]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
apic: Reevaluate pending interrupts on LVT_LINT0 changes
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
24#include "sysemu.h"
25#include "kvm.h"
26#include "cpu.h"
e22a25c9 27#include "gdbstub.h"
0e607a80 28#include "host-utils.h"
4c5b10b7 29#include "hw/pc.h"
408392b3 30#include "hw/apic.h"
35bed8ee 31#include "ioport.h"
eab70139 32#include "hyperv.h"
05330448
AL
33
34//#define DEBUG_KVM
35
36#ifdef DEBUG_KVM
8c0d577e 37#define DPRINTF(fmt, ...) \
05330448
AL
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39#else
8c0d577e 40#define DPRINTF(fmt, ...) \
05330448
AL
41 do { } while (0)
42#endif
43
1a03675d
GC
44#define MSR_KVM_WALL_CLOCK 0x11
45#define MSR_KVM_SYSTEM_TIME 0x12
46
c0532a76
MT
47#ifndef BUS_MCEERR_AR
48#define BUS_MCEERR_AR 4
49#endif
50#ifndef BUS_MCEERR_AO
51#define BUS_MCEERR_AO 5
52#endif
53
94a8d39a
JK
54const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
55 KVM_CAP_INFO(SET_TSS_ADDR),
56 KVM_CAP_INFO(EXT_CPUID),
57 KVM_CAP_INFO(MP_STATE),
58 KVM_CAP_LAST_INFO
59};
25d2e361 60
c3a3a7d3
JK
61static bool has_msr_star;
62static bool has_msr_hsave_pa;
aa82ba54 63static bool has_msr_tsc_deadline;
c5999bfc 64static bool has_msr_async_pf_en;
21e87c46 65static bool has_msr_misc_enable;
25d2e361 66static int lm_capable_kernel;
b827df58
AK
67
68static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
69{
70 struct kvm_cpuid2 *cpuid;
71 int r, size;
72
73 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
7267c094 74 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
b827df58
AK
75 cpuid->nent = max;
76 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
77 if (r == 0 && cpuid->nent >= max) {
78 r = -E2BIG;
79 }
b827df58
AK
80 if (r < 0) {
81 if (r == -E2BIG) {
7267c094 82 g_free(cpuid);
b827df58
AK
83 return NULL;
84 } else {
85 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
86 strerror(-r));
87 exit(1);
88 }
89 }
90 return cpuid;
91}
92
0c31b744
GC
93struct kvm_para_features {
94 int cap;
95 int feature;
96} para_features[] = {
97 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
98 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
99 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 100 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
101 { -1, -1 }
102};
103
ba9bc59e 104static int get_para_features(KVMState *s)
0c31b744
GC
105{
106 int i, features = 0;
107
108 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
ba9bc59e 109 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
110 features |= (1 << para_features[i].feature);
111 }
112 }
113
114 return features;
115}
0c31b744
GC
116
117
ba9bc59e 118uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 119 uint32_t index, int reg)
b827df58
AK
120{
121 struct kvm_cpuid2 *cpuid;
122 int i, max;
123 uint32_t ret = 0;
124 uint32_t cpuid_1_edx;
0c31b744 125 int has_kvm_features = 0;
b827df58 126
b827df58 127 max = 1;
ba9bc59e 128 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
b827df58
AK
129 max *= 2;
130 }
131
132 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
133 if (cpuid->entries[i].function == function &&
134 cpuid->entries[i].index == index) {
0c31b744
GC
135 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
136 has_kvm_features = 1;
137 }
b827df58
AK
138 switch (reg) {
139 case R_EAX:
140 ret = cpuid->entries[i].eax;
141 break;
142 case R_EBX:
143 ret = cpuid->entries[i].ebx;
144 break;
145 case R_ECX:
146 ret = cpuid->entries[i].ecx;
147 break;
148 case R_EDX:
149 ret = cpuid->entries[i].edx;
19ccb8ea
JK
150 switch (function) {
151 case 1:
152 /* KVM before 2.6.30 misreports the following features */
153 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
154 break;
155 case 0x80000001:
b827df58
AK
156 /* On Intel, kvm returns cpuid according to the Intel spec,
157 * so add missing bits according to the AMD spec:
158 */
ba9bc59e 159 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
c1667e40 160 ret |= cpuid_1_edx & 0x183f7ff;
19ccb8ea 161 break;
b827df58
AK
162 }
163 break;
164 }
165 }
166 }
167
7267c094 168 g_free(cpuid);
b827df58 169
0c31b744
GC
170 /* fallback for older kernels */
171 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
ba9bc59e 172 ret = get_para_features(s);
b9bec74b 173 }
0c31b744
GC
174
175 return ret;
bb0300dc 176}
bb0300dc 177
3c85e74f
HY
178typedef struct HWPoisonPage {
179 ram_addr_t ram_addr;
180 QLIST_ENTRY(HWPoisonPage) list;
181} HWPoisonPage;
182
183static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
184 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
185
186static void kvm_unpoison_all(void *param)
187{
188 HWPoisonPage *page, *next_page;
189
190 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
191 QLIST_REMOVE(page, list);
192 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 193 g_free(page);
3c85e74f
HY
194 }
195}
196
3c85e74f
HY
197static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
198{
199 HWPoisonPage *page;
200
201 QLIST_FOREACH(page, &hwpoison_page_list, list) {
202 if (page->ram_addr == ram_addr) {
203 return;
204 }
205 }
7267c094 206 page = g_malloc(sizeof(HWPoisonPage));
3c85e74f
HY
207 page->ram_addr = ram_addr;
208 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
209}
210
e7701825
MT
211static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
212 int *max_banks)
213{
214 int r;
215
14a09518 216 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
217 if (r > 0) {
218 *max_banks = r;
219 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
220 }
221 return -ENOSYS;
222}
223
317ac620 224static void kvm_mce_inject(CPUX86State *env, target_phys_addr_t paddr, int code)
e7701825 225{
c34d440a
JK
226 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
227 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
228 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 229
c34d440a
JK
230 if (code == BUS_MCEERR_AR) {
231 status |= MCI_STATUS_AR | 0x134;
232 mcg_status |= MCG_STATUS_EIPV;
233 } else {
234 status |= 0xc0;
235 mcg_status |= MCG_STATUS_RIPV;
419fb20a 236 }
c34d440a
JK
237 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
238 (MCM_ADDR_PHYS << 6) | 0xc,
239 cpu_x86_support_mca_broadcast(env) ?
240 MCE_INJECT_BROADCAST : 0);
419fb20a 241}
419fb20a
JK
242
243static void hardware_memory_error(void)
244{
245 fprintf(stderr, "Hardware memory error!\n");
246 exit(1);
247}
248
317ac620 249int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
419fb20a 250{
419fb20a
JK
251 ram_addr_t ram_addr;
252 target_phys_addr_t paddr;
253
254 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a
JK
255 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
256 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
9f213ed9 257 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
419fb20a
JK
258 fprintf(stderr, "Hardware memory error for memory used by "
259 "QEMU itself instead of guest system!\n");
260 /* Hope we are lucky for AO MCE */
261 if (code == BUS_MCEERR_AO) {
262 return 0;
263 } else {
264 hardware_memory_error();
265 }
266 }
3c85e74f 267 kvm_hwpoison_page_add(ram_addr);
c34d440a 268 kvm_mce_inject(env, paddr, code);
e56ff191 269 } else {
419fb20a
JK
270 if (code == BUS_MCEERR_AO) {
271 return 0;
272 } else if (code == BUS_MCEERR_AR) {
273 hardware_memory_error();
274 } else {
275 return 1;
276 }
277 }
278 return 0;
279}
280
281int kvm_arch_on_sigbus(int code, void *addr)
282{
419fb20a 283 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a
JK
284 ram_addr_t ram_addr;
285 target_phys_addr_t paddr;
286
287 /* Hope we are lucky for AO MCE */
c34d440a 288 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
9f213ed9
AK
289 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
290 &paddr)) {
419fb20a
JK
291 fprintf(stderr, "Hardware memory error for memory used by "
292 "QEMU itself instead of guest system!: %p\n", addr);
293 return 0;
294 }
3c85e74f 295 kvm_hwpoison_page_add(ram_addr);
c34d440a 296 kvm_mce_inject(first_cpu, paddr, code);
e56ff191 297 } else {
419fb20a
JK
298 if (code == BUS_MCEERR_AO) {
299 return 0;
300 } else if (code == BUS_MCEERR_AR) {
301 hardware_memory_error();
302 } else {
303 return 1;
304 }
305 }
306 return 0;
307}
e7701825 308
317ac620 309static int kvm_inject_mce_oldstyle(CPUX86State *env)
ab443475 310{
ab443475
JK
311 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
312 unsigned int bank, bank_num = env->mcg_cap & 0xff;
313 struct kvm_x86_mce mce;
314
315 env->exception_injected = -1;
316
317 /*
318 * There must be at least one bank in use if an MCE is pending.
319 * Find it and use its values for the event injection.
320 */
321 for (bank = 0; bank < bank_num; bank++) {
322 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
323 break;
324 }
325 }
326 assert(bank < bank_num);
327
328 mce.bank = bank;
329 mce.status = env->mce_banks[bank * 4 + 1];
330 mce.mcg_status = env->mcg_status;
331 mce.addr = env->mce_banks[bank * 4 + 2];
332 mce.misc = env->mce_banks[bank * 4 + 3];
333
334 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
335 }
ab443475
JK
336 return 0;
337}
338
1dfb4dd9 339static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 340{
317ac620 341 CPUX86State *env = opaque;
b8cc45d6
GC
342
343 if (running) {
344 env->tsc_valid = false;
345 }
346}
347
317ac620 348int kvm_arch_init_vcpu(CPUX86State *env)
05330448
AL
349{
350 struct {
486bd5a2
AL
351 struct kvm_cpuid2 cpuid;
352 struct kvm_cpuid_entry2 entries[100];
541dc0d4 353 } QEMU_PACKED cpuid_data;
ba9bc59e 354 KVMState *s = env->kvm_state;
486bd5a2 355 uint32_t limit, i, j, cpuid_i;
a33609ca 356 uint32_t unused;
bb0300dc 357 struct kvm_cpuid_entry2 *c;
bb0300dc 358 uint32_t signature[3];
e7429073 359 int r;
05330448 360
ba9bc59e 361 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
6c0d7ee8
AP
362
363 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
a75b3e0f 364 j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER;
ba9bc59e 365 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
6c0d7ee8 366 env->cpuid_ext_features |= i;
a75b3e0f
LJ
367 if (j && kvm_irqchip_in_kernel() &&
368 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
369 env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER;
370 }
6c0d7ee8 371
ba9bc59e 372 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 373 0, R_EDX);
ba9bc59e 374 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 375 0, R_ECX);
ba9bc59e 376 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
296acb64
JR
377 0, R_EDX);
378
05330448
AL
379 cpuid_i = 0;
380
bb0300dc 381 /* Paravirtualization CPUIDs */
bb0300dc
GN
382 c = &cpuid_data.entries[cpuid_i++];
383 memset(c, 0, sizeof(*c));
384 c->function = KVM_CPUID_SIGNATURE;
eab70139
VR
385 if (!hyperv_enabled()) {
386 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
387 c->eax = 0;
388 } else {
389 memcpy(signature, "Microsoft Hv", 12);
390 c->eax = HYPERV_CPUID_MIN;
391 }
bb0300dc
GN
392 c->ebx = signature[0];
393 c->ecx = signature[1];
394 c->edx = signature[2];
395
396 c = &cpuid_data.entries[cpuid_i++];
397 memset(c, 0, sizeof(*c));
398 c->function = KVM_CPUID_FEATURES;
ba9bc59e
JK
399 c->eax = env->cpuid_kvm_features &
400 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
0c31b744 401
eab70139
VR
402 if (hyperv_enabled()) {
403 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
404 c->eax = signature[0];
405
406 c = &cpuid_data.entries[cpuid_i++];
407 memset(c, 0, sizeof(*c));
408 c->function = HYPERV_CPUID_VERSION;
409 c->eax = 0x00001bbc;
410 c->ebx = 0x00060001;
411
412 c = &cpuid_data.entries[cpuid_i++];
413 memset(c, 0, sizeof(*c));
414 c->function = HYPERV_CPUID_FEATURES;
415 if (hyperv_relaxed_timing_enabled()) {
416 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
417 }
418 if (hyperv_vapic_recommended()) {
419 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
420 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
421 }
422
423 c = &cpuid_data.entries[cpuid_i++];
424 memset(c, 0, sizeof(*c));
425 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
426 if (hyperv_relaxed_timing_enabled()) {
427 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
428 }
429 if (hyperv_vapic_recommended()) {
430 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
431 }
432 c->ebx = hyperv_get_spinlock_retries();
433
434 c = &cpuid_data.entries[cpuid_i++];
435 memset(c, 0, sizeof(*c));
436 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
437 c->eax = 0x40;
438 c->ebx = 0x40;
439
440 c = &cpuid_data.entries[cpuid_i++];
441 memset(c, 0, sizeof(*c));
442 c->function = KVM_CPUID_SIGNATURE_NEXT;
443 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
444 c->eax = 0;
445 c->ebx = signature[0];
446 c->ecx = signature[1];
447 c->edx = signature[2];
448 }
449
0c31b744 450 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 451
a33609ca 452 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
453
454 for (i = 0; i <= limit; i++) {
bb0300dc 455 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
456
457 switch (i) {
a36b1029
AL
458 case 2: {
459 /* Keep reading function 2 till all the input is received */
460 int times;
461
a36b1029 462 c->function = i;
a33609ca
AL
463 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
464 KVM_CPUID_FLAG_STATE_READ_NEXT;
465 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
466 times = c->eax & 0xff;
a36b1029
AL
467
468 for (j = 1; j < times; ++j) {
a33609ca 469 c = &cpuid_data.entries[cpuid_i++];
a36b1029 470 c->function = i;
a33609ca
AL
471 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
472 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
473 }
474 break;
475 }
486bd5a2
AL
476 case 4:
477 case 0xb:
478 case 0xd:
479 for (j = 0; ; j++) {
31e8c696
AP
480 if (i == 0xd && j == 64) {
481 break;
482 }
486bd5a2
AL
483 c->function = i;
484 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
485 c->index = j;
a33609ca 486 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 487
b9bec74b 488 if (i == 4 && c->eax == 0) {
486bd5a2 489 break;
b9bec74b
JK
490 }
491 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 492 break;
b9bec74b
JK
493 }
494 if (i == 0xd && c->eax == 0) {
31e8c696 495 continue;
b9bec74b 496 }
a33609ca 497 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
498 }
499 break;
500 default:
486bd5a2 501 c->function = i;
a33609ca
AL
502 c->flags = 0;
503 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
504 break;
505 }
05330448 506 }
a33609ca 507 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
508
509 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 510 c = &cpuid_data.entries[cpuid_i++];
05330448 511
05330448 512 c->function = i;
a33609ca
AL
513 c->flags = 0;
514 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
515 }
516
b3baa152
BW
517 /* Call Centaur's CPUID instructions they are supported. */
518 if (env->cpuid_xlevel2 > 0) {
519 env->cpuid_ext4_features &=
ba9bc59e 520 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
b3baa152
BW
521 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
522
523 for (i = 0xC0000000; i <= limit; i++) {
524 c = &cpuid_data.entries[cpuid_i++];
525
526 c->function = i;
527 c->flags = 0;
528 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
529 }
530 }
531
05330448
AL
532 cpuid_data.cpuid.nent = cpuid_i;
533
e7701825
MT
534 if (((env->cpuid_version >> 8)&0xF) >= 6
535 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
536 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
537 uint64_t mcg_cap;
538 int banks;
32a42024 539 int ret;
e7701825 540
75d49497
JK
541 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
542 if (ret < 0) {
543 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
544 return ret;
e7701825 545 }
75d49497
JK
546
547 if (banks > MCE_BANKS_DEF) {
548 banks = MCE_BANKS_DEF;
549 }
550 mcg_cap &= MCE_CAP_DEF;
551 mcg_cap |= banks;
552 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
553 if (ret < 0) {
554 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
555 return ret;
556 }
557
558 env->mcg_cap = mcg_cap;
e7701825 559 }
e7701825 560
b8cc45d6
GC
561 qemu_add_vm_change_state_handler(cpu_update_state, env);
562
7e680753 563 cpuid_data.cpuid.padding = 0;
e7429073 564 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
565 if (r) {
566 return r;
567 }
e7429073 568
e7429073
JR
569 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
570 if (r && env->tsc_khz) {
571 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
572 if (r < 0) {
573 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
574 return r;
575 }
576 }
e7429073 577
fabacc0f
JK
578 if (kvm_has_xsave()) {
579 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
580 }
581
e7429073 582 return 0;
05330448
AL
583}
584
317ac620 585void kvm_arch_reset_vcpu(CPUX86State *env)
caa5af0f 586{
e73223a5 587 env->exception_injected = -1;
0e607a80 588 env->interrupt_injected = -1;
1a5e9d2f 589 env->xcr0 = 1;
ddced198
MT
590 if (kvm_irqchip_in_kernel()) {
591 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
592 KVM_MP_STATE_UNINITIALIZED;
593 } else {
594 env->mp_state = KVM_MP_STATE_RUNNABLE;
595 }
caa5af0f
JK
596}
597
c3a3a7d3 598static int kvm_get_supported_msrs(KVMState *s)
05330448 599{
75b10c43 600 static int kvm_supported_msrs;
c3a3a7d3 601 int ret = 0;
05330448
AL
602
603 /* first time */
75b10c43 604 if (kvm_supported_msrs == 0) {
05330448
AL
605 struct kvm_msr_list msr_list, *kvm_msr_list;
606
75b10c43 607 kvm_supported_msrs = -1;
05330448
AL
608
609 /* Obtain MSR list from KVM. These are the MSRs that we must
610 * save/restore */
4c9f7372 611 msr_list.nmsrs = 0;
c3a3a7d3 612 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 613 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 614 return ret;
6fb6d245 615 }
d9db889f
JK
616 /* Old kernel modules had a bug and could write beyond the provided
617 memory. Allocate at least a safe amount of 1K. */
7267c094 618 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
619 msr_list.nmsrs *
620 sizeof(msr_list.indices[0])));
05330448 621
55308450 622 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 623 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
624 if (ret >= 0) {
625 int i;
626
627 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
628 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 629 has_msr_star = true;
75b10c43
MT
630 continue;
631 }
632 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 633 has_msr_hsave_pa = true;
75b10c43 634 continue;
05330448 635 }
aa82ba54
LJ
636 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
637 has_msr_tsc_deadline = true;
638 continue;
639 }
21e87c46
AK
640 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
641 has_msr_misc_enable = true;
642 continue;
643 }
05330448
AL
644 }
645 }
646
7267c094 647 g_free(kvm_msr_list);
05330448
AL
648 }
649
c3a3a7d3 650 return ret;
05330448
AL
651}
652
cad1e282 653int kvm_arch_init(KVMState *s)
20420430 654{
39d6960a 655 QemuOptsList *list = qemu_find_opts("machine");
11076198 656 uint64_t identity_base = 0xfffbc000;
39d6960a 657 uint64_t shadow_mem;
20420430 658 int ret;
25d2e361 659 struct utsname utsname;
20420430 660
c3a3a7d3 661 ret = kvm_get_supported_msrs(s);
20420430 662 if (ret < 0) {
20420430
SY
663 return ret;
664 }
25d2e361
MT
665
666 uname(&utsname);
667 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
668
4c5b10b7 669 /*
11076198
JK
670 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
671 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
672 * Since these must be part of guest physical memory, we need to allocate
673 * them, both by setting their start addresses in the kernel and by
674 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
675 *
676 * Older KVM versions may not support setting the identity map base. In
677 * that case we need to stick with the default, i.e. a 256K maximum BIOS
678 * size.
4c5b10b7 679 */
11076198
JK
680 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
681 /* Allows up to 16M BIOSes. */
682 identity_base = 0xfeffc000;
683
684 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
685 if (ret < 0) {
686 return ret;
687 }
4c5b10b7 688 }
e56ff191 689
11076198
JK
690 /* Set TSS base one page after EPT identity map. */
691 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
692 if (ret < 0) {
693 return ret;
694 }
695
11076198
JK
696 /* Tell fw_cfg to notify the BIOS to reserve the range. */
697 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 698 if (ret < 0) {
11076198 699 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
700 return ret;
701 }
3c85e74f 702 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 703
39d6960a
JK
704 if (!QTAILQ_EMPTY(&list->head)) {
705 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
706 "kvm_shadow_mem", -1);
707 if (shadow_mem != -1) {
708 shadow_mem /= 4096;
709 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
710 if (ret < 0) {
711 return ret;
712 }
713 }
714 }
11076198 715 return 0;
05330448 716}
b9bec74b 717
05330448
AL
718static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
719{
720 lhs->selector = rhs->selector;
721 lhs->base = rhs->base;
722 lhs->limit = rhs->limit;
723 lhs->type = 3;
724 lhs->present = 1;
725 lhs->dpl = 3;
726 lhs->db = 0;
727 lhs->s = 1;
728 lhs->l = 0;
729 lhs->g = 0;
730 lhs->avl = 0;
731 lhs->unusable = 0;
732}
733
734static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
735{
736 unsigned flags = rhs->flags;
737 lhs->selector = rhs->selector;
738 lhs->base = rhs->base;
739 lhs->limit = rhs->limit;
740 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
741 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 742 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
743 lhs->db = (flags >> DESC_B_SHIFT) & 1;
744 lhs->s = (flags & DESC_S_MASK) != 0;
745 lhs->l = (flags >> DESC_L_SHIFT) & 1;
746 lhs->g = (flags & DESC_G_MASK) != 0;
747 lhs->avl = (flags & DESC_AVL_MASK) != 0;
748 lhs->unusable = 0;
7e680753 749 lhs->padding = 0;
05330448
AL
750}
751
752static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
753{
754 lhs->selector = rhs->selector;
755 lhs->base = rhs->base;
756 lhs->limit = rhs->limit;
b9bec74b
JK
757 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
758 (rhs->present * DESC_P_MASK) |
759 (rhs->dpl << DESC_DPL_SHIFT) |
760 (rhs->db << DESC_B_SHIFT) |
761 (rhs->s * DESC_S_MASK) |
762 (rhs->l << DESC_L_SHIFT) |
763 (rhs->g * DESC_G_MASK) |
764 (rhs->avl * DESC_AVL_MASK);
05330448
AL
765}
766
767static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
768{
b9bec74b 769 if (set) {
05330448 770 *kvm_reg = *qemu_reg;
b9bec74b 771 } else {
05330448 772 *qemu_reg = *kvm_reg;
b9bec74b 773 }
05330448
AL
774}
775
317ac620 776static int kvm_getput_regs(CPUX86State *env, int set)
05330448
AL
777{
778 struct kvm_regs regs;
779 int ret = 0;
780
781 if (!set) {
782 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 783 if (ret < 0) {
05330448 784 return ret;
b9bec74b 785 }
05330448
AL
786 }
787
788 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
789 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
790 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
791 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
792 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
793 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
794 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
795 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
796#ifdef TARGET_X86_64
797 kvm_getput_reg(&regs.r8, &env->regs[8], set);
798 kvm_getput_reg(&regs.r9, &env->regs[9], set);
799 kvm_getput_reg(&regs.r10, &env->regs[10], set);
800 kvm_getput_reg(&regs.r11, &env->regs[11], set);
801 kvm_getput_reg(&regs.r12, &env->regs[12], set);
802 kvm_getput_reg(&regs.r13, &env->regs[13], set);
803 kvm_getput_reg(&regs.r14, &env->regs[14], set);
804 kvm_getput_reg(&regs.r15, &env->regs[15], set);
805#endif
806
807 kvm_getput_reg(&regs.rflags, &env->eflags, set);
808 kvm_getput_reg(&regs.rip, &env->eip, set);
809
b9bec74b 810 if (set) {
05330448 811 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 812 }
05330448
AL
813
814 return ret;
815}
816
317ac620 817static int kvm_put_fpu(CPUX86State *env)
05330448
AL
818{
819 struct kvm_fpu fpu;
820 int i;
821
822 memset(&fpu, 0, sizeof fpu);
823 fpu.fsw = env->fpus & ~(7 << 11);
824 fpu.fsw |= (env->fpstt & 7) << 11;
825 fpu.fcw = env->fpuc;
42cc8fa6
JK
826 fpu.last_opcode = env->fpop;
827 fpu.last_ip = env->fpip;
828 fpu.last_dp = env->fpdp;
b9bec74b
JK
829 for (i = 0; i < 8; ++i) {
830 fpu.ftwx |= (!env->fptags[i]) << i;
831 }
05330448
AL
832 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
833 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
834 fpu.mxcsr = env->mxcsr;
835
836 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
837}
838
6b42494b
JK
839#define XSAVE_FCW_FSW 0
840#define XSAVE_FTW_FOP 1
f1665b21
SY
841#define XSAVE_CWD_RIP 2
842#define XSAVE_CWD_RDP 4
843#define XSAVE_MXCSR 6
844#define XSAVE_ST_SPACE 8
845#define XSAVE_XMM_SPACE 40
846#define XSAVE_XSTATE_BV 128
847#define XSAVE_YMMH_SPACE 144
f1665b21 848
317ac620 849static int kvm_put_xsave(CPUX86State *env)
f1665b21 850{
fabacc0f 851 struct kvm_xsave* xsave = env->kvm_xsave_buf;
42cc8fa6 852 uint16_t cwd, swd, twd;
fabacc0f 853 int i, r;
f1665b21 854
b9bec74b 855 if (!kvm_has_xsave()) {
f1665b21 856 return kvm_put_fpu(env);
b9bec74b 857 }
f1665b21 858
f1665b21 859 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 860 twd = 0;
f1665b21
SY
861 swd = env->fpus & ~(7 << 11);
862 swd |= (env->fpstt & 7) << 11;
863 cwd = env->fpuc;
b9bec74b 864 for (i = 0; i < 8; ++i) {
f1665b21 865 twd |= (!env->fptags[i]) << i;
b9bec74b 866 }
6b42494b
JK
867 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
868 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
42cc8fa6
JK
869 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
870 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
871 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
872 sizeof env->fpregs);
873 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
874 sizeof env->xmm_regs);
875 xsave->region[XSAVE_MXCSR] = env->mxcsr;
876 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
877 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
878 sizeof env->ymmh_regs);
0f53994f 879 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
0f53994f 880 return r;
f1665b21
SY
881}
882
317ac620 883static int kvm_put_xcrs(CPUX86State *env)
f1665b21 884{
f1665b21
SY
885 struct kvm_xcrs xcrs;
886
b9bec74b 887 if (!kvm_has_xcrs()) {
f1665b21 888 return 0;
b9bec74b 889 }
f1665b21
SY
890
891 xcrs.nr_xcrs = 1;
892 xcrs.flags = 0;
893 xcrs.xcrs[0].xcr = 0;
894 xcrs.xcrs[0].value = env->xcr0;
895 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
f1665b21
SY
896}
897
317ac620 898static int kvm_put_sregs(CPUX86State *env)
05330448
AL
899{
900 struct kvm_sregs sregs;
901
0e607a80
JK
902 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
903 if (env->interrupt_injected >= 0) {
904 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
905 (uint64_t)1 << (env->interrupt_injected % 64);
906 }
05330448
AL
907
908 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
909 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
910 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
911 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
912 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
913 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
914 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 915 } else {
b9bec74b
JK
916 set_seg(&sregs.cs, &env->segs[R_CS]);
917 set_seg(&sregs.ds, &env->segs[R_DS]);
918 set_seg(&sregs.es, &env->segs[R_ES]);
919 set_seg(&sregs.fs, &env->segs[R_FS]);
920 set_seg(&sregs.gs, &env->segs[R_GS]);
921 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
922 }
923
924 set_seg(&sregs.tr, &env->tr);
925 set_seg(&sregs.ldt, &env->ldt);
926
927 sregs.idt.limit = env->idt.limit;
928 sregs.idt.base = env->idt.base;
7e680753 929 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
930 sregs.gdt.limit = env->gdt.limit;
931 sregs.gdt.base = env->gdt.base;
7e680753 932 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
933
934 sregs.cr0 = env->cr[0];
935 sregs.cr2 = env->cr[2];
936 sregs.cr3 = env->cr[3];
937 sregs.cr4 = env->cr[4];
938
4a942cea
BS
939 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
940 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
941
942 sregs.efer = env->efer;
943
944 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
945}
946
947static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
948 uint32_t index, uint64_t value)
949{
950 entry->index = index;
951 entry->data = value;
952}
953
317ac620 954static int kvm_put_msrs(CPUX86State *env, int level)
05330448
AL
955{
956 struct {
957 struct kvm_msrs info;
958 struct kvm_msr_entry entries[100];
959 } msr_data;
960 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 961 int n = 0;
05330448
AL
962
963 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
964 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
965 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 966 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 967 if (has_msr_star) {
b9bec74b
JK
968 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
969 }
c3a3a7d3 970 if (has_msr_hsave_pa) {
75b10c43 971 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 972 }
aa82ba54
LJ
973 if (has_msr_tsc_deadline) {
974 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
975 }
21e87c46
AK
976 if (has_msr_misc_enable) {
977 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
978 env->msr_ia32_misc_enable);
979 }
05330448 980#ifdef TARGET_X86_64
25d2e361
MT
981 if (lm_capable_kernel) {
982 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
983 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
984 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
985 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
986 }
05330448 987#endif
ea643051 988 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
989 /*
990 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
991 * writeback. Until this is fixed, we only write the offset to SMP
992 * guests after migration, desynchronizing the VCPUs, but avoiding
993 * huge jump-backs that would occur without any writeback at all.
994 */
995 if (smp_cpus == 1 || env->tsc != 0) {
996 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
997 }
ff5c186b
JK
998 }
999 /*
1000 * The following paravirtual MSRs have side effects on the guest or are
1001 * too heavy for normal writeback. Limit them to reset or full state
1002 * updates.
1003 */
1004 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
1005 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1006 env->system_time_msr);
1007 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
1008 if (has_msr_async_pf_en) {
1009 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1010 env->async_pf_en_msr);
1011 }
eab70139
VR
1012 if (hyperv_hypercall_available()) {
1013 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1014 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1015 }
1016 if (hyperv_vapic_recommended()) {
1017 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1018 }
ea643051 1019 }
57780495 1020 if (env->mcg_cap) {
d8da8574 1021 int i;
b9bec74b 1022
c34d440a
JK
1023 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1024 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1025 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1026 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1027 }
1028 }
1a03675d 1029
05330448
AL
1030 msr_data.info.nmsrs = n;
1031
1032 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1033
1034}
1035
1036
317ac620 1037static int kvm_get_fpu(CPUX86State *env)
05330448
AL
1038{
1039 struct kvm_fpu fpu;
1040 int i, ret;
1041
1042 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 1043 if (ret < 0) {
05330448 1044 return ret;
b9bec74b 1045 }
05330448
AL
1046
1047 env->fpstt = (fpu.fsw >> 11) & 7;
1048 env->fpus = fpu.fsw;
1049 env->fpuc = fpu.fcw;
42cc8fa6
JK
1050 env->fpop = fpu.last_opcode;
1051 env->fpip = fpu.last_ip;
1052 env->fpdp = fpu.last_dp;
b9bec74b
JK
1053 for (i = 0; i < 8; ++i) {
1054 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1055 }
05330448
AL
1056 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1057 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1058 env->mxcsr = fpu.mxcsr;
1059
1060 return 0;
1061}
1062
317ac620 1063static int kvm_get_xsave(CPUX86State *env)
f1665b21 1064{
fabacc0f 1065 struct kvm_xsave* xsave = env->kvm_xsave_buf;
f1665b21 1066 int ret, i;
42cc8fa6 1067 uint16_t cwd, swd, twd;
f1665b21 1068
b9bec74b 1069 if (!kvm_has_xsave()) {
f1665b21 1070 return kvm_get_fpu(env);
b9bec74b 1071 }
f1665b21 1072
f1665b21 1073 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f 1074 if (ret < 0) {
f1665b21 1075 return ret;
0f53994f 1076 }
f1665b21 1077
6b42494b
JK
1078 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1079 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1080 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1081 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
f1665b21
SY
1082 env->fpstt = (swd >> 11) & 7;
1083 env->fpus = swd;
1084 env->fpuc = cwd;
b9bec74b 1085 for (i = 0; i < 8; ++i) {
f1665b21 1086 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1087 }
42cc8fa6
JK
1088 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1089 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
1090 env->mxcsr = xsave->region[XSAVE_MXCSR];
1091 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1092 sizeof env->fpregs);
1093 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1094 sizeof env->xmm_regs);
1095 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1096 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1097 sizeof env->ymmh_regs);
1098 return 0;
f1665b21
SY
1099}
1100
317ac620 1101static int kvm_get_xcrs(CPUX86State *env)
f1665b21 1102{
f1665b21
SY
1103 int i, ret;
1104 struct kvm_xcrs xcrs;
1105
b9bec74b 1106 if (!kvm_has_xcrs()) {
f1665b21 1107 return 0;
b9bec74b 1108 }
f1665b21
SY
1109
1110 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 1111 if (ret < 0) {
f1665b21 1112 return ret;
b9bec74b 1113 }
f1665b21 1114
b9bec74b 1115 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
1116 /* Only support xcr0 now */
1117 if (xcrs.xcrs[0].xcr == 0) {
1118 env->xcr0 = xcrs.xcrs[0].value;
1119 break;
1120 }
b9bec74b 1121 }
f1665b21 1122 return 0;
f1665b21
SY
1123}
1124
317ac620 1125static int kvm_get_sregs(CPUX86State *env)
05330448
AL
1126{
1127 struct kvm_sregs sregs;
1128 uint32_t hflags;
0e607a80 1129 int bit, i, ret;
05330448
AL
1130
1131 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 1132 if (ret < 0) {
05330448 1133 return ret;
b9bec74b 1134 }
05330448 1135
0e607a80
JK
1136 /* There can only be one pending IRQ set in the bitmap at a time, so try
1137 to find it and save its number instead (-1 for none). */
1138 env->interrupt_injected = -1;
1139 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1140 if (sregs.interrupt_bitmap[i]) {
1141 bit = ctz64(sregs.interrupt_bitmap[i]);
1142 env->interrupt_injected = i * 64 + bit;
1143 break;
1144 }
1145 }
05330448
AL
1146
1147 get_seg(&env->segs[R_CS], &sregs.cs);
1148 get_seg(&env->segs[R_DS], &sregs.ds);
1149 get_seg(&env->segs[R_ES], &sregs.es);
1150 get_seg(&env->segs[R_FS], &sregs.fs);
1151 get_seg(&env->segs[R_GS], &sregs.gs);
1152 get_seg(&env->segs[R_SS], &sregs.ss);
1153
1154 get_seg(&env->tr, &sregs.tr);
1155 get_seg(&env->ldt, &sregs.ldt);
1156
1157 env->idt.limit = sregs.idt.limit;
1158 env->idt.base = sregs.idt.base;
1159 env->gdt.limit = sregs.gdt.limit;
1160 env->gdt.base = sregs.gdt.base;
1161
1162 env->cr[0] = sregs.cr0;
1163 env->cr[2] = sregs.cr2;
1164 env->cr[3] = sregs.cr3;
1165 env->cr[4] = sregs.cr4;
1166
05330448 1167 env->efer = sregs.efer;
cce47516
JK
1168
1169 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1170
b9bec74b
JK
1171#define HFLAG_COPY_MASK \
1172 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1173 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1174 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1175 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1176
1177 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1178 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1179 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1180 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1181 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1182 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1183 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1184
1185 if (env->efer & MSR_EFER_LMA) {
1186 hflags |= HF_LMA_MASK;
1187 }
1188
1189 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1190 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1191 } else {
1192 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1193 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1194 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1195 (DESC_B_SHIFT - HF_SS32_SHIFT);
1196 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1197 !(hflags & HF_CS32_MASK)) {
1198 hflags |= HF_ADDSEG_MASK;
1199 } else {
1200 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1201 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1202 }
05330448
AL
1203 }
1204 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1205
1206 return 0;
1207}
1208
317ac620 1209static int kvm_get_msrs(CPUX86State *env)
05330448
AL
1210{
1211 struct {
1212 struct kvm_msrs info;
1213 struct kvm_msr_entry entries[100];
1214 } msr_data;
1215 struct kvm_msr_entry *msrs = msr_data.entries;
1216 int ret, i, n;
1217
1218 n = 0;
1219 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1220 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1221 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1222 msrs[n++].index = MSR_PAT;
c3a3a7d3 1223 if (has_msr_star) {
b9bec74b
JK
1224 msrs[n++].index = MSR_STAR;
1225 }
c3a3a7d3 1226 if (has_msr_hsave_pa) {
75b10c43 1227 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1228 }
aa82ba54
LJ
1229 if (has_msr_tsc_deadline) {
1230 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1231 }
21e87c46
AK
1232 if (has_msr_misc_enable) {
1233 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1234 }
b8cc45d6
GC
1235
1236 if (!env->tsc_valid) {
1237 msrs[n++].index = MSR_IA32_TSC;
1354869c 1238 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1239 }
1240
05330448 1241#ifdef TARGET_X86_64
25d2e361
MT
1242 if (lm_capable_kernel) {
1243 msrs[n++].index = MSR_CSTAR;
1244 msrs[n++].index = MSR_KERNELGSBASE;
1245 msrs[n++].index = MSR_FMASK;
1246 msrs[n++].index = MSR_LSTAR;
1247 }
05330448 1248#endif
1a03675d
GC
1249 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1250 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1251 if (has_msr_async_pf_en) {
1252 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1253 }
1a03675d 1254
57780495
MT
1255 if (env->mcg_cap) {
1256 msrs[n++].index = MSR_MCG_STATUS;
1257 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1258 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1259 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1260 }
57780495 1261 }
57780495 1262
05330448
AL
1263 msr_data.info.nmsrs = n;
1264 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1265 if (ret < 0) {
05330448 1266 return ret;
b9bec74b 1267 }
05330448
AL
1268
1269 for (i = 0; i < ret; i++) {
1270 switch (msrs[i].index) {
1271 case MSR_IA32_SYSENTER_CS:
1272 env->sysenter_cs = msrs[i].data;
1273 break;
1274 case MSR_IA32_SYSENTER_ESP:
1275 env->sysenter_esp = msrs[i].data;
1276 break;
1277 case MSR_IA32_SYSENTER_EIP:
1278 env->sysenter_eip = msrs[i].data;
1279 break;
0c03266a
JK
1280 case MSR_PAT:
1281 env->pat = msrs[i].data;
1282 break;
05330448
AL
1283 case MSR_STAR:
1284 env->star = msrs[i].data;
1285 break;
1286#ifdef TARGET_X86_64
1287 case MSR_CSTAR:
1288 env->cstar = msrs[i].data;
1289 break;
1290 case MSR_KERNELGSBASE:
1291 env->kernelgsbase = msrs[i].data;
1292 break;
1293 case MSR_FMASK:
1294 env->fmask = msrs[i].data;
1295 break;
1296 case MSR_LSTAR:
1297 env->lstar = msrs[i].data;
1298 break;
1299#endif
1300 case MSR_IA32_TSC:
1301 env->tsc = msrs[i].data;
1302 break;
aa82ba54
LJ
1303 case MSR_IA32_TSCDEADLINE:
1304 env->tsc_deadline = msrs[i].data;
1305 break;
aa851e36
MT
1306 case MSR_VM_HSAVE_PA:
1307 env->vm_hsave = msrs[i].data;
1308 break;
1a03675d
GC
1309 case MSR_KVM_SYSTEM_TIME:
1310 env->system_time_msr = msrs[i].data;
1311 break;
1312 case MSR_KVM_WALL_CLOCK:
1313 env->wall_clock_msr = msrs[i].data;
1314 break;
57780495
MT
1315 case MSR_MCG_STATUS:
1316 env->mcg_status = msrs[i].data;
1317 break;
1318 case MSR_MCG_CTL:
1319 env->mcg_ctl = msrs[i].data;
1320 break;
21e87c46
AK
1321 case MSR_IA32_MISC_ENABLE:
1322 env->msr_ia32_misc_enable = msrs[i].data;
1323 break;
57780495 1324 default:
57780495
MT
1325 if (msrs[i].index >= MSR_MC0_CTL &&
1326 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1327 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 1328 }
d8da8574 1329 break;
f6584ee2
GN
1330 case MSR_KVM_ASYNC_PF_EN:
1331 env->async_pf_en_msr = msrs[i].data;
1332 break;
05330448
AL
1333 }
1334 }
1335
1336 return 0;
1337}
1338
317ac620 1339static int kvm_put_mp_state(CPUX86State *env)
9bdbe550
HB
1340{
1341 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1342
1343 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1344}
1345
317ac620 1346static int kvm_get_mp_state(CPUX86State *env)
9bdbe550
HB
1347{
1348 struct kvm_mp_state mp_state;
1349 int ret;
1350
1351 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1352 if (ret < 0) {
1353 return ret;
1354 }
1355 env->mp_state = mp_state.mp_state;
c14750e8
JK
1356 if (kvm_irqchip_in_kernel()) {
1357 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1358 }
9bdbe550
HB
1359 return 0;
1360}
1361
317ac620 1362static int kvm_get_apic(CPUX86State *env)
680c1c6f
JK
1363{
1364 DeviceState *apic = env->apic_state;
1365 struct kvm_lapic_state kapic;
1366 int ret;
1367
3d4b2649 1368 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1369 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1370 if (ret < 0) {
1371 return ret;
1372 }
1373
1374 kvm_get_apic_state(apic, &kapic);
1375 }
1376 return 0;
1377}
1378
317ac620 1379static int kvm_put_apic(CPUX86State *env)
680c1c6f
JK
1380{
1381 DeviceState *apic = env->apic_state;
1382 struct kvm_lapic_state kapic;
1383
3d4b2649 1384 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1385 kvm_put_apic_state(apic, &kapic);
1386
1387 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1388 }
1389 return 0;
1390}
1391
317ac620 1392static int kvm_put_vcpu_events(CPUX86State *env, int level)
a0fb002c 1393{
a0fb002c
JK
1394 struct kvm_vcpu_events events;
1395
1396 if (!kvm_has_vcpu_events()) {
1397 return 0;
1398 }
1399
31827373
JK
1400 events.exception.injected = (env->exception_injected >= 0);
1401 events.exception.nr = env->exception_injected;
a0fb002c
JK
1402 events.exception.has_error_code = env->has_error_code;
1403 events.exception.error_code = env->error_code;
7e680753 1404 events.exception.pad = 0;
a0fb002c
JK
1405
1406 events.interrupt.injected = (env->interrupt_injected >= 0);
1407 events.interrupt.nr = env->interrupt_injected;
1408 events.interrupt.soft = env->soft_interrupt;
1409
1410 events.nmi.injected = env->nmi_injected;
1411 events.nmi.pending = env->nmi_pending;
1412 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 1413 events.nmi.pad = 0;
a0fb002c
JK
1414
1415 events.sipi_vector = env->sipi_vector;
1416
ea643051
JK
1417 events.flags = 0;
1418 if (level >= KVM_PUT_RESET_STATE) {
1419 events.flags |=
1420 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1421 }
aee028b9 1422
a0fb002c 1423 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
1424}
1425
317ac620 1426static int kvm_get_vcpu_events(CPUX86State *env)
a0fb002c 1427{
a0fb002c
JK
1428 struct kvm_vcpu_events events;
1429 int ret;
1430
1431 if (!kvm_has_vcpu_events()) {
1432 return 0;
1433 }
1434
1435 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1436 if (ret < 0) {
1437 return ret;
1438 }
31827373 1439 env->exception_injected =
a0fb002c
JK
1440 events.exception.injected ? events.exception.nr : -1;
1441 env->has_error_code = events.exception.has_error_code;
1442 env->error_code = events.exception.error_code;
1443
1444 env->interrupt_injected =
1445 events.interrupt.injected ? events.interrupt.nr : -1;
1446 env->soft_interrupt = events.interrupt.soft;
1447
1448 env->nmi_injected = events.nmi.injected;
1449 env->nmi_pending = events.nmi.pending;
1450 if (events.nmi.masked) {
1451 env->hflags2 |= HF2_NMI_MASK;
1452 } else {
1453 env->hflags2 &= ~HF2_NMI_MASK;
1454 }
1455
1456 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
1457
1458 return 0;
1459}
1460
317ac620 1461static int kvm_guest_debug_workarounds(CPUX86State *env)
b0b1d690
JK
1462{
1463 int ret = 0;
b0b1d690
JK
1464 unsigned long reinject_trap = 0;
1465
1466 if (!kvm_has_vcpu_events()) {
1467 if (env->exception_injected == 1) {
1468 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1469 } else if (env->exception_injected == 3) {
1470 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1471 }
1472 env->exception_injected = -1;
1473 }
1474
1475 /*
1476 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1477 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1478 * by updating the debug state once again if single-stepping is on.
1479 * Another reason to call kvm_update_guest_debug here is a pending debug
1480 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1481 * reinject them via SET_GUEST_DEBUG.
1482 */
1483 if (reinject_trap ||
1484 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1485 ret = kvm_update_guest_debug(env, reinject_trap);
1486 }
b0b1d690
JK
1487 return ret;
1488}
1489
317ac620 1490static int kvm_put_debugregs(CPUX86State *env)
ff44f1a3 1491{
ff44f1a3
JK
1492 struct kvm_debugregs dbgregs;
1493 int i;
1494
1495 if (!kvm_has_debugregs()) {
1496 return 0;
1497 }
1498
1499 for (i = 0; i < 4; i++) {
1500 dbgregs.db[i] = env->dr[i];
1501 }
1502 dbgregs.dr6 = env->dr[6];
1503 dbgregs.dr7 = env->dr[7];
1504 dbgregs.flags = 0;
1505
1506 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
1507}
1508
317ac620 1509static int kvm_get_debugregs(CPUX86State *env)
ff44f1a3 1510{
ff44f1a3
JK
1511 struct kvm_debugregs dbgregs;
1512 int i, ret;
1513
1514 if (!kvm_has_debugregs()) {
1515 return 0;
1516 }
1517
1518 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1519 if (ret < 0) {
b9bec74b 1520 return ret;
ff44f1a3
JK
1521 }
1522 for (i = 0; i < 4; i++) {
1523 env->dr[i] = dbgregs.db[i];
1524 }
1525 env->dr[4] = env->dr[6] = dbgregs.dr6;
1526 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
1527
1528 return 0;
1529}
1530
317ac620 1531int kvm_arch_put_registers(CPUX86State *env, int level)
05330448
AL
1532{
1533 int ret;
1534
b7680cb6 1535 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1536
05330448 1537 ret = kvm_getput_regs(env, 1);
b9bec74b 1538 if (ret < 0) {
05330448 1539 return ret;
b9bec74b 1540 }
f1665b21 1541 ret = kvm_put_xsave(env);
b9bec74b 1542 if (ret < 0) {
f1665b21 1543 return ret;
b9bec74b 1544 }
f1665b21 1545 ret = kvm_put_xcrs(env);
b9bec74b 1546 if (ret < 0) {
05330448 1547 return ret;
b9bec74b 1548 }
05330448 1549 ret = kvm_put_sregs(env);
b9bec74b 1550 if (ret < 0) {
05330448 1551 return ret;
b9bec74b 1552 }
ab443475
JK
1553 /* must be before kvm_put_msrs */
1554 ret = kvm_inject_mce_oldstyle(env);
1555 if (ret < 0) {
1556 return ret;
1557 }
ea643051 1558 ret = kvm_put_msrs(env, level);
b9bec74b 1559 if (ret < 0) {
05330448 1560 return ret;
b9bec74b 1561 }
ea643051
JK
1562 if (level >= KVM_PUT_RESET_STATE) {
1563 ret = kvm_put_mp_state(env);
b9bec74b 1564 if (ret < 0) {
ea643051 1565 return ret;
b9bec74b 1566 }
680c1c6f
JK
1567 ret = kvm_put_apic(env);
1568 if (ret < 0) {
1569 return ret;
1570 }
ea643051 1571 }
ea643051 1572 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1573 if (ret < 0) {
a0fb002c 1574 return ret;
b9bec74b 1575 }
0d75a9ec 1576 ret = kvm_put_debugregs(env);
b9bec74b 1577 if (ret < 0) {
b0b1d690 1578 return ret;
b9bec74b 1579 }
b0b1d690
JK
1580 /* must be last */
1581 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1582 if (ret < 0) {
ff44f1a3 1583 return ret;
b9bec74b 1584 }
05330448
AL
1585 return 0;
1586}
1587
317ac620 1588int kvm_arch_get_registers(CPUX86State *env)
05330448
AL
1589{
1590 int ret;
1591
b7680cb6 1592 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1593
05330448 1594 ret = kvm_getput_regs(env, 0);
b9bec74b 1595 if (ret < 0) {
05330448 1596 return ret;
b9bec74b 1597 }
f1665b21 1598 ret = kvm_get_xsave(env);
b9bec74b 1599 if (ret < 0) {
f1665b21 1600 return ret;
b9bec74b 1601 }
f1665b21 1602 ret = kvm_get_xcrs(env);
b9bec74b 1603 if (ret < 0) {
05330448 1604 return ret;
b9bec74b 1605 }
05330448 1606 ret = kvm_get_sregs(env);
b9bec74b 1607 if (ret < 0) {
05330448 1608 return ret;
b9bec74b 1609 }
05330448 1610 ret = kvm_get_msrs(env);
b9bec74b 1611 if (ret < 0) {
05330448 1612 return ret;
b9bec74b 1613 }
5a2e3c2e 1614 ret = kvm_get_mp_state(env);
b9bec74b 1615 if (ret < 0) {
5a2e3c2e 1616 return ret;
b9bec74b 1617 }
680c1c6f
JK
1618 ret = kvm_get_apic(env);
1619 if (ret < 0) {
1620 return ret;
1621 }
a0fb002c 1622 ret = kvm_get_vcpu_events(env);
b9bec74b 1623 if (ret < 0) {
a0fb002c 1624 return ret;
b9bec74b 1625 }
ff44f1a3 1626 ret = kvm_get_debugregs(env);
b9bec74b 1627 if (ret < 0) {
ff44f1a3 1628 return ret;
b9bec74b 1629 }
05330448
AL
1630 return 0;
1631}
1632
317ac620 1633void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
05330448 1634{
ce377af3
JK
1635 int ret;
1636
276ce815
LJ
1637 /* Inject NMI */
1638 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1639 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1640 DPRINTF("injected NMI\n");
ce377af3
JK
1641 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1642 if (ret < 0) {
1643 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1644 strerror(-ret));
1645 }
276ce815
LJ
1646 }
1647
db1669bc 1648 if (!kvm_irqchip_in_kernel()) {
d362e757
JK
1649 /* Force the VCPU out of its inner loop to process any INIT requests
1650 * or pending TPR access reports. */
1651 if (env->interrupt_request &
1652 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
db1669bc 1653 env->exit_request = 1;
05330448 1654 }
05330448 1655
db1669bc
JK
1656 /* Try to inject an interrupt if the guest can accept it */
1657 if (run->ready_for_interrupt_injection &&
1658 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1659 (env->eflags & IF_MASK)) {
1660 int irq;
1661
1662 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1663 irq = cpu_get_pic_interrupt(env);
1664 if (irq >= 0) {
1665 struct kvm_interrupt intr;
1666
1667 intr.irq = irq;
db1669bc 1668 DPRINTF("injected interrupt %d\n", irq);
ce377af3
JK
1669 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1670 if (ret < 0) {
1671 fprintf(stderr,
1672 "KVM: injection failed, interrupt lost (%s)\n",
1673 strerror(-ret));
1674 }
db1669bc
JK
1675 }
1676 }
05330448 1677
db1669bc
JK
1678 /* If we have an interrupt but the guest is not ready to receive an
1679 * interrupt, request an interrupt window exit. This will
1680 * cause a return to userspace as soon as the guest is ready to
1681 * receive interrupts. */
1682 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1683 run->request_interrupt_window = 1;
1684 } else {
1685 run->request_interrupt_window = 0;
1686 }
1687
1688 DPRINTF("setting tpr\n");
1689 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1690 }
05330448
AL
1691}
1692
317ac620 1693void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
05330448 1694{
b9bec74b 1695 if (run->if_flag) {
05330448 1696 env->eflags |= IF_MASK;
b9bec74b 1697 } else {
05330448 1698 env->eflags &= ~IF_MASK;
b9bec74b 1699 }
4a942cea
BS
1700 cpu_set_apic_tpr(env->apic_state, run->cr8);
1701 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1702}
1703
317ac620 1704int kvm_arch_process_async_events(CPUX86State *env)
0af691d7 1705{
232fc23b
AF
1706 X86CPU *cpu = x86_env_get_cpu(env);
1707
ab443475
JK
1708 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1709 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1710 assert(env->mcg_cap);
1711
1712 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1713
1714 kvm_cpu_synchronize_state(env);
1715
1716 if (env->exception_injected == EXCP08_DBLE) {
1717 /* this means triple fault */
1718 qemu_system_reset_request();
1719 env->exit_request = 1;
1720 return 0;
1721 }
1722 env->exception_injected = EXCP12_MCHK;
1723 env->has_error_code = 0;
1724
1725 env->halted = 0;
1726 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1727 env->mp_state = KVM_MP_STATE_RUNNABLE;
1728 }
1729 }
1730
db1669bc
JK
1731 if (kvm_irqchip_in_kernel()) {
1732 return 0;
1733 }
1734
4601f7b0
JK
1735 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1736 (env->eflags & IF_MASK)) ||
1737 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
6792a57b
JK
1738 env->halted = 0;
1739 }
0af691d7
MT
1740 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1741 kvm_cpu_synchronize_state(env);
232fc23b 1742 do_cpu_init(cpu);
0af691d7 1743 }
0af691d7
MT
1744 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1745 kvm_cpu_synchronize_state(env);
232fc23b 1746 do_cpu_sipi(cpu);
0af691d7 1747 }
d362e757
JK
1748 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1749 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1750 kvm_cpu_synchronize_state(env);
1751 apic_handle_tpr_access_report(env->apic_state, env->eip,
1752 env->tpr_access_type);
1753 }
0af691d7
MT
1754
1755 return env->halted;
1756}
1757
317ac620 1758static int kvm_handle_halt(CPUX86State *env)
05330448
AL
1759{
1760 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1761 (env->eflags & IF_MASK)) &&
1762 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1763 env->halted = 1;
bb4ea393 1764 return EXCP_HLT;
05330448
AL
1765 }
1766
bb4ea393 1767 return 0;
05330448
AL
1768}
1769
317ac620 1770static int kvm_handle_tpr_access(CPUX86State *env)
d362e757
JK
1771{
1772 struct kvm_run *run = env->kvm_run;
1773
1774 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1775 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1776 : TPR_ACCESS_READ);
1777 return 1;
1778}
1779
317ac620 1780int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
e22a25c9 1781{
38972938 1782 static const uint8_t int3 = 0xcc;
64bf3f4e 1783
e22a25c9 1784 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1785 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1786 return -EINVAL;
b9bec74b 1787 }
e22a25c9
AL
1788 return 0;
1789}
1790
317ac620 1791int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
1792{
1793 uint8_t int3;
1794
1795 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1796 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1797 return -EINVAL;
b9bec74b 1798 }
e22a25c9
AL
1799 return 0;
1800}
1801
1802static struct {
1803 target_ulong addr;
1804 int len;
1805 int type;
1806} hw_breakpoint[4];
1807
1808static int nb_hw_breakpoint;
1809
1810static int find_hw_breakpoint(target_ulong addr, int len, int type)
1811{
1812 int n;
1813
b9bec74b 1814 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1815 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1816 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1817 return n;
b9bec74b
JK
1818 }
1819 }
e22a25c9
AL
1820 return -1;
1821}
1822
1823int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1824 target_ulong len, int type)
1825{
1826 switch (type) {
1827 case GDB_BREAKPOINT_HW:
1828 len = 1;
1829 break;
1830 case GDB_WATCHPOINT_WRITE:
1831 case GDB_WATCHPOINT_ACCESS:
1832 switch (len) {
1833 case 1:
1834 break;
1835 case 2:
1836 case 4:
1837 case 8:
b9bec74b 1838 if (addr & (len - 1)) {
e22a25c9 1839 return -EINVAL;
b9bec74b 1840 }
e22a25c9
AL
1841 break;
1842 default:
1843 return -EINVAL;
1844 }
1845 break;
1846 default:
1847 return -ENOSYS;
1848 }
1849
b9bec74b 1850 if (nb_hw_breakpoint == 4) {
e22a25c9 1851 return -ENOBUFS;
b9bec74b
JK
1852 }
1853 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1854 return -EEXIST;
b9bec74b 1855 }
e22a25c9
AL
1856 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1857 hw_breakpoint[nb_hw_breakpoint].len = len;
1858 hw_breakpoint[nb_hw_breakpoint].type = type;
1859 nb_hw_breakpoint++;
1860
1861 return 0;
1862}
1863
1864int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1865 target_ulong len, int type)
1866{
1867 int n;
1868
1869 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1870 if (n < 0) {
e22a25c9 1871 return -ENOENT;
b9bec74b 1872 }
e22a25c9
AL
1873 nb_hw_breakpoint--;
1874 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1875
1876 return 0;
1877}
1878
1879void kvm_arch_remove_all_hw_breakpoints(void)
1880{
1881 nb_hw_breakpoint = 0;
1882}
1883
1884static CPUWatchpoint hw_watchpoint;
1885
f2574737 1886static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
e22a25c9 1887{
f2574737 1888 int ret = 0;
e22a25c9
AL
1889 int n;
1890
1891 if (arch_info->exception == 1) {
1892 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1893 if (cpu_single_env->singlestep_enabled) {
f2574737 1894 ret = EXCP_DEBUG;
b9bec74b 1895 }
e22a25c9 1896 } else {
b9bec74b
JK
1897 for (n = 0; n < 4; n++) {
1898 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1899 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1900 case 0x0:
f2574737 1901 ret = EXCP_DEBUG;
e22a25c9
AL
1902 break;
1903 case 0x1:
f2574737 1904 ret = EXCP_DEBUG;
e22a25c9
AL
1905 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1906 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1907 hw_watchpoint.flags = BP_MEM_WRITE;
1908 break;
1909 case 0x3:
f2574737 1910 ret = EXCP_DEBUG;
e22a25c9
AL
1911 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1912 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1913 hw_watchpoint.flags = BP_MEM_ACCESS;
1914 break;
1915 }
b9bec74b
JK
1916 }
1917 }
e22a25c9 1918 }
b9bec74b 1919 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
f2574737 1920 ret = EXCP_DEBUG;
b9bec74b 1921 }
f2574737 1922 if (ret == 0) {
b0b1d690
JK
1923 cpu_synchronize_state(cpu_single_env);
1924 assert(cpu_single_env->exception_injected == -1);
1925
f2574737 1926 /* pass to guest */
b0b1d690
JK
1927 cpu_single_env->exception_injected = arch_info->exception;
1928 cpu_single_env->has_error_code = 0;
1929 }
e22a25c9 1930
f2574737 1931 return ret;
e22a25c9
AL
1932}
1933
317ac620 1934void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
e22a25c9
AL
1935{
1936 const uint8_t type_code[] = {
1937 [GDB_BREAKPOINT_HW] = 0x0,
1938 [GDB_WATCHPOINT_WRITE] = 0x1,
1939 [GDB_WATCHPOINT_ACCESS] = 0x3
1940 };
1941 const uint8_t len_code[] = {
1942 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1943 };
1944 int n;
1945
b9bec74b 1946 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 1947 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 1948 }
e22a25c9
AL
1949 if (nb_hw_breakpoint > 0) {
1950 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1951 dbg->arch.debugreg[7] = 0x0600;
1952 for (n = 0; n < nb_hw_breakpoint; n++) {
1953 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1954 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1955 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 1956 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
1957 }
1958 }
1959}
4513d923 1960
2a4dac83
JK
1961static bool host_supports_vmx(void)
1962{
1963 uint32_t ecx, unused;
1964
1965 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1966 return ecx & CPUID_EXT_VMX;
1967}
1968
1969#define VMX_INVALID_GUEST_STATE 0x80000021
1970
317ac620 1971int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2a4dac83
JK
1972{
1973 uint64_t code;
1974 int ret;
1975
1976 switch (run->exit_reason) {
1977 case KVM_EXIT_HLT:
1978 DPRINTF("handle_hlt\n");
1979 ret = kvm_handle_halt(env);
1980 break;
1981 case KVM_EXIT_SET_TPR:
1982 ret = 0;
1983 break;
d362e757
JK
1984 case KVM_EXIT_TPR_ACCESS:
1985 ret = kvm_handle_tpr_access(env);
1986 break;
2a4dac83
JK
1987 case KVM_EXIT_FAIL_ENTRY:
1988 code = run->fail_entry.hardware_entry_failure_reason;
1989 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1990 code);
1991 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1992 fprintf(stderr,
12619721 1993 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
1994 "unrestricted mode\n"
1995 "support, the failure can be most likely due to the guest "
1996 "entering an invalid\n"
1997 "state for Intel VT. For example, the guest maybe running "
1998 "in big real mode\n"
1999 "which is not supported on less recent Intel processors."
2000 "\n\n");
2001 }
2002 ret = -1;
2003 break;
2004 case KVM_EXIT_EXCEPTION:
2005 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2006 run->ex.exception, run->ex.error_code);
2007 ret = -1;
2008 break;
f2574737
JK
2009 case KVM_EXIT_DEBUG:
2010 DPRINTF("kvm_exit_debug\n");
2011 ret = kvm_handle_debug(&run->debug.arch);
2012 break;
2a4dac83
JK
2013 default:
2014 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2015 ret = -1;
2016 break;
2017 }
2018
2019 return ret;
2020}
2021
317ac620 2022bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
4513d923 2023{
d1f86636 2024 kvm_cpu_synchronize_state(env);
b9bec74b
JK
2025 return !(env->cr[0] & CR0_PE_MASK) ||
2026 ((env->segs[R_CS].selector & 3) != 3);
4513d923 2027}
84b058d7
JK
2028
2029void kvm_arch_init_irq_routing(KVMState *s)
2030{
2031 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2032 /* If kernel can't do irq routing, interrupt source
2033 * override 0->2 cannot be set up as required by HPET.
2034 * So we have to disable it.
2035 */
2036 no_hpet = 1;
2037 }
2038}