]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
kvm: Add arch reset handler
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
18
19#include <linux/kvm.h>
20
21#include "qemu-common.h"
22#include "sysemu.h"
23#include "kvm.h"
24#include "cpu.h"
e22a25c9 25#include "gdbstub.h"
05330448
AL
26
27//#define DEBUG_KVM
28
29#ifdef DEBUG_KVM
30#define dprintf(fmt, ...) \
31 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
32#else
33#define dprintf(fmt, ...) \
34 do { } while (0)
35#endif
36
b827df58
AK
37#ifdef KVM_CAP_EXT_CPUID
38
39static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
40{
41 struct kvm_cpuid2 *cpuid;
42 int r, size;
43
44 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
45 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
46 cpuid->nent = max;
47 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
48 if (r == 0 && cpuid->nent >= max) {
49 r = -E2BIG;
50 }
b827df58
AK
51 if (r < 0) {
52 if (r == -E2BIG) {
53 qemu_free(cpuid);
54 return NULL;
55 } else {
56 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
57 strerror(-r));
58 exit(1);
59 }
60 }
61 return cpuid;
62}
63
64uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
65{
66 struct kvm_cpuid2 *cpuid;
67 int i, max;
68 uint32_t ret = 0;
69 uint32_t cpuid_1_edx;
70
71 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
72 return -1U;
73 }
74
75 max = 1;
76 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
77 max *= 2;
78 }
79
80 for (i = 0; i < cpuid->nent; ++i) {
81 if (cpuid->entries[i].function == function) {
82 switch (reg) {
83 case R_EAX:
84 ret = cpuid->entries[i].eax;
85 break;
86 case R_EBX:
87 ret = cpuid->entries[i].ebx;
88 break;
89 case R_ECX:
90 ret = cpuid->entries[i].ecx;
91 break;
92 case R_EDX:
93 ret = cpuid->entries[i].edx;
94 if (function == 0x80000001) {
95 /* On Intel, kvm returns cpuid according to the Intel spec,
96 * so add missing bits according to the AMD spec:
97 */
98 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
99 ret |= cpuid_1_edx & 0xdfeff7ff;
100 }
101 break;
102 }
103 }
104 }
105
106 qemu_free(cpuid);
107
108 return ret;
109}
110
111#else
112
113uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
114{
115 return -1U;
116}
117
118#endif
119
6c1f42fe
AP
120static void kvm_trim_features(uint32_t *features, uint32_t supported)
121{
122 int i;
123 uint32_t mask;
124
125 for (i = 0; i < 32; ++i) {
126 mask = 1U << i;
127 if ((*features & mask) && !(supported & mask)) {
128 *features &= ~mask;
129 }
130 }
131}
132
05330448
AL
133int kvm_arch_init_vcpu(CPUState *env)
134{
135 struct {
486bd5a2
AL
136 struct kvm_cpuid2 cpuid;
137 struct kvm_cpuid_entry2 entries[100];
05330448 138 } __attribute__((packed)) cpuid_data;
486bd5a2 139 uint32_t limit, i, j, cpuid_i;
a33609ca 140 uint32_t unused;
05330448 141
f8d926e9
JK
142 env->mp_state = KVM_MP_STATE_RUNNABLE;
143
6c1f42fe
AP
144 kvm_trim_features(&env->cpuid_features,
145 kvm_arch_get_supported_cpuid(env, 1, R_EDX));
6c0d7ee8
AP
146
147 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
6c1f42fe
AP
148 kvm_trim_features(&env->cpuid_ext_features,
149 kvm_arch_get_supported_cpuid(env, 1, R_ECX));
6c0d7ee8
AP
150 env->cpuid_ext_features |= i;
151
6c1f42fe
AP
152 kvm_trim_features(&env->cpuid_ext2_features,
153 kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
154 kvm_trim_features(&env->cpuid_ext3_features,
155 kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
156
05330448
AL
157 cpuid_i = 0;
158
a33609ca 159 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
160
161 for (i = 0; i <= limit; i++) {
486bd5a2
AL
162 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
163
164 switch (i) {
a36b1029
AL
165 case 2: {
166 /* Keep reading function 2 till all the input is received */
167 int times;
168
a36b1029 169 c->function = i;
a33609ca
AL
170 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
171 KVM_CPUID_FLAG_STATE_READ_NEXT;
172 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
173 times = c->eax & 0xff;
a36b1029
AL
174
175 for (j = 1; j < times; ++j) {
a33609ca 176 c = &cpuid_data.entries[cpuid_i++];
a36b1029 177 c->function = i;
a33609ca
AL
178 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
179 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
180 }
181 break;
182 }
486bd5a2
AL
183 case 4:
184 case 0xb:
185 case 0xd:
186 for (j = 0; ; j++) {
486bd5a2
AL
187 c->function = i;
188 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
189 c->index = j;
a33609ca 190 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 191
a33609ca 192 if (i == 4 && c->eax == 0)
486bd5a2 193 break;
a33609ca 194 if (i == 0xb && !(c->ecx & 0xff00))
486bd5a2 195 break;
a33609ca 196 if (i == 0xd && c->eax == 0)
486bd5a2 197 break;
a33609ca
AL
198
199 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
200 }
201 break;
202 default:
486bd5a2 203 c->function = i;
a33609ca
AL
204 c->flags = 0;
205 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
206 break;
207 }
05330448 208 }
a33609ca 209 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
210
211 for (i = 0x80000000; i <= limit; i++) {
486bd5a2 212 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
05330448 213
05330448 214 c->function = i;
a33609ca
AL
215 c->flags = 0;
216 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
217 }
218
219 cpuid_data.cpuid.nent = cpuid_i;
220
486bd5a2 221 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
05330448
AL
222}
223
caa5af0f
JK
224void kvm_arch_reset_vcpu(CPUState *env)
225{
226}
227
05330448
AL
228static int kvm_has_msr_star(CPUState *env)
229{
230 static int has_msr_star;
231 int ret;
232
233 /* first time */
234 if (has_msr_star == 0) {
235 struct kvm_msr_list msr_list, *kvm_msr_list;
236
237 has_msr_star = -1;
238
239 /* Obtain MSR list from KVM. These are the MSRs that we must
240 * save/restore */
4c9f7372 241 msr_list.nmsrs = 0;
05330448
AL
242 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
243 if (ret < 0)
244 return 0;
245
d9db889f
JK
246 /* Old kernel modules had a bug and could write beyond the provided
247 memory. Allocate at least a safe amount of 1K. */
248 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
249 msr_list.nmsrs *
250 sizeof(msr_list.indices[0])));
05330448 251
55308450 252 kvm_msr_list->nmsrs = msr_list.nmsrs;
05330448
AL
253 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
254 if (ret >= 0) {
255 int i;
256
257 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
258 if (kvm_msr_list->indices[i] == MSR_STAR) {
259 has_msr_star = 1;
260 break;
261 }
262 }
263 }
264
265 free(kvm_msr_list);
266 }
267
268 if (has_msr_star == 1)
269 return 1;
270 return 0;
271}
272
273int kvm_arch_init(KVMState *s, int smp_cpus)
274{
275 int ret;
276
277 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
278 * directly. In order to use vm86 mode, a TSS is needed. Since this
279 * must be part of guest physical memory, we need to allocate it. Older
280 * versions of KVM just assumed that it would be at the end of physical
281 * memory but that doesn't work with more than 4GB of memory. We simply
282 * refuse to work with those older versions of KVM. */
984b5181 283 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
05330448
AL
284 if (ret <= 0) {
285 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
286 return ret;
287 }
288
289 /* this address is 3 pages before the bios, and the bios should present
290 * as unavaible memory. FIXME, need to ensure the e820 map deals with
291 * this?
292 */
984b5181 293 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
05330448
AL
294}
295
296static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
297{
298 lhs->selector = rhs->selector;
299 lhs->base = rhs->base;
300 lhs->limit = rhs->limit;
301 lhs->type = 3;
302 lhs->present = 1;
303 lhs->dpl = 3;
304 lhs->db = 0;
305 lhs->s = 1;
306 lhs->l = 0;
307 lhs->g = 0;
308 lhs->avl = 0;
309 lhs->unusable = 0;
310}
311
312static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
313{
314 unsigned flags = rhs->flags;
315 lhs->selector = rhs->selector;
316 lhs->base = rhs->base;
317 lhs->limit = rhs->limit;
318 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
319 lhs->present = (flags & DESC_P_MASK) != 0;
320 lhs->dpl = rhs->selector & 3;
321 lhs->db = (flags >> DESC_B_SHIFT) & 1;
322 lhs->s = (flags & DESC_S_MASK) != 0;
323 lhs->l = (flags >> DESC_L_SHIFT) & 1;
324 lhs->g = (flags & DESC_G_MASK) != 0;
325 lhs->avl = (flags & DESC_AVL_MASK) != 0;
326 lhs->unusable = 0;
327}
328
329static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
330{
331 lhs->selector = rhs->selector;
332 lhs->base = rhs->base;
333 lhs->limit = rhs->limit;
334 lhs->flags =
335 (rhs->type << DESC_TYPE_SHIFT)
336 | (rhs->present * DESC_P_MASK)
337 | (rhs->dpl << DESC_DPL_SHIFT)
338 | (rhs->db << DESC_B_SHIFT)
339 | (rhs->s * DESC_S_MASK)
340 | (rhs->l << DESC_L_SHIFT)
341 | (rhs->g * DESC_G_MASK)
342 | (rhs->avl * DESC_AVL_MASK);
343}
344
345static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
346{
347 if (set)
348 *kvm_reg = *qemu_reg;
349 else
350 *qemu_reg = *kvm_reg;
351}
352
353static int kvm_getput_regs(CPUState *env, int set)
354{
355 struct kvm_regs regs;
356 int ret = 0;
357
358 if (!set) {
359 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
360 if (ret < 0)
361 return ret;
362 }
363
364 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
365 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
366 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
367 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
368 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
369 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
370 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
371 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
372#ifdef TARGET_X86_64
373 kvm_getput_reg(&regs.r8, &env->regs[8], set);
374 kvm_getput_reg(&regs.r9, &env->regs[9], set);
375 kvm_getput_reg(&regs.r10, &env->regs[10], set);
376 kvm_getput_reg(&regs.r11, &env->regs[11], set);
377 kvm_getput_reg(&regs.r12, &env->regs[12], set);
378 kvm_getput_reg(&regs.r13, &env->regs[13], set);
379 kvm_getput_reg(&regs.r14, &env->regs[14], set);
380 kvm_getput_reg(&regs.r15, &env->regs[15], set);
381#endif
382
383 kvm_getput_reg(&regs.rflags, &env->eflags, set);
384 kvm_getput_reg(&regs.rip, &env->eip, set);
385
386 if (set)
387 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
388
389 return ret;
390}
391
392static int kvm_put_fpu(CPUState *env)
393{
394 struct kvm_fpu fpu;
395 int i;
396
397 memset(&fpu, 0, sizeof fpu);
398 fpu.fsw = env->fpus & ~(7 << 11);
399 fpu.fsw |= (env->fpstt & 7) << 11;
400 fpu.fcw = env->fpuc;
401 for (i = 0; i < 8; ++i)
402 fpu.ftwx |= (!env->fptags[i]) << i;
403 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
404 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
405 fpu.mxcsr = env->mxcsr;
406
407 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
408}
409
410static int kvm_put_sregs(CPUState *env)
411{
412 struct kvm_sregs sregs;
413
414 memcpy(sregs.interrupt_bitmap,
415 env->interrupt_bitmap,
416 sizeof(sregs.interrupt_bitmap));
417
418 if ((env->eflags & VM_MASK)) {
419 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
420 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
421 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
422 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
423 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
424 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
425 } else {
426 set_seg(&sregs.cs, &env->segs[R_CS]);
427 set_seg(&sregs.ds, &env->segs[R_DS]);
428 set_seg(&sregs.es, &env->segs[R_ES]);
429 set_seg(&sregs.fs, &env->segs[R_FS]);
430 set_seg(&sregs.gs, &env->segs[R_GS]);
431 set_seg(&sregs.ss, &env->segs[R_SS]);
432
433 if (env->cr[0] & CR0_PE_MASK) {
434 /* force ss cpl to cs cpl */
435 sregs.ss.selector = (sregs.ss.selector & ~3) |
436 (sregs.cs.selector & 3);
437 sregs.ss.dpl = sregs.ss.selector & 3;
438 }
439 }
440
441 set_seg(&sregs.tr, &env->tr);
442 set_seg(&sregs.ldt, &env->ldt);
443
444 sregs.idt.limit = env->idt.limit;
445 sregs.idt.base = env->idt.base;
446 sregs.gdt.limit = env->gdt.limit;
447 sregs.gdt.base = env->gdt.base;
448
449 sregs.cr0 = env->cr[0];
450 sregs.cr2 = env->cr[2];
451 sregs.cr3 = env->cr[3];
452 sregs.cr4 = env->cr[4];
453
454 sregs.cr8 = cpu_get_apic_tpr(env);
455 sregs.apic_base = cpu_get_apic_base(env);
456
457 sregs.efer = env->efer;
458
459 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
460}
461
462static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
463 uint32_t index, uint64_t value)
464{
465 entry->index = index;
466 entry->data = value;
467}
468
469static int kvm_put_msrs(CPUState *env)
470{
471 struct {
472 struct kvm_msrs info;
473 struct kvm_msr_entry entries[100];
474 } msr_data;
475 struct kvm_msr_entry *msrs = msr_data.entries;
476 int n = 0;
477
478 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
479 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
480 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
481 if (kvm_has_msr_star(env))
482 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
483 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
484#ifdef TARGET_X86_64
485 /* FIXME if lm capable */
486 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
487 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
488 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
489 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
490#endif
491 msr_data.info.nmsrs = n;
492
493 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
494
495}
496
497
498static int kvm_get_fpu(CPUState *env)
499{
500 struct kvm_fpu fpu;
501 int i, ret;
502
503 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
504 if (ret < 0)
505 return ret;
506
507 env->fpstt = (fpu.fsw >> 11) & 7;
508 env->fpus = fpu.fsw;
509 env->fpuc = fpu.fcw;
510 for (i = 0; i < 8; ++i)
511 env->fptags[i] = !((fpu.ftwx >> i) & 1);
512 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
513 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
514 env->mxcsr = fpu.mxcsr;
515
516 return 0;
517}
518
519static int kvm_get_sregs(CPUState *env)
520{
521 struct kvm_sregs sregs;
522 uint32_t hflags;
523 int ret;
524
525 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
526 if (ret < 0)
527 return ret;
528
529 memcpy(env->interrupt_bitmap,
530 sregs.interrupt_bitmap,
531 sizeof(sregs.interrupt_bitmap));
532
533 get_seg(&env->segs[R_CS], &sregs.cs);
534 get_seg(&env->segs[R_DS], &sregs.ds);
535 get_seg(&env->segs[R_ES], &sregs.es);
536 get_seg(&env->segs[R_FS], &sregs.fs);
537 get_seg(&env->segs[R_GS], &sregs.gs);
538 get_seg(&env->segs[R_SS], &sregs.ss);
539
540 get_seg(&env->tr, &sregs.tr);
541 get_seg(&env->ldt, &sregs.ldt);
542
543 env->idt.limit = sregs.idt.limit;
544 env->idt.base = sregs.idt.base;
545 env->gdt.limit = sregs.gdt.limit;
546 env->gdt.base = sregs.gdt.base;
547
548 env->cr[0] = sregs.cr0;
549 env->cr[2] = sregs.cr2;
550 env->cr[3] = sregs.cr3;
551 env->cr[4] = sregs.cr4;
552
553 cpu_set_apic_base(env, sregs.apic_base);
554
555 env->efer = sregs.efer;
556 //cpu_set_apic_tpr(env, sregs.cr8);
557
558#define HFLAG_COPY_MASK ~( \
559 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
560 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
561 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
562 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
563
564
565
566 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
567 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
568 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
569 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
570 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
571 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
572 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
573
574 if (env->efer & MSR_EFER_LMA) {
575 hflags |= HF_LMA_MASK;
576 }
577
578 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
579 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
580 } else {
581 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
582 (DESC_B_SHIFT - HF_CS32_SHIFT);
583 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
584 (DESC_B_SHIFT - HF_SS32_SHIFT);
585 if (!(env->cr[0] & CR0_PE_MASK) ||
586 (env->eflags & VM_MASK) ||
587 !(hflags & HF_CS32_MASK)) {
588 hflags |= HF_ADDSEG_MASK;
589 } else {
590 hflags |= ((env->segs[R_DS].base |
591 env->segs[R_ES].base |
592 env->segs[R_SS].base) != 0) <<
593 HF_ADDSEG_SHIFT;
594 }
595 }
596 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
597
598 return 0;
599}
600
601static int kvm_get_msrs(CPUState *env)
602{
603 struct {
604 struct kvm_msrs info;
605 struct kvm_msr_entry entries[100];
606 } msr_data;
607 struct kvm_msr_entry *msrs = msr_data.entries;
608 int ret, i, n;
609
610 n = 0;
611 msrs[n++].index = MSR_IA32_SYSENTER_CS;
612 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
613 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
614 if (kvm_has_msr_star(env))
615 msrs[n++].index = MSR_STAR;
616 msrs[n++].index = MSR_IA32_TSC;
617#ifdef TARGET_X86_64
618 /* FIXME lm_capable_kernel */
619 msrs[n++].index = MSR_CSTAR;
620 msrs[n++].index = MSR_KERNELGSBASE;
621 msrs[n++].index = MSR_FMASK;
622 msrs[n++].index = MSR_LSTAR;
623#endif
624 msr_data.info.nmsrs = n;
625 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
626 if (ret < 0)
627 return ret;
628
629 for (i = 0; i < ret; i++) {
630 switch (msrs[i].index) {
631 case MSR_IA32_SYSENTER_CS:
632 env->sysenter_cs = msrs[i].data;
633 break;
634 case MSR_IA32_SYSENTER_ESP:
635 env->sysenter_esp = msrs[i].data;
636 break;
637 case MSR_IA32_SYSENTER_EIP:
638 env->sysenter_eip = msrs[i].data;
639 break;
640 case MSR_STAR:
641 env->star = msrs[i].data;
642 break;
643#ifdef TARGET_X86_64
644 case MSR_CSTAR:
645 env->cstar = msrs[i].data;
646 break;
647 case MSR_KERNELGSBASE:
648 env->kernelgsbase = msrs[i].data;
649 break;
650 case MSR_FMASK:
651 env->fmask = msrs[i].data;
652 break;
653 case MSR_LSTAR:
654 env->lstar = msrs[i].data;
655 break;
656#endif
657 case MSR_IA32_TSC:
658 env->tsc = msrs[i].data;
659 break;
660 }
661 }
662
663 return 0;
664}
665
9bdbe550
HB
666static int kvm_put_mp_state(CPUState *env)
667{
668 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
669
670 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
671}
672
673static int kvm_get_mp_state(CPUState *env)
674{
675 struct kvm_mp_state mp_state;
676 int ret;
677
678 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
679 if (ret < 0) {
680 return ret;
681 }
682 env->mp_state = mp_state.mp_state;
683 return 0;
684}
685
05330448
AL
686int kvm_arch_put_registers(CPUState *env)
687{
688 int ret;
689
690 ret = kvm_getput_regs(env, 1);
691 if (ret < 0)
692 return ret;
693
694 ret = kvm_put_fpu(env);
695 if (ret < 0)
696 return ret;
697
698 ret = kvm_put_sregs(env);
699 if (ret < 0)
700 return ret;
701
702 ret = kvm_put_msrs(env);
703 if (ret < 0)
704 return ret;
705
f8d926e9
JK
706 ret = kvm_put_mp_state(env);
707 if (ret < 0)
708 return ret;
709
710 ret = kvm_get_mp_state(env);
711 if (ret < 0)
712 return ret;
713
05330448
AL
714 return 0;
715}
716
717int kvm_arch_get_registers(CPUState *env)
718{
719 int ret;
720
721 ret = kvm_getput_regs(env, 0);
722 if (ret < 0)
723 return ret;
724
725 ret = kvm_get_fpu(env);
726 if (ret < 0)
727 return ret;
728
729 ret = kvm_get_sregs(env);
730 if (ret < 0)
731 return ret;
732
733 ret = kvm_get_msrs(env);
734 if (ret < 0)
735 return ret;
736
737 return 0;
738}
739
740int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
741{
742 /* Try to inject an interrupt if the guest can accept it */
743 if (run->ready_for_interrupt_injection &&
744 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
745 (env->eflags & IF_MASK)) {
746 int irq;
747
748 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
749 irq = cpu_get_pic_interrupt(env);
750 if (irq >= 0) {
751 struct kvm_interrupt intr;
752 intr.irq = irq;
753 /* FIXME: errors */
754 dprintf("injected interrupt %d\n", irq);
755 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
756 }
757 }
758
759 /* If we have an interrupt but the guest is not ready to receive an
760 * interrupt, request an interrupt window exit. This will
761 * cause a return to userspace as soon as the guest is ready to
762 * receive interrupts. */
763 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
764 run->request_interrupt_window = 1;
765 else
766 run->request_interrupt_window = 0;
767
768 dprintf("setting tpr\n");
769 run->cr8 = cpu_get_apic_tpr(env);
770
771 return 0;
772}
773
774int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
775{
776 if (run->if_flag)
777 env->eflags |= IF_MASK;
778 else
779 env->eflags &= ~IF_MASK;
780
781 cpu_set_apic_tpr(env, run->cr8);
782 cpu_set_apic_base(env, run->apic_base);
783
784 return 0;
785}
786
787static int kvm_handle_halt(CPUState *env)
788{
789 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
790 (env->eflags & IF_MASK)) &&
791 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
792 env->halted = 1;
793 env->exception_index = EXCP_HLT;
794 return 0;
795 }
796
797 return 1;
798}
799
800int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
801{
802 int ret = 0;
803
804 switch (run->exit_reason) {
805 case KVM_EXIT_HLT:
806 dprintf("handle_hlt\n");
807 ret = kvm_handle_halt(env);
808 break;
809 }
810
811 return ret;
812}
e22a25c9
AL
813
814#ifdef KVM_CAP_SET_GUEST_DEBUG
e22a25c9
AL
815int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
816{
38972938 817 static const uint8_t int3 = 0xcc;
64bf3f4e 818
e22a25c9 819 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
64bf3f4e 820 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
e22a25c9
AL
821 return -EINVAL;
822 return 0;
823}
824
825int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
826{
827 uint8_t int3;
828
829 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
64bf3f4e 830 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
e22a25c9
AL
831 return -EINVAL;
832 return 0;
833}
834
835static struct {
836 target_ulong addr;
837 int len;
838 int type;
839} hw_breakpoint[4];
840
841static int nb_hw_breakpoint;
842
843static int find_hw_breakpoint(target_ulong addr, int len, int type)
844{
845 int n;
846
847 for (n = 0; n < nb_hw_breakpoint; n++)
848 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
849 (hw_breakpoint[n].len == len || len == -1))
850 return n;
851 return -1;
852}
853
854int kvm_arch_insert_hw_breakpoint(target_ulong addr,
855 target_ulong len, int type)
856{
857 switch (type) {
858 case GDB_BREAKPOINT_HW:
859 len = 1;
860 break;
861 case GDB_WATCHPOINT_WRITE:
862 case GDB_WATCHPOINT_ACCESS:
863 switch (len) {
864 case 1:
865 break;
866 case 2:
867 case 4:
868 case 8:
869 if (addr & (len - 1))
870 return -EINVAL;
871 break;
872 default:
873 return -EINVAL;
874 }
875 break;
876 default:
877 return -ENOSYS;
878 }
879
880 if (nb_hw_breakpoint == 4)
881 return -ENOBUFS;
882
883 if (find_hw_breakpoint(addr, len, type) >= 0)
884 return -EEXIST;
885
886 hw_breakpoint[nb_hw_breakpoint].addr = addr;
887 hw_breakpoint[nb_hw_breakpoint].len = len;
888 hw_breakpoint[nb_hw_breakpoint].type = type;
889 nb_hw_breakpoint++;
890
891 return 0;
892}
893
894int kvm_arch_remove_hw_breakpoint(target_ulong addr,
895 target_ulong len, int type)
896{
897 int n;
898
899 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
900 if (n < 0)
901 return -ENOENT;
902
903 nb_hw_breakpoint--;
904 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
905
906 return 0;
907}
908
909void kvm_arch_remove_all_hw_breakpoints(void)
910{
911 nb_hw_breakpoint = 0;
912}
913
914static CPUWatchpoint hw_watchpoint;
915
916int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
917{
918 int handle = 0;
919 int n;
920
921 if (arch_info->exception == 1) {
922 if (arch_info->dr6 & (1 << 14)) {
923 if (cpu_single_env->singlestep_enabled)
924 handle = 1;
925 } else {
926 for (n = 0; n < 4; n++)
927 if (arch_info->dr6 & (1 << n))
928 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
929 case 0x0:
930 handle = 1;
931 break;
932 case 0x1:
933 handle = 1;
934 cpu_single_env->watchpoint_hit = &hw_watchpoint;
935 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
936 hw_watchpoint.flags = BP_MEM_WRITE;
937 break;
938 case 0x3:
939 handle = 1;
940 cpu_single_env->watchpoint_hit = &hw_watchpoint;
941 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
942 hw_watchpoint.flags = BP_MEM_ACCESS;
943 break;
944 }
945 }
946 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
947 handle = 1;
948
949 if (!handle)
950 kvm_update_guest_debug(cpu_single_env,
951 (arch_info->exception == 1) ?
952 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
953
954 return handle;
955}
956
957void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
958{
959 const uint8_t type_code[] = {
960 [GDB_BREAKPOINT_HW] = 0x0,
961 [GDB_WATCHPOINT_WRITE] = 0x1,
962 [GDB_WATCHPOINT_ACCESS] = 0x3
963 };
964 const uint8_t len_code[] = {
965 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
966 };
967 int n;
968
969 if (kvm_sw_breakpoints_active(env))
970 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
971
972 if (nb_hw_breakpoint > 0) {
973 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
974 dbg->arch.debugreg[7] = 0x0600;
975 for (n = 0; n < nb_hw_breakpoint; n++) {
976 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
977 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
978 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
979 (len_code[hw_breakpoint[n].len] << (18 + n*4));
980 }
981 }
982}
983#endif /* KVM_CAP_SET_GUEST_DEBUG */