]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
hw/9118.c: Implement active-low interrupt support
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
21
22#include "qemu-common.h"
23#include "sysemu.h"
24#include "kvm.h"
25#include "cpu.h"
e22a25c9 26#include "gdbstub.h"
0e607a80 27#include "host-utils.h"
4c5b10b7 28#include "hw/pc.h"
408392b3 29#include "hw/apic.h"
35bed8ee 30#include "ioport.h"
05330448 31
bb0300dc
GN
32#ifdef CONFIG_KVM_PARA
33#include <linux/kvm_para.h>
34#endif
35//
05330448
AL
36//#define DEBUG_KVM
37
38#ifdef DEBUG_KVM
8c0d577e 39#define DPRINTF(fmt, ...) \
05330448
AL
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41#else
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { } while (0)
44#endif
45
1a03675d
GC
46#define MSR_KVM_WALL_CLOCK 0x11
47#define MSR_KVM_SYSTEM_TIME 0x12
48
c0532a76
MT
49#ifndef BUS_MCEERR_AR
50#define BUS_MCEERR_AR 4
51#endif
52#ifndef BUS_MCEERR_AO
53#define BUS_MCEERR_AO 5
54#endif
55
94a8d39a
JK
56const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61};
25d2e361 62
c3a3a7d3
JK
63static bool has_msr_star;
64static bool has_msr_hsave_pa;
c5999bfc
JK
65#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
66static bool has_msr_async_pf_en;
67#endif
25d2e361 68static int lm_capable_kernel;
b827df58
AK
69
70static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
71{
72 struct kvm_cpuid2 *cpuid;
73 int r, size;
74
75 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
76 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
77 cpuid->nent = max;
78 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
79 if (r == 0 && cpuid->nent >= max) {
80 r = -E2BIG;
81 }
b827df58
AK
82 if (r < 0) {
83 if (r == -E2BIG) {
84 qemu_free(cpuid);
85 return NULL;
86 } else {
87 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
88 strerror(-r));
89 exit(1);
90 }
91 }
92 return cpuid;
93}
94
0c31b744
GC
95#ifdef CONFIG_KVM_PARA
96struct kvm_para_features {
97 int cap;
98 int feature;
99} para_features[] = {
100 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
101 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
102 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
103#ifdef KVM_CAP_ASYNC_PF
104 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
105#endif
106 { -1, -1 }
107};
108
109static int get_para_features(CPUState *env)
110{
111 int i, features = 0;
112
113 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
114 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
115 features |= (1 << para_features[i].feature);
116 }
117 }
118
119 return features;
120}
121#endif
122
123
c958a8bd
SY
124uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
125 uint32_t index, int reg)
b827df58
AK
126{
127 struct kvm_cpuid2 *cpuid;
128 int i, max;
129 uint32_t ret = 0;
130 uint32_t cpuid_1_edx;
0c31b744
GC
131#ifdef CONFIG_KVM_PARA
132 int has_kvm_features = 0;
133#endif
b827df58 134
b827df58
AK
135 max = 1;
136 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
137 max *= 2;
138 }
139
140 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
141 if (cpuid->entries[i].function == function &&
142 cpuid->entries[i].index == index) {
0c31b744
GC
143#ifdef CONFIG_KVM_PARA
144 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
145 has_kvm_features = 1;
146 }
147#endif
b827df58
AK
148 switch (reg) {
149 case R_EAX:
150 ret = cpuid->entries[i].eax;
151 break;
152 case R_EBX:
153 ret = cpuid->entries[i].ebx;
154 break;
155 case R_ECX:
156 ret = cpuid->entries[i].ecx;
157 break;
158 case R_EDX:
159 ret = cpuid->entries[i].edx;
19ccb8ea
JK
160 switch (function) {
161 case 1:
162 /* KVM before 2.6.30 misreports the following features */
163 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
164 break;
165 case 0x80000001:
b827df58
AK
166 /* On Intel, kvm returns cpuid according to the Intel spec,
167 * so add missing bits according to the AMD spec:
168 */
c958a8bd 169 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
c1667e40 170 ret |= cpuid_1_edx & 0x183f7ff;
19ccb8ea 171 break;
b827df58
AK
172 }
173 break;
174 }
175 }
176 }
177
178 qemu_free(cpuid);
179
bb0300dc 180#ifdef CONFIG_KVM_PARA
0c31b744
GC
181 /* fallback for older kernels */
182 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
183 ret = get_para_features(env);
b9bec74b 184 }
b3a98367 185#endif
0c31b744
GC
186
187 return ret;
bb0300dc 188}
bb0300dc 189
3c85e74f
HY
190typedef struct HWPoisonPage {
191 ram_addr_t ram_addr;
192 QLIST_ENTRY(HWPoisonPage) list;
193} HWPoisonPage;
194
195static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
196 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
197
198static void kvm_unpoison_all(void *param)
199{
200 HWPoisonPage *page, *next_page;
201
202 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
203 QLIST_REMOVE(page, list);
204 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
205 qemu_free(page);
206 }
207}
208
e7701825 209#ifdef KVM_CAP_MCE
3c85e74f
HY
210static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
211{
212 HWPoisonPage *page;
213
214 QLIST_FOREACH(page, &hwpoison_page_list, list) {
215 if (page->ram_addr == ram_addr) {
216 return;
217 }
218 }
219 page = qemu_malloc(sizeof(HWPoisonPage));
220 page->ram_addr = ram_addr;
221 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
222}
223
e7701825
MT
224static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
225 int *max_banks)
226{
227 int r;
228
14a09518 229 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
230 if (r > 0) {
231 *max_banks = r;
232 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
233 }
234 return -ENOSYS;
235}
236
c34d440a 237static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
e7701825 238{
c34d440a
JK
239 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
240 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
241 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 242
c34d440a
JK
243 if (code == BUS_MCEERR_AR) {
244 status |= MCI_STATUS_AR | 0x134;
245 mcg_status |= MCG_STATUS_EIPV;
246 } else {
247 status |= 0xc0;
248 mcg_status |= MCG_STATUS_RIPV;
419fb20a 249 }
c34d440a
JK
250 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
251 (MCM_ADDR_PHYS << 6) | 0xc,
252 cpu_x86_support_mca_broadcast(env) ?
253 MCE_INJECT_BROADCAST : 0);
419fb20a
JK
254}
255#endif /* KVM_CAP_MCE */
256
257static void hardware_memory_error(void)
258{
259 fprintf(stderr, "Hardware memory error!\n");
260 exit(1);
261}
262
263int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
264{
265#ifdef KVM_CAP_MCE
419fb20a
JK
266 ram_addr_t ram_addr;
267 target_phys_addr_t paddr;
268
269 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a
JK
270 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
271 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
272 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
273 &paddr)) {
419fb20a
JK
274 fprintf(stderr, "Hardware memory error for memory used by "
275 "QEMU itself instead of guest system!\n");
276 /* Hope we are lucky for AO MCE */
277 if (code == BUS_MCEERR_AO) {
278 return 0;
279 } else {
280 hardware_memory_error();
281 }
282 }
3c85e74f 283 kvm_hwpoison_page_add(ram_addr);
c34d440a 284 kvm_mce_inject(env, paddr, code);
419fb20a
JK
285 } else
286#endif /* KVM_CAP_MCE */
287 {
288 if (code == BUS_MCEERR_AO) {
289 return 0;
290 } else if (code == BUS_MCEERR_AR) {
291 hardware_memory_error();
292 } else {
293 return 1;
294 }
295 }
296 return 0;
297}
298
299int kvm_arch_on_sigbus(int code, void *addr)
300{
301#ifdef KVM_CAP_MCE
302 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a
JK
303 ram_addr_t ram_addr;
304 target_phys_addr_t paddr;
305
306 /* Hope we are lucky for AO MCE */
c34d440a 307 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
419fb20a
JK
308 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
309 &paddr)) {
310 fprintf(stderr, "Hardware memory error for memory used by "
311 "QEMU itself instead of guest system!: %p\n", addr);
312 return 0;
313 }
3c85e74f 314 kvm_hwpoison_page_add(ram_addr);
c34d440a 315 kvm_mce_inject(first_cpu, paddr, code);
419fb20a
JK
316 } else
317#endif /* KVM_CAP_MCE */
318 {
319 if (code == BUS_MCEERR_AO) {
320 return 0;
321 } else if (code == BUS_MCEERR_AR) {
322 hardware_memory_error();
323 } else {
324 return 1;
325 }
326 }
327 return 0;
328}
e7701825 329
ab443475
JK
330static int kvm_inject_mce_oldstyle(CPUState *env)
331{
332#ifdef KVM_CAP_MCE
333 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
334 unsigned int bank, bank_num = env->mcg_cap & 0xff;
335 struct kvm_x86_mce mce;
336
337 env->exception_injected = -1;
338
339 /*
340 * There must be at least one bank in use if an MCE is pending.
341 * Find it and use its values for the event injection.
342 */
343 for (bank = 0; bank < bank_num; bank++) {
344 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
345 break;
346 }
347 }
348 assert(bank < bank_num);
349
350 mce.bank = bank;
351 mce.status = env->mce_banks[bank * 4 + 1];
352 mce.mcg_status = env->mcg_status;
353 mce.addr = env->mce_banks[bank * 4 + 2];
354 mce.misc = env->mce_banks[bank * 4 + 3];
355
356 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
357 }
358#endif /* KVM_CAP_MCE */
359 return 0;
360}
361
b8cc45d6
GC
362static void cpu_update_state(void *opaque, int running, int reason)
363{
364 CPUState *env = opaque;
365
366 if (running) {
367 env->tsc_valid = false;
368 }
369}
370
05330448
AL
371int kvm_arch_init_vcpu(CPUState *env)
372{
373 struct {
486bd5a2
AL
374 struct kvm_cpuid2 cpuid;
375 struct kvm_cpuid_entry2 entries[100];
05330448 376 } __attribute__((packed)) cpuid_data;
486bd5a2 377 uint32_t limit, i, j, cpuid_i;
a33609ca 378 uint32_t unused;
bb0300dc 379 struct kvm_cpuid_entry2 *c;
521f0798 380#ifdef CONFIG_KVM_PARA
bb0300dc
GN
381 uint32_t signature[3];
382#endif
05330448 383
c958a8bd 384 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
6c0d7ee8
AP
385
386 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
c958a8bd 387 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
6c0d7ee8
AP
388 env->cpuid_ext_features |= i;
389
457dfed6 390 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 391 0, R_EDX);
457dfed6 392 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 393 0, R_ECX);
296acb64
JR
394 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
395 0, R_EDX);
396
6c1f42fe 397
05330448
AL
398 cpuid_i = 0;
399
bb0300dc
GN
400#ifdef CONFIG_KVM_PARA
401 /* Paravirtualization CPUIDs */
402 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
403 c = &cpuid_data.entries[cpuid_i++];
404 memset(c, 0, sizeof(*c));
405 c->function = KVM_CPUID_SIGNATURE;
406 c->eax = 0;
407 c->ebx = signature[0];
408 c->ecx = signature[1];
409 c->edx = signature[2];
410
411 c = &cpuid_data.entries[cpuid_i++];
412 memset(c, 0, sizeof(*c));
413 c->function = KVM_CPUID_FEATURES;
0c31b744
GC
414 c->eax = env->cpuid_kvm_features & kvm_arch_get_supported_cpuid(env,
415 KVM_CPUID_FEATURES, 0, R_EAX);
416
417#ifdef KVM_CAP_ASYNC_PF
418 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
419#endif
420
bb0300dc
GN
421#endif
422
a33609ca 423 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
424
425 for (i = 0; i <= limit; i++) {
bb0300dc 426 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
427
428 switch (i) {
a36b1029
AL
429 case 2: {
430 /* Keep reading function 2 till all the input is received */
431 int times;
432
a36b1029 433 c->function = i;
a33609ca
AL
434 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
435 KVM_CPUID_FLAG_STATE_READ_NEXT;
436 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
437 times = c->eax & 0xff;
a36b1029
AL
438
439 for (j = 1; j < times; ++j) {
a33609ca 440 c = &cpuid_data.entries[cpuid_i++];
a36b1029 441 c->function = i;
a33609ca
AL
442 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
443 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
444 }
445 break;
446 }
486bd5a2
AL
447 case 4:
448 case 0xb:
449 case 0xd:
450 for (j = 0; ; j++) {
486bd5a2
AL
451 c->function = i;
452 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
453 c->index = j;
a33609ca 454 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 455
b9bec74b 456 if (i == 4 && c->eax == 0) {
486bd5a2 457 break;
b9bec74b
JK
458 }
459 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 460 break;
b9bec74b
JK
461 }
462 if (i == 0xd && c->eax == 0) {
486bd5a2 463 break;
b9bec74b 464 }
a33609ca 465 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
466 }
467 break;
468 default:
486bd5a2 469 c->function = i;
a33609ca
AL
470 c->flags = 0;
471 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
472 break;
473 }
05330448 474 }
a33609ca 475 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
476
477 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 478 c = &cpuid_data.entries[cpuid_i++];
05330448 479
05330448 480 c->function = i;
a33609ca
AL
481 c->flags = 0;
482 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
483 }
484
b3baa152
BW
485 /* Call Centaur's CPUID instructions they are supported. */
486 if (env->cpuid_xlevel2 > 0) {
487 env->cpuid_ext4_features &=
488 kvm_arch_get_supported_cpuid(env, 0xC0000001, 0, R_EDX);
489 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
490
491 for (i = 0xC0000000; i <= limit; i++) {
492 c = &cpuid_data.entries[cpuid_i++];
493
494 c->function = i;
495 c->flags = 0;
496 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
497 }
498 }
499
05330448
AL
500 cpuid_data.cpuid.nent = cpuid_i;
501
e7701825
MT
502#ifdef KVM_CAP_MCE
503 if (((env->cpuid_version >> 8)&0xF) >= 6
504 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
505 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
506 uint64_t mcg_cap;
507 int banks;
32a42024 508 int ret;
e7701825 509
75d49497
JK
510 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
511 if (ret < 0) {
512 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
513 return ret;
e7701825 514 }
75d49497
JK
515
516 if (banks > MCE_BANKS_DEF) {
517 banks = MCE_BANKS_DEF;
518 }
519 mcg_cap &= MCE_CAP_DEF;
520 mcg_cap |= banks;
521 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
522 if (ret < 0) {
523 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
524 return ret;
525 }
526
527 env->mcg_cap = mcg_cap;
e7701825
MT
528 }
529#endif
530
b8cc45d6
GC
531 qemu_add_vm_change_state_handler(cpu_update_state, env);
532
486bd5a2 533 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
05330448
AL
534}
535
caa5af0f
JK
536void kvm_arch_reset_vcpu(CPUState *env)
537{
e73223a5 538 env->exception_injected = -1;
0e607a80 539 env->interrupt_injected = -1;
1a5e9d2f 540 env->xcr0 = 1;
ddced198
MT
541 if (kvm_irqchip_in_kernel()) {
542 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
543 KVM_MP_STATE_UNINITIALIZED;
544 } else {
545 env->mp_state = KVM_MP_STATE_RUNNABLE;
546 }
caa5af0f
JK
547}
548
c3a3a7d3 549static int kvm_get_supported_msrs(KVMState *s)
05330448 550{
75b10c43 551 static int kvm_supported_msrs;
c3a3a7d3 552 int ret = 0;
05330448
AL
553
554 /* first time */
75b10c43 555 if (kvm_supported_msrs == 0) {
05330448
AL
556 struct kvm_msr_list msr_list, *kvm_msr_list;
557
75b10c43 558 kvm_supported_msrs = -1;
05330448
AL
559
560 /* Obtain MSR list from KVM. These are the MSRs that we must
561 * save/restore */
4c9f7372 562 msr_list.nmsrs = 0;
c3a3a7d3 563 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 564 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 565 return ret;
6fb6d245 566 }
d9db889f
JK
567 /* Old kernel modules had a bug and could write beyond the provided
568 memory. Allocate at least a safe amount of 1K. */
569 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
570 msr_list.nmsrs *
571 sizeof(msr_list.indices[0])));
05330448 572
55308450 573 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 574 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
575 if (ret >= 0) {
576 int i;
577
578 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
579 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 580 has_msr_star = true;
75b10c43
MT
581 continue;
582 }
583 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 584 has_msr_hsave_pa = true;
75b10c43 585 continue;
05330448
AL
586 }
587 }
588 }
589
4a043713 590 qemu_free(kvm_msr_list);
05330448
AL
591 }
592
c3a3a7d3 593 return ret;
05330448
AL
594}
595
cad1e282 596int kvm_arch_init(KVMState *s)
20420430 597{
11076198 598 uint64_t identity_base = 0xfffbc000;
20420430 599 int ret;
25d2e361 600 struct utsname utsname;
20420430 601
c3a3a7d3 602 ret = kvm_get_supported_msrs(s);
20420430 603 if (ret < 0) {
20420430
SY
604 return ret;
605 }
25d2e361
MT
606
607 uname(&utsname);
608 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
609
4c5b10b7 610 /*
11076198
JK
611 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
612 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
613 * Since these must be part of guest physical memory, we need to allocate
614 * them, both by setting their start addresses in the kernel and by
615 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
616 *
617 * Older KVM versions may not support setting the identity map base. In
618 * that case we need to stick with the default, i.e. a 256K maximum BIOS
619 * size.
4c5b10b7 620 */
11076198
JK
621#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
622 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
623 /* Allows up to 16M BIOSes. */
624 identity_base = 0xfeffc000;
625
626 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
627 if (ret < 0) {
628 return ret;
629 }
4c5b10b7 630 }
11076198
JK
631#endif
632 /* Set TSS base one page after EPT identity map. */
633 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
634 if (ret < 0) {
635 return ret;
636 }
637
11076198
JK
638 /* Tell fw_cfg to notify the BIOS to reserve the range. */
639 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 640 if (ret < 0) {
11076198 641 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
642 return ret;
643 }
3c85e74f 644 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 645
11076198 646 return 0;
05330448 647}
b9bec74b 648
05330448
AL
649static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
650{
651 lhs->selector = rhs->selector;
652 lhs->base = rhs->base;
653 lhs->limit = rhs->limit;
654 lhs->type = 3;
655 lhs->present = 1;
656 lhs->dpl = 3;
657 lhs->db = 0;
658 lhs->s = 1;
659 lhs->l = 0;
660 lhs->g = 0;
661 lhs->avl = 0;
662 lhs->unusable = 0;
663}
664
665static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
666{
667 unsigned flags = rhs->flags;
668 lhs->selector = rhs->selector;
669 lhs->base = rhs->base;
670 lhs->limit = rhs->limit;
671 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
672 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 673 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
674 lhs->db = (flags >> DESC_B_SHIFT) & 1;
675 lhs->s = (flags & DESC_S_MASK) != 0;
676 lhs->l = (flags >> DESC_L_SHIFT) & 1;
677 lhs->g = (flags & DESC_G_MASK) != 0;
678 lhs->avl = (flags & DESC_AVL_MASK) != 0;
679 lhs->unusable = 0;
680}
681
682static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
683{
684 lhs->selector = rhs->selector;
685 lhs->base = rhs->base;
686 lhs->limit = rhs->limit;
b9bec74b
JK
687 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
688 (rhs->present * DESC_P_MASK) |
689 (rhs->dpl << DESC_DPL_SHIFT) |
690 (rhs->db << DESC_B_SHIFT) |
691 (rhs->s * DESC_S_MASK) |
692 (rhs->l << DESC_L_SHIFT) |
693 (rhs->g * DESC_G_MASK) |
694 (rhs->avl * DESC_AVL_MASK);
05330448
AL
695}
696
697static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
698{
b9bec74b 699 if (set) {
05330448 700 *kvm_reg = *qemu_reg;
b9bec74b 701 } else {
05330448 702 *qemu_reg = *kvm_reg;
b9bec74b 703 }
05330448
AL
704}
705
706static int kvm_getput_regs(CPUState *env, int set)
707{
708 struct kvm_regs regs;
709 int ret = 0;
710
711 if (!set) {
712 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 713 if (ret < 0) {
05330448 714 return ret;
b9bec74b 715 }
05330448
AL
716 }
717
718 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
719 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
720 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
721 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
722 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
723 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
724 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
725 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
726#ifdef TARGET_X86_64
727 kvm_getput_reg(&regs.r8, &env->regs[8], set);
728 kvm_getput_reg(&regs.r9, &env->regs[9], set);
729 kvm_getput_reg(&regs.r10, &env->regs[10], set);
730 kvm_getput_reg(&regs.r11, &env->regs[11], set);
731 kvm_getput_reg(&regs.r12, &env->regs[12], set);
732 kvm_getput_reg(&regs.r13, &env->regs[13], set);
733 kvm_getput_reg(&regs.r14, &env->regs[14], set);
734 kvm_getput_reg(&regs.r15, &env->regs[15], set);
735#endif
736
737 kvm_getput_reg(&regs.rflags, &env->eflags, set);
738 kvm_getput_reg(&regs.rip, &env->eip, set);
739
b9bec74b 740 if (set) {
05330448 741 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 742 }
05330448
AL
743
744 return ret;
745}
746
747static int kvm_put_fpu(CPUState *env)
748{
749 struct kvm_fpu fpu;
750 int i;
751
752 memset(&fpu, 0, sizeof fpu);
753 fpu.fsw = env->fpus & ~(7 << 11);
754 fpu.fsw |= (env->fpstt & 7) << 11;
755 fpu.fcw = env->fpuc;
b9bec74b
JK
756 for (i = 0; i < 8; ++i) {
757 fpu.ftwx |= (!env->fptags[i]) << i;
758 }
05330448
AL
759 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
760 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
761 fpu.mxcsr = env->mxcsr;
762
763 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
764}
765
f1665b21
SY
766#ifdef KVM_CAP_XSAVE
767#define XSAVE_CWD_RIP 2
768#define XSAVE_CWD_RDP 4
769#define XSAVE_MXCSR 6
770#define XSAVE_ST_SPACE 8
771#define XSAVE_XMM_SPACE 40
772#define XSAVE_XSTATE_BV 128
773#define XSAVE_YMMH_SPACE 144
774#endif
775
776static int kvm_put_xsave(CPUState *env)
777{
778#ifdef KVM_CAP_XSAVE
0f53994f 779 int i, r;
f1665b21
SY
780 struct kvm_xsave* xsave;
781 uint16_t cwd, swd, twd, fop;
782
b9bec74b 783 if (!kvm_has_xsave()) {
f1665b21 784 return kvm_put_fpu(env);
b9bec74b 785 }
f1665b21
SY
786
787 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
788 memset(xsave, 0, sizeof(struct kvm_xsave));
789 cwd = swd = twd = fop = 0;
790 swd = env->fpus & ~(7 << 11);
791 swd |= (env->fpstt & 7) << 11;
792 cwd = env->fpuc;
b9bec74b 793 for (i = 0; i < 8; ++i) {
f1665b21 794 twd |= (!env->fptags[i]) << i;
b9bec74b 795 }
f1665b21
SY
796 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
797 xsave->region[1] = (uint32_t)(fop << 16) + twd;
798 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
799 sizeof env->fpregs);
800 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
801 sizeof env->xmm_regs);
802 xsave->region[XSAVE_MXCSR] = env->mxcsr;
803 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
804 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
805 sizeof env->ymmh_regs);
0f53994f
MT
806 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
807 qemu_free(xsave);
808 return r;
f1665b21
SY
809#else
810 return kvm_put_fpu(env);
811#endif
812}
813
814static int kvm_put_xcrs(CPUState *env)
815{
816#ifdef KVM_CAP_XCRS
817 struct kvm_xcrs xcrs;
818
b9bec74b 819 if (!kvm_has_xcrs()) {
f1665b21 820 return 0;
b9bec74b 821 }
f1665b21
SY
822
823 xcrs.nr_xcrs = 1;
824 xcrs.flags = 0;
825 xcrs.xcrs[0].xcr = 0;
826 xcrs.xcrs[0].value = env->xcr0;
827 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
828#else
829 return 0;
830#endif
831}
832
05330448
AL
833static int kvm_put_sregs(CPUState *env)
834{
835 struct kvm_sregs sregs;
836
0e607a80
JK
837 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
838 if (env->interrupt_injected >= 0) {
839 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
840 (uint64_t)1 << (env->interrupt_injected % 64);
841 }
05330448
AL
842
843 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
844 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
845 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
846 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
847 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
848 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
849 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 850 } else {
b9bec74b
JK
851 set_seg(&sregs.cs, &env->segs[R_CS]);
852 set_seg(&sregs.ds, &env->segs[R_DS]);
853 set_seg(&sregs.es, &env->segs[R_ES]);
854 set_seg(&sregs.fs, &env->segs[R_FS]);
855 set_seg(&sregs.gs, &env->segs[R_GS]);
856 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
857 }
858
859 set_seg(&sregs.tr, &env->tr);
860 set_seg(&sregs.ldt, &env->ldt);
861
862 sregs.idt.limit = env->idt.limit;
863 sregs.idt.base = env->idt.base;
864 sregs.gdt.limit = env->gdt.limit;
865 sregs.gdt.base = env->gdt.base;
866
867 sregs.cr0 = env->cr[0];
868 sregs.cr2 = env->cr[2];
869 sregs.cr3 = env->cr[3];
870 sregs.cr4 = env->cr[4];
871
4a942cea
BS
872 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
873 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
874
875 sregs.efer = env->efer;
876
877 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
878}
879
880static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
881 uint32_t index, uint64_t value)
882{
883 entry->index = index;
884 entry->data = value;
885}
886
ea643051 887static int kvm_put_msrs(CPUState *env, int level)
05330448
AL
888{
889 struct {
890 struct kvm_msrs info;
891 struct kvm_msr_entry entries[100];
892 } msr_data;
893 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 894 int n = 0;
05330448
AL
895
896 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
897 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
898 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 899 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 900 if (has_msr_star) {
b9bec74b
JK
901 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
902 }
c3a3a7d3 903 if (has_msr_hsave_pa) {
75b10c43 904 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 905 }
05330448 906#ifdef TARGET_X86_64
25d2e361
MT
907 if (lm_capable_kernel) {
908 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
909 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
910 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
911 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
912 }
05330448 913#endif
ea643051 914 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
915 /*
916 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
917 * writeback. Until this is fixed, we only write the offset to SMP
918 * guests after migration, desynchronizing the VCPUs, but avoiding
919 * huge jump-backs that would occur without any writeback at all.
920 */
921 if (smp_cpus == 1 || env->tsc != 0) {
922 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
923 }
ff5c186b
JK
924 }
925 /*
926 * The following paravirtual MSRs have side effects on the guest or are
927 * too heavy for normal writeback. Limit them to reset or full state
928 * updates.
929 */
930 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
931 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
932 env->system_time_msr);
933 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
521f0798 934#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
c5999bfc
JK
935 if (has_msr_async_pf_en) {
936 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
937 env->async_pf_en_msr);
938 }
f6584ee2 939#endif
ea643051 940 }
57780495
MT
941#ifdef KVM_CAP_MCE
942 if (env->mcg_cap) {
d8da8574 943 int i;
b9bec74b 944
c34d440a
JK
945 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
946 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
947 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
948 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
949 }
950 }
951#endif
1a03675d 952
05330448
AL
953 msr_data.info.nmsrs = n;
954
955 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
956
957}
958
959
960static int kvm_get_fpu(CPUState *env)
961{
962 struct kvm_fpu fpu;
963 int i, ret;
964
965 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 966 if (ret < 0) {
05330448 967 return ret;
b9bec74b 968 }
05330448
AL
969
970 env->fpstt = (fpu.fsw >> 11) & 7;
971 env->fpus = fpu.fsw;
972 env->fpuc = fpu.fcw;
b9bec74b
JK
973 for (i = 0; i < 8; ++i) {
974 env->fptags[i] = !((fpu.ftwx >> i) & 1);
975 }
05330448
AL
976 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
977 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
978 env->mxcsr = fpu.mxcsr;
979
980 return 0;
981}
982
f1665b21
SY
983static int kvm_get_xsave(CPUState *env)
984{
985#ifdef KVM_CAP_XSAVE
986 struct kvm_xsave* xsave;
987 int ret, i;
988 uint16_t cwd, swd, twd, fop;
989
b9bec74b 990 if (!kvm_has_xsave()) {
f1665b21 991 return kvm_get_fpu(env);
b9bec74b 992 }
f1665b21
SY
993
994 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
995 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f
MT
996 if (ret < 0) {
997 qemu_free(xsave);
f1665b21 998 return ret;
0f53994f 999 }
f1665b21
SY
1000
1001 cwd = (uint16_t)xsave->region[0];
1002 swd = (uint16_t)(xsave->region[0] >> 16);
1003 twd = (uint16_t)xsave->region[1];
1004 fop = (uint16_t)(xsave->region[1] >> 16);
1005 env->fpstt = (swd >> 11) & 7;
1006 env->fpus = swd;
1007 env->fpuc = cwd;
b9bec74b 1008 for (i = 0; i < 8; ++i) {
f1665b21 1009 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1010 }
f1665b21
SY
1011 env->mxcsr = xsave->region[XSAVE_MXCSR];
1012 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1013 sizeof env->fpregs);
1014 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1015 sizeof env->xmm_regs);
1016 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1017 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1018 sizeof env->ymmh_regs);
0f53994f 1019 qemu_free(xsave);
f1665b21
SY
1020 return 0;
1021#else
1022 return kvm_get_fpu(env);
1023#endif
1024}
1025
1026static int kvm_get_xcrs(CPUState *env)
1027{
1028#ifdef KVM_CAP_XCRS
1029 int i, ret;
1030 struct kvm_xcrs xcrs;
1031
b9bec74b 1032 if (!kvm_has_xcrs()) {
f1665b21 1033 return 0;
b9bec74b 1034 }
f1665b21
SY
1035
1036 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 1037 if (ret < 0) {
f1665b21 1038 return ret;
b9bec74b 1039 }
f1665b21 1040
b9bec74b 1041 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
1042 /* Only support xcr0 now */
1043 if (xcrs.xcrs[0].xcr == 0) {
1044 env->xcr0 = xcrs.xcrs[0].value;
1045 break;
1046 }
b9bec74b 1047 }
f1665b21
SY
1048 return 0;
1049#else
1050 return 0;
1051#endif
1052}
1053
05330448
AL
1054static int kvm_get_sregs(CPUState *env)
1055{
1056 struct kvm_sregs sregs;
1057 uint32_t hflags;
0e607a80 1058 int bit, i, ret;
05330448
AL
1059
1060 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 1061 if (ret < 0) {
05330448 1062 return ret;
b9bec74b 1063 }
05330448 1064
0e607a80
JK
1065 /* There can only be one pending IRQ set in the bitmap at a time, so try
1066 to find it and save its number instead (-1 for none). */
1067 env->interrupt_injected = -1;
1068 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1069 if (sregs.interrupt_bitmap[i]) {
1070 bit = ctz64(sregs.interrupt_bitmap[i]);
1071 env->interrupt_injected = i * 64 + bit;
1072 break;
1073 }
1074 }
05330448
AL
1075
1076 get_seg(&env->segs[R_CS], &sregs.cs);
1077 get_seg(&env->segs[R_DS], &sregs.ds);
1078 get_seg(&env->segs[R_ES], &sregs.es);
1079 get_seg(&env->segs[R_FS], &sregs.fs);
1080 get_seg(&env->segs[R_GS], &sregs.gs);
1081 get_seg(&env->segs[R_SS], &sregs.ss);
1082
1083 get_seg(&env->tr, &sregs.tr);
1084 get_seg(&env->ldt, &sregs.ldt);
1085
1086 env->idt.limit = sregs.idt.limit;
1087 env->idt.base = sregs.idt.base;
1088 env->gdt.limit = sregs.gdt.limit;
1089 env->gdt.base = sregs.gdt.base;
1090
1091 env->cr[0] = sregs.cr0;
1092 env->cr[2] = sregs.cr2;
1093 env->cr[3] = sregs.cr3;
1094 env->cr[4] = sregs.cr4;
1095
4a942cea 1096 cpu_set_apic_base(env->apic_state, sregs.apic_base);
05330448
AL
1097
1098 env->efer = sregs.efer;
4a942cea 1099 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
05330448 1100
b9bec74b
JK
1101#define HFLAG_COPY_MASK \
1102 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1103 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1104 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1105 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1106
1107 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1108 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1109 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1110 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1111 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1112 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1113 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1114
1115 if (env->efer & MSR_EFER_LMA) {
1116 hflags |= HF_LMA_MASK;
1117 }
1118
1119 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1120 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1121 } else {
1122 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1123 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1124 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1125 (DESC_B_SHIFT - HF_SS32_SHIFT);
1126 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1127 !(hflags & HF_CS32_MASK)) {
1128 hflags |= HF_ADDSEG_MASK;
1129 } else {
1130 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1131 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1132 }
05330448
AL
1133 }
1134 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1135
1136 return 0;
1137}
1138
1139static int kvm_get_msrs(CPUState *env)
1140{
1141 struct {
1142 struct kvm_msrs info;
1143 struct kvm_msr_entry entries[100];
1144 } msr_data;
1145 struct kvm_msr_entry *msrs = msr_data.entries;
1146 int ret, i, n;
1147
1148 n = 0;
1149 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1150 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1151 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1152 msrs[n++].index = MSR_PAT;
c3a3a7d3 1153 if (has_msr_star) {
b9bec74b
JK
1154 msrs[n++].index = MSR_STAR;
1155 }
c3a3a7d3 1156 if (has_msr_hsave_pa) {
75b10c43 1157 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1158 }
b8cc45d6
GC
1159
1160 if (!env->tsc_valid) {
1161 msrs[n++].index = MSR_IA32_TSC;
1162 env->tsc_valid = !vm_running;
1163 }
1164
05330448 1165#ifdef TARGET_X86_64
25d2e361
MT
1166 if (lm_capable_kernel) {
1167 msrs[n++].index = MSR_CSTAR;
1168 msrs[n++].index = MSR_KERNELGSBASE;
1169 msrs[n++].index = MSR_FMASK;
1170 msrs[n++].index = MSR_LSTAR;
1171 }
05330448 1172#endif
1a03675d
GC
1173 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1174 msrs[n++].index = MSR_KVM_WALL_CLOCK;
521f0798 1175#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
c5999bfc
JK
1176 if (has_msr_async_pf_en) {
1177 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1178 }
f6584ee2 1179#endif
1a03675d 1180
57780495
MT
1181#ifdef KVM_CAP_MCE
1182 if (env->mcg_cap) {
1183 msrs[n++].index = MSR_MCG_STATUS;
1184 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1185 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1186 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1187 }
57780495
MT
1188 }
1189#endif
1190
05330448
AL
1191 msr_data.info.nmsrs = n;
1192 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1193 if (ret < 0) {
05330448 1194 return ret;
b9bec74b 1195 }
05330448
AL
1196
1197 for (i = 0; i < ret; i++) {
1198 switch (msrs[i].index) {
1199 case MSR_IA32_SYSENTER_CS:
1200 env->sysenter_cs = msrs[i].data;
1201 break;
1202 case MSR_IA32_SYSENTER_ESP:
1203 env->sysenter_esp = msrs[i].data;
1204 break;
1205 case MSR_IA32_SYSENTER_EIP:
1206 env->sysenter_eip = msrs[i].data;
1207 break;
0c03266a
JK
1208 case MSR_PAT:
1209 env->pat = msrs[i].data;
1210 break;
05330448
AL
1211 case MSR_STAR:
1212 env->star = msrs[i].data;
1213 break;
1214#ifdef TARGET_X86_64
1215 case MSR_CSTAR:
1216 env->cstar = msrs[i].data;
1217 break;
1218 case MSR_KERNELGSBASE:
1219 env->kernelgsbase = msrs[i].data;
1220 break;
1221 case MSR_FMASK:
1222 env->fmask = msrs[i].data;
1223 break;
1224 case MSR_LSTAR:
1225 env->lstar = msrs[i].data;
1226 break;
1227#endif
1228 case MSR_IA32_TSC:
1229 env->tsc = msrs[i].data;
1230 break;
aa851e36
MT
1231 case MSR_VM_HSAVE_PA:
1232 env->vm_hsave = msrs[i].data;
1233 break;
1a03675d
GC
1234 case MSR_KVM_SYSTEM_TIME:
1235 env->system_time_msr = msrs[i].data;
1236 break;
1237 case MSR_KVM_WALL_CLOCK:
1238 env->wall_clock_msr = msrs[i].data;
1239 break;
57780495
MT
1240#ifdef KVM_CAP_MCE
1241 case MSR_MCG_STATUS:
1242 env->mcg_status = msrs[i].data;
1243 break;
1244 case MSR_MCG_CTL:
1245 env->mcg_ctl = msrs[i].data;
1246 break;
1247#endif
1248 default:
1249#ifdef KVM_CAP_MCE
1250 if (msrs[i].index >= MSR_MC0_CTL &&
1251 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1252 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495
MT
1253 }
1254#endif
d8da8574 1255 break;
521f0798 1256#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
f6584ee2
GN
1257 case MSR_KVM_ASYNC_PF_EN:
1258 env->async_pf_en_msr = msrs[i].data;
1259 break;
1260#endif
05330448
AL
1261 }
1262 }
1263
1264 return 0;
1265}
1266
9bdbe550
HB
1267static int kvm_put_mp_state(CPUState *env)
1268{
1269 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1270
1271 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1272}
1273
1274static int kvm_get_mp_state(CPUState *env)
1275{
1276 struct kvm_mp_state mp_state;
1277 int ret;
1278
1279 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1280 if (ret < 0) {
1281 return ret;
1282 }
1283 env->mp_state = mp_state.mp_state;
c14750e8
JK
1284 if (kvm_irqchip_in_kernel()) {
1285 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1286 }
9bdbe550
HB
1287 return 0;
1288}
1289
ea643051 1290static int kvm_put_vcpu_events(CPUState *env, int level)
a0fb002c
JK
1291{
1292#ifdef KVM_CAP_VCPU_EVENTS
1293 struct kvm_vcpu_events events;
1294
1295 if (!kvm_has_vcpu_events()) {
1296 return 0;
1297 }
1298
31827373
JK
1299 events.exception.injected = (env->exception_injected >= 0);
1300 events.exception.nr = env->exception_injected;
a0fb002c
JK
1301 events.exception.has_error_code = env->has_error_code;
1302 events.exception.error_code = env->error_code;
1303
1304 events.interrupt.injected = (env->interrupt_injected >= 0);
1305 events.interrupt.nr = env->interrupt_injected;
1306 events.interrupt.soft = env->soft_interrupt;
1307
1308 events.nmi.injected = env->nmi_injected;
1309 events.nmi.pending = env->nmi_pending;
1310 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1311
1312 events.sipi_vector = env->sipi_vector;
1313
ea643051
JK
1314 events.flags = 0;
1315 if (level >= KVM_PUT_RESET_STATE) {
1316 events.flags |=
1317 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1318 }
aee028b9 1319
a0fb002c
JK
1320 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1321#else
1322 return 0;
1323#endif
1324}
1325
1326static int kvm_get_vcpu_events(CPUState *env)
1327{
1328#ifdef KVM_CAP_VCPU_EVENTS
1329 struct kvm_vcpu_events events;
1330 int ret;
1331
1332 if (!kvm_has_vcpu_events()) {
1333 return 0;
1334 }
1335
1336 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1337 if (ret < 0) {
1338 return ret;
1339 }
31827373 1340 env->exception_injected =
a0fb002c
JK
1341 events.exception.injected ? events.exception.nr : -1;
1342 env->has_error_code = events.exception.has_error_code;
1343 env->error_code = events.exception.error_code;
1344
1345 env->interrupt_injected =
1346 events.interrupt.injected ? events.interrupt.nr : -1;
1347 env->soft_interrupt = events.interrupt.soft;
1348
1349 env->nmi_injected = events.nmi.injected;
1350 env->nmi_pending = events.nmi.pending;
1351 if (events.nmi.masked) {
1352 env->hflags2 |= HF2_NMI_MASK;
1353 } else {
1354 env->hflags2 &= ~HF2_NMI_MASK;
1355 }
1356
1357 env->sipi_vector = events.sipi_vector;
1358#endif
1359
1360 return 0;
1361}
1362
b0b1d690
JK
1363static int kvm_guest_debug_workarounds(CPUState *env)
1364{
1365 int ret = 0;
1366#ifdef KVM_CAP_SET_GUEST_DEBUG
1367 unsigned long reinject_trap = 0;
1368
1369 if (!kvm_has_vcpu_events()) {
1370 if (env->exception_injected == 1) {
1371 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1372 } else if (env->exception_injected == 3) {
1373 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1374 }
1375 env->exception_injected = -1;
1376 }
1377
1378 /*
1379 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1380 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1381 * by updating the debug state once again if single-stepping is on.
1382 * Another reason to call kvm_update_guest_debug here is a pending debug
1383 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1384 * reinject them via SET_GUEST_DEBUG.
1385 */
1386 if (reinject_trap ||
1387 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1388 ret = kvm_update_guest_debug(env, reinject_trap);
1389 }
1390#endif /* KVM_CAP_SET_GUEST_DEBUG */
1391 return ret;
1392}
1393
ff44f1a3
JK
1394static int kvm_put_debugregs(CPUState *env)
1395{
1396#ifdef KVM_CAP_DEBUGREGS
1397 struct kvm_debugregs dbgregs;
1398 int i;
1399
1400 if (!kvm_has_debugregs()) {
1401 return 0;
1402 }
1403
1404 for (i = 0; i < 4; i++) {
1405 dbgregs.db[i] = env->dr[i];
1406 }
1407 dbgregs.dr6 = env->dr[6];
1408 dbgregs.dr7 = env->dr[7];
1409 dbgregs.flags = 0;
1410
1411 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1412#else
1413 return 0;
1414#endif
1415}
1416
1417static int kvm_get_debugregs(CPUState *env)
1418{
1419#ifdef KVM_CAP_DEBUGREGS
1420 struct kvm_debugregs dbgregs;
1421 int i, ret;
1422
1423 if (!kvm_has_debugregs()) {
1424 return 0;
1425 }
1426
1427 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1428 if (ret < 0) {
b9bec74b 1429 return ret;
ff44f1a3
JK
1430 }
1431 for (i = 0; i < 4; i++) {
1432 env->dr[i] = dbgregs.db[i];
1433 }
1434 env->dr[4] = env->dr[6] = dbgregs.dr6;
1435 env->dr[5] = env->dr[7] = dbgregs.dr7;
1436#endif
1437
1438 return 0;
1439}
1440
ea375f9a 1441int kvm_arch_put_registers(CPUState *env, int level)
05330448
AL
1442{
1443 int ret;
1444
b7680cb6 1445 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1446
05330448 1447 ret = kvm_getput_regs(env, 1);
b9bec74b 1448 if (ret < 0) {
05330448 1449 return ret;
b9bec74b 1450 }
f1665b21 1451 ret = kvm_put_xsave(env);
b9bec74b 1452 if (ret < 0) {
f1665b21 1453 return ret;
b9bec74b 1454 }
f1665b21 1455 ret = kvm_put_xcrs(env);
b9bec74b 1456 if (ret < 0) {
05330448 1457 return ret;
b9bec74b 1458 }
05330448 1459 ret = kvm_put_sregs(env);
b9bec74b 1460 if (ret < 0) {
05330448 1461 return ret;
b9bec74b 1462 }
ab443475
JK
1463 /* must be before kvm_put_msrs */
1464 ret = kvm_inject_mce_oldstyle(env);
1465 if (ret < 0) {
1466 return ret;
1467 }
ea643051 1468 ret = kvm_put_msrs(env, level);
b9bec74b 1469 if (ret < 0) {
05330448 1470 return ret;
b9bec74b 1471 }
ea643051
JK
1472 if (level >= KVM_PUT_RESET_STATE) {
1473 ret = kvm_put_mp_state(env);
b9bec74b 1474 if (ret < 0) {
ea643051 1475 return ret;
b9bec74b 1476 }
ea643051 1477 }
ea643051 1478 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1479 if (ret < 0) {
a0fb002c 1480 return ret;
b9bec74b 1481 }
0d75a9ec 1482 ret = kvm_put_debugregs(env);
b9bec74b 1483 if (ret < 0) {
b0b1d690 1484 return ret;
b9bec74b 1485 }
b0b1d690
JK
1486 /* must be last */
1487 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1488 if (ret < 0) {
ff44f1a3 1489 return ret;
b9bec74b 1490 }
05330448
AL
1491 return 0;
1492}
1493
1494int kvm_arch_get_registers(CPUState *env)
1495{
1496 int ret;
1497
b7680cb6 1498 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1499
05330448 1500 ret = kvm_getput_regs(env, 0);
b9bec74b 1501 if (ret < 0) {
05330448 1502 return ret;
b9bec74b 1503 }
f1665b21 1504 ret = kvm_get_xsave(env);
b9bec74b 1505 if (ret < 0) {
f1665b21 1506 return ret;
b9bec74b 1507 }
f1665b21 1508 ret = kvm_get_xcrs(env);
b9bec74b 1509 if (ret < 0) {
05330448 1510 return ret;
b9bec74b 1511 }
05330448 1512 ret = kvm_get_sregs(env);
b9bec74b 1513 if (ret < 0) {
05330448 1514 return ret;
b9bec74b 1515 }
05330448 1516 ret = kvm_get_msrs(env);
b9bec74b 1517 if (ret < 0) {
05330448 1518 return ret;
b9bec74b 1519 }
5a2e3c2e 1520 ret = kvm_get_mp_state(env);
b9bec74b 1521 if (ret < 0) {
5a2e3c2e 1522 return ret;
b9bec74b 1523 }
a0fb002c 1524 ret = kvm_get_vcpu_events(env);
b9bec74b 1525 if (ret < 0) {
a0fb002c 1526 return ret;
b9bec74b 1527 }
ff44f1a3 1528 ret = kvm_get_debugregs(env);
b9bec74b 1529 if (ret < 0) {
ff44f1a3 1530 return ret;
b9bec74b 1531 }
05330448
AL
1532 return 0;
1533}
1534
7a39fe58 1535void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
05330448 1536{
ce377af3
JK
1537 int ret;
1538
276ce815
LJ
1539 /* Inject NMI */
1540 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1541 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1542 DPRINTF("injected NMI\n");
ce377af3
JK
1543 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1544 if (ret < 0) {
1545 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1546 strerror(-ret));
1547 }
276ce815
LJ
1548 }
1549
db1669bc
JK
1550 if (!kvm_irqchip_in_kernel()) {
1551 /* Force the VCPU out of its inner loop to process the INIT request */
1552 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1553 env->exit_request = 1;
05330448 1554 }
05330448 1555
db1669bc
JK
1556 /* Try to inject an interrupt if the guest can accept it */
1557 if (run->ready_for_interrupt_injection &&
1558 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1559 (env->eflags & IF_MASK)) {
1560 int irq;
1561
1562 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1563 irq = cpu_get_pic_interrupt(env);
1564 if (irq >= 0) {
1565 struct kvm_interrupt intr;
1566
1567 intr.irq = irq;
db1669bc 1568 DPRINTF("injected interrupt %d\n", irq);
ce377af3
JK
1569 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1570 if (ret < 0) {
1571 fprintf(stderr,
1572 "KVM: injection failed, interrupt lost (%s)\n",
1573 strerror(-ret));
1574 }
db1669bc
JK
1575 }
1576 }
05330448 1577
db1669bc
JK
1578 /* If we have an interrupt but the guest is not ready to receive an
1579 * interrupt, request an interrupt window exit. This will
1580 * cause a return to userspace as soon as the guest is ready to
1581 * receive interrupts. */
1582 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1583 run->request_interrupt_window = 1;
1584 } else {
1585 run->request_interrupt_window = 0;
1586 }
1587
1588 DPRINTF("setting tpr\n");
1589 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1590 }
05330448
AL
1591}
1592
7a39fe58 1593void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
05330448 1594{
b9bec74b 1595 if (run->if_flag) {
05330448 1596 env->eflags |= IF_MASK;
b9bec74b 1597 } else {
05330448 1598 env->eflags &= ~IF_MASK;
b9bec74b 1599 }
4a942cea
BS
1600 cpu_set_apic_tpr(env->apic_state, run->cr8);
1601 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1602}
1603
99036865 1604int kvm_arch_process_async_events(CPUState *env)
0af691d7 1605{
ab443475
JK
1606 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1607 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1608 assert(env->mcg_cap);
1609
1610 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1611
1612 kvm_cpu_synchronize_state(env);
1613
1614 if (env->exception_injected == EXCP08_DBLE) {
1615 /* this means triple fault */
1616 qemu_system_reset_request();
1617 env->exit_request = 1;
1618 return 0;
1619 }
1620 env->exception_injected = EXCP12_MCHK;
1621 env->has_error_code = 0;
1622
1623 env->halted = 0;
1624 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1625 env->mp_state = KVM_MP_STATE_RUNNABLE;
1626 }
1627 }
1628
db1669bc
JK
1629 if (kvm_irqchip_in_kernel()) {
1630 return 0;
1631 }
1632
4601f7b0
JK
1633 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1634 (env->eflags & IF_MASK)) ||
1635 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
6792a57b
JK
1636 env->halted = 0;
1637 }
0af691d7
MT
1638 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1639 kvm_cpu_synchronize_state(env);
1640 do_cpu_init(env);
0af691d7 1641 }
0af691d7
MT
1642 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1643 kvm_cpu_synchronize_state(env);
1644 do_cpu_sipi(env);
1645 }
1646
1647 return env->halted;
1648}
1649
05330448
AL
1650static int kvm_handle_halt(CPUState *env)
1651{
1652 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1653 (env->eflags & IF_MASK)) &&
1654 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1655 env->halted = 1;
bb4ea393 1656 return EXCP_HLT;
05330448
AL
1657 }
1658
bb4ea393 1659 return 0;
05330448
AL
1660}
1661
e22a25c9 1662#ifdef KVM_CAP_SET_GUEST_DEBUG
e22a25c9
AL
1663int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1664{
38972938 1665 static const uint8_t int3 = 0xcc;
64bf3f4e 1666
e22a25c9 1667 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1668 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1669 return -EINVAL;
b9bec74b 1670 }
e22a25c9
AL
1671 return 0;
1672}
1673
1674int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1675{
1676 uint8_t int3;
1677
1678 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1679 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1680 return -EINVAL;
b9bec74b 1681 }
e22a25c9
AL
1682 return 0;
1683}
1684
1685static struct {
1686 target_ulong addr;
1687 int len;
1688 int type;
1689} hw_breakpoint[4];
1690
1691static int nb_hw_breakpoint;
1692
1693static int find_hw_breakpoint(target_ulong addr, int len, int type)
1694{
1695 int n;
1696
b9bec74b 1697 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1698 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1699 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1700 return n;
b9bec74b
JK
1701 }
1702 }
e22a25c9
AL
1703 return -1;
1704}
1705
1706int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1707 target_ulong len, int type)
1708{
1709 switch (type) {
1710 case GDB_BREAKPOINT_HW:
1711 len = 1;
1712 break;
1713 case GDB_WATCHPOINT_WRITE:
1714 case GDB_WATCHPOINT_ACCESS:
1715 switch (len) {
1716 case 1:
1717 break;
1718 case 2:
1719 case 4:
1720 case 8:
b9bec74b 1721 if (addr & (len - 1)) {
e22a25c9 1722 return -EINVAL;
b9bec74b 1723 }
e22a25c9
AL
1724 break;
1725 default:
1726 return -EINVAL;
1727 }
1728 break;
1729 default:
1730 return -ENOSYS;
1731 }
1732
b9bec74b 1733 if (nb_hw_breakpoint == 4) {
e22a25c9 1734 return -ENOBUFS;
b9bec74b
JK
1735 }
1736 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1737 return -EEXIST;
b9bec74b 1738 }
e22a25c9
AL
1739 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1740 hw_breakpoint[nb_hw_breakpoint].len = len;
1741 hw_breakpoint[nb_hw_breakpoint].type = type;
1742 nb_hw_breakpoint++;
1743
1744 return 0;
1745}
1746
1747int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1748 target_ulong len, int type)
1749{
1750 int n;
1751
1752 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1753 if (n < 0) {
e22a25c9 1754 return -ENOENT;
b9bec74b 1755 }
e22a25c9
AL
1756 nb_hw_breakpoint--;
1757 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1758
1759 return 0;
1760}
1761
1762void kvm_arch_remove_all_hw_breakpoints(void)
1763{
1764 nb_hw_breakpoint = 0;
1765}
1766
1767static CPUWatchpoint hw_watchpoint;
1768
f2574737 1769static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
e22a25c9 1770{
f2574737 1771 int ret = 0;
e22a25c9
AL
1772 int n;
1773
1774 if (arch_info->exception == 1) {
1775 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1776 if (cpu_single_env->singlestep_enabled) {
f2574737 1777 ret = EXCP_DEBUG;
b9bec74b 1778 }
e22a25c9 1779 } else {
b9bec74b
JK
1780 for (n = 0; n < 4; n++) {
1781 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1782 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1783 case 0x0:
f2574737 1784 ret = EXCP_DEBUG;
e22a25c9
AL
1785 break;
1786 case 0x1:
f2574737 1787 ret = EXCP_DEBUG;
e22a25c9
AL
1788 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1789 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1790 hw_watchpoint.flags = BP_MEM_WRITE;
1791 break;
1792 case 0x3:
f2574737 1793 ret = EXCP_DEBUG;
e22a25c9
AL
1794 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1795 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1796 hw_watchpoint.flags = BP_MEM_ACCESS;
1797 break;
1798 }
b9bec74b
JK
1799 }
1800 }
e22a25c9 1801 }
b9bec74b 1802 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
f2574737 1803 ret = EXCP_DEBUG;
b9bec74b 1804 }
f2574737 1805 if (ret == 0) {
b0b1d690
JK
1806 cpu_synchronize_state(cpu_single_env);
1807 assert(cpu_single_env->exception_injected == -1);
1808
f2574737 1809 /* pass to guest */
b0b1d690
JK
1810 cpu_single_env->exception_injected = arch_info->exception;
1811 cpu_single_env->has_error_code = 0;
1812 }
e22a25c9 1813
f2574737 1814 return ret;
e22a25c9
AL
1815}
1816
1817void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1818{
1819 const uint8_t type_code[] = {
1820 [GDB_BREAKPOINT_HW] = 0x0,
1821 [GDB_WATCHPOINT_WRITE] = 0x1,
1822 [GDB_WATCHPOINT_ACCESS] = 0x3
1823 };
1824 const uint8_t len_code[] = {
1825 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1826 };
1827 int n;
1828
b9bec74b 1829 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 1830 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 1831 }
e22a25c9
AL
1832 if (nb_hw_breakpoint > 0) {
1833 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1834 dbg->arch.debugreg[7] = 0x0600;
1835 for (n = 0; n < nb_hw_breakpoint; n++) {
1836 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1837 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1838 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 1839 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
1840 }
1841 }
1842}
1843#endif /* KVM_CAP_SET_GUEST_DEBUG */
4513d923 1844
2a4dac83
JK
1845static bool host_supports_vmx(void)
1846{
1847 uint32_t ecx, unused;
1848
1849 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1850 return ecx & CPUID_EXT_VMX;
1851}
1852
1853#define VMX_INVALID_GUEST_STATE 0x80000021
1854
1855int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1856{
1857 uint64_t code;
1858 int ret;
1859
1860 switch (run->exit_reason) {
1861 case KVM_EXIT_HLT:
1862 DPRINTF("handle_hlt\n");
1863 ret = kvm_handle_halt(env);
1864 break;
1865 case KVM_EXIT_SET_TPR:
1866 ret = 0;
1867 break;
1868 case KVM_EXIT_FAIL_ENTRY:
1869 code = run->fail_entry.hardware_entry_failure_reason;
1870 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1871 code);
1872 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1873 fprintf(stderr,
1874 "\nIf you're runnning a guest on an Intel machine without "
1875 "unrestricted mode\n"
1876 "support, the failure can be most likely due to the guest "
1877 "entering an invalid\n"
1878 "state for Intel VT. For example, the guest maybe running "
1879 "in big real mode\n"
1880 "which is not supported on less recent Intel processors."
1881 "\n\n");
1882 }
1883 ret = -1;
1884 break;
1885 case KVM_EXIT_EXCEPTION:
1886 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1887 run->ex.exception, run->ex.error_code);
1888 ret = -1;
1889 break;
f2574737
JK
1890#ifdef KVM_CAP_SET_GUEST_DEBUG
1891 case KVM_EXIT_DEBUG:
1892 DPRINTF("kvm_exit_debug\n");
1893 ret = kvm_handle_debug(&run->debug.arch);
1894 break;
1895#endif /* KVM_CAP_SET_GUEST_DEBUG */
2a4dac83
JK
1896 default:
1897 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1898 ret = -1;
1899 break;
1900 }
1901
1902 return ret;
1903}
1904
4513d923
GN
1905bool kvm_arch_stop_on_emulation_error(CPUState *env)
1906{
b9bec74b
JK
1907 return !(env->cr[0] & CR0_PE_MASK) ||
1908 ((env->segs[R_CS].selector & 3) != 3);
4513d923 1909}