]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
x86: Save/restore PAT MSR
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
21
22#include "qemu-common.h"
23#include "sysemu.h"
24#include "kvm.h"
25#include "cpu.h"
e22a25c9 26#include "gdbstub.h"
0e607a80 27#include "host-utils.h"
4c5b10b7 28#include "hw/pc.h"
408392b3 29#include "hw/apic.h"
35bed8ee 30#include "ioport.h"
05330448 31
bb0300dc
GN
32#ifdef CONFIG_KVM_PARA
33#include <linux/kvm_para.h>
34#endif
35//
05330448
AL
36//#define DEBUG_KVM
37
38#ifdef DEBUG_KVM
8c0d577e 39#define DPRINTF(fmt, ...) \
05330448
AL
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41#else
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { } while (0)
44#endif
45
1a03675d
GC
46#define MSR_KVM_WALL_CLOCK 0x11
47#define MSR_KVM_SYSTEM_TIME 0x12
48
c0532a76
MT
49#ifndef BUS_MCEERR_AR
50#define BUS_MCEERR_AR 4
51#endif
52#ifndef BUS_MCEERR_AO
53#define BUS_MCEERR_AO 5
54#endif
55
94a8d39a
JK
56const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61};
25d2e361 62
c3a3a7d3
JK
63static bool has_msr_star;
64static bool has_msr_hsave_pa;
c5999bfc
JK
65#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
66static bool has_msr_async_pf_en;
67#endif
25d2e361 68static int lm_capable_kernel;
b827df58
AK
69
70static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
71{
72 struct kvm_cpuid2 *cpuid;
73 int r, size;
74
75 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
76 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
77 cpuid->nent = max;
78 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
79 if (r == 0 && cpuid->nent >= max) {
80 r = -E2BIG;
81 }
b827df58
AK
82 if (r < 0) {
83 if (r == -E2BIG) {
84 qemu_free(cpuid);
85 return NULL;
86 } else {
87 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
88 strerror(-r));
89 exit(1);
90 }
91 }
92 return cpuid;
93}
94
c958a8bd
SY
95uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
96 uint32_t index, int reg)
b827df58
AK
97{
98 struct kvm_cpuid2 *cpuid;
99 int i, max;
100 uint32_t ret = 0;
101 uint32_t cpuid_1_edx;
102
b827df58
AK
103 max = 1;
104 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
105 max *= 2;
106 }
107
108 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
109 if (cpuid->entries[i].function == function &&
110 cpuid->entries[i].index == index) {
b827df58
AK
111 switch (reg) {
112 case R_EAX:
113 ret = cpuid->entries[i].eax;
114 break;
115 case R_EBX:
116 ret = cpuid->entries[i].ebx;
117 break;
118 case R_ECX:
119 ret = cpuid->entries[i].ecx;
120 break;
121 case R_EDX:
122 ret = cpuid->entries[i].edx;
19ccb8ea
JK
123 switch (function) {
124 case 1:
125 /* KVM before 2.6.30 misreports the following features */
126 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
127 break;
128 case 0x80000001:
b827df58
AK
129 /* On Intel, kvm returns cpuid according to the Intel spec,
130 * so add missing bits according to the AMD spec:
131 */
c958a8bd 132 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
c1667e40 133 ret |= cpuid_1_edx & 0x183f7ff;
19ccb8ea 134 break;
b827df58
AK
135 }
136 break;
137 }
138 }
139 }
140
141 qemu_free(cpuid);
142
143 return ret;
144}
145
bb0300dc
GN
146#ifdef CONFIG_KVM_PARA
147struct kvm_para_features {
b9bec74b
JK
148 int cap;
149 int feature;
bb0300dc 150} para_features[] = {
b9bec74b 151 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
b9bec74b 152 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
b9bec74b 153 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
f6584ee2 154#ifdef KVM_CAP_ASYNC_PF
b9bec74b 155 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
bb0300dc 156#endif
b9bec74b 157 { -1, -1 }
bb0300dc
GN
158};
159
160static int get_para_features(CPUState *env)
161{
b9bec74b 162 int i, features = 0;
bb0300dc 163
b9bec74b
JK
164 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
165 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
166 features |= (1 << para_features[i].feature);
bb0300dc 167 }
b9bec74b 168 }
b3a98367 169#ifdef KVM_CAP_ASYNC_PF
c5999bfc 170 has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
b3a98367 171#endif
b9bec74b 172 return features;
bb0300dc 173}
419fb20a 174#endif /* CONFIG_KVM_PARA */
bb0300dc 175
3c85e74f
HY
176typedef struct HWPoisonPage {
177 ram_addr_t ram_addr;
178 QLIST_ENTRY(HWPoisonPage) list;
179} HWPoisonPage;
180
181static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
182 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
183
184static void kvm_unpoison_all(void *param)
185{
186 HWPoisonPage *page, *next_page;
187
188 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
189 QLIST_REMOVE(page, list);
190 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
191 qemu_free(page);
192 }
193}
194
e7701825 195#ifdef KVM_CAP_MCE
3c85e74f
HY
196static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
197{
198 HWPoisonPage *page;
199
200 QLIST_FOREACH(page, &hwpoison_page_list, list) {
201 if (page->ram_addr == ram_addr) {
202 return;
203 }
204 }
205 page = qemu_malloc(sizeof(HWPoisonPage));
206 page->ram_addr = ram_addr;
207 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
208}
209
e7701825
MT
210static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
211 int *max_banks)
212{
213 int r;
214
14a09518 215 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
216 if (r > 0) {
217 *max_banks = r;
218 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
219 }
220 return -ENOSYS;
221}
222
c34d440a 223static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
e7701825 224{
c34d440a
JK
225 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
226 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
227 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 228
c34d440a
JK
229 if (code == BUS_MCEERR_AR) {
230 status |= MCI_STATUS_AR | 0x134;
231 mcg_status |= MCG_STATUS_EIPV;
232 } else {
233 status |= 0xc0;
234 mcg_status |= MCG_STATUS_RIPV;
419fb20a 235 }
c34d440a
JK
236 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
237 (MCM_ADDR_PHYS << 6) | 0xc,
238 cpu_x86_support_mca_broadcast(env) ?
239 MCE_INJECT_BROADCAST : 0);
419fb20a
JK
240}
241#endif /* KVM_CAP_MCE */
242
243static void hardware_memory_error(void)
244{
245 fprintf(stderr, "Hardware memory error!\n");
246 exit(1);
247}
248
249int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
250{
251#ifdef KVM_CAP_MCE
419fb20a
JK
252 ram_addr_t ram_addr;
253 target_phys_addr_t paddr;
254
255 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a
JK
256 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
257 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
258 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
259 &paddr)) {
419fb20a
JK
260 fprintf(stderr, "Hardware memory error for memory used by "
261 "QEMU itself instead of guest system!\n");
262 /* Hope we are lucky for AO MCE */
263 if (code == BUS_MCEERR_AO) {
264 return 0;
265 } else {
266 hardware_memory_error();
267 }
268 }
3c85e74f 269 kvm_hwpoison_page_add(ram_addr);
c34d440a 270 kvm_mce_inject(env, paddr, code);
419fb20a
JK
271 } else
272#endif /* KVM_CAP_MCE */
273 {
274 if (code == BUS_MCEERR_AO) {
275 return 0;
276 } else if (code == BUS_MCEERR_AR) {
277 hardware_memory_error();
278 } else {
279 return 1;
280 }
281 }
282 return 0;
283}
284
285int kvm_arch_on_sigbus(int code, void *addr)
286{
287#ifdef KVM_CAP_MCE
288 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a
JK
289 ram_addr_t ram_addr;
290 target_phys_addr_t paddr;
291
292 /* Hope we are lucky for AO MCE */
c34d440a 293 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
419fb20a
JK
294 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
295 &paddr)) {
296 fprintf(stderr, "Hardware memory error for memory used by "
297 "QEMU itself instead of guest system!: %p\n", addr);
298 return 0;
299 }
3c85e74f 300 kvm_hwpoison_page_add(ram_addr);
c34d440a 301 kvm_mce_inject(first_cpu, paddr, code);
419fb20a
JK
302 } else
303#endif /* KVM_CAP_MCE */
304 {
305 if (code == BUS_MCEERR_AO) {
306 return 0;
307 } else if (code == BUS_MCEERR_AR) {
308 hardware_memory_error();
309 } else {
310 return 1;
311 }
312 }
313 return 0;
314}
e7701825 315
ab443475
JK
316static int kvm_inject_mce_oldstyle(CPUState *env)
317{
318#ifdef KVM_CAP_MCE
319 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
320 unsigned int bank, bank_num = env->mcg_cap & 0xff;
321 struct kvm_x86_mce mce;
322
323 env->exception_injected = -1;
324
325 /*
326 * There must be at least one bank in use if an MCE is pending.
327 * Find it and use its values for the event injection.
328 */
329 for (bank = 0; bank < bank_num; bank++) {
330 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
331 break;
332 }
333 }
334 assert(bank < bank_num);
335
336 mce.bank = bank;
337 mce.status = env->mce_banks[bank * 4 + 1];
338 mce.mcg_status = env->mcg_status;
339 mce.addr = env->mce_banks[bank * 4 + 2];
340 mce.misc = env->mce_banks[bank * 4 + 3];
341
342 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
343 }
344#endif /* KVM_CAP_MCE */
345 return 0;
346}
347
b8cc45d6
GC
348static void cpu_update_state(void *opaque, int running, int reason)
349{
350 CPUState *env = opaque;
351
352 if (running) {
353 env->tsc_valid = false;
354 }
355}
356
05330448
AL
357int kvm_arch_init_vcpu(CPUState *env)
358{
359 struct {
486bd5a2
AL
360 struct kvm_cpuid2 cpuid;
361 struct kvm_cpuid_entry2 entries[100];
05330448 362 } __attribute__((packed)) cpuid_data;
486bd5a2 363 uint32_t limit, i, j, cpuid_i;
a33609ca 364 uint32_t unused;
bb0300dc 365 struct kvm_cpuid_entry2 *c;
521f0798 366#ifdef CONFIG_KVM_PARA
bb0300dc
GN
367 uint32_t signature[3];
368#endif
05330448 369
c958a8bd 370 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
6c0d7ee8
AP
371
372 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
c958a8bd 373 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
6c0d7ee8
AP
374 env->cpuid_ext_features |= i;
375
457dfed6 376 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 377 0, R_EDX);
457dfed6 378 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 379 0, R_ECX);
296acb64
JR
380 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
381 0, R_EDX);
382
6c1f42fe 383
05330448
AL
384 cpuid_i = 0;
385
bb0300dc
GN
386#ifdef CONFIG_KVM_PARA
387 /* Paravirtualization CPUIDs */
388 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
389 c = &cpuid_data.entries[cpuid_i++];
390 memset(c, 0, sizeof(*c));
391 c->function = KVM_CPUID_SIGNATURE;
392 c->eax = 0;
393 c->ebx = signature[0];
394 c->ecx = signature[1];
395 c->edx = signature[2];
396
397 c = &cpuid_data.entries[cpuid_i++];
398 memset(c, 0, sizeof(*c));
399 c->function = KVM_CPUID_FEATURES;
400 c->eax = env->cpuid_kvm_features & get_para_features(env);
401#endif
402
a33609ca 403 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
404
405 for (i = 0; i <= limit; i++) {
bb0300dc 406 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
407
408 switch (i) {
a36b1029
AL
409 case 2: {
410 /* Keep reading function 2 till all the input is received */
411 int times;
412
a36b1029 413 c->function = i;
a33609ca
AL
414 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
415 KVM_CPUID_FLAG_STATE_READ_NEXT;
416 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
417 times = c->eax & 0xff;
a36b1029
AL
418
419 for (j = 1; j < times; ++j) {
a33609ca 420 c = &cpuid_data.entries[cpuid_i++];
a36b1029 421 c->function = i;
a33609ca
AL
422 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
423 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
424 }
425 break;
426 }
486bd5a2
AL
427 case 4:
428 case 0xb:
429 case 0xd:
430 for (j = 0; ; j++) {
486bd5a2
AL
431 c->function = i;
432 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
433 c->index = j;
a33609ca 434 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 435
b9bec74b 436 if (i == 4 && c->eax == 0) {
486bd5a2 437 break;
b9bec74b
JK
438 }
439 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 440 break;
b9bec74b
JK
441 }
442 if (i == 0xd && c->eax == 0) {
486bd5a2 443 break;
b9bec74b 444 }
a33609ca 445 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
446 }
447 break;
448 default:
486bd5a2 449 c->function = i;
a33609ca
AL
450 c->flags = 0;
451 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
452 break;
453 }
05330448 454 }
a33609ca 455 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
456
457 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 458 c = &cpuid_data.entries[cpuid_i++];
05330448 459
05330448 460 c->function = i;
a33609ca
AL
461 c->flags = 0;
462 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
463 }
464
465 cpuid_data.cpuid.nent = cpuid_i;
466
e7701825
MT
467#ifdef KVM_CAP_MCE
468 if (((env->cpuid_version >> 8)&0xF) >= 6
469 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
470 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
471 uint64_t mcg_cap;
472 int banks;
32a42024 473 int ret;
e7701825 474
75d49497
JK
475 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
476 if (ret < 0) {
477 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
478 return ret;
e7701825 479 }
75d49497
JK
480
481 if (banks > MCE_BANKS_DEF) {
482 banks = MCE_BANKS_DEF;
483 }
484 mcg_cap &= MCE_CAP_DEF;
485 mcg_cap |= banks;
486 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
487 if (ret < 0) {
488 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
489 return ret;
490 }
491
492 env->mcg_cap = mcg_cap;
e7701825
MT
493 }
494#endif
495
b8cc45d6
GC
496 qemu_add_vm_change_state_handler(cpu_update_state, env);
497
486bd5a2 498 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
05330448
AL
499}
500
caa5af0f
JK
501void kvm_arch_reset_vcpu(CPUState *env)
502{
e73223a5 503 env->exception_injected = -1;
0e607a80 504 env->interrupt_injected = -1;
1a5e9d2f 505 env->xcr0 = 1;
ddced198
MT
506 if (kvm_irqchip_in_kernel()) {
507 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
508 KVM_MP_STATE_UNINITIALIZED;
509 } else {
510 env->mp_state = KVM_MP_STATE_RUNNABLE;
511 }
caa5af0f
JK
512}
513
c3a3a7d3 514static int kvm_get_supported_msrs(KVMState *s)
05330448 515{
75b10c43 516 static int kvm_supported_msrs;
c3a3a7d3 517 int ret = 0;
05330448
AL
518
519 /* first time */
75b10c43 520 if (kvm_supported_msrs == 0) {
05330448
AL
521 struct kvm_msr_list msr_list, *kvm_msr_list;
522
75b10c43 523 kvm_supported_msrs = -1;
05330448
AL
524
525 /* Obtain MSR list from KVM. These are the MSRs that we must
526 * save/restore */
4c9f7372 527 msr_list.nmsrs = 0;
c3a3a7d3 528 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 529 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 530 return ret;
6fb6d245 531 }
d9db889f
JK
532 /* Old kernel modules had a bug and could write beyond the provided
533 memory. Allocate at least a safe amount of 1K. */
534 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
535 msr_list.nmsrs *
536 sizeof(msr_list.indices[0])));
05330448 537
55308450 538 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 539 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
540 if (ret >= 0) {
541 int i;
542
543 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
544 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 545 has_msr_star = true;
75b10c43
MT
546 continue;
547 }
548 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 549 has_msr_hsave_pa = true;
75b10c43 550 continue;
05330448
AL
551 }
552 }
553 }
554
555 free(kvm_msr_list);
556 }
557
c3a3a7d3 558 return ret;
05330448
AL
559}
560
cad1e282 561int kvm_arch_init(KVMState *s)
20420430 562{
11076198 563 uint64_t identity_base = 0xfffbc000;
20420430 564 int ret;
25d2e361 565 struct utsname utsname;
20420430 566
c3a3a7d3 567 ret = kvm_get_supported_msrs(s);
20420430 568 if (ret < 0) {
20420430
SY
569 return ret;
570 }
25d2e361
MT
571
572 uname(&utsname);
573 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
574
4c5b10b7 575 /*
11076198
JK
576 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
577 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
578 * Since these must be part of guest physical memory, we need to allocate
579 * them, both by setting their start addresses in the kernel and by
580 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
581 *
582 * Older KVM versions may not support setting the identity map base. In
583 * that case we need to stick with the default, i.e. a 256K maximum BIOS
584 * size.
4c5b10b7 585 */
11076198
JK
586#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
587 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
588 /* Allows up to 16M BIOSes. */
589 identity_base = 0xfeffc000;
590
591 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
592 if (ret < 0) {
593 return ret;
594 }
4c5b10b7 595 }
11076198
JK
596#endif
597 /* Set TSS base one page after EPT identity map. */
598 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
599 if (ret < 0) {
600 return ret;
601 }
602
11076198
JK
603 /* Tell fw_cfg to notify the BIOS to reserve the range. */
604 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 605 if (ret < 0) {
11076198 606 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
607 return ret;
608 }
3c85e74f 609 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 610
11076198 611 return 0;
05330448 612}
b9bec74b 613
05330448
AL
614static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
615{
616 lhs->selector = rhs->selector;
617 lhs->base = rhs->base;
618 lhs->limit = rhs->limit;
619 lhs->type = 3;
620 lhs->present = 1;
621 lhs->dpl = 3;
622 lhs->db = 0;
623 lhs->s = 1;
624 lhs->l = 0;
625 lhs->g = 0;
626 lhs->avl = 0;
627 lhs->unusable = 0;
628}
629
630static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
631{
632 unsigned flags = rhs->flags;
633 lhs->selector = rhs->selector;
634 lhs->base = rhs->base;
635 lhs->limit = rhs->limit;
636 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
637 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 638 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
639 lhs->db = (flags >> DESC_B_SHIFT) & 1;
640 lhs->s = (flags & DESC_S_MASK) != 0;
641 lhs->l = (flags >> DESC_L_SHIFT) & 1;
642 lhs->g = (flags & DESC_G_MASK) != 0;
643 lhs->avl = (flags & DESC_AVL_MASK) != 0;
644 lhs->unusable = 0;
645}
646
647static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
648{
649 lhs->selector = rhs->selector;
650 lhs->base = rhs->base;
651 lhs->limit = rhs->limit;
b9bec74b
JK
652 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
653 (rhs->present * DESC_P_MASK) |
654 (rhs->dpl << DESC_DPL_SHIFT) |
655 (rhs->db << DESC_B_SHIFT) |
656 (rhs->s * DESC_S_MASK) |
657 (rhs->l << DESC_L_SHIFT) |
658 (rhs->g * DESC_G_MASK) |
659 (rhs->avl * DESC_AVL_MASK);
05330448
AL
660}
661
662static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
663{
b9bec74b 664 if (set) {
05330448 665 *kvm_reg = *qemu_reg;
b9bec74b 666 } else {
05330448 667 *qemu_reg = *kvm_reg;
b9bec74b 668 }
05330448
AL
669}
670
671static int kvm_getput_regs(CPUState *env, int set)
672{
673 struct kvm_regs regs;
674 int ret = 0;
675
676 if (!set) {
677 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 678 if (ret < 0) {
05330448 679 return ret;
b9bec74b 680 }
05330448
AL
681 }
682
683 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
684 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
685 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
686 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
687 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
688 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
689 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
690 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
691#ifdef TARGET_X86_64
692 kvm_getput_reg(&regs.r8, &env->regs[8], set);
693 kvm_getput_reg(&regs.r9, &env->regs[9], set);
694 kvm_getput_reg(&regs.r10, &env->regs[10], set);
695 kvm_getput_reg(&regs.r11, &env->regs[11], set);
696 kvm_getput_reg(&regs.r12, &env->regs[12], set);
697 kvm_getput_reg(&regs.r13, &env->regs[13], set);
698 kvm_getput_reg(&regs.r14, &env->regs[14], set);
699 kvm_getput_reg(&regs.r15, &env->regs[15], set);
700#endif
701
702 kvm_getput_reg(&regs.rflags, &env->eflags, set);
703 kvm_getput_reg(&regs.rip, &env->eip, set);
704
b9bec74b 705 if (set) {
05330448 706 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 707 }
05330448
AL
708
709 return ret;
710}
711
712static int kvm_put_fpu(CPUState *env)
713{
714 struct kvm_fpu fpu;
715 int i;
716
717 memset(&fpu, 0, sizeof fpu);
718 fpu.fsw = env->fpus & ~(7 << 11);
719 fpu.fsw |= (env->fpstt & 7) << 11;
720 fpu.fcw = env->fpuc;
b9bec74b
JK
721 for (i = 0; i < 8; ++i) {
722 fpu.ftwx |= (!env->fptags[i]) << i;
723 }
05330448
AL
724 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
725 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
726 fpu.mxcsr = env->mxcsr;
727
728 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
729}
730
f1665b21
SY
731#ifdef KVM_CAP_XSAVE
732#define XSAVE_CWD_RIP 2
733#define XSAVE_CWD_RDP 4
734#define XSAVE_MXCSR 6
735#define XSAVE_ST_SPACE 8
736#define XSAVE_XMM_SPACE 40
737#define XSAVE_XSTATE_BV 128
738#define XSAVE_YMMH_SPACE 144
739#endif
740
741static int kvm_put_xsave(CPUState *env)
742{
743#ifdef KVM_CAP_XSAVE
0f53994f 744 int i, r;
f1665b21
SY
745 struct kvm_xsave* xsave;
746 uint16_t cwd, swd, twd, fop;
747
b9bec74b 748 if (!kvm_has_xsave()) {
f1665b21 749 return kvm_put_fpu(env);
b9bec74b 750 }
f1665b21
SY
751
752 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
753 memset(xsave, 0, sizeof(struct kvm_xsave));
754 cwd = swd = twd = fop = 0;
755 swd = env->fpus & ~(7 << 11);
756 swd |= (env->fpstt & 7) << 11;
757 cwd = env->fpuc;
b9bec74b 758 for (i = 0; i < 8; ++i) {
f1665b21 759 twd |= (!env->fptags[i]) << i;
b9bec74b 760 }
f1665b21
SY
761 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
762 xsave->region[1] = (uint32_t)(fop << 16) + twd;
763 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
764 sizeof env->fpregs);
765 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
766 sizeof env->xmm_regs);
767 xsave->region[XSAVE_MXCSR] = env->mxcsr;
768 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
769 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
770 sizeof env->ymmh_regs);
0f53994f
MT
771 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
772 qemu_free(xsave);
773 return r;
f1665b21
SY
774#else
775 return kvm_put_fpu(env);
776#endif
777}
778
779static int kvm_put_xcrs(CPUState *env)
780{
781#ifdef KVM_CAP_XCRS
782 struct kvm_xcrs xcrs;
783
b9bec74b 784 if (!kvm_has_xcrs()) {
f1665b21 785 return 0;
b9bec74b 786 }
f1665b21
SY
787
788 xcrs.nr_xcrs = 1;
789 xcrs.flags = 0;
790 xcrs.xcrs[0].xcr = 0;
791 xcrs.xcrs[0].value = env->xcr0;
792 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
793#else
794 return 0;
795#endif
796}
797
05330448
AL
798static int kvm_put_sregs(CPUState *env)
799{
800 struct kvm_sregs sregs;
801
0e607a80
JK
802 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
803 if (env->interrupt_injected >= 0) {
804 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
805 (uint64_t)1 << (env->interrupt_injected % 64);
806 }
05330448
AL
807
808 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
809 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
810 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
811 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
812 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
813 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
814 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 815 } else {
b9bec74b
JK
816 set_seg(&sregs.cs, &env->segs[R_CS]);
817 set_seg(&sregs.ds, &env->segs[R_DS]);
818 set_seg(&sregs.es, &env->segs[R_ES]);
819 set_seg(&sregs.fs, &env->segs[R_FS]);
820 set_seg(&sregs.gs, &env->segs[R_GS]);
821 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
822 }
823
824 set_seg(&sregs.tr, &env->tr);
825 set_seg(&sregs.ldt, &env->ldt);
826
827 sregs.idt.limit = env->idt.limit;
828 sregs.idt.base = env->idt.base;
829 sregs.gdt.limit = env->gdt.limit;
830 sregs.gdt.base = env->gdt.base;
831
832 sregs.cr0 = env->cr[0];
833 sregs.cr2 = env->cr[2];
834 sregs.cr3 = env->cr[3];
835 sregs.cr4 = env->cr[4];
836
4a942cea
BS
837 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
838 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
839
840 sregs.efer = env->efer;
841
842 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
843}
844
845static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
846 uint32_t index, uint64_t value)
847{
848 entry->index = index;
849 entry->data = value;
850}
851
ea643051 852static int kvm_put_msrs(CPUState *env, int level)
05330448
AL
853{
854 struct {
855 struct kvm_msrs info;
856 struct kvm_msr_entry entries[100];
857 } msr_data;
858 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 859 int n = 0;
05330448
AL
860
861 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
862 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
863 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
c3a3a7d3 864 if (has_msr_star) {
b9bec74b
JK
865 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
866 }
c3a3a7d3 867 if (has_msr_hsave_pa) {
75b10c43 868 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 869 }
05330448 870#ifdef TARGET_X86_64
25d2e361
MT
871 if (lm_capable_kernel) {
872 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
873 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
874 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
875 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
876 }
05330448 877#endif
ea643051 878 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
879 /*
880 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
881 * writeback. Until this is fixed, we only write the offset to SMP
882 * guests after migration, desynchronizing the VCPUs, but avoiding
883 * huge jump-backs that would occur without any writeback at all.
884 */
885 if (smp_cpus == 1 || env->tsc != 0) {
886 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
887 }
ff5c186b
JK
888 }
889 /*
890 * The following paravirtual MSRs have side effects on the guest or are
891 * too heavy for normal writeback. Limit them to reset or full state
892 * updates.
893 */
894 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
895 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
896 env->system_time_msr);
897 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
521f0798 898#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
c5999bfc
JK
899 if (has_msr_async_pf_en) {
900 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
901 env->async_pf_en_msr);
902 }
f6584ee2 903#endif
ea643051 904 }
57780495
MT
905#ifdef KVM_CAP_MCE
906 if (env->mcg_cap) {
d8da8574 907 int i;
b9bec74b 908
c34d440a
JK
909 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
910 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
911 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
912 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
913 }
914 }
915#endif
1a03675d 916
05330448
AL
917 msr_data.info.nmsrs = n;
918
919 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
920
921}
922
923
924static int kvm_get_fpu(CPUState *env)
925{
926 struct kvm_fpu fpu;
927 int i, ret;
928
929 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 930 if (ret < 0) {
05330448 931 return ret;
b9bec74b 932 }
05330448
AL
933
934 env->fpstt = (fpu.fsw >> 11) & 7;
935 env->fpus = fpu.fsw;
936 env->fpuc = fpu.fcw;
b9bec74b
JK
937 for (i = 0; i < 8; ++i) {
938 env->fptags[i] = !((fpu.ftwx >> i) & 1);
939 }
05330448
AL
940 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
941 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
942 env->mxcsr = fpu.mxcsr;
943
944 return 0;
945}
946
f1665b21
SY
947static int kvm_get_xsave(CPUState *env)
948{
949#ifdef KVM_CAP_XSAVE
950 struct kvm_xsave* xsave;
951 int ret, i;
952 uint16_t cwd, swd, twd, fop;
953
b9bec74b 954 if (!kvm_has_xsave()) {
f1665b21 955 return kvm_get_fpu(env);
b9bec74b 956 }
f1665b21
SY
957
958 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
959 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f
MT
960 if (ret < 0) {
961 qemu_free(xsave);
f1665b21 962 return ret;
0f53994f 963 }
f1665b21
SY
964
965 cwd = (uint16_t)xsave->region[0];
966 swd = (uint16_t)(xsave->region[0] >> 16);
967 twd = (uint16_t)xsave->region[1];
968 fop = (uint16_t)(xsave->region[1] >> 16);
969 env->fpstt = (swd >> 11) & 7;
970 env->fpus = swd;
971 env->fpuc = cwd;
b9bec74b 972 for (i = 0; i < 8; ++i) {
f1665b21 973 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 974 }
f1665b21
SY
975 env->mxcsr = xsave->region[XSAVE_MXCSR];
976 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
977 sizeof env->fpregs);
978 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
979 sizeof env->xmm_regs);
980 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
981 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
982 sizeof env->ymmh_regs);
0f53994f 983 qemu_free(xsave);
f1665b21
SY
984 return 0;
985#else
986 return kvm_get_fpu(env);
987#endif
988}
989
990static int kvm_get_xcrs(CPUState *env)
991{
992#ifdef KVM_CAP_XCRS
993 int i, ret;
994 struct kvm_xcrs xcrs;
995
b9bec74b 996 if (!kvm_has_xcrs()) {
f1665b21 997 return 0;
b9bec74b 998 }
f1665b21
SY
999
1000 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 1001 if (ret < 0) {
f1665b21 1002 return ret;
b9bec74b 1003 }
f1665b21 1004
b9bec74b 1005 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
1006 /* Only support xcr0 now */
1007 if (xcrs.xcrs[0].xcr == 0) {
1008 env->xcr0 = xcrs.xcrs[0].value;
1009 break;
1010 }
b9bec74b 1011 }
f1665b21
SY
1012 return 0;
1013#else
1014 return 0;
1015#endif
1016}
1017
05330448
AL
1018static int kvm_get_sregs(CPUState *env)
1019{
1020 struct kvm_sregs sregs;
1021 uint32_t hflags;
0e607a80 1022 int bit, i, ret;
05330448
AL
1023
1024 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 1025 if (ret < 0) {
05330448 1026 return ret;
b9bec74b 1027 }
05330448 1028
0e607a80
JK
1029 /* There can only be one pending IRQ set in the bitmap at a time, so try
1030 to find it and save its number instead (-1 for none). */
1031 env->interrupt_injected = -1;
1032 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1033 if (sregs.interrupt_bitmap[i]) {
1034 bit = ctz64(sregs.interrupt_bitmap[i]);
1035 env->interrupt_injected = i * 64 + bit;
1036 break;
1037 }
1038 }
05330448
AL
1039
1040 get_seg(&env->segs[R_CS], &sregs.cs);
1041 get_seg(&env->segs[R_DS], &sregs.ds);
1042 get_seg(&env->segs[R_ES], &sregs.es);
1043 get_seg(&env->segs[R_FS], &sregs.fs);
1044 get_seg(&env->segs[R_GS], &sregs.gs);
1045 get_seg(&env->segs[R_SS], &sregs.ss);
1046
1047 get_seg(&env->tr, &sregs.tr);
1048 get_seg(&env->ldt, &sregs.ldt);
1049
1050 env->idt.limit = sregs.idt.limit;
1051 env->idt.base = sregs.idt.base;
1052 env->gdt.limit = sregs.gdt.limit;
1053 env->gdt.base = sregs.gdt.base;
1054
1055 env->cr[0] = sregs.cr0;
1056 env->cr[2] = sregs.cr2;
1057 env->cr[3] = sregs.cr3;
1058 env->cr[4] = sregs.cr4;
1059
4a942cea 1060 cpu_set_apic_base(env->apic_state, sregs.apic_base);
05330448
AL
1061
1062 env->efer = sregs.efer;
4a942cea 1063 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
05330448 1064
b9bec74b
JK
1065#define HFLAG_COPY_MASK \
1066 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1067 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1068 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1069 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1070
1071 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1072 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1073 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1074 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1075 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1076 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1077 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1078
1079 if (env->efer & MSR_EFER_LMA) {
1080 hflags |= HF_LMA_MASK;
1081 }
1082
1083 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1084 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1085 } else {
1086 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1087 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1088 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1089 (DESC_B_SHIFT - HF_SS32_SHIFT);
1090 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1091 !(hflags & HF_CS32_MASK)) {
1092 hflags |= HF_ADDSEG_MASK;
1093 } else {
1094 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1095 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1096 }
05330448
AL
1097 }
1098 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1099
1100 return 0;
1101}
1102
1103static int kvm_get_msrs(CPUState *env)
1104{
1105 struct {
1106 struct kvm_msrs info;
1107 struct kvm_msr_entry entries[100];
1108 } msr_data;
1109 struct kvm_msr_entry *msrs = msr_data.entries;
1110 int ret, i, n;
1111
1112 n = 0;
1113 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1114 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1115 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
c3a3a7d3 1116 if (has_msr_star) {
b9bec74b
JK
1117 msrs[n++].index = MSR_STAR;
1118 }
c3a3a7d3 1119 if (has_msr_hsave_pa) {
75b10c43 1120 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1121 }
b8cc45d6
GC
1122
1123 if (!env->tsc_valid) {
1124 msrs[n++].index = MSR_IA32_TSC;
1125 env->tsc_valid = !vm_running;
1126 }
1127
05330448 1128#ifdef TARGET_X86_64
25d2e361
MT
1129 if (lm_capable_kernel) {
1130 msrs[n++].index = MSR_CSTAR;
1131 msrs[n++].index = MSR_KERNELGSBASE;
1132 msrs[n++].index = MSR_FMASK;
1133 msrs[n++].index = MSR_LSTAR;
1134 }
05330448 1135#endif
1a03675d
GC
1136 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1137 msrs[n++].index = MSR_KVM_WALL_CLOCK;
521f0798 1138#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
c5999bfc
JK
1139 if (has_msr_async_pf_en) {
1140 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1141 }
f6584ee2 1142#endif
1a03675d 1143
57780495
MT
1144#ifdef KVM_CAP_MCE
1145 if (env->mcg_cap) {
1146 msrs[n++].index = MSR_MCG_STATUS;
1147 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1148 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1149 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1150 }
57780495
MT
1151 }
1152#endif
1153
05330448
AL
1154 msr_data.info.nmsrs = n;
1155 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1156 if (ret < 0) {
05330448 1157 return ret;
b9bec74b 1158 }
05330448
AL
1159
1160 for (i = 0; i < ret; i++) {
1161 switch (msrs[i].index) {
1162 case MSR_IA32_SYSENTER_CS:
1163 env->sysenter_cs = msrs[i].data;
1164 break;
1165 case MSR_IA32_SYSENTER_ESP:
1166 env->sysenter_esp = msrs[i].data;
1167 break;
1168 case MSR_IA32_SYSENTER_EIP:
1169 env->sysenter_eip = msrs[i].data;
1170 break;
1171 case MSR_STAR:
1172 env->star = msrs[i].data;
1173 break;
1174#ifdef TARGET_X86_64
1175 case MSR_CSTAR:
1176 env->cstar = msrs[i].data;
1177 break;
1178 case MSR_KERNELGSBASE:
1179 env->kernelgsbase = msrs[i].data;
1180 break;
1181 case MSR_FMASK:
1182 env->fmask = msrs[i].data;
1183 break;
1184 case MSR_LSTAR:
1185 env->lstar = msrs[i].data;
1186 break;
1187#endif
1188 case MSR_IA32_TSC:
1189 env->tsc = msrs[i].data;
1190 break;
aa851e36
MT
1191 case MSR_VM_HSAVE_PA:
1192 env->vm_hsave = msrs[i].data;
1193 break;
1a03675d
GC
1194 case MSR_KVM_SYSTEM_TIME:
1195 env->system_time_msr = msrs[i].data;
1196 break;
1197 case MSR_KVM_WALL_CLOCK:
1198 env->wall_clock_msr = msrs[i].data;
1199 break;
57780495
MT
1200#ifdef KVM_CAP_MCE
1201 case MSR_MCG_STATUS:
1202 env->mcg_status = msrs[i].data;
1203 break;
1204 case MSR_MCG_CTL:
1205 env->mcg_ctl = msrs[i].data;
1206 break;
1207#endif
1208 default:
1209#ifdef KVM_CAP_MCE
1210 if (msrs[i].index >= MSR_MC0_CTL &&
1211 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1212 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495
MT
1213 }
1214#endif
d8da8574 1215 break;
521f0798 1216#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
f6584ee2
GN
1217 case MSR_KVM_ASYNC_PF_EN:
1218 env->async_pf_en_msr = msrs[i].data;
1219 break;
1220#endif
05330448
AL
1221 }
1222 }
1223
1224 return 0;
1225}
1226
9bdbe550
HB
1227static int kvm_put_mp_state(CPUState *env)
1228{
1229 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1230
1231 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1232}
1233
1234static int kvm_get_mp_state(CPUState *env)
1235{
1236 struct kvm_mp_state mp_state;
1237 int ret;
1238
1239 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1240 if (ret < 0) {
1241 return ret;
1242 }
1243 env->mp_state = mp_state.mp_state;
c14750e8
JK
1244 if (kvm_irqchip_in_kernel()) {
1245 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1246 }
9bdbe550
HB
1247 return 0;
1248}
1249
ea643051 1250static int kvm_put_vcpu_events(CPUState *env, int level)
a0fb002c
JK
1251{
1252#ifdef KVM_CAP_VCPU_EVENTS
1253 struct kvm_vcpu_events events;
1254
1255 if (!kvm_has_vcpu_events()) {
1256 return 0;
1257 }
1258
31827373
JK
1259 events.exception.injected = (env->exception_injected >= 0);
1260 events.exception.nr = env->exception_injected;
a0fb002c
JK
1261 events.exception.has_error_code = env->has_error_code;
1262 events.exception.error_code = env->error_code;
1263
1264 events.interrupt.injected = (env->interrupt_injected >= 0);
1265 events.interrupt.nr = env->interrupt_injected;
1266 events.interrupt.soft = env->soft_interrupt;
1267
1268 events.nmi.injected = env->nmi_injected;
1269 events.nmi.pending = env->nmi_pending;
1270 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1271
1272 events.sipi_vector = env->sipi_vector;
1273
ea643051
JK
1274 events.flags = 0;
1275 if (level >= KVM_PUT_RESET_STATE) {
1276 events.flags |=
1277 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1278 }
aee028b9 1279
a0fb002c
JK
1280 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1281#else
1282 return 0;
1283#endif
1284}
1285
1286static int kvm_get_vcpu_events(CPUState *env)
1287{
1288#ifdef KVM_CAP_VCPU_EVENTS
1289 struct kvm_vcpu_events events;
1290 int ret;
1291
1292 if (!kvm_has_vcpu_events()) {
1293 return 0;
1294 }
1295
1296 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1297 if (ret < 0) {
1298 return ret;
1299 }
31827373 1300 env->exception_injected =
a0fb002c
JK
1301 events.exception.injected ? events.exception.nr : -1;
1302 env->has_error_code = events.exception.has_error_code;
1303 env->error_code = events.exception.error_code;
1304
1305 env->interrupt_injected =
1306 events.interrupt.injected ? events.interrupt.nr : -1;
1307 env->soft_interrupt = events.interrupt.soft;
1308
1309 env->nmi_injected = events.nmi.injected;
1310 env->nmi_pending = events.nmi.pending;
1311 if (events.nmi.masked) {
1312 env->hflags2 |= HF2_NMI_MASK;
1313 } else {
1314 env->hflags2 &= ~HF2_NMI_MASK;
1315 }
1316
1317 env->sipi_vector = events.sipi_vector;
1318#endif
1319
1320 return 0;
1321}
1322
b0b1d690
JK
1323static int kvm_guest_debug_workarounds(CPUState *env)
1324{
1325 int ret = 0;
1326#ifdef KVM_CAP_SET_GUEST_DEBUG
1327 unsigned long reinject_trap = 0;
1328
1329 if (!kvm_has_vcpu_events()) {
1330 if (env->exception_injected == 1) {
1331 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1332 } else if (env->exception_injected == 3) {
1333 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1334 }
1335 env->exception_injected = -1;
1336 }
1337
1338 /*
1339 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1340 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1341 * by updating the debug state once again if single-stepping is on.
1342 * Another reason to call kvm_update_guest_debug here is a pending debug
1343 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1344 * reinject them via SET_GUEST_DEBUG.
1345 */
1346 if (reinject_trap ||
1347 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1348 ret = kvm_update_guest_debug(env, reinject_trap);
1349 }
1350#endif /* KVM_CAP_SET_GUEST_DEBUG */
1351 return ret;
1352}
1353
ff44f1a3
JK
1354static int kvm_put_debugregs(CPUState *env)
1355{
1356#ifdef KVM_CAP_DEBUGREGS
1357 struct kvm_debugregs dbgregs;
1358 int i;
1359
1360 if (!kvm_has_debugregs()) {
1361 return 0;
1362 }
1363
1364 for (i = 0; i < 4; i++) {
1365 dbgregs.db[i] = env->dr[i];
1366 }
1367 dbgregs.dr6 = env->dr[6];
1368 dbgregs.dr7 = env->dr[7];
1369 dbgregs.flags = 0;
1370
1371 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1372#else
1373 return 0;
1374#endif
1375}
1376
1377static int kvm_get_debugregs(CPUState *env)
1378{
1379#ifdef KVM_CAP_DEBUGREGS
1380 struct kvm_debugregs dbgregs;
1381 int i, ret;
1382
1383 if (!kvm_has_debugregs()) {
1384 return 0;
1385 }
1386
1387 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1388 if (ret < 0) {
b9bec74b 1389 return ret;
ff44f1a3
JK
1390 }
1391 for (i = 0; i < 4; i++) {
1392 env->dr[i] = dbgregs.db[i];
1393 }
1394 env->dr[4] = env->dr[6] = dbgregs.dr6;
1395 env->dr[5] = env->dr[7] = dbgregs.dr7;
1396#endif
1397
1398 return 0;
1399}
1400
ea375f9a 1401int kvm_arch_put_registers(CPUState *env, int level)
05330448
AL
1402{
1403 int ret;
1404
b7680cb6 1405 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1406
05330448 1407 ret = kvm_getput_regs(env, 1);
b9bec74b 1408 if (ret < 0) {
05330448 1409 return ret;
b9bec74b 1410 }
f1665b21 1411 ret = kvm_put_xsave(env);
b9bec74b 1412 if (ret < 0) {
f1665b21 1413 return ret;
b9bec74b 1414 }
f1665b21 1415 ret = kvm_put_xcrs(env);
b9bec74b 1416 if (ret < 0) {
05330448 1417 return ret;
b9bec74b 1418 }
05330448 1419 ret = kvm_put_sregs(env);
b9bec74b 1420 if (ret < 0) {
05330448 1421 return ret;
b9bec74b 1422 }
ab443475
JK
1423 /* must be before kvm_put_msrs */
1424 ret = kvm_inject_mce_oldstyle(env);
1425 if (ret < 0) {
1426 return ret;
1427 }
ea643051 1428 ret = kvm_put_msrs(env, level);
b9bec74b 1429 if (ret < 0) {
05330448 1430 return ret;
b9bec74b 1431 }
ea643051
JK
1432 if (level >= KVM_PUT_RESET_STATE) {
1433 ret = kvm_put_mp_state(env);
b9bec74b 1434 if (ret < 0) {
ea643051 1435 return ret;
b9bec74b 1436 }
ea643051 1437 }
ea643051 1438 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1439 if (ret < 0) {
a0fb002c 1440 return ret;
b9bec74b 1441 }
0d75a9ec 1442 ret = kvm_put_debugregs(env);
b9bec74b 1443 if (ret < 0) {
b0b1d690 1444 return ret;
b9bec74b 1445 }
b0b1d690
JK
1446 /* must be last */
1447 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1448 if (ret < 0) {
ff44f1a3 1449 return ret;
b9bec74b 1450 }
05330448
AL
1451 return 0;
1452}
1453
1454int kvm_arch_get_registers(CPUState *env)
1455{
1456 int ret;
1457
b7680cb6 1458 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1459
05330448 1460 ret = kvm_getput_regs(env, 0);
b9bec74b 1461 if (ret < 0) {
05330448 1462 return ret;
b9bec74b 1463 }
f1665b21 1464 ret = kvm_get_xsave(env);
b9bec74b 1465 if (ret < 0) {
f1665b21 1466 return ret;
b9bec74b 1467 }
f1665b21 1468 ret = kvm_get_xcrs(env);
b9bec74b 1469 if (ret < 0) {
05330448 1470 return ret;
b9bec74b 1471 }
05330448 1472 ret = kvm_get_sregs(env);
b9bec74b 1473 if (ret < 0) {
05330448 1474 return ret;
b9bec74b 1475 }
05330448 1476 ret = kvm_get_msrs(env);
b9bec74b 1477 if (ret < 0) {
05330448 1478 return ret;
b9bec74b 1479 }
5a2e3c2e 1480 ret = kvm_get_mp_state(env);
b9bec74b 1481 if (ret < 0) {
5a2e3c2e 1482 return ret;
b9bec74b 1483 }
a0fb002c 1484 ret = kvm_get_vcpu_events(env);
b9bec74b 1485 if (ret < 0) {
a0fb002c 1486 return ret;
b9bec74b 1487 }
ff44f1a3 1488 ret = kvm_get_debugregs(env);
b9bec74b 1489 if (ret < 0) {
ff44f1a3 1490 return ret;
b9bec74b 1491 }
05330448
AL
1492 return 0;
1493}
1494
7a39fe58 1495void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
05330448 1496{
ce377af3
JK
1497 int ret;
1498
276ce815
LJ
1499 /* Inject NMI */
1500 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1501 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1502 DPRINTF("injected NMI\n");
ce377af3
JK
1503 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1504 if (ret < 0) {
1505 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1506 strerror(-ret));
1507 }
276ce815
LJ
1508 }
1509
db1669bc
JK
1510 if (!kvm_irqchip_in_kernel()) {
1511 /* Force the VCPU out of its inner loop to process the INIT request */
1512 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1513 env->exit_request = 1;
05330448 1514 }
05330448 1515
db1669bc
JK
1516 /* Try to inject an interrupt if the guest can accept it */
1517 if (run->ready_for_interrupt_injection &&
1518 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1519 (env->eflags & IF_MASK)) {
1520 int irq;
1521
1522 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1523 irq = cpu_get_pic_interrupt(env);
1524 if (irq >= 0) {
1525 struct kvm_interrupt intr;
1526
1527 intr.irq = irq;
db1669bc 1528 DPRINTF("injected interrupt %d\n", irq);
ce377af3
JK
1529 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1530 if (ret < 0) {
1531 fprintf(stderr,
1532 "KVM: injection failed, interrupt lost (%s)\n",
1533 strerror(-ret));
1534 }
db1669bc
JK
1535 }
1536 }
05330448 1537
db1669bc
JK
1538 /* If we have an interrupt but the guest is not ready to receive an
1539 * interrupt, request an interrupt window exit. This will
1540 * cause a return to userspace as soon as the guest is ready to
1541 * receive interrupts. */
1542 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1543 run->request_interrupt_window = 1;
1544 } else {
1545 run->request_interrupt_window = 0;
1546 }
1547
1548 DPRINTF("setting tpr\n");
1549 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1550 }
05330448
AL
1551}
1552
7a39fe58 1553void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
05330448 1554{
b9bec74b 1555 if (run->if_flag) {
05330448 1556 env->eflags |= IF_MASK;
b9bec74b 1557 } else {
05330448 1558 env->eflags &= ~IF_MASK;
b9bec74b 1559 }
4a942cea
BS
1560 cpu_set_apic_tpr(env->apic_state, run->cr8);
1561 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1562}
1563
99036865 1564int kvm_arch_process_async_events(CPUState *env)
0af691d7 1565{
ab443475
JK
1566 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1567 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1568 assert(env->mcg_cap);
1569
1570 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1571
1572 kvm_cpu_synchronize_state(env);
1573
1574 if (env->exception_injected == EXCP08_DBLE) {
1575 /* this means triple fault */
1576 qemu_system_reset_request();
1577 env->exit_request = 1;
1578 return 0;
1579 }
1580 env->exception_injected = EXCP12_MCHK;
1581 env->has_error_code = 0;
1582
1583 env->halted = 0;
1584 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1585 env->mp_state = KVM_MP_STATE_RUNNABLE;
1586 }
1587 }
1588
db1669bc
JK
1589 if (kvm_irqchip_in_kernel()) {
1590 return 0;
1591 }
1592
4601f7b0
JK
1593 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1594 (env->eflags & IF_MASK)) ||
1595 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
6792a57b
JK
1596 env->halted = 0;
1597 }
0af691d7
MT
1598 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1599 kvm_cpu_synchronize_state(env);
1600 do_cpu_init(env);
0af691d7 1601 }
0af691d7
MT
1602 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1603 kvm_cpu_synchronize_state(env);
1604 do_cpu_sipi(env);
1605 }
1606
1607 return env->halted;
1608}
1609
05330448
AL
1610static int kvm_handle_halt(CPUState *env)
1611{
1612 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1613 (env->eflags & IF_MASK)) &&
1614 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1615 env->halted = 1;
05330448
AL
1616 return 0;
1617 }
1618
1619 return 1;
1620}
1621
bb44e0d1
JK
1622static bool host_supports_vmx(void)
1623{
1624 uint32_t ecx, unused;
1625
1626 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1627 return ecx & CPUID_EXT_VMX;
1628}
1629
1630#define VMX_INVALID_GUEST_STATE 0x80000021
1631
05330448
AL
1632int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1633{
bb44e0d1 1634 uint64_t code;
05330448
AL
1635 int ret = 0;
1636
1637 switch (run->exit_reason) {
1638 case KVM_EXIT_HLT:
8c0d577e 1639 DPRINTF("handle_hlt\n");
05330448
AL
1640 ret = kvm_handle_halt(env);
1641 break;
646042e1
JK
1642 case KVM_EXIT_SET_TPR:
1643 ret = 1;
1644 break;
bb44e0d1
JK
1645 case KVM_EXIT_FAIL_ENTRY:
1646 code = run->fail_entry.hardware_entry_failure_reason;
1647 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1648 code);
1649 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1650 fprintf(stderr,
1651 "\nIf you're runnning a guest on an Intel machine without "
1652 "unrestricted mode\n"
1653 "support, the failure can be most likely due to the guest "
1654 "entering an invalid\n"
1655 "state for Intel VT. For example, the guest maybe running "
1656 "in big real mode\n"
1657 "which is not supported on less recent Intel processors."
1658 "\n\n");
1659 }
1660 ret = -1;
1661 break;
1662 case KVM_EXIT_EXCEPTION:
1663 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1664 run->ex.exception, run->ex.error_code);
1665 ret = -1;
1666 break;
73aaec4a
JK
1667 default:
1668 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1669 ret = -1;
1670 break;
05330448
AL
1671 }
1672
1673 return ret;
1674}
e22a25c9
AL
1675
1676#ifdef KVM_CAP_SET_GUEST_DEBUG
e22a25c9
AL
1677int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1678{
38972938 1679 static const uint8_t int3 = 0xcc;
64bf3f4e 1680
e22a25c9 1681 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1682 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1683 return -EINVAL;
b9bec74b 1684 }
e22a25c9
AL
1685 return 0;
1686}
1687
1688int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1689{
1690 uint8_t int3;
1691
1692 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1693 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1694 return -EINVAL;
b9bec74b 1695 }
e22a25c9
AL
1696 return 0;
1697}
1698
1699static struct {
1700 target_ulong addr;
1701 int len;
1702 int type;
1703} hw_breakpoint[4];
1704
1705static int nb_hw_breakpoint;
1706
1707static int find_hw_breakpoint(target_ulong addr, int len, int type)
1708{
1709 int n;
1710
b9bec74b 1711 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1712 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1713 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1714 return n;
b9bec74b
JK
1715 }
1716 }
e22a25c9
AL
1717 return -1;
1718}
1719
1720int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1721 target_ulong len, int type)
1722{
1723 switch (type) {
1724 case GDB_BREAKPOINT_HW:
1725 len = 1;
1726 break;
1727 case GDB_WATCHPOINT_WRITE:
1728 case GDB_WATCHPOINT_ACCESS:
1729 switch (len) {
1730 case 1:
1731 break;
1732 case 2:
1733 case 4:
1734 case 8:
b9bec74b 1735 if (addr & (len - 1)) {
e22a25c9 1736 return -EINVAL;
b9bec74b 1737 }
e22a25c9
AL
1738 break;
1739 default:
1740 return -EINVAL;
1741 }
1742 break;
1743 default:
1744 return -ENOSYS;
1745 }
1746
b9bec74b 1747 if (nb_hw_breakpoint == 4) {
e22a25c9 1748 return -ENOBUFS;
b9bec74b
JK
1749 }
1750 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1751 return -EEXIST;
b9bec74b 1752 }
e22a25c9
AL
1753 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1754 hw_breakpoint[nb_hw_breakpoint].len = len;
1755 hw_breakpoint[nb_hw_breakpoint].type = type;
1756 nb_hw_breakpoint++;
1757
1758 return 0;
1759}
1760
1761int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1762 target_ulong len, int type)
1763{
1764 int n;
1765
1766 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1767 if (n < 0) {
e22a25c9 1768 return -ENOENT;
b9bec74b 1769 }
e22a25c9
AL
1770 nb_hw_breakpoint--;
1771 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1772
1773 return 0;
1774}
1775
1776void kvm_arch_remove_all_hw_breakpoints(void)
1777{
1778 nb_hw_breakpoint = 0;
1779}
1780
1781static CPUWatchpoint hw_watchpoint;
1782
1783int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1784{
1785 int handle = 0;
1786 int n;
1787
1788 if (arch_info->exception == 1) {
1789 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1790 if (cpu_single_env->singlestep_enabled) {
e22a25c9 1791 handle = 1;
b9bec74b 1792 }
e22a25c9 1793 } else {
b9bec74b
JK
1794 for (n = 0; n < 4; n++) {
1795 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1796 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1797 case 0x0:
1798 handle = 1;
1799 break;
1800 case 0x1:
1801 handle = 1;
1802 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1803 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1804 hw_watchpoint.flags = BP_MEM_WRITE;
1805 break;
1806 case 0x3:
1807 handle = 1;
1808 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1809 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1810 hw_watchpoint.flags = BP_MEM_ACCESS;
1811 break;
1812 }
b9bec74b
JK
1813 }
1814 }
e22a25c9 1815 }
b9bec74b 1816 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
e22a25c9 1817 handle = 1;
b9bec74b 1818 }
b0b1d690
JK
1819 if (!handle) {
1820 cpu_synchronize_state(cpu_single_env);
1821 assert(cpu_single_env->exception_injected == -1);
1822
1823 cpu_single_env->exception_injected = arch_info->exception;
1824 cpu_single_env->has_error_code = 0;
1825 }
e22a25c9
AL
1826
1827 return handle;
1828}
1829
1830void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1831{
1832 const uint8_t type_code[] = {
1833 [GDB_BREAKPOINT_HW] = 0x0,
1834 [GDB_WATCHPOINT_WRITE] = 0x1,
1835 [GDB_WATCHPOINT_ACCESS] = 0x3
1836 };
1837 const uint8_t len_code[] = {
1838 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1839 };
1840 int n;
1841
b9bec74b 1842 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 1843 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 1844 }
e22a25c9
AL
1845 if (nb_hw_breakpoint > 0) {
1846 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1847 dbg->arch.debugreg[7] = 0x0600;
1848 for (n = 0; n < nb_hw_breakpoint; n++) {
1849 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1850 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1851 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 1852 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
1853 }
1854 }
1855}
1856#endif /* KVM_CAP_SET_GUEST_DEBUG */
4513d923
GN
1857
1858bool kvm_arch_stop_on_emulation_error(CPUState *env)
1859{
b9bec74b
JK
1860 return !(env->cr[0] & CR0_PE_MASK) ||
1861 ((env->segs[R_CS].selector & 3) != 3);
4513d923 1862}