]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
kvm: Align kvm_arch_handle_exit to kvm_cpu_exec changes
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
21
22#include "qemu-common.h"
23#include "sysemu.h"
24#include "kvm.h"
25#include "cpu.h"
e22a25c9 26#include "gdbstub.h"
0e607a80 27#include "host-utils.h"
4c5b10b7 28#include "hw/pc.h"
408392b3 29#include "hw/apic.h"
35bed8ee 30#include "ioport.h"
05330448 31
bb0300dc
GN
32#ifdef CONFIG_KVM_PARA
33#include <linux/kvm_para.h>
34#endif
35//
05330448
AL
36//#define DEBUG_KVM
37
38#ifdef DEBUG_KVM
8c0d577e 39#define DPRINTF(fmt, ...) \
05330448
AL
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41#else
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { } while (0)
44#endif
45
1a03675d
GC
46#define MSR_KVM_WALL_CLOCK 0x11
47#define MSR_KVM_SYSTEM_TIME 0x12
48
c0532a76
MT
49#ifndef BUS_MCEERR_AR
50#define BUS_MCEERR_AR 4
51#endif
52#ifndef BUS_MCEERR_AO
53#define BUS_MCEERR_AO 5
54#endif
55
94a8d39a
JK
56const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61};
25d2e361 62
c3a3a7d3
JK
63static bool has_msr_star;
64static bool has_msr_hsave_pa;
c5999bfc
JK
65#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
66static bool has_msr_async_pf_en;
67#endif
25d2e361 68static int lm_capable_kernel;
b827df58
AK
69
70static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
71{
72 struct kvm_cpuid2 *cpuid;
73 int r, size;
74
75 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
76 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
77 cpuid->nent = max;
78 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
79 if (r == 0 && cpuid->nent >= max) {
80 r = -E2BIG;
81 }
b827df58
AK
82 if (r < 0) {
83 if (r == -E2BIG) {
84 qemu_free(cpuid);
85 return NULL;
86 } else {
87 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
88 strerror(-r));
89 exit(1);
90 }
91 }
92 return cpuid;
93}
94
c958a8bd
SY
95uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
96 uint32_t index, int reg)
b827df58
AK
97{
98 struct kvm_cpuid2 *cpuid;
99 int i, max;
100 uint32_t ret = 0;
101 uint32_t cpuid_1_edx;
102
b827df58
AK
103 max = 1;
104 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
105 max *= 2;
106 }
107
108 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
109 if (cpuid->entries[i].function == function &&
110 cpuid->entries[i].index == index) {
b827df58
AK
111 switch (reg) {
112 case R_EAX:
113 ret = cpuid->entries[i].eax;
114 break;
115 case R_EBX:
116 ret = cpuid->entries[i].ebx;
117 break;
118 case R_ECX:
119 ret = cpuid->entries[i].ecx;
120 break;
121 case R_EDX:
122 ret = cpuid->entries[i].edx;
19ccb8ea
JK
123 switch (function) {
124 case 1:
125 /* KVM before 2.6.30 misreports the following features */
126 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
127 break;
128 case 0x80000001:
b827df58
AK
129 /* On Intel, kvm returns cpuid according to the Intel spec,
130 * so add missing bits according to the AMD spec:
131 */
c958a8bd 132 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
c1667e40 133 ret |= cpuid_1_edx & 0x183f7ff;
19ccb8ea 134 break;
b827df58
AK
135 }
136 break;
137 }
138 }
139 }
140
141 qemu_free(cpuid);
142
143 return ret;
144}
145
bb0300dc
GN
146#ifdef CONFIG_KVM_PARA
147struct kvm_para_features {
b9bec74b
JK
148 int cap;
149 int feature;
bb0300dc 150} para_features[] = {
b9bec74b 151 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
b9bec74b 152 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
b9bec74b 153 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
f6584ee2 154#ifdef KVM_CAP_ASYNC_PF
b9bec74b 155 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
bb0300dc 156#endif
b9bec74b 157 { -1, -1 }
bb0300dc
GN
158};
159
160static int get_para_features(CPUState *env)
161{
b9bec74b 162 int i, features = 0;
bb0300dc 163
b9bec74b
JK
164 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
165 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
166 features |= (1 << para_features[i].feature);
bb0300dc 167 }
b9bec74b 168 }
b3a98367 169#ifdef KVM_CAP_ASYNC_PF
c5999bfc 170 has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
b3a98367 171#endif
b9bec74b 172 return features;
bb0300dc 173}
419fb20a 174#endif /* CONFIG_KVM_PARA */
bb0300dc 175
3c85e74f
HY
176typedef struct HWPoisonPage {
177 ram_addr_t ram_addr;
178 QLIST_ENTRY(HWPoisonPage) list;
179} HWPoisonPage;
180
181static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
182 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
183
184static void kvm_unpoison_all(void *param)
185{
186 HWPoisonPage *page, *next_page;
187
188 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
189 QLIST_REMOVE(page, list);
190 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
191 qemu_free(page);
192 }
193}
194
e7701825 195#ifdef KVM_CAP_MCE
3c85e74f
HY
196static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
197{
198 HWPoisonPage *page;
199
200 QLIST_FOREACH(page, &hwpoison_page_list, list) {
201 if (page->ram_addr == ram_addr) {
202 return;
203 }
204 }
205 page = qemu_malloc(sizeof(HWPoisonPage));
206 page->ram_addr = ram_addr;
207 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
208}
209
e7701825
MT
210static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
211 int *max_banks)
212{
213 int r;
214
14a09518 215 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
216 if (r > 0) {
217 *max_banks = r;
218 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
219 }
220 return -ENOSYS;
221}
222
c34d440a 223static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
e7701825 224{
c34d440a
JK
225 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
226 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
227 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 228
c34d440a
JK
229 if (code == BUS_MCEERR_AR) {
230 status |= MCI_STATUS_AR | 0x134;
231 mcg_status |= MCG_STATUS_EIPV;
232 } else {
233 status |= 0xc0;
234 mcg_status |= MCG_STATUS_RIPV;
419fb20a 235 }
c34d440a
JK
236 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
237 (MCM_ADDR_PHYS << 6) | 0xc,
238 cpu_x86_support_mca_broadcast(env) ?
239 MCE_INJECT_BROADCAST : 0);
419fb20a
JK
240}
241#endif /* KVM_CAP_MCE */
242
243static void hardware_memory_error(void)
244{
245 fprintf(stderr, "Hardware memory error!\n");
246 exit(1);
247}
248
249int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
250{
251#ifdef KVM_CAP_MCE
419fb20a
JK
252 ram_addr_t ram_addr;
253 target_phys_addr_t paddr;
254
255 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a
JK
256 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
257 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
258 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
259 &paddr)) {
419fb20a
JK
260 fprintf(stderr, "Hardware memory error for memory used by "
261 "QEMU itself instead of guest system!\n");
262 /* Hope we are lucky for AO MCE */
263 if (code == BUS_MCEERR_AO) {
264 return 0;
265 } else {
266 hardware_memory_error();
267 }
268 }
3c85e74f 269 kvm_hwpoison_page_add(ram_addr);
c34d440a 270 kvm_mce_inject(env, paddr, code);
419fb20a
JK
271 } else
272#endif /* KVM_CAP_MCE */
273 {
274 if (code == BUS_MCEERR_AO) {
275 return 0;
276 } else if (code == BUS_MCEERR_AR) {
277 hardware_memory_error();
278 } else {
279 return 1;
280 }
281 }
282 return 0;
283}
284
285int kvm_arch_on_sigbus(int code, void *addr)
286{
287#ifdef KVM_CAP_MCE
288 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a
JK
289 ram_addr_t ram_addr;
290 target_phys_addr_t paddr;
291
292 /* Hope we are lucky for AO MCE */
c34d440a 293 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
419fb20a
JK
294 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
295 &paddr)) {
296 fprintf(stderr, "Hardware memory error for memory used by "
297 "QEMU itself instead of guest system!: %p\n", addr);
298 return 0;
299 }
3c85e74f 300 kvm_hwpoison_page_add(ram_addr);
c34d440a 301 kvm_mce_inject(first_cpu, paddr, code);
419fb20a
JK
302 } else
303#endif /* KVM_CAP_MCE */
304 {
305 if (code == BUS_MCEERR_AO) {
306 return 0;
307 } else if (code == BUS_MCEERR_AR) {
308 hardware_memory_error();
309 } else {
310 return 1;
311 }
312 }
313 return 0;
314}
e7701825 315
ab443475
JK
316static int kvm_inject_mce_oldstyle(CPUState *env)
317{
318#ifdef KVM_CAP_MCE
319 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
320 unsigned int bank, bank_num = env->mcg_cap & 0xff;
321 struct kvm_x86_mce mce;
322
323 env->exception_injected = -1;
324
325 /*
326 * There must be at least one bank in use if an MCE is pending.
327 * Find it and use its values for the event injection.
328 */
329 for (bank = 0; bank < bank_num; bank++) {
330 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
331 break;
332 }
333 }
334 assert(bank < bank_num);
335
336 mce.bank = bank;
337 mce.status = env->mce_banks[bank * 4 + 1];
338 mce.mcg_status = env->mcg_status;
339 mce.addr = env->mce_banks[bank * 4 + 2];
340 mce.misc = env->mce_banks[bank * 4 + 3];
341
342 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
343 }
344#endif /* KVM_CAP_MCE */
345 return 0;
346}
347
b8cc45d6
GC
348static void cpu_update_state(void *opaque, int running, int reason)
349{
350 CPUState *env = opaque;
351
352 if (running) {
353 env->tsc_valid = false;
354 }
355}
356
05330448
AL
357int kvm_arch_init_vcpu(CPUState *env)
358{
359 struct {
486bd5a2
AL
360 struct kvm_cpuid2 cpuid;
361 struct kvm_cpuid_entry2 entries[100];
05330448 362 } __attribute__((packed)) cpuid_data;
486bd5a2 363 uint32_t limit, i, j, cpuid_i;
a33609ca 364 uint32_t unused;
bb0300dc 365 struct kvm_cpuid_entry2 *c;
521f0798 366#ifdef CONFIG_KVM_PARA
bb0300dc
GN
367 uint32_t signature[3];
368#endif
05330448 369
c958a8bd 370 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
6c0d7ee8
AP
371
372 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
c958a8bd 373 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
6c0d7ee8
AP
374 env->cpuid_ext_features |= i;
375
457dfed6 376 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 377 0, R_EDX);
457dfed6 378 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 379 0, R_ECX);
296acb64
JR
380 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
381 0, R_EDX);
382
6c1f42fe 383
05330448
AL
384 cpuid_i = 0;
385
bb0300dc
GN
386#ifdef CONFIG_KVM_PARA
387 /* Paravirtualization CPUIDs */
388 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
389 c = &cpuid_data.entries[cpuid_i++];
390 memset(c, 0, sizeof(*c));
391 c->function = KVM_CPUID_SIGNATURE;
392 c->eax = 0;
393 c->ebx = signature[0];
394 c->ecx = signature[1];
395 c->edx = signature[2];
396
397 c = &cpuid_data.entries[cpuid_i++];
398 memset(c, 0, sizeof(*c));
399 c->function = KVM_CPUID_FEATURES;
400 c->eax = env->cpuid_kvm_features & get_para_features(env);
401#endif
402
a33609ca 403 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
404
405 for (i = 0; i <= limit; i++) {
bb0300dc 406 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
407
408 switch (i) {
a36b1029
AL
409 case 2: {
410 /* Keep reading function 2 till all the input is received */
411 int times;
412
a36b1029 413 c->function = i;
a33609ca
AL
414 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
415 KVM_CPUID_FLAG_STATE_READ_NEXT;
416 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
417 times = c->eax & 0xff;
a36b1029
AL
418
419 for (j = 1; j < times; ++j) {
a33609ca 420 c = &cpuid_data.entries[cpuid_i++];
a36b1029 421 c->function = i;
a33609ca
AL
422 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
423 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
424 }
425 break;
426 }
486bd5a2
AL
427 case 4:
428 case 0xb:
429 case 0xd:
430 for (j = 0; ; j++) {
486bd5a2
AL
431 c->function = i;
432 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
433 c->index = j;
a33609ca 434 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 435
b9bec74b 436 if (i == 4 && c->eax == 0) {
486bd5a2 437 break;
b9bec74b
JK
438 }
439 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 440 break;
b9bec74b
JK
441 }
442 if (i == 0xd && c->eax == 0) {
486bd5a2 443 break;
b9bec74b 444 }
a33609ca 445 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
446 }
447 break;
448 default:
486bd5a2 449 c->function = i;
a33609ca
AL
450 c->flags = 0;
451 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
452 break;
453 }
05330448 454 }
a33609ca 455 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
456
457 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 458 c = &cpuid_data.entries[cpuid_i++];
05330448 459
05330448 460 c->function = i;
a33609ca
AL
461 c->flags = 0;
462 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
463 }
464
465 cpuid_data.cpuid.nent = cpuid_i;
466
e7701825
MT
467#ifdef KVM_CAP_MCE
468 if (((env->cpuid_version >> 8)&0xF) >= 6
469 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
470 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
471 uint64_t mcg_cap;
472 int banks;
32a42024 473 int ret;
e7701825 474
75d49497
JK
475 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
476 if (ret < 0) {
477 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
478 return ret;
e7701825 479 }
75d49497
JK
480
481 if (banks > MCE_BANKS_DEF) {
482 banks = MCE_BANKS_DEF;
483 }
484 mcg_cap &= MCE_CAP_DEF;
485 mcg_cap |= banks;
486 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
487 if (ret < 0) {
488 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
489 return ret;
490 }
491
492 env->mcg_cap = mcg_cap;
e7701825
MT
493 }
494#endif
495
b8cc45d6
GC
496 qemu_add_vm_change_state_handler(cpu_update_state, env);
497
486bd5a2 498 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
05330448
AL
499}
500
caa5af0f
JK
501void kvm_arch_reset_vcpu(CPUState *env)
502{
e73223a5 503 env->exception_injected = -1;
0e607a80 504 env->interrupt_injected = -1;
1a5e9d2f 505 env->xcr0 = 1;
ddced198
MT
506 if (kvm_irqchip_in_kernel()) {
507 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
508 KVM_MP_STATE_UNINITIALIZED;
509 } else {
510 env->mp_state = KVM_MP_STATE_RUNNABLE;
511 }
caa5af0f
JK
512}
513
c3a3a7d3 514static int kvm_get_supported_msrs(KVMState *s)
05330448 515{
75b10c43 516 static int kvm_supported_msrs;
c3a3a7d3 517 int ret = 0;
05330448
AL
518
519 /* first time */
75b10c43 520 if (kvm_supported_msrs == 0) {
05330448
AL
521 struct kvm_msr_list msr_list, *kvm_msr_list;
522
75b10c43 523 kvm_supported_msrs = -1;
05330448
AL
524
525 /* Obtain MSR list from KVM. These are the MSRs that we must
526 * save/restore */
4c9f7372 527 msr_list.nmsrs = 0;
c3a3a7d3 528 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 529 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 530 return ret;
6fb6d245 531 }
d9db889f
JK
532 /* Old kernel modules had a bug and could write beyond the provided
533 memory. Allocate at least a safe amount of 1K. */
534 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
535 msr_list.nmsrs *
536 sizeof(msr_list.indices[0])));
05330448 537
55308450 538 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 539 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
540 if (ret >= 0) {
541 int i;
542
543 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
544 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 545 has_msr_star = true;
75b10c43
MT
546 continue;
547 }
548 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 549 has_msr_hsave_pa = true;
75b10c43 550 continue;
05330448
AL
551 }
552 }
553 }
554
555 free(kvm_msr_list);
556 }
557
c3a3a7d3 558 return ret;
05330448
AL
559}
560
cad1e282 561int kvm_arch_init(KVMState *s)
20420430 562{
11076198 563 uint64_t identity_base = 0xfffbc000;
20420430 564 int ret;
25d2e361 565 struct utsname utsname;
20420430 566
c3a3a7d3 567 ret = kvm_get_supported_msrs(s);
20420430 568 if (ret < 0) {
20420430
SY
569 return ret;
570 }
25d2e361
MT
571
572 uname(&utsname);
573 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
574
4c5b10b7 575 /*
11076198
JK
576 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
577 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
578 * Since these must be part of guest physical memory, we need to allocate
579 * them, both by setting their start addresses in the kernel and by
580 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
581 *
582 * Older KVM versions may not support setting the identity map base. In
583 * that case we need to stick with the default, i.e. a 256K maximum BIOS
584 * size.
4c5b10b7 585 */
11076198
JK
586#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
587 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
588 /* Allows up to 16M BIOSes. */
589 identity_base = 0xfeffc000;
590
591 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
592 if (ret < 0) {
593 return ret;
594 }
4c5b10b7 595 }
11076198
JK
596#endif
597 /* Set TSS base one page after EPT identity map. */
598 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
599 if (ret < 0) {
600 return ret;
601 }
602
11076198
JK
603 /* Tell fw_cfg to notify the BIOS to reserve the range. */
604 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 605 if (ret < 0) {
11076198 606 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
607 return ret;
608 }
3c85e74f 609 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 610
11076198 611 return 0;
05330448 612}
b9bec74b 613
05330448
AL
614static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
615{
616 lhs->selector = rhs->selector;
617 lhs->base = rhs->base;
618 lhs->limit = rhs->limit;
619 lhs->type = 3;
620 lhs->present = 1;
621 lhs->dpl = 3;
622 lhs->db = 0;
623 lhs->s = 1;
624 lhs->l = 0;
625 lhs->g = 0;
626 lhs->avl = 0;
627 lhs->unusable = 0;
628}
629
630static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
631{
632 unsigned flags = rhs->flags;
633 lhs->selector = rhs->selector;
634 lhs->base = rhs->base;
635 lhs->limit = rhs->limit;
636 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
637 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 638 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
639 lhs->db = (flags >> DESC_B_SHIFT) & 1;
640 lhs->s = (flags & DESC_S_MASK) != 0;
641 lhs->l = (flags >> DESC_L_SHIFT) & 1;
642 lhs->g = (flags & DESC_G_MASK) != 0;
643 lhs->avl = (flags & DESC_AVL_MASK) != 0;
644 lhs->unusable = 0;
645}
646
647static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
648{
649 lhs->selector = rhs->selector;
650 lhs->base = rhs->base;
651 lhs->limit = rhs->limit;
b9bec74b
JK
652 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
653 (rhs->present * DESC_P_MASK) |
654 (rhs->dpl << DESC_DPL_SHIFT) |
655 (rhs->db << DESC_B_SHIFT) |
656 (rhs->s * DESC_S_MASK) |
657 (rhs->l << DESC_L_SHIFT) |
658 (rhs->g * DESC_G_MASK) |
659 (rhs->avl * DESC_AVL_MASK);
05330448
AL
660}
661
662static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
663{
b9bec74b 664 if (set) {
05330448 665 *kvm_reg = *qemu_reg;
b9bec74b 666 } else {
05330448 667 *qemu_reg = *kvm_reg;
b9bec74b 668 }
05330448
AL
669}
670
671static int kvm_getput_regs(CPUState *env, int set)
672{
673 struct kvm_regs regs;
674 int ret = 0;
675
676 if (!set) {
677 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 678 if (ret < 0) {
05330448 679 return ret;
b9bec74b 680 }
05330448
AL
681 }
682
683 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
684 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
685 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
686 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
687 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
688 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
689 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
690 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
691#ifdef TARGET_X86_64
692 kvm_getput_reg(&regs.r8, &env->regs[8], set);
693 kvm_getput_reg(&regs.r9, &env->regs[9], set);
694 kvm_getput_reg(&regs.r10, &env->regs[10], set);
695 kvm_getput_reg(&regs.r11, &env->regs[11], set);
696 kvm_getput_reg(&regs.r12, &env->regs[12], set);
697 kvm_getput_reg(&regs.r13, &env->regs[13], set);
698 kvm_getput_reg(&regs.r14, &env->regs[14], set);
699 kvm_getput_reg(&regs.r15, &env->regs[15], set);
700#endif
701
702 kvm_getput_reg(&regs.rflags, &env->eflags, set);
703 kvm_getput_reg(&regs.rip, &env->eip, set);
704
b9bec74b 705 if (set) {
05330448 706 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 707 }
05330448
AL
708
709 return ret;
710}
711
712static int kvm_put_fpu(CPUState *env)
713{
714 struct kvm_fpu fpu;
715 int i;
716
717 memset(&fpu, 0, sizeof fpu);
718 fpu.fsw = env->fpus & ~(7 << 11);
719 fpu.fsw |= (env->fpstt & 7) << 11;
720 fpu.fcw = env->fpuc;
b9bec74b
JK
721 for (i = 0; i < 8; ++i) {
722 fpu.ftwx |= (!env->fptags[i]) << i;
723 }
05330448
AL
724 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
725 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
726 fpu.mxcsr = env->mxcsr;
727
728 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
729}
730
f1665b21
SY
731#ifdef KVM_CAP_XSAVE
732#define XSAVE_CWD_RIP 2
733#define XSAVE_CWD_RDP 4
734#define XSAVE_MXCSR 6
735#define XSAVE_ST_SPACE 8
736#define XSAVE_XMM_SPACE 40
737#define XSAVE_XSTATE_BV 128
738#define XSAVE_YMMH_SPACE 144
739#endif
740
741static int kvm_put_xsave(CPUState *env)
742{
743#ifdef KVM_CAP_XSAVE
0f53994f 744 int i, r;
f1665b21
SY
745 struct kvm_xsave* xsave;
746 uint16_t cwd, swd, twd, fop;
747
b9bec74b 748 if (!kvm_has_xsave()) {
f1665b21 749 return kvm_put_fpu(env);
b9bec74b 750 }
f1665b21
SY
751
752 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
753 memset(xsave, 0, sizeof(struct kvm_xsave));
754 cwd = swd = twd = fop = 0;
755 swd = env->fpus & ~(7 << 11);
756 swd |= (env->fpstt & 7) << 11;
757 cwd = env->fpuc;
b9bec74b 758 for (i = 0; i < 8; ++i) {
f1665b21 759 twd |= (!env->fptags[i]) << i;
b9bec74b 760 }
f1665b21
SY
761 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
762 xsave->region[1] = (uint32_t)(fop << 16) + twd;
763 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
764 sizeof env->fpregs);
765 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
766 sizeof env->xmm_regs);
767 xsave->region[XSAVE_MXCSR] = env->mxcsr;
768 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
769 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
770 sizeof env->ymmh_regs);
0f53994f
MT
771 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
772 qemu_free(xsave);
773 return r;
f1665b21
SY
774#else
775 return kvm_put_fpu(env);
776#endif
777}
778
779static int kvm_put_xcrs(CPUState *env)
780{
781#ifdef KVM_CAP_XCRS
782 struct kvm_xcrs xcrs;
783
b9bec74b 784 if (!kvm_has_xcrs()) {
f1665b21 785 return 0;
b9bec74b 786 }
f1665b21
SY
787
788 xcrs.nr_xcrs = 1;
789 xcrs.flags = 0;
790 xcrs.xcrs[0].xcr = 0;
791 xcrs.xcrs[0].value = env->xcr0;
792 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
793#else
794 return 0;
795#endif
796}
797
05330448
AL
798static int kvm_put_sregs(CPUState *env)
799{
800 struct kvm_sregs sregs;
801
0e607a80
JK
802 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
803 if (env->interrupt_injected >= 0) {
804 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
805 (uint64_t)1 << (env->interrupt_injected % 64);
806 }
05330448
AL
807
808 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
809 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
810 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
811 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
812 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
813 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
814 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 815 } else {
b9bec74b
JK
816 set_seg(&sregs.cs, &env->segs[R_CS]);
817 set_seg(&sregs.ds, &env->segs[R_DS]);
818 set_seg(&sregs.es, &env->segs[R_ES]);
819 set_seg(&sregs.fs, &env->segs[R_FS]);
820 set_seg(&sregs.gs, &env->segs[R_GS]);
821 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
822 }
823
824 set_seg(&sregs.tr, &env->tr);
825 set_seg(&sregs.ldt, &env->ldt);
826
827 sregs.idt.limit = env->idt.limit;
828 sregs.idt.base = env->idt.base;
829 sregs.gdt.limit = env->gdt.limit;
830 sregs.gdt.base = env->gdt.base;
831
832 sregs.cr0 = env->cr[0];
833 sregs.cr2 = env->cr[2];
834 sregs.cr3 = env->cr[3];
835 sregs.cr4 = env->cr[4];
836
4a942cea
BS
837 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
838 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
839
840 sregs.efer = env->efer;
841
842 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
843}
844
845static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
846 uint32_t index, uint64_t value)
847{
848 entry->index = index;
849 entry->data = value;
850}
851
ea643051 852static int kvm_put_msrs(CPUState *env, int level)
05330448
AL
853{
854 struct {
855 struct kvm_msrs info;
856 struct kvm_msr_entry entries[100];
857 } msr_data;
858 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 859 int n = 0;
05330448
AL
860
861 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
862 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
863 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 864 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 865 if (has_msr_star) {
b9bec74b
JK
866 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
867 }
c3a3a7d3 868 if (has_msr_hsave_pa) {
75b10c43 869 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 870 }
05330448 871#ifdef TARGET_X86_64
25d2e361
MT
872 if (lm_capable_kernel) {
873 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
874 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
875 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
876 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
877 }
05330448 878#endif
ea643051 879 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
880 /*
881 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
882 * writeback. Until this is fixed, we only write the offset to SMP
883 * guests after migration, desynchronizing the VCPUs, but avoiding
884 * huge jump-backs that would occur without any writeback at all.
885 */
886 if (smp_cpus == 1 || env->tsc != 0) {
887 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
888 }
ff5c186b
JK
889 }
890 /*
891 * The following paravirtual MSRs have side effects on the guest or are
892 * too heavy for normal writeback. Limit them to reset or full state
893 * updates.
894 */
895 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
896 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
897 env->system_time_msr);
898 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
521f0798 899#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
c5999bfc
JK
900 if (has_msr_async_pf_en) {
901 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
902 env->async_pf_en_msr);
903 }
f6584ee2 904#endif
ea643051 905 }
57780495
MT
906#ifdef KVM_CAP_MCE
907 if (env->mcg_cap) {
d8da8574 908 int i;
b9bec74b 909
c34d440a
JK
910 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
911 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
912 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
913 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
914 }
915 }
916#endif
1a03675d 917
05330448
AL
918 msr_data.info.nmsrs = n;
919
920 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
921
922}
923
924
925static int kvm_get_fpu(CPUState *env)
926{
927 struct kvm_fpu fpu;
928 int i, ret;
929
930 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 931 if (ret < 0) {
05330448 932 return ret;
b9bec74b 933 }
05330448
AL
934
935 env->fpstt = (fpu.fsw >> 11) & 7;
936 env->fpus = fpu.fsw;
937 env->fpuc = fpu.fcw;
b9bec74b
JK
938 for (i = 0; i < 8; ++i) {
939 env->fptags[i] = !((fpu.ftwx >> i) & 1);
940 }
05330448
AL
941 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
942 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
943 env->mxcsr = fpu.mxcsr;
944
945 return 0;
946}
947
f1665b21
SY
948static int kvm_get_xsave(CPUState *env)
949{
950#ifdef KVM_CAP_XSAVE
951 struct kvm_xsave* xsave;
952 int ret, i;
953 uint16_t cwd, swd, twd, fop;
954
b9bec74b 955 if (!kvm_has_xsave()) {
f1665b21 956 return kvm_get_fpu(env);
b9bec74b 957 }
f1665b21
SY
958
959 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
960 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f
MT
961 if (ret < 0) {
962 qemu_free(xsave);
f1665b21 963 return ret;
0f53994f 964 }
f1665b21
SY
965
966 cwd = (uint16_t)xsave->region[0];
967 swd = (uint16_t)(xsave->region[0] >> 16);
968 twd = (uint16_t)xsave->region[1];
969 fop = (uint16_t)(xsave->region[1] >> 16);
970 env->fpstt = (swd >> 11) & 7;
971 env->fpus = swd;
972 env->fpuc = cwd;
b9bec74b 973 for (i = 0; i < 8; ++i) {
f1665b21 974 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 975 }
f1665b21
SY
976 env->mxcsr = xsave->region[XSAVE_MXCSR];
977 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
978 sizeof env->fpregs);
979 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
980 sizeof env->xmm_regs);
981 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
982 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
983 sizeof env->ymmh_regs);
0f53994f 984 qemu_free(xsave);
f1665b21
SY
985 return 0;
986#else
987 return kvm_get_fpu(env);
988#endif
989}
990
991static int kvm_get_xcrs(CPUState *env)
992{
993#ifdef KVM_CAP_XCRS
994 int i, ret;
995 struct kvm_xcrs xcrs;
996
b9bec74b 997 if (!kvm_has_xcrs()) {
f1665b21 998 return 0;
b9bec74b 999 }
f1665b21
SY
1000
1001 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 1002 if (ret < 0) {
f1665b21 1003 return ret;
b9bec74b 1004 }
f1665b21 1005
b9bec74b 1006 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
1007 /* Only support xcr0 now */
1008 if (xcrs.xcrs[0].xcr == 0) {
1009 env->xcr0 = xcrs.xcrs[0].value;
1010 break;
1011 }
b9bec74b 1012 }
f1665b21
SY
1013 return 0;
1014#else
1015 return 0;
1016#endif
1017}
1018
05330448
AL
1019static int kvm_get_sregs(CPUState *env)
1020{
1021 struct kvm_sregs sregs;
1022 uint32_t hflags;
0e607a80 1023 int bit, i, ret;
05330448
AL
1024
1025 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 1026 if (ret < 0) {
05330448 1027 return ret;
b9bec74b 1028 }
05330448 1029
0e607a80
JK
1030 /* There can only be one pending IRQ set in the bitmap at a time, so try
1031 to find it and save its number instead (-1 for none). */
1032 env->interrupt_injected = -1;
1033 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1034 if (sregs.interrupt_bitmap[i]) {
1035 bit = ctz64(sregs.interrupt_bitmap[i]);
1036 env->interrupt_injected = i * 64 + bit;
1037 break;
1038 }
1039 }
05330448
AL
1040
1041 get_seg(&env->segs[R_CS], &sregs.cs);
1042 get_seg(&env->segs[R_DS], &sregs.ds);
1043 get_seg(&env->segs[R_ES], &sregs.es);
1044 get_seg(&env->segs[R_FS], &sregs.fs);
1045 get_seg(&env->segs[R_GS], &sregs.gs);
1046 get_seg(&env->segs[R_SS], &sregs.ss);
1047
1048 get_seg(&env->tr, &sregs.tr);
1049 get_seg(&env->ldt, &sregs.ldt);
1050
1051 env->idt.limit = sregs.idt.limit;
1052 env->idt.base = sregs.idt.base;
1053 env->gdt.limit = sregs.gdt.limit;
1054 env->gdt.base = sregs.gdt.base;
1055
1056 env->cr[0] = sregs.cr0;
1057 env->cr[2] = sregs.cr2;
1058 env->cr[3] = sregs.cr3;
1059 env->cr[4] = sregs.cr4;
1060
4a942cea 1061 cpu_set_apic_base(env->apic_state, sregs.apic_base);
05330448
AL
1062
1063 env->efer = sregs.efer;
4a942cea 1064 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
05330448 1065
b9bec74b
JK
1066#define HFLAG_COPY_MASK \
1067 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1068 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1069 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1070 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1071
1072 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1073 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1074 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1075 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1076 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1077 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1078 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1079
1080 if (env->efer & MSR_EFER_LMA) {
1081 hflags |= HF_LMA_MASK;
1082 }
1083
1084 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1085 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1086 } else {
1087 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1088 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1089 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1090 (DESC_B_SHIFT - HF_SS32_SHIFT);
1091 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1092 !(hflags & HF_CS32_MASK)) {
1093 hflags |= HF_ADDSEG_MASK;
1094 } else {
1095 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1096 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1097 }
05330448
AL
1098 }
1099 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1100
1101 return 0;
1102}
1103
1104static int kvm_get_msrs(CPUState *env)
1105{
1106 struct {
1107 struct kvm_msrs info;
1108 struct kvm_msr_entry entries[100];
1109 } msr_data;
1110 struct kvm_msr_entry *msrs = msr_data.entries;
1111 int ret, i, n;
1112
1113 n = 0;
1114 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1115 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1116 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1117 msrs[n++].index = MSR_PAT;
c3a3a7d3 1118 if (has_msr_star) {
b9bec74b
JK
1119 msrs[n++].index = MSR_STAR;
1120 }
c3a3a7d3 1121 if (has_msr_hsave_pa) {
75b10c43 1122 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1123 }
b8cc45d6
GC
1124
1125 if (!env->tsc_valid) {
1126 msrs[n++].index = MSR_IA32_TSC;
1127 env->tsc_valid = !vm_running;
1128 }
1129
05330448 1130#ifdef TARGET_X86_64
25d2e361
MT
1131 if (lm_capable_kernel) {
1132 msrs[n++].index = MSR_CSTAR;
1133 msrs[n++].index = MSR_KERNELGSBASE;
1134 msrs[n++].index = MSR_FMASK;
1135 msrs[n++].index = MSR_LSTAR;
1136 }
05330448 1137#endif
1a03675d
GC
1138 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1139 msrs[n++].index = MSR_KVM_WALL_CLOCK;
521f0798 1140#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
c5999bfc
JK
1141 if (has_msr_async_pf_en) {
1142 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1143 }
f6584ee2 1144#endif
1a03675d 1145
57780495
MT
1146#ifdef KVM_CAP_MCE
1147 if (env->mcg_cap) {
1148 msrs[n++].index = MSR_MCG_STATUS;
1149 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1150 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1151 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1152 }
57780495
MT
1153 }
1154#endif
1155
05330448
AL
1156 msr_data.info.nmsrs = n;
1157 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1158 if (ret < 0) {
05330448 1159 return ret;
b9bec74b 1160 }
05330448
AL
1161
1162 for (i = 0; i < ret; i++) {
1163 switch (msrs[i].index) {
1164 case MSR_IA32_SYSENTER_CS:
1165 env->sysenter_cs = msrs[i].data;
1166 break;
1167 case MSR_IA32_SYSENTER_ESP:
1168 env->sysenter_esp = msrs[i].data;
1169 break;
1170 case MSR_IA32_SYSENTER_EIP:
1171 env->sysenter_eip = msrs[i].data;
1172 break;
0c03266a
JK
1173 case MSR_PAT:
1174 env->pat = msrs[i].data;
1175 break;
05330448
AL
1176 case MSR_STAR:
1177 env->star = msrs[i].data;
1178 break;
1179#ifdef TARGET_X86_64
1180 case MSR_CSTAR:
1181 env->cstar = msrs[i].data;
1182 break;
1183 case MSR_KERNELGSBASE:
1184 env->kernelgsbase = msrs[i].data;
1185 break;
1186 case MSR_FMASK:
1187 env->fmask = msrs[i].data;
1188 break;
1189 case MSR_LSTAR:
1190 env->lstar = msrs[i].data;
1191 break;
1192#endif
1193 case MSR_IA32_TSC:
1194 env->tsc = msrs[i].data;
1195 break;
aa851e36
MT
1196 case MSR_VM_HSAVE_PA:
1197 env->vm_hsave = msrs[i].data;
1198 break;
1a03675d
GC
1199 case MSR_KVM_SYSTEM_TIME:
1200 env->system_time_msr = msrs[i].data;
1201 break;
1202 case MSR_KVM_WALL_CLOCK:
1203 env->wall_clock_msr = msrs[i].data;
1204 break;
57780495
MT
1205#ifdef KVM_CAP_MCE
1206 case MSR_MCG_STATUS:
1207 env->mcg_status = msrs[i].data;
1208 break;
1209 case MSR_MCG_CTL:
1210 env->mcg_ctl = msrs[i].data;
1211 break;
1212#endif
1213 default:
1214#ifdef KVM_CAP_MCE
1215 if (msrs[i].index >= MSR_MC0_CTL &&
1216 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1217 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495
MT
1218 }
1219#endif
d8da8574 1220 break;
521f0798 1221#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
f6584ee2
GN
1222 case MSR_KVM_ASYNC_PF_EN:
1223 env->async_pf_en_msr = msrs[i].data;
1224 break;
1225#endif
05330448
AL
1226 }
1227 }
1228
1229 return 0;
1230}
1231
9bdbe550
HB
1232static int kvm_put_mp_state(CPUState *env)
1233{
1234 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1235
1236 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1237}
1238
1239static int kvm_get_mp_state(CPUState *env)
1240{
1241 struct kvm_mp_state mp_state;
1242 int ret;
1243
1244 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1245 if (ret < 0) {
1246 return ret;
1247 }
1248 env->mp_state = mp_state.mp_state;
c14750e8
JK
1249 if (kvm_irqchip_in_kernel()) {
1250 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1251 }
9bdbe550
HB
1252 return 0;
1253}
1254
ea643051 1255static int kvm_put_vcpu_events(CPUState *env, int level)
a0fb002c
JK
1256{
1257#ifdef KVM_CAP_VCPU_EVENTS
1258 struct kvm_vcpu_events events;
1259
1260 if (!kvm_has_vcpu_events()) {
1261 return 0;
1262 }
1263
31827373
JK
1264 events.exception.injected = (env->exception_injected >= 0);
1265 events.exception.nr = env->exception_injected;
a0fb002c
JK
1266 events.exception.has_error_code = env->has_error_code;
1267 events.exception.error_code = env->error_code;
1268
1269 events.interrupt.injected = (env->interrupt_injected >= 0);
1270 events.interrupt.nr = env->interrupt_injected;
1271 events.interrupt.soft = env->soft_interrupt;
1272
1273 events.nmi.injected = env->nmi_injected;
1274 events.nmi.pending = env->nmi_pending;
1275 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1276
1277 events.sipi_vector = env->sipi_vector;
1278
ea643051
JK
1279 events.flags = 0;
1280 if (level >= KVM_PUT_RESET_STATE) {
1281 events.flags |=
1282 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1283 }
aee028b9 1284
a0fb002c
JK
1285 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1286#else
1287 return 0;
1288#endif
1289}
1290
1291static int kvm_get_vcpu_events(CPUState *env)
1292{
1293#ifdef KVM_CAP_VCPU_EVENTS
1294 struct kvm_vcpu_events events;
1295 int ret;
1296
1297 if (!kvm_has_vcpu_events()) {
1298 return 0;
1299 }
1300
1301 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1302 if (ret < 0) {
1303 return ret;
1304 }
31827373 1305 env->exception_injected =
a0fb002c
JK
1306 events.exception.injected ? events.exception.nr : -1;
1307 env->has_error_code = events.exception.has_error_code;
1308 env->error_code = events.exception.error_code;
1309
1310 env->interrupt_injected =
1311 events.interrupt.injected ? events.interrupt.nr : -1;
1312 env->soft_interrupt = events.interrupt.soft;
1313
1314 env->nmi_injected = events.nmi.injected;
1315 env->nmi_pending = events.nmi.pending;
1316 if (events.nmi.masked) {
1317 env->hflags2 |= HF2_NMI_MASK;
1318 } else {
1319 env->hflags2 &= ~HF2_NMI_MASK;
1320 }
1321
1322 env->sipi_vector = events.sipi_vector;
1323#endif
1324
1325 return 0;
1326}
1327
b0b1d690
JK
1328static int kvm_guest_debug_workarounds(CPUState *env)
1329{
1330 int ret = 0;
1331#ifdef KVM_CAP_SET_GUEST_DEBUG
1332 unsigned long reinject_trap = 0;
1333
1334 if (!kvm_has_vcpu_events()) {
1335 if (env->exception_injected == 1) {
1336 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1337 } else if (env->exception_injected == 3) {
1338 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1339 }
1340 env->exception_injected = -1;
1341 }
1342
1343 /*
1344 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1345 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1346 * by updating the debug state once again if single-stepping is on.
1347 * Another reason to call kvm_update_guest_debug here is a pending debug
1348 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1349 * reinject them via SET_GUEST_DEBUG.
1350 */
1351 if (reinject_trap ||
1352 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1353 ret = kvm_update_guest_debug(env, reinject_trap);
1354 }
1355#endif /* KVM_CAP_SET_GUEST_DEBUG */
1356 return ret;
1357}
1358
ff44f1a3
JK
1359static int kvm_put_debugregs(CPUState *env)
1360{
1361#ifdef KVM_CAP_DEBUGREGS
1362 struct kvm_debugregs dbgregs;
1363 int i;
1364
1365 if (!kvm_has_debugregs()) {
1366 return 0;
1367 }
1368
1369 for (i = 0; i < 4; i++) {
1370 dbgregs.db[i] = env->dr[i];
1371 }
1372 dbgregs.dr6 = env->dr[6];
1373 dbgregs.dr7 = env->dr[7];
1374 dbgregs.flags = 0;
1375
1376 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1377#else
1378 return 0;
1379#endif
1380}
1381
1382static int kvm_get_debugregs(CPUState *env)
1383{
1384#ifdef KVM_CAP_DEBUGREGS
1385 struct kvm_debugregs dbgregs;
1386 int i, ret;
1387
1388 if (!kvm_has_debugregs()) {
1389 return 0;
1390 }
1391
1392 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1393 if (ret < 0) {
b9bec74b 1394 return ret;
ff44f1a3
JK
1395 }
1396 for (i = 0; i < 4; i++) {
1397 env->dr[i] = dbgregs.db[i];
1398 }
1399 env->dr[4] = env->dr[6] = dbgregs.dr6;
1400 env->dr[5] = env->dr[7] = dbgregs.dr7;
1401#endif
1402
1403 return 0;
1404}
1405
ea375f9a 1406int kvm_arch_put_registers(CPUState *env, int level)
05330448
AL
1407{
1408 int ret;
1409
b7680cb6 1410 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1411
05330448 1412 ret = kvm_getput_regs(env, 1);
b9bec74b 1413 if (ret < 0) {
05330448 1414 return ret;
b9bec74b 1415 }
f1665b21 1416 ret = kvm_put_xsave(env);
b9bec74b 1417 if (ret < 0) {
f1665b21 1418 return ret;
b9bec74b 1419 }
f1665b21 1420 ret = kvm_put_xcrs(env);
b9bec74b 1421 if (ret < 0) {
05330448 1422 return ret;
b9bec74b 1423 }
05330448 1424 ret = kvm_put_sregs(env);
b9bec74b 1425 if (ret < 0) {
05330448 1426 return ret;
b9bec74b 1427 }
ab443475
JK
1428 /* must be before kvm_put_msrs */
1429 ret = kvm_inject_mce_oldstyle(env);
1430 if (ret < 0) {
1431 return ret;
1432 }
ea643051 1433 ret = kvm_put_msrs(env, level);
b9bec74b 1434 if (ret < 0) {
05330448 1435 return ret;
b9bec74b 1436 }
ea643051
JK
1437 if (level >= KVM_PUT_RESET_STATE) {
1438 ret = kvm_put_mp_state(env);
b9bec74b 1439 if (ret < 0) {
ea643051 1440 return ret;
b9bec74b 1441 }
ea643051 1442 }
ea643051 1443 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1444 if (ret < 0) {
a0fb002c 1445 return ret;
b9bec74b 1446 }
0d75a9ec 1447 ret = kvm_put_debugregs(env);
b9bec74b 1448 if (ret < 0) {
b0b1d690 1449 return ret;
b9bec74b 1450 }
b0b1d690
JK
1451 /* must be last */
1452 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1453 if (ret < 0) {
ff44f1a3 1454 return ret;
b9bec74b 1455 }
05330448
AL
1456 return 0;
1457}
1458
1459int kvm_arch_get_registers(CPUState *env)
1460{
1461 int ret;
1462
b7680cb6 1463 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1464
05330448 1465 ret = kvm_getput_regs(env, 0);
b9bec74b 1466 if (ret < 0) {
05330448 1467 return ret;
b9bec74b 1468 }
f1665b21 1469 ret = kvm_get_xsave(env);
b9bec74b 1470 if (ret < 0) {
f1665b21 1471 return ret;
b9bec74b 1472 }
f1665b21 1473 ret = kvm_get_xcrs(env);
b9bec74b 1474 if (ret < 0) {
05330448 1475 return ret;
b9bec74b 1476 }
05330448 1477 ret = kvm_get_sregs(env);
b9bec74b 1478 if (ret < 0) {
05330448 1479 return ret;
b9bec74b 1480 }
05330448 1481 ret = kvm_get_msrs(env);
b9bec74b 1482 if (ret < 0) {
05330448 1483 return ret;
b9bec74b 1484 }
5a2e3c2e 1485 ret = kvm_get_mp_state(env);
b9bec74b 1486 if (ret < 0) {
5a2e3c2e 1487 return ret;
b9bec74b 1488 }
a0fb002c 1489 ret = kvm_get_vcpu_events(env);
b9bec74b 1490 if (ret < 0) {
a0fb002c 1491 return ret;
b9bec74b 1492 }
ff44f1a3 1493 ret = kvm_get_debugregs(env);
b9bec74b 1494 if (ret < 0) {
ff44f1a3 1495 return ret;
b9bec74b 1496 }
05330448
AL
1497 return 0;
1498}
1499
7a39fe58 1500void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
05330448 1501{
ce377af3
JK
1502 int ret;
1503
276ce815
LJ
1504 /* Inject NMI */
1505 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1506 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1507 DPRINTF("injected NMI\n");
ce377af3
JK
1508 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1509 if (ret < 0) {
1510 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1511 strerror(-ret));
1512 }
276ce815
LJ
1513 }
1514
db1669bc
JK
1515 if (!kvm_irqchip_in_kernel()) {
1516 /* Force the VCPU out of its inner loop to process the INIT request */
1517 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1518 env->exit_request = 1;
05330448 1519 }
05330448 1520
db1669bc
JK
1521 /* Try to inject an interrupt if the guest can accept it */
1522 if (run->ready_for_interrupt_injection &&
1523 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1524 (env->eflags & IF_MASK)) {
1525 int irq;
1526
1527 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1528 irq = cpu_get_pic_interrupt(env);
1529 if (irq >= 0) {
1530 struct kvm_interrupt intr;
1531
1532 intr.irq = irq;
db1669bc 1533 DPRINTF("injected interrupt %d\n", irq);
ce377af3
JK
1534 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1535 if (ret < 0) {
1536 fprintf(stderr,
1537 "KVM: injection failed, interrupt lost (%s)\n",
1538 strerror(-ret));
1539 }
db1669bc
JK
1540 }
1541 }
05330448 1542
db1669bc
JK
1543 /* If we have an interrupt but the guest is not ready to receive an
1544 * interrupt, request an interrupt window exit. This will
1545 * cause a return to userspace as soon as the guest is ready to
1546 * receive interrupts. */
1547 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1548 run->request_interrupt_window = 1;
1549 } else {
1550 run->request_interrupt_window = 0;
1551 }
1552
1553 DPRINTF("setting tpr\n");
1554 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1555 }
05330448
AL
1556}
1557
7a39fe58 1558void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
05330448 1559{
b9bec74b 1560 if (run->if_flag) {
05330448 1561 env->eflags |= IF_MASK;
b9bec74b 1562 } else {
05330448 1563 env->eflags &= ~IF_MASK;
b9bec74b 1564 }
4a942cea
BS
1565 cpu_set_apic_tpr(env->apic_state, run->cr8);
1566 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1567}
1568
99036865 1569int kvm_arch_process_async_events(CPUState *env)
0af691d7 1570{
ab443475
JK
1571 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1572 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1573 assert(env->mcg_cap);
1574
1575 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1576
1577 kvm_cpu_synchronize_state(env);
1578
1579 if (env->exception_injected == EXCP08_DBLE) {
1580 /* this means triple fault */
1581 qemu_system_reset_request();
1582 env->exit_request = 1;
1583 return 0;
1584 }
1585 env->exception_injected = EXCP12_MCHK;
1586 env->has_error_code = 0;
1587
1588 env->halted = 0;
1589 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1590 env->mp_state = KVM_MP_STATE_RUNNABLE;
1591 }
1592 }
1593
db1669bc
JK
1594 if (kvm_irqchip_in_kernel()) {
1595 return 0;
1596 }
1597
4601f7b0
JK
1598 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1599 (env->eflags & IF_MASK)) ||
1600 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
6792a57b
JK
1601 env->halted = 0;
1602 }
0af691d7
MT
1603 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1604 kvm_cpu_synchronize_state(env);
1605 do_cpu_init(env);
0af691d7 1606 }
0af691d7
MT
1607 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1608 kvm_cpu_synchronize_state(env);
1609 do_cpu_sipi(env);
1610 }
1611
1612 return env->halted;
1613}
1614
05330448
AL
1615static int kvm_handle_halt(CPUState *env)
1616{
1617 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1618 (env->eflags & IF_MASK)) &&
1619 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1620 env->halted = 1;
bb4ea393 1621 return EXCP_HLT;
05330448
AL
1622 }
1623
bb4ea393 1624 return 0;
05330448
AL
1625}
1626
bb44e0d1
JK
1627static bool host_supports_vmx(void)
1628{
1629 uint32_t ecx, unused;
1630
1631 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1632 return ecx & CPUID_EXT_VMX;
1633}
1634
1635#define VMX_INVALID_GUEST_STATE 0x80000021
1636
05330448
AL
1637int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1638{
bb44e0d1 1639 uint64_t code;
bb4ea393 1640 int ret;
05330448
AL
1641
1642 switch (run->exit_reason) {
1643 case KVM_EXIT_HLT:
8c0d577e 1644 DPRINTF("handle_hlt\n");
05330448
AL
1645 ret = kvm_handle_halt(env);
1646 break;
646042e1 1647 case KVM_EXIT_SET_TPR:
bb4ea393 1648 ret = 0;
646042e1 1649 break;
bb44e0d1
JK
1650 case KVM_EXIT_FAIL_ENTRY:
1651 code = run->fail_entry.hardware_entry_failure_reason;
1652 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1653 code);
1654 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1655 fprintf(stderr,
1656 "\nIf you're runnning a guest on an Intel machine without "
1657 "unrestricted mode\n"
1658 "support, the failure can be most likely due to the guest "
1659 "entering an invalid\n"
1660 "state for Intel VT. For example, the guest maybe running "
1661 "in big real mode\n"
1662 "which is not supported on less recent Intel processors."
1663 "\n\n");
1664 }
1665 ret = -1;
1666 break;
1667 case KVM_EXIT_EXCEPTION:
1668 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1669 run->ex.exception, run->ex.error_code);
1670 ret = -1;
1671 break;
73aaec4a
JK
1672 default:
1673 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1674 ret = -1;
1675 break;
05330448
AL
1676 }
1677
1678 return ret;
1679}
e22a25c9
AL
1680
1681#ifdef KVM_CAP_SET_GUEST_DEBUG
e22a25c9
AL
1682int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1683{
38972938 1684 static const uint8_t int3 = 0xcc;
64bf3f4e 1685
e22a25c9 1686 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1687 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1688 return -EINVAL;
b9bec74b 1689 }
e22a25c9
AL
1690 return 0;
1691}
1692
1693int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1694{
1695 uint8_t int3;
1696
1697 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1698 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1699 return -EINVAL;
b9bec74b 1700 }
e22a25c9
AL
1701 return 0;
1702}
1703
1704static struct {
1705 target_ulong addr;
1706 int len;
1707 int type;
1708} hw_breakpoint[4];
1709
1710static int nb_hw_breakpoint;
1711
1712static int find_hw_breakpoint(target_ulong addr, int len, int type)
1713{
1714 int n;
1715
b9bec74b 1716 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1717 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1718 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1719 return n;
b9bec74b
JK
1720 }
1721 }
e22a25c9
AL
1722 return -1;
1723}
1724
1725int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1726 target_ulong len, int type)
1727{
1728 switch (type) {
1729 case GDB_BREAKPOINT_HW:
1730 len = 1;
1731 break;
1732 case GDB_WATCHPOINT_WRITE:
1733 case GDB_WATCHPOINT_ACCESS:
1734 switch (len) {
1735 case 1:
1736 break;
1737 case 2:
1738 case 4:
1739 case 8:
b9bec74b 1740 if (addr & (len - 1)) {
e22a25c9 1741 return -EINVAL;
b9bec74b 1742 }
e22a25c9
AL
1743 break;
1744 default:
1745 return -EINVAL;
1746 }
1747 break;
1748 default:
1749 return -ENOSYS;
1750 }
1751
b9bec74b 1752 if (nb_hw_breakpoint == 4) {
e22a25c9 1753 return -ENOBUFS;
b9bec74b
JK
1754 }
1755 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1756 return -EEXIST;
b9bec74b 1757 }
e22a25c9
AL
1758 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1759 hw_breakpoint[nb_hw_breakpoint].len = len;
1760 hw_breakpoint[nb_hw_breakpoint].type = type;
1761 nb_hw_breakpoint++;
1762
1763 return 0;
1764}
1765
1766int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1767 target_ulong len, int type)
1768{
1769 int n;
1770
1771 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1772 if (n < 0) {
e22a25c9 1773 return -ENOENT;
b9bec74b 1774 }
e22a25c9
AL
1775 nb_hw_breakpoint--;
1776 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1777
1778 return 0;
1779}
1780
1781void kvm_arch_remove_all_hw_breakpoints(void)
1782{
1783 nb_hw_breakpoint = 0;
1784}
1785
1786static CPUWatchpoint hw_watchpoint;
1787
1788int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1789{
1790 int handle = 0;
1791 int n;
1792
1793 if (arch_info->exception == 1) {
1794 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1795 if (cpu_single_env->singlestep_enabled) {
e22a25c9 1796 handle = 1;
b9bec74b 1797 }
e22a25c9 1798 } else {
b9bec74b
JK
1799 for (n = 0; n < 4; n++) {
1800 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1801 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1802 case 0x0:
1803 handle = 1;
1804 break;
1805 case 0x1:
1806 handle = 1;
1807 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1808 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1809 hw_watchpoint.flags = BP_MEM_WRITE;
1810 break;
1811 case 0x3:
1812 handle = 1;
1813 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1814 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1815 hw_watchpoint.flags = BP_MEM_ACCESS;
1816 break;
1817 }
b9bec74b
JK
1818 }
1819 }
e22a25c9 1820 }
b9bec74b 1821 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
e22a25c9 1822 handle = 1;
b9bec74b 1823 }
b0b1d690
JK
1824 if (!handle) {
1825 cpu_synchronize_state(cpu_single_env);
1826 assert(cpu_single_env->exception_injected == -1);
1827
1828 cpu_single_env->exception_injected = arch_info->exception;
1829 cpu_single_env->has_error_code = 0;
1830 }
e22a25c9
AL
1831
1832 return handle;
1833}
1834
1835void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1836{
1837 const uint8_t type_code[] = {
1838 [GDB_BREAKPOINT_HW] = 0x0,
1839 [GDB_WATCHPOINT_WRITE] = 0x1,
1840 [GDB_WATCHPOINT_ACCESS] = 0x3
1841 };
1842 const uint8_t len_code[] = {
1843 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1844 };
1845 int n;
1846
b9bec74b 1847 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 1848 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 1849 }
e22a25c9
AL
1850 if (nb_hw_breakpoint > 0) {
1851 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1852 dbg->arch.debugreg[7] = 0x0600;
1853 for (n = 0; n < nb_hw_breakpoint; n++) {
1854 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1855 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1856 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 1857 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
1858 }
1859 }
1860}
1861#endif /* KVM_CAP_SET_GUEST_DEBUG */
4513d923
GN
1862
1863bool kvm_arch_stop_on_emulation_error(CPUState *env)
1864{
b9bec74b
JK
1865 return !(env->cr[0] & CR0_PE_MASK) ||
1866 ((env->segs[R_CS].selector & 3) != 3);
4513d923 1867}