set);
813 kvm_getput_reg(&regs.r14, &env->regs[14], set);
814 kvm_getput_reg(&regs.r15, &env->regs[15], set);
815#endif
816
817 kvm_getput_reg(&regs.rflags, &env->eflags, set);
818 kvm_getput_reg(&regs.rip, &env->eip, set);
819
b9bec74b 820 if (set) {
05330448 821 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 822 }
05330448
AL
823
824 return ret;
825}
826
827static int kvm_put_fpu(CPUState *env)
828{
829 struct kvm_fpu fpu;
830 int i;
831
832 memset(&fpu, 0, sizeof fpu);
833 fpu.fsw = env->fpus & ~(7 << 11);
834 fpu.fsw |= (env->fpstt & 7) << 11;
835 fpu.fcw = env->fpuc;
b9bec74b
JK
836 for (i = 0; i < 8; ++i) {
837 fpu.ftwx |= (!env->fptags[i]) << i;
838 }
05330448
AL
839 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
840 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
841 fpu.mxcsr = env->mxcsr;
842
843 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
844}
845
f1665b21
SY
846#ifdef KVM_CAP_XSAVE
847#define XSAVE_CWD_RIP 2
848#define XSAVE_CWD_RDP 4
849#define XSAVE_MXCSR 6
850#define XSAVE_ST_SPACE 8
851#define XSAVE_XMM_SPACE 40
852#define XSAVE_XSTATE_BV 128
853#define XSAVE_YMMH_SPACE 144
854#endif
855
856static int kvm_put_xsave(CPUState *env)
857{
858#ifdef KVM_CAP_XSAVE
0f53994f 859 int i, r;
f1665b21
SY
860 struct kvm_xsave* xsave;
861 uint16_t cwd, swd, twd, fop;
862
b9bec74b 863 if (!kvm_has_xsave()) {
f1665b21 864 return kvm_put_fpu(env);
b9bec74b 865 }
f1665b21
SY
866
867 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
868 memset(xsave, 0, sizeof(struct kvm_xsave));
869 cwd = swd = twd = fop = 0;
870 swd = env->fpus & ~(7 << 11);
871 swd |= (env->fpstt & 7) << 11;
872 cwd = env->fpuc;
b9bec74b 873 for (i = 0; i < 8; ++i) {
f1665b21 874 twd |= (!env->fptags[i]) << i;
b9bec74b 875 }
f1665b21
SY
876 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
877 xsave->region[1] = (uint32_t)(fop << 16) + twd;
878 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
879 sizeof env->fpregs);
880 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
881 sizeof env->xmm_regs);
882 xsave->region[XSAVE_MXCSR] = env->mxcsr;
883 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
884 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
885 sizeof env->ymmh_regs);
0f53994f
MT
886 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
887 qemu_free(xsave);
888 return r;
f1665b21
SY
889#else
890 return kvm_put_fpu(env);
891#endif
892}
893
894static int kvm_put_xcrs(CPUState *env)
895{
896#ifdef KVM_CAP_XCRS
897 struct kvm_xcrs xcrs;
898
b9bec74b 899 if (!kvm_has_xcrs()) {
f1665b21 900 return 0;
b9bec74b 901 }
f1665b21
SY
902
903 xcrs.nr_xcrs = 1;
904 xcrs.flags = 0;
905 xcrs.xcrs[0].xcr = 0;
906 xcrs.xcrs[0].value = env->xcr0;
907 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
908#else
909 return 0;
910#endif
911}
912
05330448
AL
913static int kvm_put_sregs(CPUState *env)
914{
915 struct kvm_sregs sregs;
916
0e607a80
JK
917 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
918 if (env->interrupt_injected >= 0) {
919 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
920 (uint64_t)1 << (env->interrupt_injected % 64);
921 }
05330448
AL
922
923 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
924 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
925 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
926 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
927 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
928 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
929 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 930 } else {
b9bec74b
JK
931 set_seg(&sregs.cs, &env->segs[R_CS]);
932 set_seg(&sregs.ds, &env->segs[R_DS]);
933 set_seg(&sregs.es, &env->segs[R_ES]);
934 set_seg(&sregs.fs, &env->segs[R_FS]);
935 set_seg(&sregs.gs, &env->segs[R_GS]);
936 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
937 }
938
939 set_seg(&sregs.tr, &env->tr);
940 set_seg(&sregs.ldt, &env->ldt);
941
942 sregs.idt.limit = env->idt.limit;
943 sregs.idt.base = env->idt.base;
944 sregs.gdt.limit = env->gdt.limit;
945 sregs.gdt.base = env->gdt.base;
946
947 sregs.cr0 = env->cr[0];
948 sregs.cr2 = env->cr[2];
949 sregs.cr3 = env->cr[3];
950 sregs.cr4 = env->cr[4];
951
4a942cea
BS
952 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
953 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
954
955 sregs.efer = env->efer;
956
957 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
958}
959
960static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
961 uint32_t index, uint64_t value)
962{
963 entry->index = index;
964 entry->data = value;
965}
966
ea643051 967static int kvm_put_msrs(CPUState *env, int level)
05330448
AL
968{
969 struct {
970 struct kvm_msrs info;
971 struct kvm_msr_entry entries[100];
972 } msr_data;
973 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 974 int n = 0;
05330448
AL
975
976 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
977 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
978 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
c3a3a7d3 979 if (has_msr_star) {
b9bec74b
JK
980 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
981 }
c3a3a7d3 982 if (has_msr_hsave_pa) {
75b10c43 983 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 984 }
05330448 985#ifdef TARGET_X86_64
25d2e361
MT
986 if (lm_capable_kernel) {
987 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
988 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
989 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
990 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
991 }
05330448 992#endif
ea643051 993 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
994 /*
995 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
996 * writeback. Until this is fixed, we only write the offset to SMP
997 * guests after migration, desynchronizing the VCPUs, but avoiding
998 * huge jump-backs that would occur without any writeback at all.
999 */
1000 if (smp_cpus == 1 || env->tsc != 0) {
1001 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1002 }
ff5c186b
JK
1003 }
1004 /*
1005 * The following paravirtual MSRs have side effects on the guest or are
1006 * too heavy for normal writeback. Limit them to reset or full state
1007 * updates.
1008 */
1009 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
1010 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1011 env->system_time_msr);
1012 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
521f0798 1013#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
c5999bfc
JK
1014 if (has_msr_async_pf_en) {
1015 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1016 env->async_pf_en_msr);
1017 }
f6584ee2 1018#endif
ea643051 1019 }
57780495
MT
1020#ifdef KVM_CAP_MCE
1021 if (env->mcg_cap) {
d8da8574 1022 int i;
b9bec74b
JK
1023
1024 if (level == KVM_PUT_RESET_STATE) {
57780495 1025 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
b9bec74b 1026 } else if (level == KVM_PUT_FULL_STATE) {
57780495
MT
1027 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1028 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
b9bec74b 1029 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1030 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
b9bec74b 1031 }
57780495
MT
1032 }
1033 }
1034#endif
1a03675d 1035
05330448
AL
1036 msr_data.info.nmsrs = n;
1037
1038 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1039
1040}
1041
1042
1043static int kvm_get_fpu(CPUState *env)
1044{
1045 struct kvm_fpu fpu;
1046 int i, ret;
1047
1048 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 1049 if (ret < 0) {
05330448 1050 return ret;
b9bec74b 1051 }
05330448
AL
1052
1053 env->fpstt = (fpu.fsw >> 11) & 7;
1054 env->fpus = fpu.fsw;
1055 env->fpuc = fpu.fcw;
b9bec74b
JK
1056 for (i = 0; i < 8; ++i) {
1057 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1058 }
05330448
AL
1059 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1060 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1061 env->mxcsr = fpu.mxcsr;
1062
1063 return 0;
1064}
1065
f1665b21
SY
1066static int kvm_get_xsave(CPUState *env)
1067{
1068#ifdef KVM_CAP_XSAVE
1069 struct kvm_xsave* xsave;
1070 int ret, i;
1071 uint16_t cwd, swd, twd, fop;
1072
b9bec74b 1073 if (!kvm_has_xsave()) {
f1665b21 1074 return kvm_get_fpu(env);
b9bec74b 1075 }
f1665b21
SY
1076
1077 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
1078 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f
MT
1079 if (ret < 0) {
1080 qemu_free(xsave);
f1665b21 1081 return ret;
0f53994f 1082 }
f1665b21
SY
1083
1084 cwd = (uint16_t)xsave->region[0];
1085 swd = (uint16_t)(xsave->region[0] >> 16);
1086 twd = (uint16_t)xsave->region[1];
1087 fop = (uint16_t)(xsave->region[1] >> 16);
1088 env->fpstt = (swd >> 11) & 7;
1089 env->fpus = swd;
1090 env->fpuc = cwd;
b9bec74b 1091 for (i = 0; i < 8; ++i) {
f1665b21 1092 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1093 }
f1665b21
SY
1094 env->mxcsr = xsave->region[XSAVE_MXCSR];
1095 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1096 sizeof env->fpregs);
1097 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1098 sizeof env->xmm_regs);
1099 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1100 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1101 sizeof env->ymmh_regs);
0f53994f 1102 qemu_free(xsave);
f1665b21
SY
1103 return 0;
1104#else
1105 return kvm_get_fpu(env);
1106#endif
1107}
1108
1109static int kvm_get_xcrs(CPUState *env)
1110{
1111#ifdef KVM_CAP_XCRS
1112 int i, ret;
1113 struct kvm_xcrs xcrs;
1114
b9bec74b 1115 if (!kvm_has_xcrs()) {
f1665b21 1116 return 0;
b9bec74b 1117 }
f1665b21
SY
1118
1119 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 1120 if (ret < 0) {
f1665b21 1121 return ret;
b9bec74b 1122 }
f1665b21 1123
b9bec74b 1124 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
1125 /* Only support xcr0 now */
1126 if (xcrs.xcrs[0].xcr == 0) {
1127 env->xcr0 = xcrs.xcrs[0].value;
1128 break;
1129 }
b9bec74b 1130 }
f1665b21
SY
1131 return 0;
1132#else
1133 return 0;
1134#endif
1135}
1136
05330448
AL
1137static int kvm_get_sregs(CPUState *env)
1138{
1139 struct kvm_sregs sregs;
1140 uint32_t hflags;
0e607a80 1141 int bit, i, ret;
05330448
AL
1142
1143 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 1144 if (ret < 0) {
05330448 1145 return ret;
b9bec74b 1146 }
05330448 1147
0e607a80
JK
1148 /* There can only be one pending IRQ set in the bitmap at a time, so try
1149 to find it and save its number instead (-1 for none). */
1150 env->interrupt_injected = -1;
1151 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1152 if (sregs.interrupt_bitmap[i]) {
1153 bit = ctz64(sregs.interrupt_bitmap[i]);
1154 env->interrupt_injected = i * 64 + bit;
1155 break;
1156 }
1157 }
05330448
AL
1158
1159 get_seg(&env->segs[R_CS], &sregs.cs);
1160 get_seg(&env->segs[R_DS], &sregs.ds);
1161 get_seg(&env->segs[R_ES], &sregs.es);
1162 get_seg(&env->segs[R_FS], &sregs.fs);
1163 get_seg(&env->segs[R_GS], &sregs.gs);
1164 get_seg(&env->segs[R_SS], &sregs.ss);
1165
1166 get_seg(&env->tr, &sregs.tr);
1167 get_seg(&env->ldt, &sregs.ldt);
1168
1169 env->idt.limit = sregs.idt.limit;
1170 env->idt.base = sregs.idt.base;
1171 env->gdt.limit = sregs.gdt.limit;
1172 env->gdt.base = sregs.gdt.base;
1173
1174 env->cr[0] = sregs.cr0;
1175 env->cr[2] = sregs.cr2;
1176 env->cr[3] = sregs.cr3;
1177 env->cr[4] = sregs.cr4;
1178
4a942cea 1179 cpu_set_apic_base(env->apic_state, sregs.apic_base);
05330448
AL
1180
1181 env->efer = sregs.efer;
4a942cea 1182 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
05330448 1183
b9bec74b
JK
1184#define HFLAG_COPY_MASK \
1185 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1186 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1187 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1188 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1189
1190 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1191 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1192 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1193 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1194 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1195 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1196 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1197
1198 if (env->efer & MSR_EFER_LMA) {
1199 hflags |= HF_LMA_MASK;
1200 }
1201
1202 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1203 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1204 } else {
1205 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1206 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1207 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1208 (DESC_B_SHIFT - HF_SS32_SHIFT);
1209 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1210 !(hflags & HF_CS32_MASK)) {
1211 hflags |= HF_ADDSEG_MASK;
1212 } else {
1213 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1214 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1215 }
05330448
AL
1216 }
1217 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1218
1219 return 0;
1220}
1221
1222static int kvm_get_msrs(CPUState *env)
1223{
1224 struct {
1225 struct kvm_msrs info;
1226 struct kvm_msr_entry entries[100];
1227 } msr_data;
1228 struct kvm_msr_entry *msrs = msr_data.entries;
1229 int ret, i, n;
1230
1231 n = 0;
1232 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1233 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1234 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
c3a3a7d3 1235 if (has_msr_star) {
b9bec74b
JK
1236 msrs[n++].index = MSR_STAR;
1237 }
c3a3a7d3 1238 if (has_msr_hsave_pa) {
75b10c43 1239 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1240 }
b8cc45d6
GC
1241
1242 if (!env->tsc_valid) {
1243 msrs[n++].index = MSR_IA32_TSC;
1244 env->tsc_valid = !vm_running;
1245 }
1246
05330448 1247#ifdef TARGET_X86_64
25d2e361
MT
1248 if (lm_capable_kernel) {
1249 msrs[n++].index = MSR_CSTAR;
1250 msrs[n++].index = MSR_KERNELGSBASE;
1251 msrs[n++].index = MSR_FMASK;
1252 msrs[n++].index = MSR_LSTAR;
1253 }
05330448 1254#endif
1a03675d
GC
1255 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1256 msrs[n++].index = MSR_KVM_WALL_CLOCK;
521f0798 1257#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
c5999bfc
JK
1258 if (has_msr_async_pf_en) {
1259 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1260 }
f6584ee2 1261#endif
1a03675d 1262
57780495
MT
1263#ifdef KVM_CAP_MCE
1264 if (env->mcg_cap) {
1265 msrs[n++].index = MSR_MCG_STATUS;
1266 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1267 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1268 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1269 }
57780495
MT
1270 }
1271#endif
1272
05330448
AL
1273 msr_data.info.nmsrs = n;
1274 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1275 if (ret < 0) {
05330448 1276 return ret;
b9bec74b 1277 }
05330448
AL
1278
1279 for (i = 0; i < ret; i++) {
1280 switch (msrs[i].index) {
1281 case MSR_IA32_SYSENTER_CS:
1282 env->sysenter_cs = msrs[i].data;
1283 break;
1284 case MSR_IA32_SYSENTER_ESP:
1285 env->sysenter_esp = msrs[i].data;
1286 break;
1287 case MSR_IA32_SYSENTER_EIP:
1288 env->sysenter_eip = msrs[i].data;
1289 break;
1290 case MSR_STAR:
1291 env->star = msrs[i].data;
1292 break;
1293#ifdef TARGET_X86_64
1294 case MSR_CSTAR:
1295 env->cstar = msrs[i].data;
1296 break;
1297 case MSR_KERNELGSBASE:
1298 env->kernelgsbase = msrs[i].data;
1299 break;
1300 case MSR_FMASK:
1301 env->fmask = msrs[i].data;
1302 break;
1303 case MSR_LSTAR:
1304 env->lstar = msrs[i].data;
1305 break;
1306#endif
1307 case MSR_IA32_TSC:
1308 env->tsc = msrs[i].data;
1309 break;
aa851e36
MT
1310 case MSR_VM_HSAVE_PA:
1311 env->vm_hsave = msrs[i].data;
1312 break;
1a03675d
GC
1313 case MSR_KVM_SYSTEM_TIME:
1314 env->system_time_msr = msrs[i].data;
1315 break;
1316 case MSR_KVM_WALL_CLOCK:
1317 env->wall_clock_msr = msrs[i].data;
1318 break;
57780495
MT
1319#ifdef KVM_CAP_MCE
1320 case MSR_MCG_STATUS:
1321 env->mcg_status = msrs[i].data;
1322 break;
1323 case MSR_MCG_CTL:
1324 env->mcg_ctl = msrs[i].data;
1325 break;
1326#endif
1327 default:
1328#ifdef KVM_CAP_MCE
1329 if (msrs[i].index >= MSR_MC0_CTL &&
1330 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1331 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495
MT
1332 }
1333#endif
d8da8574 1334 break;
521f0798 1335#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
f6584ee2
GN
1336 case MSR_KVM_ASYNC_PF_EN:
1337 env->async_pf_en_msr = msrs[i].data;
1338 break;
1339#endif
05330448
AL
1340 }
1341 }
1342
1343 return 0;
1344}
1345
9bdbe550
HB
1346static int kvm_put_mp_state(CPUState *env)
1347{
1348 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1349
1350 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1351}
1352
1353static int kvm_get_mp_state(CPUState *env)
1354{
1355 struct kvm_mp_state mp_state;
1356 int ret;
1357
1358 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1359 if (ret < 0) {
1360 return ret;
1361 }
1362 env->mp_state = mp_state.mp_state;
c14750e8
JK
1363 if (kvm_irqchip_in_kernel()) {
1364 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1365 }
9bdbe550
HB
1366 return 0;
1367}
1368
ea643051 1369static int kvm_put_vcpu_events(CPUState *env, int level)
a0fb002c
JK
1370{
1371#ifdef KVM_CAP_VCPU_EVENTS
1372 struct kvm_vcpu_events events;
1373
1374 if (!kvm_has_vcpu_events()) {
1375 return 0;
1376 }
1377
31827373
JK
1378 events.exception.injected = (env->exception_injected >= 0);
1379 events.exception.nr = env->exception_injected;
a0fb002c
JK
1380 events.exception.has_error_code = env->has_error_code;
1381 events.exception.error_code = env->error_code;
1382
1383 events.interrupt.injected = (env->interrupt_injected >= 0);
1384 events.interrupt.nr = env->interrupt_injected;
1385 events.interrupt.soft = env->soft_interrupt;
1386
1387 events.nmi.injected = env->nmi_injected;
1388 events.nmi.pending = env->nmi_pending;
1389 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1390
1391 events.sipi_vector = env->sipi_vector;
1392
ea643051
JK
1393 events.flags = 0;
1394 if (level >= KVM_PUT_RESET_STATE) {
1395 events.flags |=
1396 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1397 }
aee028b9 1398
a0fb002c
JK
1399 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1400#else
1401 return 0;
1402#endif
1403}
1404
1405static int kvm_get_vcpu_events(CPUState *env)
1406{
1407#ifdef KVM_CAP_VCPU_EVENTS
1408 struct kvm_vcpu_events events;
1409 int ret;
1410
1411 if (!kvm_has_vcpu_events()) {
1412 return 0;
1413 }
1414
1415 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1416 if (ret < 0) {
1417 return ret;
1418 }
31827373 1419 env->exception_injected =
a0fb002c
JK
1420 events.exception.injected ? events.exception.nr : -1;
1421 env->has_error_code = events.exception.has_error_code;
1422 env->error_code = events.exception.error_code;
1423
1424 env->interrupt_injected =
1425 events.interrupt.injected ? events.interrupt.nr : -1;
1426 env->soft_interrupt = events.interrupt.soft;
1427
1428 env->nmi_injected = events.nmi.injected;
1429 env->nmi_pending = events.nmi.pending;
1430 if (events.nmi.masked) {
1431 env->hflags2 |= HF2_NMI_MASK;
1432 } else {
1433 env->hflags2 &= ~HF2_NMI_MASK;
1434 }
1435
1436 env->sipi_vector = events.sipi_vector;
1437#endif
1438
1439 return 0;
1440}
1441
b0b1d690
JK
1442static int kvm_guest_debug_workarounds(CPUState *env)
1443{
1444 int ret = 0;
1445#ifdef KVM_CAP_SET_GUEST_DEBUG
1446 unsigned long reinject_trap = 0;
1447
1448 if (!kvm_has_vcpu_events()) {
1449 if (env->exception_injected == 1) {
1450 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1451 } else if (env->exception_injected == 3) {
1452 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1453 }
1454 env->exception_injected = -1;
1455 }
1456
1457 /*
1458 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1459 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1460 * by updating the debug state once again if single-stepping is on.
1461 * Another reason to call kvm_update_guest_debug here is a pending debug
1462 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1463 * reinject them via SET_GUEST_DEBUG.
1464 */
1465 if (reinject_trap ||
1466 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1467 ret = kvm_update_guest_debug(env, reinject_trap);
1468 }
1469#endif /* KVM_CAP_SET_GUEST_DEBUG */
1470 return ret;
1471}
1472
ff44f1a3
JK
1473static int kvm_put_debugregs(CPUState *env)
1474{
1475#ifdef KVM_CAP_DEBUGREGS
1476 struct kvm_debugregs dbgregs;
1477 int i;
1478
1479 if (!kvm_has_debugregs()) {
1480 return 0;
1481 }
1482
1483 for (i = 0; i < 4; i++) {
1484 dbgregs.db[i] = env->dr[i];
1485 }
1486 dbgregs.dr6 = env->dr[6];
1487 dbgregs.dr7 = env->dr[7];
1488 dbgregs.flags = 0;
1489
1490 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1491#else
1492 return 0;
1493#endif
1494}
1495
1496static int kvm_get_debugregs(CPUState *env)
1497{
1498#ifdef KVM_CAP_DEBUGREGS
1499 struct kvm_debugregs dbgregs;
1500 int i, ret;
1501
1502 if (!kvm_has_debugregs()) {
1503 return 0;
1504 }
1505
1506 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1507 if (ret < 0) {
b9bec74b 1508 return ret;
ff44f1a3
JK
1509 }
1510 for (i = 0; i < 4; i++) {
1511 env->dr[i] = dbgregs.db[i];
1512 }
1513 env->dr[4] = env->dr[6] = dbgregs.dr6;
1514 env->dr[5] = env->dr[7] = dbgregs.dr7;
1515#endif
1516
1517 return 0;
1518}
1519
ea375f9a 1520int kvm_arch_put_registers(CPUState *env, int level)
05330448
AL
1521{
1522 int ret;
1523
b7680cb6 1524 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1525
05330448 1526 ret = kvm_getput_regs(env, 1);
b9bec74b 1527 if (ret < 0) {
05330448 1528 return ret;
b9bec74b 1529 }
f1665b21 1530 ret = kvm_put_xsave(env);
b9bec74b 1531 if (ret < 0) {
f1665b21 1532 return ret;
b9bec74b 1533 }
f1665b21 1534 ret = kvm_put_xcrs(env);
b9bec74b 1535 if (ret < 0) {
05330448 1536 return ret;
b9bec74b 1537 }
05330448 1538 ret = kvm_put_sregs(env);
b9bec74b 1539 if (ret < 0) {
05330448 1540 return ret;
b9bec74b 1541 }
ea643051 1542 ret = kvm_put_msrs(env, level);
b9bec74b 1543 if (ret < 0) {
05330448 1544 return ret;
b9bec74b 1545 }
ea643051
JK
1546 if (level >= KVM_PUT_RESET_STATE) {
1547 ret = kvm_put_mp_state(env);
b9bec74b 1548 if (ret < 0) {
ea643051 1549 return ret;
b9bec74b 1550 }
ea643051 1551 }
ea643051 1552 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1553 if (ret < 0) {
a0fb002c 1554 return ret;
b9bec74b 1555 }
0d75a9ec 1556 ret = kvm_put_debugregs(env);
b9bec74b 1557 if (ret < 0) {
b0b1d690 1558 return ret;
b9bec74b 1559 }
b0b1d690
JK
1560 /* must be last */
1561 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1562 if (ret < 0) {
ff44f1a3 1563 return ret;
b9bec74b 1564 }
05330448
AL
1565 return 0;
1566}
1567
1568int kvm_arch_get_registers(CPUState *env)
1569{
1570 int ret;
1571
b7680cb6 1572 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1573
05330448 1574 ret = kvm_getput_regs(env, 0);
b9bec74b 1575 if (ret < 0) {
05330448 1576 return ret;
b9bec74b 1577 }
f1665b21 1578 ret = kvm_get_xsave(env);
b9bec74b 1579 if (ret < 0) {
f1665b21 1580 return ret;
b9bec74b 1581 }
f1665b21 1582 ret = kvm_get_xcrs(env);
b9bec74b 1583 if (ret < 0) {
05330448 1584 return ret;
b9bec74b 1585 }
05330448 1586 ret = kvm_get_sregs(env);
b9bec74b 1587 if (ret < 0) {
05330448 1588 return ret;
b9bec74b 1589 }
05330448 1590 ret = kvm_get_msrs(env);
b9bec74b 1591 if (ret < 0) {
05330448 1592 return ret;
b9bec74b 1593 }
5a2e3c2e 1594 ret = kvm_get_mp_state(env);
b9bec74b 1595 if (ret < 0) {
5a2e3c2e 1596 return ret;
b9bec74b 1597 }
a0fb002c 1598 ret = kvm_get_vcpu_events(env);
b9bec74b 1599 if (ret < 0) {
a0fb002c 1600 return ret;
b9bec74b 1601 }
ff44f1a3 1602 ret = kvm_get_debugregs(env);
b9bec74b 1603 if (ret < 0) {
ff44f1a3 1604 return ret;
b9bec74b 1605 }
05330448
AL
1606 return 0;
1607}
1608
7a39fe58 1609void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
05330448 1610{
ce377af3
JK
1611 int ret;
1612
276ce815
LJ
1613 /* Inject NMI */
1614 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1615 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1616 DPRINTF("injected NMI\n");
ce377af3
JK
1617 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1618 if (ret < 0) {
1619 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1620 strerror(-ret));
1621 }
276ce815
LJ
1622 }
1623
db1669bc
JK
1624 if (!kvm_irqchip_in_kernel()) {
1625 /* Force the VCPU out of its inner loop to process the INIT request */
1626 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1627 env->exit_request = 1;
05330448 1628 }
05330448 1629
db1669bc
JK
1630 /* Try to inject an interrupt if the guest can accept it */
1631 if (run->ready_for_interrupt_injection &&
1632 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1633 (env->eflags & IF_MASK)) {
1634 int irq;
1635
1636 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1637 irq = cpu_get_pic_interrupt(env);
1638 if (irq >= 0) {
1639 struct kvm_interrupt intr;
1640
1641 intr.irq = irq;
db1669bc 1642 DPRINTF("injected interrupt %d\n", irq);
ce377af3
JK
1643 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1644 if (ret < 0) {
1645 fprintf(stderr,
1646 "KVM: injection failed, interrupt lost (%s)\n",
1647 strerror(-ret));
1648 }
db1669bc
JK
1649 }
1650 }
05330448 1651
db1669bc
JK
1652 /* If we have an interrupt but the guest is not ready to receive an
1653 * interrupt, request an interrupt window exit. This will
1654 * cause a return to userspace as soon as the guest is ready to
1655 * receive interrupts. */
1656 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1657 run->request_interrupt_window = 1;
1658 } else {
1659 run->request_interrupt_window = 0;
1660 }
1661
1662 DPRINTF("setting tpr\n");
1663 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1664 }
05330448
AL
1665}
1666
7a39fe58 1667void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
05330448 1668{
b9bec74b 1669 if (run->if_flag) {
05330448 1670 env->eflags |= IF_MASK;
b9bec74b 1671 } else {
05330448 1672 env->eflags &= ~IF_MASK;
b9bec74b 1673 }
4a942cea
BS
1674 cpu_set_apic_tpr(env->apic_state, run->cr8);
1675 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1676}
1677
99036865 1678int kvm_arch_process_async_events(CPUState *env)
0af691d7 1679{
db1669bc
JK
1680 if (kvm_irqchip_in_kernel()) {
1681 return 0;
1682 }
1683
6792a57b
JK
1684 if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI)) {
1685 env->halted = 0;
1686 }
0af691d7
MT
1687 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1688 kvm_cpu_synchronize_state(env);
1689 do_cpu_init(env);
0af691d7 1690 }
0af691d7
MT
1691 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1692 kvm_cpu_synchronize_state(env);
1693 do_cpu_sipi(env);
1694 }
1695
1696 return env->halted;
1697}
1698
05330448
AL
1699static int kvm_handle_halt(CPUState *env)
1700{
1701 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1702 (env->eflags & IF_MASK)) &&
1703 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1704 env->halted = 1;
05330448
AL
1705 return 0;
1706 }
1707
1708 return 1;
1709}
1710
bb44e0d1
JK
1711static bool host_supports_vmx(void)
1712{
1713 uint32_t ecx, unused;
1714
1715 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1716 return ecx & CPUID_EXT_VMX;
1717}
1718
1719#define VMX_INVALID_GUEST_STATE 0x80000021
1720
05330448
AL
1721int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1722{
bb44e0d1 1723 uint64_t code;
05330448
AL
1724 int ret = 0;
1725
1726 switch (run->exit_reason) {
1727 case KVM_EXIT_HLT:
8c0d577e 1728 DPRINTF("handle_hlt\n");
05330448
AL
1729 ret = kvm_handle_halt(env);
1730 break;
646042e1
JK
1731 case KVM_EXIT_SET_TPR:
1732 ret = 1;
1733 break;
bb44e0d1
JK
1734 case KVM_EXIT_FAIL_ENTRY:
1735 code = run->fail_entry.hardware_entry_failure_reason;
1736 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1737 code);
1738 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1739 fprintf(stderr,
1740 "\nIf you're runnning a guest on an Intel machine without "
1741 "unrestricted mode\n"
1742 "support, the failure can be most likely due to the guest "
1743 "entering an invalid\n"
1744 "state for Intel VT. For example, the guest maybe running "
1745 "in big real mode\n"
1746 "which is not supported on less recent Intel processors."
1747 "\n\n");
1748 }
1749 ret = -1;
1750 break;
1751 case KVM_EXIT_EXCEPTION:
1752 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1753 run->ex.exception, run->ex.error_code);
1754 ret = -1;
1755 break;
73aaec4a
JK
1756 default:
1757 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1758 ret = -1;
1759 break;
05330448
AL
1760 }
1761
1762 return ret;
1763}
e22a25c9
AL
1764
1765#ifdef KVM_CAP_SET_GUEST_DEBUG
e22a25c9
AL
1766int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1767{
38972938 1768 static const uint8_t int3 = 0xcc;
64bf3f4e 1769
e22a25c9 1770 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1771 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1772 return -EINVAL;
b9bec74b 1773 }
e22a25c9
AL
1774 return 0;
1775}
1776
1777int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1778{
1779 uint8_t int3;
1780
1781 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1782 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1783 return -EINVAL;
b9bec74b 1784 }
e22a25c9
AL
1785 return 0;
1786}
1787
1788static struct {
1789 target_ulong addr;
1790 int len;
1791 int type;
1792} hw_breakpoint[4];
1793
1794static int nb_hw_breakpoint;
1795
1796static int find_hw_breakpoint(target_ulong addr, int len, int type)
1797{
1798 int n;
1799
b9bec74b 1800 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1801 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1802 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1803 return n;
b9bec74b
JK
1804 }
1805 }
e22a25c9
AL
1806 return -1;
1807}
1808
1809int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1810 target_ulong len, int type)
1811{
1812 switch (type) {
1813 case GDB_BREAKPOINT_HW:
1814 len = 1;
1815 break;
1816 case GDB_WATCHPOINT_WRITE:
1817 case GDB_WATCHPOINT_ACCESS:
1818 switch (len) {
1819 case 1:
1820 break;
1821 case 2:
1822 case 4:
1823 case 8:
b9bec74b 1824 if (addr & (len - 1)) {
e22a25c9 1825 return -EINVAL;
b9bec74b 1826 }
e22a25c9
AL
1827 break;
1828 default:
1829 return -EINVAL;
1830 }
1831 break;
1832 default:
1833 return -ENOSYS;
1834 }
1835
b9bec74b 1836 if (nb_hw_breakpoint == 4) {
e22a25c9 1837 return -ENOBUFS;
b9bec74b
JK
1838 }
1839 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1840 return -EEXIST;
b9bec74b 1841 }
e22a25c9
AL
1842 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1843 hw_breakpoint[nb_hw_breakpoint].len = len;
1844 hw_breakpoint[nb_hw_breakpoint].type = type;
1845 nb_hw_breakpoint++;
1846
1847 return 0;
1848}
1849
1850int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1851 target_ulong len, int type)
1852{
1853 int n;
1854
1855 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1856 if (n < 0) {
e22a25c9 1857 return -ENOENT;
b9bec74b 1858 }
e22a25c9
AL
1859 nb_hw_breakpoint--;
1860 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1861
1862 return 0;
1863}
1864
1865void kvm_arch_remove_all_hw_breakpoints(void)
1866{
1867 nb_hw_breakpoint = 0;
1868}
1869
1870static CPUWatchpoint hw_watchpoint;
1871
1872int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1873{
1874 int handle = 0;
1875 int n;
1876
1877 if (arch_info->exception == 1) {
1878 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1879 if (cpu_single_env->singlestep_enabled) {
e22a25c9 1880 handle = 1;
b9bec74b 1881 }
e22a25c9 1882 } else {
b9bec74b
JK
1883 for (n = 0; n < 4; n++) {
1884 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1885 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1886 case 0x0:
1887 handle = 1;
1888 break;
1889 case 0x1:
1890 handle = 1;
1891 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1892 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1893 hw_watchpoint.flags = BP_MEM_WRITE;
1894 break;
1895 case 0x3:
1896 handle = 1;
1897 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1898 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1899 hw_watchpoint.flags = BP_MEM_ACCESS;
1900 break;
1901 }
b9bec74b
JK
1902 }
1903 }
e22a25c9 1904 }
b9bec74b 1905 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
e22a25c9 1906 handle = 1;
b9bec74b 1907 }
b0b1d690
JK
1908 if (!handle) {
1909 cpu_synchronize_state(cpu_single_env);
1910 assert(cpu_single_env->exception_injected == -1);
1911
1912 cpu_single_env->exception_injected = arch_info->exception;
1913 cpu_single_env->has_error_code = 0;
1914 }
e22a25c9
AL
1915
1916 return handle;
1917}
1918
1919void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1920{
1921 const uint8_t type_code[] = {
1922 [GDB_BREAKPOINT_HW] = 0x0,
1923 [GDB_WATCHPOINT_WRITE] = 0x1,
1924 [GDB_WATCHPOINT_ACCESS] = 0x3
1925 };
1926 const uint8_t len_code[] = {
1927 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1928 };
1929 int n;
1930
b9bec74b 1931 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 1932 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 1933 }
e22a25c9
AL
1934 if (nb_hw_breakpoint > 0) {
1935 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1936 dbg->arch.debugreg[7] = 0x0600;
1937 for (n = 0; n < nb_hw_breakpoint; n++) {
1938 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1939 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1940 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 1941 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
1942 }
1943 }
1944}
1945#endif /* KVM_CAP_SET_GUEST_DEBUG */
4513d923
GN
1946
1947bool kvm_arch_stop_on_emulation_error(CPUState *env)
1948{
b9bec74b
JK
1949 return !(env->cr[0] & CR0_PE_MASK) ||
1950 ((env->segs[R_CS].selector & 3) != 3);
4513d923 1951}