]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
KVM: Rework VCPU state writeback API
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
18
19#include <linux/kvm.h>
20
21#include "qemu-common.h"
22#include "sysemu.h"
23#include "kvm.h"
24#include "cpu.h"
e22a25c9 25#include "gdbstub.h"
0e607a80 26#include "host-utils.h"
4c5b10b7 27#include "hw/pc.h"
35bed8ee 28#include "ioport.h"
05330448 29
bb0300dc
GN
30#ifdef CONFIG_KVM_PARA
31#include <linux/kvm_para.h>
32#endif
33//
05330448
AL
34//#define DEBUG_KVM
35
36#ifdef DEBUG_KVM
37#define dprintf(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39#else
40#define dprintf(fmt, ...) \
41 do { } while (0)
42#endif
43
1a03675d
GC
44#define MSR_KVM_WALL_CLOCK 0x11
45#define MSR_KVM_SYSTEM_TIME 0x12
46
b827df58
AK
47#ifdef KVM_CAP_EXT_CPUID
48
49static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
50{
51 struct kvm_cpuid2 *cpuid;
52 int r, size;
53
54 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56 cpuid->nent = max;
57 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
58 if (r == 0 && cpuid->nent >= max) {
59 r = -E2BIG;
60 }
b827df58
AK
61 if (r < 0) {
62 if (r == -E2BIG) {
63 qemu_free(cpuid);
64 return NULL;
65 } else {
66 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67 strerror(-r));
68 exit(1);
69 }
70 }
71 return cpuid;
72}
73
74uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
75{
76 struct kvm_cpuid2 *cpuid;
77 int i, max;
78 uint32_t ret = 0;
79 uint32_t cpuid_1_edx;
80
81 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
82 return -1U;
83 }
84
85 max = 1;
86 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
87 max *= 2;
88 }
89
90 for (i = 0; i < cpuid->nent; ++i) {
91 if (cpuid->entries[i].function == function) {
92 switch (reg) {
93 case R_EAX:
94 ret = cpuid->entries[i].eax;
95 break;
96 case R_EBX:
97 ret = cpuid->entries[i].ebx;
98 break;
99 case R_ECX:
100 ret = cpuid->entries[i].ecx;
101 break;
102 case R_EDX:
103 ret = cpuid->entries[i].edx;
19ccb8ea
JK
104 switch (function) {
105 case 1:
106 /* KVM before 2.6.30 misreports the following features */
107 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
108 break;
109 case 0x80000001:
b827df58
AK
110 /* On Intel, kvm returns cpuid according to the Intel spec,
111 * so add missing bits according to the AMD spec:
112 */
113 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
114 ret |= cpuid_1_edx & 0xdfeff7ff;
19ccb8ea 115 break;
b827df58
AK
116 }
117 break;
118 }
119 }
120 }
121
122 qemu_free(cpuid);
123
124 return ret;
125}
126
127#else
128
129uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
130{
131 return -1U;
132}
133
134#endif
135
6c1f42fe
AP
136static void kvm_trim_features(uint32_t *features, uint32_t supported)
137{
138 int i;
139 uint32_t mask;
140
141 for (i = 0; i < 32; ++i) {
142 mask = 1U << i;
143 if ((*features & mask) && !(supported & mask)) {
144 *features &= ~mask;
145 }
146 }
147}
148
bb0300dc
GN
149#ifdef CONFIG_KVM_PARA
150struct kvm_para_features {
151 int cap;
152 int feature;
153} para_features[] = {
154#ifdef KVM_CAP_CLOCKSOURCE
155 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
156#endif
157#ifdef KVM_CAP_NOP_IO_DELAY
158 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
159#endif
160#ifdef KVM_CAP_PV_MMU
161 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
bb0300dc
GN
162#endif
163 { -1, -1 }
164};
165
166static int get_para_features(CPUState *env)
167{
168 int i, features = 0;
169
170 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
171 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
172 features |= (1 << para_features[i].feature);
173 }
174
175 return features;
176}
177#endif
178
05330448
AL
179int kvm_arch_init_vcpu(CPUState *env)
180{
181 struct {
486bd5a2
AL
182 struct kvm_cpuid2 cpuid;
183 struct kvm_cpuid_entry2 entries[100];
05330448 184 } __attribute__((packed)) cpuid_data;
486bd5a2 185 uint32_t limit, i, j, cpuid_i;
a33609ca 186 uint32_t unused;
bb0300dc
GN
187 struct kvm_cpuid_entry2 *c;
188#ifdef KVM_CPUID_SIGNATURE
189 uint32_t signature[3];
190#endif
05330448 191
f8d926e9
JK
192 env->mp_state = KVM_MP_STATE_RUNNABLE;
193
6c1f42fe
AP
194 kvm_trim_features(&env->cpuid_features,
195 kvm_arch_get_supported_cpuid(env, 1, R_EDX));
6c0d7ee8
AP
196
197 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
6c1f42fe
AP
198 kvm_trim_features(&env->cpuid_ext_features,
199 kvm_arch_get_supported_cpuid(env, 1, R_ECX));
6c0d7ee8
AP
200 env->cpuid_ext_features |= i;
201
6c1f42fe
AP
202 kvm_trim_features(&env->cpuid_ext2_features,
203 kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
204 kvm_trim_features(&env->cpuid_ext3_features,
205 kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
206
05330448
AL
207 cpuid_i = 0;
208
bb0300dc
GN
209#ifdef CONFIG_KVM_PARA
210 /* Paravirtualization CPUIDs */
211 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
212 c = &cpuid_data.entries[cpuid_i++];
213 memset(c, 0, sizeof(*c));
214 c->function = KVM_CPUID_SIGNATURE;
215 c->eax = 0;
216 c->ebx = signature[0];
217 c->ecx = signature[1];
218 c->edx = signature[2];
219
220 c = &cpuid_data.entries[cpuid_i++];
221 memset(c, 0, sizeof(*c));
222 c->function = KVM_CPUID_FEATURES;
223 c->eax = env->cpuid_kvm_features & get_para_features(env);
224#endif
225
a33609ca 226 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
227
228 for (i = 0; i <= limit; i++) {
bb0300dc 229 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
230
231 switch (i) {
a36b1029
AL
232 case 2: {
233 /* Keep reading function 2 till all the input is received */
234 int times;
235
a36b1029 236 c->function = i;
a33609ca
AL
237 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
238 KVM_CPUID_FLAG_STATE_READ_NEXT;
239 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
240 times = c->eax & 0xff;
a36b1029
AL
241
242 for (j = 1; j < times; ++j) {
a33609ca 243 c = &cpuid_data.entries[cpuid_i++];
a36b1029 244 c->function = i;
a33609ca
AL
245 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
246 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
247 }
248 break;
249 }
486bd5a2
AL
250 case 4:
251 case 0xb:
252 case 0xd:
253 for (j = 0; ; j++) {
486bd5a2
AL
254 c->function = i;
255 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
256 c->index = j;
a33609ca 257 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 258
a33609ca 259 if (i == 4 && c->eax == 0)
486bd5a2 260 break;
a33609ca 261 if (i == 0xb && !(c->ecx & 0xff00))
486bd5a2 262 break;
a33609ca 263 if (i == 0xd && c->eax == 0)
486bd5a2 264 break;
a33609ca
AL
265
266 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
267 }
268 break;
269 default:
486bd5a2 270 c->function = i;
a33609ca
AL
271 c->flags = 0;
272 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
273 break;
274 }
05330448 275 }
a33609ca 276 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
277
278 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 279 c = &cpuid_data.entries[cpuid_i++];
05330448 280
05330448 281 c->function = i;
a33609ca
AL
282 c->flags = 0;
283 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
284 }
285
286 cpuid_data.cpuid.nent = cpuid_i;
287
486bd5a2 288 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
05330448
AL
289}
290
caa5af0f
JK
291void kvm_arch_reset_vcpu(CPUState *env)
292{
e73223a5 293 env->exception_injected = -1;
0e607a80 294 env->interrupt_injected = -1;
a0fb002c
JK
295 env->nmi_injected = 0;
296 env->nmi_pending = 0;
caa5af0f
JK
297}
298
05330448
AL
299static int kvm_has_msr_star(CPUState *env)
300{
301 static int has_msr_star;
302 int ret;
303
304 /* first time */
305 if (has_msr_star == 0) {
306 struct kvm_msr_list msr_list, *kvm_msr_list;
307
308 has_msr_star = -1;
309
310 /* Obtain MSR list from KVM. These are the MSRs that we must
311 * save/restore */
4c9f7372 312 msr_list.nmsrs = 0;
05330448 313 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 314 if (ret < 0 && ret != -E2BIG) {
05330448 315 return 0;
6fb6d245 316 }
d9db889f
JK
317 /* Old kernel modules had a bug and could write beyond the provided
318 memory. Allocate at least a safe amount of 1K. */
319 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
320 msr_list.nmsrs *
321 sizeof(msr_list.indices[0])));
05330448 322
55308450 323 kvm_msr_list->nmsrs = msr_list.nmsrs;
05330448
AL
324 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
325 if (ret >= 0) {
326 int i;
327
328 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
329 if (kvm_msr_list->indices[i] == MSR_STAR) {
330 has_msr_star = 1;
331 break;
332 }
333 }
334 }
335
336 free(kvm_msr_list);
337 }
338
339 if (has_msr_star == 1)
340 return 1;
341 return 0;
342}
343
344int kvm_arch_init(KVMState *s, int smp_cpus)
345{
346 int ret;
347
348 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
349 * directly. In order to use vm86 mode, a TSS is needed. Since this
350 * must be part of guest physical memory, we need to allocate it. Older
351 * versions of KVM just assumed that it would be at the end of physical
352 * memory but that doesn't work with more than 4GB of memory. We simply
353 * refuse to work with those older versions of KVM. */
984b5181 354 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
05330448
AL
355 if (ret <= 0) {
356 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
357 return ret;
358 }
359
360 /* this address is 3 pages before the bios, and the bios should present
361 * as unavaible memory. FIXME, need to ensure the e820 map deals with
362 * this?
363 */
4c5b10b7
JS
364 /*
365 * Tell fw_cfg to notify the BIOS to reserve the range.
366 */
367 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
368 perror("e820_add_entry() table is full");
369 exit(1);
370 }
984b5181 371 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
05330448
AL
372}
373
374static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
375{
376 lhs->selector = rhs->selector;
377 lhs->base = rhs->base;
378 lhs->limit = rhs->limit;
379 lhs->type = 3;
380 lhs->present = 1;
381 lhs->dpl = 3;
382 lhs->db = 0;
383 lhs->s = 1;
384 lhs->l = 0;
385 lhs->g = 0;
386 lhs->avl = 0;
387 lhs->unusable = 0;
388}
389
390static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
391{
392 unsigned flags = rhs->flags;
393 lhs->selector = rhs->selector;
394 lhs->base = rhs->base;
395 lhs->limit = rhs->limit;
396 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
397 lhs->present = (flags & DESC_P_MASK) != 0;
398 lhs->dpl = rhs->selector & 3;
399 lhs->db = (flags >> DESC_B_SHIFT) & 1;
400 lhs->s = (flags & DESC_S_MASK) != 0;
401 lhs->l = (flags >> DESC_L_SHIFT) & 1;
402 lhs->g = (flags & DESC_G_MASK) != 0;
403 lhs->avl = (flags & DESC_AVL_MASK) != 0;
404 lhs->unusable = 0;
405}
406
407static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
408{
409 lhs->selector = rhs->selector;
410 lhs->base = rhs->base;
411 lhs->limit = rhs->limit;
412 lhs->flags =
413 (rhs->type << DESC_TYPE_SHIFT)
414 | (rhs->present * DESC_P_MASK)
415 | (rhs->dpl << DESC_DPL_SHIFT)
416 | (rhs->db << DESC_B_SHIFT)
417 | (rhs->s * DESC_S_MASK)
418 | (rhs->l << DESC_L_SHIFT)
419 | (rhs->g * DESC_G_MASK)
420 | (rhs->avl * DESC_AVL_MASK);
421}
422
423static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
424{
425 if (set)
426 *kvm_reg = *qemu_reg;
427 else
428 *qemu_reg = *kvm_reg;
429}
430
431static int kvm_getput_regs(CPUState *env, int set)
432{
433 struct kvm_regs regs;
434 int ret = 0;
435
436 if (!set) {
437 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
438 if (ret < 0)
439 return ret;
440 }
441
442 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
443 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
444 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
445 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
446 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
447 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
448 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
449 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
450#ifdef TARGET_X86_64
451 kvm_getput_reg(&regs.r8, &env->regs[8], set);
452 kvm_getput_reg(&regs.r9, &env->regs[9], set);
453 kvm_getput_reg(&regs.r10, &env->regs[10], set);
454 kvm_getput_reg(&regs.r11, &env->regs[11], set);
455 kvm_getput_reg(&regs.r12, &env->regs[12], set);
456 kvm_getput_reg(&regs.r13, &env->regs[13], set);
457 kvm_getput_reg(&regs.r14, &env->regs[14], set);
458 kvm_getput_reg(&regs.r15, &env->regs[15], set);
459#endif
460
461 kvm_getput_reg(&regs.rflags, &env->eflags, set);
462 kvm_getput_reg(&regs.rip, &env->eip, set);
463
464 if (set)
465 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
466
467 return ret;
468}
469
470static int kvm_put_fpu(CPUState *env)
471{
472 struct kvm_fpu fpu;
473 int i;
474
475 memset(&fpu, 0, sizeof fpu);
476 fpu.fsw = env->fpus & ~(7 << 11);
477 fpu.fsw |= (env->fpstt & 7) << 11;
478 fpu.fcw = env->fpuc;
479 for (i = 0; i < 8; ++i)
480 fpu.ftwx |= (!env->fptags[i]) << i;
481 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
482 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
483 fpu.mxcsr = env->mxcsr;
484
485 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
486}
487
488static int kvm_put_sregs(CPUState *env)
489{
490 struct kvm_sregs sregs;
491
0e607a80
JK
492 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
493 if (env->interrupt_injected >= 0) {
494 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
495 (uint64_t)1 << (env->interrupt_injected % 64);
496 }
05330448
AL
497
498 if ((env->eflags & VM_MASK)) {
499 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
500 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
501 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
502 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
503 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
504 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
505 } else {
506 set_seg(&sregs.cs, &env->segs[R_CS]);
507 set_seg(&sregs.ds, &env->segs[R_DS]);
508 set_seg(&sregs.es, &env->segs[R_ES]);
509 set_seg(&sregs.fs, &env->segs[R_FS]);
510 set_seg(&sregs.gs, &env->segs[R_GS]);
511 set_seg(&sregs.ss, &env->segs[R_SS]);
512
513 if (env->cr[0] & CR0_PE_MASK) {
514 /* force ss cpl to cs cpl */
515 sregs.ss.selector = (sregs.ss.selector & ~3) |
516 (sregs.cs.selector & 3);
517 sregs.ss.dpl = sregs.ss.selector & 3;
518 }
519 }
520
521 set_seg(&sregs.tr, &env->tr);
522 set_seg(&sregs.ldt, &env->ldt);
523
524 sregs.idt.limit = env->idt.limit;
525 sregs.idt.base = env->idt.base;
526 sregs.gdt.limit = env->gdt.limit;
527 sregs.gdt.base = env->gdt.base;
528
529 sregs.cr0 = env->cr[0];
530 sregs.cr2 = env->cr[2];
531 sregs.cr3 = env->cr[3];
532 sregs.cr4 = env->cr[4];
533
534 sregs.cr8 = cpu_get_apic_tpr(env);
535 sregs.apic_base = cpu_get_apic_base(env);
536
537 sregs.efer = env->efer;
538
539 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
540}
541
542static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
543 uint32_t index, uint64_t value)
544{
545 entry->index = index;
546 entry->data = value;
547}
548
549static int kvm_put_msrs(CPUState *env)
550{
551 struct {
552 struct kvm_msrs info;
553 struct kvm_msr_entry entries[100];
554 } msr_data;
555 struct kvm_msr_entry *msrs = msr_data.entries;
556 int n = 0;
557
558 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
559 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
560 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
561 if (kvm_has_msr_star(env))
562 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
563 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
564#ifdef TARGET_X86_64
565 /* FIXME if lm capable */
566 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
567 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
568 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
569 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
570#endif
1a03675d
GC
571 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, env->system_time_msr);
572 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
573
05330448
AL
574 msr_data.info.nmsrs = n;
575
576 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
577
578}
579
580
581static int kvm_get_fpu(CPUState *env)
582{
583 struct kvm_fpu fpu;
584 int i, ret;
585
586 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
587 if (ret < 0)
588 return ret;
589
590 env->fpstt = (fpu.fsw >> 11) & 7;
591 env->fpus = fpu.fsw;
592 env->fpuc = fpu.fcw;
593 for (i = 0; i < 8; ++i)
594 env->fptags[i] = !((fpu.ftwx >> i) & 1);
595 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
596 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
597 env->mxcsr = fpu.mxcsr;
598
599 return 0;
600}
601
602static int kvm_get_sregs(CPUState *env)
603{
604 struct kvm_sregs sregs;
605 uint32_t hflags;
0e607a80 606 int bit, i, ret;
05330448
AL
607
608 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
609 if (ret < 0)
610 return ret;
611
0e607a80
JK
612 /* There can only be one pending IRQ set in the bitmap at a time, so try
613 to find it and save its number instead (-1 for none). */
614 env->interrupt_injected = -1;
615 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
616 if (sregs.interrupt_bitmap[i]) {
617 bit = ctz64(sregs.interrupt_bitmap[i]);
618 env->interrupt_injected = i * 64 + bit;
619 break;
620 }
621 }
05330448
AL
622
623 get_seg(&env->segs[R_CS], &sregs.cs);
624 get_seg(&env->segs[R_DS], &sregs.ds);
625 get_seg(&env->segs[R_ES], &sregs.es);
626 get_seg(&env->segs[R_FS], &sregs.fs);
627 get_seg(&env->segs[R_GS], &sregs.gs);
628 get_seg(&env->segs[R_SS], &sregs.ss);
629
630 get_seg(&env->tr, &sregs.tr);
631 get_seg(&env->ldt, &sregs.ldt);
632
633 env->idt.limit = sregs.idt.limit;
634 env->idt.base = sregs.idt.base;
635 env->gdt.limit = sregs.gdt.limit;
636 env->gdt.base = sregs.gdt.base;
637
638 env->cr[0] = sregs.cr0;
639 env->cr[2] = sregs.cr2;
640 env->cr[3] = sregs.cr3;
641 env->cr[4] = sregs.cr4;
642
643 cpu_set_apic_base(env, sregs.apic_base);
644
645 env->efer = sregs.efer;
646 //cpu_set_apic_tpr(env, sregs.cr8);
647
648#define HFLAG_COPY_MASK ~( \
649 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
650 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
651 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
652 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
653
654
655
656 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
657 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
658 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
659 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
660 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
661 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
662 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
663
664 if (env->efer & MSR_EFER_LMA) {
665 hflags |= HF_LMA_MASK;
666 }
667
668 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
669 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
670 } else {
671 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
672 (DESC_B_SHIFT - HF_CS32_SHIFT);
673 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
674 (DESC_B_SHIFT - HF_SS32_SHIFT);
675 if (!(env->cr[0] & CR0_PE_MASK) ||
676 (env->eflags & VM_MASK) ||
677 !(hflags & HF_CS32_MASK)) {
678 hflags |= HF_ADDSEG_MASK;
679 } else {
680 hflags |= ((env->segs[R_DS].base |
681 env->segs[R_ES].base |
682 env->segs[R_SS].base) != 0) <<
683 HF_ADDSEG_SHIFT;
684 }
685 }
686 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
687
688 return 0;
689}
690
691static int kvm_get_msrs(CPUState *env)
692{
693 struct {
694 struct kvm_msrs info;
695 struct kvm_msr_entry entries[100];
696 } msr_data;
697 struct kvm_msr_entry *msrs = msr_data.entries;
698 int ret, i, n;
699
700 n = 0;
701 msrs[n++].index = MSR_IA32_SYSENTER_CS;
702 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
703 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
704 if (kvm_has_msr_star(env))
705 msrs[n++].index = MSR_STAR;
706 msrs[n++].index = MSR_IA32_TSC;
707#ifdef TARGET_X86_64
708 /* FIXME lm_capable_kernel */
709 msrs[n++].index = MSR_CSTAR;
710 msrs[n++].index = MSR_KERNELGSBASE;
711 msrs[n++].index = MSR_FMASK;
712 msrs[n++].index = MSR_LSTAR;
713#endif
1a03675d
GC
714 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
715 msrs[n++].index = MSR_KVM_WALL_CLOCK;
716
05330448
AL
717 msr_data.info.nmsrs = n;
718 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
719 if (ret < 0)
720 return ret;
721
722 for (i = 0; i < ret; i++) {
723 switch (msrs[i].index) {
724 case MSR_IA32_SYSENTER_CS:
725 env->sysenter_cs = msrs[i].data;
726 break;
727 case MSR_IA32_SYSENTER_ESP:
728 env->sysenter_esp = msrs[i].data;
729 break;
730 case MSR_IA32_SYSENTER_EIP:
731 env->sysenter_eip = msrs[i].data;
732 break;
733 case MSR_STAR:
734 env->star = msrs[i].data;
735 break;
736#ifdef TARGET_X86_64
737 case MSR_CSTAR:
738 env->cstar = msrs[i].data;
739 break;
740 case MSR_KERNELGSBASE:
741 env->kernelgsbase = msrs[i].data;
742 break;
743 case MSR_FMASK:
744 env->fmask = msrs[i].data;
745 break;
746 case MSR_LSTAR:
747 env->lstar = msrs[i].data;
748 break;
749#endif
750 case MSR_IA32_TSC:
751 env->tsc = msrs[i].data;
752 break;
1a03675d
GC
753 case MSR_KVM_SYSTEM_TIME:
754 env->system_time_msr = msrs[i].data;
755 break;
756 case MSR_KVM_WALL_CLOCK:
757 env->wall_clock_msr = msrs[i].data;
758 break;
05330448
AL
759 }
760 }
761
762 return 0;
763}
764
9bdbe550
HB
765static int kvm_put_mp_state(CPUState *env)
766{
767 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
768
769 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
770}
771
772static int kvm_get_mp_state(CPUState *env)
773{
774 struct kvm_mp_state mp_state;
775 int ret;
776
777 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
778 if (ret < 0) {
779 return ret;
780 }
781 env->mp_state = mp_state.mp_state;
782 return 0;
783}
784
a0fb002c
JK
785static int kvm_put_vcpu_events(CPUState *env)
786{
787#ifdef KVM_CAP_VCPU_EVENTS
788 struct kvm_vcpu_events events;
789
790 if (!kvm_has_vcpu_events()) {
791 return 0;
792 }
793
31827373
JK
794 events.exception.injected = (env->exception_injected >= 0);
795 events.exception.nr = env->exception_injected;
a0fb002c
JK
796 events.exception.has_error_code = env->has_error_code;
797 events.exception.error_code = env->error_code;
798
799 events.interrupt.injected = (env->interrupt_injected >= 0);
800 events.interrupt.nr = env->interrupt_injected;
801 events.interrupt.soft = env->soft_interrupt;
802
803 events.nmi.injected = env->nmi_injected;
804 events.nmi.pending = env->nmi_pending;
805 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
806
807 events.sipi_vector = env->sipi_vector;
808
aee028b9
JK
809 events.flags =
810 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
811
a0fb002c
JK
812 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
813#else
814 return 0;
815#endif
816}
817
818static int kvm_get_vcpu_events(CPUState *env)
819{
820#ifdef KVM_CAP_VCPU_EVENTS
821 struct kvm_vcpu_events events;
822 int ret;
823
824 if (!kvm_has_vcpu_events()) {
825 return 0;
826 }
827
828 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
829 if (ret < 0) {
830 return ret;
831 }
31827373 832 env->exception_injected =
a0fb002c
JK
833 events.exception.injected ? events.exception.nr : -1;
834 env->has_error_code = events.exception.has_error_code;
835 env->error_code = events.exception.error_code;
836
837 env->interrupt_injected =
838 events.interrupt.injected ? events.interrupt.nr : -1;
839 env->soft_interrupt = events.interrupt.soft;
840
841 env->nmi_injected = events.nmi.injected;
842 env->nmi_pending = events.nmi.pending;
843 if (events.nmi.masked) {
844 env->hflags2 |= HF2_NMI_MASK;
845 } else {
846 env->hflags2 &= ~HF2_NMI_MASK;
847 }
848
849 env->sipi_vector = events.sipi_vector;
850#endif
851
852 return 0;
853}
854
b0b1d690
JK
855static int kvm_guest_debug_workarounds(CPUState *env)
856{
857 int ret = 0;
858#ifdef KVM_CAP_SET_GUEST_DEBUG
859 unsigned long reinject_trap = 0;
860
861 if (!kvm_has_vcpu_events()) {
862 if (env->exception_injected == 1) {
863 reinject_trap = KVM_GUESTDBG_INJECT_DB;
864 } else if (env->exception_injected == 3) {
865 reinject_trap = KVM_GUESTDBG_INJECT_BP;
866 }
867 env->exception_injected = -1;
868 }
869
870 /*
871 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
872 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
873 * by updating the debug state once again if single-stepping is on.
874 * Another reason to call kvm_update_guest_debug here is a pending debug
875 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
876 * reinject them via SET_GUEST_DEBUG.
877 */
878 if (reinject_trap ||
879 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
880 ret = kvm_update_guest_debug(env, reinject_trap);
881 }
882#endif /* KVM_CAP_SET_GUEST_DEBUG */
883 return ret;
884}
885
ea375f9a 886int kvm_arch_put_registers(CPUState *env, int level)
05330448
AL
887{
888 int ret;
889
890 ret = kvm_getput_regs(env, 1);
891 if (ret < 0)
892 return ret;
893
894 ret = kvm_put_fpu(env);
895 if (ret < 0)
896 return ret;
897
898 ret = kvm_put_sregs(env);
899 if (ret < 0)
900 return ret;
901
902 ret = kvm_put_msrs(env);
903 if (ret < 0)
904 return ret;
905
f8d926e9
JK
906 ret = kvm_put_mp_state(env);
907 if (ret < 0)
908 return ret;
909
a0fb002c
JK
910 ret = kvm_put_vcpu_events(env);
911 if (ret < 0)
912 return ret;
913
b0b1d690
JK
914 /* must be last */
915 ret = kvm_guest_debug_workarounds(env);
916 if (ret < 0)
917 return ret;
918
05330448
AL
919 return 0;
920}
921
922int kvm_arch_get_registers(CPUState *env)
923{
924 int ret;
925
926 ret = kvm_getput_regs(env, 0);
927 if (ret < 0)
928 return ret;
929
930 ret = kvm_get_fpu(env);
931 if (ret < 0)
932 return ret;
933
934 ret = kvm_get_sregs(env);
935 if (ret < 0)
936 return ret;
937
938 ret = kvm_get_msrs(env);
939 if (ret < 0)
940 return ret;
941
5a2e3c2e
JK
942 ret = kvm_get_mp_state(env);
943 if (ret < 0)
944 return ret;
945
a0fb002c
JK
946 ret = kvm_get_vcpu_events(env);
947 if (ret < 0)
948 return ret;
949
05330448
AL
950 return 0;
951}
952
953int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
954{
955 /* Try to inject an interrupt if the guest can accept it */
956 if (run->ready_for_interrupt_injection &&
957 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
958 (env->eflags & IF_MASK)) {
959 int irq;
960
961 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
962 irq = cpu_get_pic_interrupt(env);
963 if (irq >= 0) {
964 struct kvm_interrupt intr;
965 intr.irq = irq;
966 /* FIXME: errors */
967 dprintf("injected interrupt %d\n", irq);
968 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
969 }
970 }
971
972 /* If we have an interrupt but the guest is not ready to receive an
973 * interrupt, request an interrupt window exit. This will
974 * cause a return to userspace as soon as the guest is ready to
975 * receive interrupts. */
976 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
977 run->request_interrupt_window = 1;
978 else
979 run->request_interrupt_window = 0;
980
981 dprintf("setting tpr\n");
982 run->cr8 = cpu_get_apic_tpr(env);
983
984 return 0;
985}
986
987int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
988{
989 if (run->if_flag)
990 env->eflags |= IF_MASK;
991 else
992 env->eflags &= ~IF_MASK;
993
994 cpu_set_apic_tpr(env, run->cr8);
995 cpu_set_apic_base(env, run->apic_base);
996
997 return 0;
998}
999
1000static int kvm_handle_halt(CPUState *env)
1001{
1002 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1003 (env->eflags & IF_MASK)) &&
1004 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1005 env->halted = 1;
1006 env->exception_index = EXCP_HLT;
1007 return 0;
1008 }
1009
1010 return 1;
1011}
1012
1013int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1014{
1015 int ret = 0;
1016
1017 switch (run->exit_reason) {
1018 case KVM_EXIT_HLT:
1019 dprintf("handle_hlt\n");
1020 ret = kvm_handle_halt(env);
1021 break;
1022 }
1023
1024 return ret;
1025}
e22a25c9
AL
1026
1027#ifdef KVM_CAP_SET_GUEST_DEBUG
e22a25c9
AL
1028int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1029{
38972938 1030 static const uint8_t int3 = 0xcc;
64bf3f4e 1031
e22a25c9 1032 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
64bf3f4e 1033 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
e22a25c9
AL
1034 return -EINVAL;
1035 return 0;
1036}
1037
1038int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1039{
1040 uint8_t int3;
1041
1042 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
64bf3f4e 1043 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
e22a25c9
AL
1044 return -EINVAL;
1045 return 0;
1046}
1047
1048static struct {
1049 target_ulong addr;
1050 int len;
1051 int type;
1052} hw_breakpoint[4];
1053
1054static int nb_hw_breakpoint;
1055
1056static int find_hw_breakpoint(target_ulong addr, int len, int type)
1057{
1058 int n;
1059
1060 for (n = 0; n < nb_hw_breakpoint; n++)
1061 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1062 (hw_breakpoint[n].len == len || len == -1))
1063 return n;
1064 return -1;
1065}
1066
1067int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1068 target_ulong len, int type)
1069{
1070 switch (type) {
1071 case GDB_BREAKPOINT_HW:
1072 len = 1;
1073 break;
1074 case GDB_WATCHPOINT_WRITE:
1075 case GDB_WATCHPOINT_ACCESS:
1076 switch (len) {
1077 case 1:
1078 break;
1079 case 2:
1080 case 4:
1081 case 8:
1082 if (addr & (len - 1))
1083 return -EINVAL;
1084 break;
1085 default:
1086 return -EINVAL;
1087 }
1088 break;
1089 default:
1090 return -ENOSYS;
1091 }
1092
1093 if (nb_hw_breakpoint == 4)
1094 return -ENOBUFS;
1095
1096 if (find_hw_breakpoint(addr, len, type) >= 0)
1097 return -EEXIST;
1098
1099 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1100 hw_breakpoint[nb_hw_breakpoint].len = len;
1101 hw_breakpoint[nb_hw_breakpoint].type = type;
1102 nb_hw_breakpoint++;
1103
1104 return 0;
1105}
1106
1107int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1108 target_ulong len, int type)
1109{
1110 int n;
1111
1112 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1113 if (n < 0)
1114 return -ENOENT;
1115
1116 nb_hw_breakpoint--;
1117 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1118
1119 return 0;
1120}
1121
1122void kvm_arch_remove_all_hw_breakpoints(void)
1123{
1124 nb_hw_breakpoint = 0;
1125}
1126
1127static CPUWatchpoint hw_watchpoint;
1128
1129int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1130{
1131 int handle = 0;
1132 int n;
1133
1134 if (arch_info->exception == 1) {
1135 if (arch_info->dr6 & (1 << 14)) {
1136 if (cpu_single_env->singlestep_enabled)
1137 handle = 1;
1138 } else {
1139 for (n = 0; n < 4; n++)
1140 if (arch_info->dr6 & (1 << n))
1141 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1142 case 0x0:
1143 handle = 1;
1144 break;
1145 case 0x1:
1146 handle = 1;
1147 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1148 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1149 hw_watchpoint.flags = BP_MEM_WRITE;
1150 break;
1151 case 0x3:
1152 handle = 1;
1153 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1154 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1155 hw_watchpoint.flags = BP_MEM_ACCESS;
1156 break;
1157 }
1158 }
1159 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1160 handle = 1;
1161
b0b1d690
JK
1162 if (!handle) {
1163 cpu_synchronize_state(cpu_single_env);
1164 assert(cpu_single_env->exception_injected == -1);
1165
1166 cpu_single_env->exception_injected = arch_info->exception;
1167 cpu_single_env->has_error_code = 0;
1168 }
e22a25c9
AL
1169
1170 return handle;
1171}
1172
1173void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1174{
1175 const uint8_t type_code[] = {
1176 [GDB_BREAKPOINT_HW] = 0x0,
1177 [GDB_WATCHPOINT_WRITE] = 0x1,
1178 [GDB_WATCHPOINT_ACCESS] = 0x3
1179 };
1180 const uint8_t len_code[] = {
1181 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1182 };
1183 int n;
1184
1185 if (kvm_sw_breakpoints_active(env))
1186 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1187
1188 if (nb_hw_breakpoint > 0) {
1189 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1190 dbg->arch.debugreg[7] = 0x0600;
1191 for (n = 0; n < nb_hw_breakpoint; n++) {
1192 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1193 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1194 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1195 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1196 }
1197 }
1198}
1199#endif /* KVM_CAP_SET_GUEST_DEBUG */