]> git.proxmox.com Git - mirror_qemu.git/blame - target-mips/msa_helper.c
softfloat: Expand out the STATUS_PARAM macro
[mirror_qemu.git] / target-mips / msa_helper.c
CommitLineData
42daa9be
YK
1/*
2 * MIPS SIMD Architecture Module Instruction emulation helpers for QEMU.
3 *
4 * Copyright (c) 2014 Imagination Technologies
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "cpu.h"
21#include "exec/helper-proto.h"
22
23/* Data format min and max values */
24#define DF_BITS(df) (1 << ((df) + 3))
25
26#define DF_MAX_INT(df) (int64_t)((1LL << (DF_BITS(df) - 1)) - 1)
27#define M_MAX_INT(m) (int64_t)((1LL << ((m) - 1)) - 1)
28
29#define DF_MIN_INT(df) (int64_t)(-(1LL << (DF_BITS(df) - 1)))
30#define M_MIN_INT(m) (int64_t)(-(1LL << ((m) - 1)))
31
32#define DF_MAX_UINT(df) (uint64_t)(-1ULL >> (64 - DF_BITS(df)))
33#define M_MAX_UINT(m) (uint64_t)(-1ULL >> (64 - (m)))
34
35#define UNSIGNED(x, df) ((x) & DF_MAX_UINT(df))
36#define SIGNED(x, df) \
37 ((((int64_t)x) << (64 - DF_BITS(df))) >> (64 - DF_BITS(df)))
38
39/* Element-by-element access macros */
40#define DF_ELEMENTS(df) (MSA_WRLEN / DF_BITS(df))
41
42static inline void msa_move_v(wr_t *pwd, wr_t *pws)
43{
44 uint32_t i;
45
46 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
47 pwd->d[i] = pws->d[i];
48 }
49}
4c789546
YK
50
51#define MSA_FN_IMM8(FUNC, DEST, OPERATION) \
52void helper_msa_ ## FUNC(CPUMIPSState *env, uint32_t wd, uint32_t ws, \
53 uint32_t i8) \
54{ \
55 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
56 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
57 uint32_t i; \
58 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
59 DEST = OPERATION; \
60 } \
61}
62
63MSA_FN_IMM8(andi_b, pwd->b[i], pws->b[i] & i8)
64MSA_FN_IMM8(ori_b, pwd->b[i], pws->b[i] | i8)
65MSA_FN_IMM8(nori_b, pwd->b[i], ~(pws->b[i] | i8))
66MSA_FN_IMM8(xori_b, pwd->b[i], pws->b[i] ^ i8)
67
68#define BIT_MOVE_IF_NOT_ZERO(dest, arg1, arg2, df) \
69 UNSIGNED(((dest & (~arg2)) | (arg1 & arg2)), df)
70MSA_FN_IMM8(bmnzi_b, pwd->b[i],
71 BIT_MOVE_IF_NOT_ZERO(pwd->b[i], pws->b[i], i8, DF_BYTE))
72
73#define BIT_MOVE_IF_ZERO(dest, arg1, arg2, df) \
74 UNSIGNED((dest & arg2) | (arg1 & (~arg2)), df)
75MSA_FN_IMM8(bmzi_b, pwd->b[i],
76 BIT_MOVE_IF_ZERO(pwd->b[i], pws->b[i], i8, DF_BYTE))
77
78#define BIT_SELECT(dest, arg1, arg2, df) \
79 UNSIGNED((arg1 & (~dest)) | (arg2 & dest), df)
80MSA_FN_IMM8(bseli_b, pwd->b[i],
81 BIT_SELECT(pwd->b[i], pws->b[i], i8, DF_BYTE))
82
83#undef MSA_FN_IMM8
84
85#define SHF_POS(i, imm) (((i) & 0xfc) + (((imm) >> (2 * ((i) & 0x03))) & 0x03))
86
87void helper_msa_shf_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
88 uint32_t ws, uint32_t imm)
89{
90 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
91 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
92 wr_t wx, *pwx = &wx;
93 uint32_t i;
94
95 switch (df) {
96 case DF_BYTE:
97 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {
98 pwx->b[i] = pws->b[SHF_POS(i, imm)];
99 }
100 break;
101 case DF_HALF:
102 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {
103 pwx->h[i] = pws->h[SHF_POS(i, imm)];
104 }
105 break;
106 case DF_WORD:
107 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
108 pwx->w[i] = pws->w[SHF_POS(i, imm)];
109 }
110 break;
111 default:
112 assert(0);
113 }
114 msa_move_v(pwd, pwx);
115}
80e71591 116
cbe50b9a
YK
117#define MSA_FN_VECTOR(FUNC, DEST, OPERATION) \
118void helper_msa_ ## FUNC(CPUMIPSState *env, uint32_t wd, uint32_t ws, \
119 uint32_t wt) \
120{ \
121 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
122 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
123 wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \
124 uint32_t i; \
125 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
126 DEST = OPERATION; \
127 } \
128}
129
130MSA_FN_VECTOR(and_v, pwd->d[i], pws->d[i] & pwt->d[i])
131MSA_FN_VECTOR(or_v, pwd->d[i], pws->d[i] | pwt->d[i])
132MSA_FN_VECTOR(nor_v, pwd->d[i], ~(pws->d[i] | pwt->d[i]))
133MSA_FN_VECTOR(xor_v, pwd->d[i], pws->d[i] ^ pwt->d[i])
134MSA_FN_VECTOR(bmnz_v, pwd->d[i],
135 BIT_MOVE_IF_NOT_ZERO(pwd->d[i], pws->d[i], pwt->d[i], DF_DOUBLE))
136MSA_FN_VECTOR(bmz_v, pwd->d[i],
137 BIT_MOVE_IF_ZERO(pwd->d[i], pws->d[i], pwt->d[i], DF_DOUBLE))
138MSA_FN_VECTOR(bsel_v, pwd->d[i],
139 BIT_SELECT(pwd->d[i], pws->d[i], pwt->d[i], DF_DOUBLE))
140#undef BIT_MOVE_IF_NOT_ZERO
141#undef BIT_MOVE_IF_ZERO
142#undef BIT_SELECT
143#undef MSA_FN_VECTOR
144
80e71591
YK
145static inline int64_t msa_addv_df(uint32_t df, int64_t arg1, int64_t arg2)
146{
147 return arg1 + arg2;
148}
149
150static inline int64_t msa_subv_df(uint32_t df, int64_t arg1, int64_t arg2)
151{
152 return arg1 - arg2;
153}
154
155static inline int64_t msa_ceq_df(uint32_t df, int64_t arg1, int64_t arg2)
156{
157 return arg1 == arg2 ? -1 : 0;
158}
159
160static inline int64_t msa_cle_s_df(uint32_t df, int64_t arg1, int64_t arg2)
161{
162 return arg1 <= arg2 ? -1 : 0;
163}
164
165static inline int64_t msa_cle_u_df(uint32_t df, int64_t arg1, int64_t arg2)
166{
167 uint64_t u_arg1 = UNSIGNED(arg1, df);
168 uint64_t u_arg2 = UNSIGNED(arg2, df);
169 return u_arg1 <= u_arg2 ? -1 : 0;
170}
171
172static inline int64_t msa_clt_s_df(uint32_t df, int64_t arg1, int64_t arg2)
173{
174 return arg1 < arg2 ? -1 : 0;
175}
176
177static inline int64_t msa_clt_u_df(uint32_t df, int64_t arg1, int64_t arg2)
178{
179 uint64_t u_arg1 = UNSIGNED(arg1, df);
180 uint64_t u_arg2 = UNSIGNED(arg2, df);
181 return u_arg1 < u_arg2 ? -1 : 0;
182}
183
184static inline int64_t msa_max_s_df(uint32_t df, int64_t arg1, int64_t arg2)
185{
186 return arg1 > arg2 ? arg1 : arg2;
187}
188
189static inline int64_t msa_max_u_df(uint32_t df, int64_t arg1, int64_t arg2)
190{
191 uint64_t u_arg1 = UNSIGNED(arg1, df);
192 uint64_t u_arg2 = UNSIGNED(arg2, df);
193 return u_arg1 > u_arg2 ? arg1 : arg2;
194}
195
196static inline int64_t msa_min_s_df(uint32_t df, int64_t arg1, int64_t arg2)
197{
198 return arg1 < arg2 ? arg1 : arg2;
199}
200
201static inline int64_t msa_min_u_df(uint32_t df, int64_t arg1, int64_t arg2)
202{
203 uint64_t u_arg1 = UNSIGNED(arg1, df);
204 uint64_t u_arg2 = UNSIGNED(arg2, df);
205 return u_arg1 < u_arg2 ? arg1 : arg2;
206}
207
208#define MSA_BINOP_IMM_DF(helper, func) \
209void helper_msa_ ## helper ## _df(CPUMIPSState *env, uint32_t df, \
210 uint32_t wd, uint32_t ws, int32_t u5) \
211{ \
212 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
213 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
214 uint32_t i; \
215 \
216 switch (df) { \
217 case DF_BYTE: \
218 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
219 pwd->b[i] = msa_ ## func ## _df(df, pws->b[i], u5); \
220 } \
221 break; \
222 case DF_HALF: \
223 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
224 pwd->h[i] = msa_ ## func ## _df(df, pws->h[i], u5); \
225 } \
226 break; \
227 case DF_WORD: \
228 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
229 pwd->w[i] = msa_ ## func ## _df(df, pws->w[i], u5); \
230 } \
231 break; \
232 case DF_DOUBLE: \
233 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
234 pwd->d[i] = msa_ ## func ## _df(df, pws->d[i], u5); \
235 } \
236 break; \
237 default: \
238 assert(0); \
239 } \
240}
241
242MSA_BINOP_IMM_DF(addvi, addv)
243MSA_BINOP_IMM_DF(subvi, subv)
244MSA_BINOP_IMM_DF(ceqi, ceq)
245MSA_BINOP_IMM_DF(clei_s, cle_s)
246MSA_BINOP_IMM_DF(clei_u, cle_u)
247MSA_BINOP_IMM_DF(clti_s, clt_s)
248MSA_BINOP_IMM_DF(clti_u, clt_u)
249MSA_BINOP_IMM_DF(maxi_s, max_s)
250MSA_BINOP_IMM_DF(maxi_u, max_u)
251MSA_BINOP_IMM_DF(mini_s, min_s)
252MSA_BINOP_IMM_DF(mini_u, min_u)
253#undef MSA_BINOP_IMM_DF
254
255void helper_msa_ldi_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
256 int32_t s10)
257{
258 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
259 uint32_t i;
260
261 switch (df) {
262 case DF_BYTE:
263 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {
264 pwd->b[i] = (int8_t)s10;
265 }
266 break;
267 case DF_HALF:
268 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {
269 pwd->h[i] = (int16_t)s10;
270 }
271 break;
272 case DF_WORD:
273 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
274 pwd->w[i] = (int32_t)s10;
275 }
276 break;
277 case DF_DOUBLE:
278 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
279 pwd->d[i] = (int64_t)s10;
280 }
281 break;
282 default:
283 assert(0);
284 }
285}
d4cf28de
YK
286
287/* Data format bit position and unsigned values */
288#define BIT_POSITION(x, df) ((uint64_t)(x) % DF_BITS(df))
289
290static inline int64_t msa_sll_df(uint32_t df, int64_t arg1, int64_t arg2)
291{
292 int32_t b_arg2 = BIT_POSITION(arg2, df);
293 return arg1 << b_arg2;
294}
295
296static inline int64_t msa_sra_df(uint32_t df, int64_t arg1, int64_t arg2)
297{
298 int32_t b_arg2 = BIT_POSITION(arg2, df);
299 return arg1 >> b_arg2;
300}
301
302static inline int64_t msa_srl_df(uint32_t df, int64_t arg1, int64_t arg2)
303{
304 uint64_t u_arg1 = UNSIGNED(arg1, df);
305 int32_t b_arg2 = BIT_POSITION(arg2, df);
306 return u_arg1 >> b_arg2;
307}
308
309static inline int64_t msa_bclr_df(uint32_t df, int64_t arg1, int64_t arg2)
310{
311 int32_t b_arg2 = BIT_POSITION(arg2, df);
312 return UNSIGNED(arg1 & (~(1LL << b_arg2)), df);
313}
314
315static inline int64_t msa_bset_df(uint32_t df, int64_t arg1,
316 int64_t arg2)
317{
318 int32_t b_arg2 = BIT_POSITION(arg2, df);
319 return UNSIGNED(arg1 | (1LL << b_arg2), df);
320}
321
322static inline int64_t msa_bneg_df(uint32_t df, int64_t arg1, int64_t arg2)
323{
324 int32_t b_arg2 = BIT_POSITION(arg2, df);
325 return UNSIGNED(arg1 ^ (1LL << b_arg2), df);
326}
327
328static inline int64_t msa_binsl_df(uint32_t df, int64_t dest, int64_t arg1,
329 int64_t arg2)
330{
331 uint64_t u_arg1 = UNSIGNED(arg1, df);
332 uint64_t u_dest = UNSIGNED(dest, df);
333 int32_t sh_d = BIT_POSITION(arg2, df) + 1;
334 int32_t sh_a = DF_BITS(df) - sh_d;
335 if (sh_d == DF_BITS(df)) {
336 return u_arg1;
337 } else {
338 return UNSIGNED(UNSIGNED(u_dest << sh_d, df) >> sh_d, df) |
339 UNSIGNED(UNSIGNED(u_arg1 >> sh_a, df) << sh_a, df);
340 }
341}
342
343static inline int64_t msa_binsr_df(uint32_t df, int64_t dest, int64_t arg1,
344 int64_t arg2)
345{
346 uint64_t u_arg1 = UNSIGNED(arg1, df);
347 uint64_t u_dest = UNSIGNED(dest, df);
348 int32_t sh_d = BIT_POSITION(arg2, df) + 1;
349 int32_t sh_a = DF_BITS(df) - sh_d;
350 if (sh_d == DF_BITS(df)) {
351 return u_arg1;
352 } else {
353 return UNSIGNED(UNSIGNED(u_dest >> sh_d, df) << sh_d, df) |
354 UNSIGNED(UNSIGNED(u_arg1 << sh_a, df) >> sh_a, df);
355 }
356}
357
358static inline int64_t msa_sat_s_df(uint32_t df, int64_t arg, uint32_t m)
359{
360 return arg < M_MIN_INT(m+1) ? M_MIN_INT(m+1) :
361 arg > M_MAX_INT(m+1) ? M_MAX_INT(m+1) :
362 arg;
363}
364
365static inline int64_t msa_sat_u_df(uint32_t df, int64_t arg, uint32_t m)
366{
367 uint64_t u_arg = UNSIGNED(arg, df);
368 return u_arg < M_MAX_UINT(m+1) ? u_arg :
369 M_MAX_UINT(m+1);
370}
371
372static inline int64_t msa_srar_df(uint32_t df, int64_t arg1, int64_t arg2)
373{
374 int32_t b_arg2 = BIT_POSITION(arg2, df);
375 if (b_arg2 == 0) {
376 return arg1;
377 } else {
378 int64_t r_bit = (arg1 >> (b_arg2 - 1)) & 1;
379 return (arg1 >> b_arg2) + r_bit;
380 }
381}
382
383static inline int64_t msa_srlr_df(uint32_t df, int64_t arg1, int64_t arg2)
384{
385 uint64_t u_arg1 = UNSIGNED(arg1, df);
386 int32_t b_arg2 = BIT_POSITION(arg2, df);
387 if (b_arg2 == 0) {
388 return u_arg1;
389 } else {
390 uint64_t r_bit = (u_arg1 >> (b_arg2 - 1)) & 1;
391 return (u_arg1 >> b_arg2) + r_bit;
392 }
393}
394
395#define MSA_BINOP_IMMU_DF(helper, func) \
396void helper_msa_ ## helper ## _df(CPUMIPSState *env, uint32_t df, uint32_t wd, \
397 uint32_t ws, uint32_t u5) \
398{ \
399 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
400 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
401 uint32_t i; \
402 \
403 switch (df) { \
404 case DF_BYTE: \
405 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
406 pwd->b[i] = msa_ ## func ## _df(df, pws->b[i], u5); \
407 } \
408 break; \
409 case DF_HALF: \
410 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
411 pwd->h[i] = msa_ ## func ## _df(df, pws->h[i], u5); \
412 } \
413 break; \
414 case DF_WORD: \
415 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
416 pwd->w[i] = msa_ ## func ## _df(df, pws->w[i], u5); \
417 } \
418 break; \
419 case DF_DOUBLE: \
420 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
421 pwd->d[i] = msa_ ## func ## _df(df, pws->d[i], u5); \
422 } \
423 break; \
424 default: \
425 assert(0); \
426 } \
427}
428
429MSA_BINOP_IMMU_DF(slli, sll)
430MSA_BINOP_IMMU_DF(srai, sra)
431MSA_BINOP_IMMU_DF(srli, srl)
432MSA_BINOP_IMMU_DF(bclri, bclr)
433MSA_BINOP_IMMU_DF(bseti, bset)
434MSA_BINOP_IMMU_DF(bnegi, bneg)
435MSA_BINOP_IMMU_DF(sat_s, sat_s)
436MSA_BINOP_IMMU_DF(sat_u, sat_u)
437MSA_BINOP_IMMU_DF(srari, srar)
438MSA_BINOP_IMMU_DF(srlri, srlr)
439#undef MSA_BINOP_IMMU_DF
440
441#define MSA_TEROP_IMMU_DF(helper, func) \
442void helper_msa_ ## helper ## _df(CPUMIPSState *env, uint32_t df, \
443 uint32_t wd, uint32_t ws, uint32_t u5) \
444{ \
445 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
446 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
447 uint32_t i; \
448 \
449 switch (df) { \
450 case DF_BYTE: \
451 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
452 pwd->b[i] = msa_ ## func ## _df(df, pwd->b[i], pws->b[i], \
453 u5); \
454 } \
455 break; \
456 case DF_HALF: \
457 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
458 pwd->h[i] = msa_ ## func ## _df(df, pwd->h[i], pws->h[i], \
459 u5); \
460 } \
461 break; \
462 case DF_WORD: \
463 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
464 pwd->w[i] = msa_ ## func ## _df(df, pwd->w[i], pws->w[i], \
465 u5); \
466 } \
467 break; \
468 case DF_DOUBLE: \
469 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
470 pwd->d[i] = msa_ ## func ## _df(df, pwd->d[i], pws->d[i], \
471 u5); \
472 } \
473 break; \
474 default: \
475 assert(0); \
476 } \
477}
478
479MSA_TEROP_IMMU_DF(binsli, binsl)
480MSA_TEROP_IMMU_DF(binsri, binsr)
481#undef MSA_TEROP_IMMU_DF
28f99f08
YK
482
483static inline int64_t msa_max_a_df(uint32_t df, int64_t arg1, int64_t arg2)
484{
485 uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1;
486 uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2;
487 return abs_arg1 > abs_arg2 ? arg1 : arg2;
488}
489
490static inline int64_t msa_min_a_df(uint32_t df, int64_t arg1, int64_t arg2)
491{
492 uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1;
493 uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2;
494 return abs_arg1 < abs_arg2 ? arg1 : arg2;
495}
496
497static inline int64_t msa_add_a_df(uint32_t df, int64_t arg1, int64_t arg2)
498{
499 uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1;
500 uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2;
501 return abs_arg1 + abs_arg2;
502}
503
504static inline int64_t msa_adds_a_df(uint32_t df, int64_t arg1, int64_t arg2)
505{
506 uint64_t max_int = (uint64_t)DF_MAX_INT(df);
507 uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1;
508 uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2;
509 if (abs_arg1 > max_int || abs_arg2 > max_int) {
510 return (int64_t)max_int;
511 } else {
512 return (abs_arg1 < max_int - abs_arg2) ? abs_arg1 + abs_arg2 : max_int;
513 }
514}
515
516static inline int64_t msa_adds_s_df(uint32_t df, int64_t arg1, int64_t arg2)
517{
518 int64_t max_int = DF_MAX_INT(df);
519 int64_t min_int = DF_MIN_INT(df);
520 if (arg1 < 0) {
521 return (min_int - arg1 < arg2) ? arg1 + arg2 : min_int;
522 } else {
523 return (arg2 < max_int - arg1) ? arg1 + arg2 : max_int;
524 }
525}
526
527static inline uint64_t msa_adds_u_df(uint32_t df, uint64_t arg1, uint64_t arg2)
528{
529 uint64_t max_uint = DF_MAX_UINT(df);
530 uint64_t u_arg1 = UNSIGNED(arg1, df);
531 uint64_t u_arg2 = UNSIGNED(arg2, df);
532 return (u_arg1 < max_uint - u_arg2) ? u_arg1 + u_arg2 : max_uint;
533}
534
535static inline int64_t msa_ave_s_df(uint32_t df, int64_t arg1, int64_t arg2)
536{
537 /* signed shift */
538 return (arg1 >> 1) + (arg2 >> 1) + (arg1 & arg2 & 1);
539}
540
541static inline uint64_t msa_ave_u_df(uint32_t df, uint64_t arg1, uint64_t arg2)
542{
543 uint64_t u_arg1 = UNSIGNED(arg1, df);
544 uint64_t u_arg2 = UNSIGNED(arg2, df);
545 /* unsigned shift */
546 return (u_arg1 >> 1) + (u_arg2 >> 1) + (u_arg1 & u_arg2 & 1);
547}
548
549static inline int64_t msa_aver_s_df(uint32_t df, int64_t arg1, int64_t arg2)
550{
551 /* signed shift */
552 return (arg1 >> 1) + (arg2 >> 1) + ((arg1 | arg2) & 1);
553}
554
555static inline uint64_t msa_aver_u_df(uint32_t df, uint64_t arg1, uint64_t arg2)
556{
557 uint64_t u_arg1 = UNSIGNED(arg1, df);
558 uint64_t u_arg2 = UNSIGNED(arg2, df);
559 /* unsigned shift */
560 return (u_arg1 >> 1) + (u_arg2 >> 1) + ((u_arg1 | u_arg2) & 1);
561}
562
563static inline int64_t msa_subs_s_df(uint32_t df, int64_t arg1, int64_t arg2)
564{
565 int64_t max_int = DF_MAX_INT(df);
566 int64_t min_int = DF_MIN_INT(df);
567 if (arg2 > 0) {
568 return (min_int + arg2 < arg1) ? arg1 - arg2 : min_int;
569 } else {
570 return (arg1 < max_int + arg2) ? arg1 - arg2 : max_int;
571 }
572}
573
574static inline int64_t msa_subs_u_df(uint32_t df, int64_t arg1, int64_t arg2)
575{
576 uint64_t u_arg1 = UNSIGNED(arg1, df);
577 uint64_t u_arg2 = UNSIGNED(arg2, df);
578 return (u_arg1 > u_arg2) ? u_arg1 - u_arg2 : 0;
579}
580
581static inline int64_t msa_subsus_u_df(uint32_t df, int64_t arg1, int64_t arg2)
582{
583 uint64_t u_arg1 = UNSIGNED(arg1, df);
584 uint64_t max_uint = DF_MAX_UINT(df);
585 if (arg2 >= 0) {
586 uint64_t u_arg2 = (uint64_t)arg2;
587 return (u_arg1 > u_arg2) ?
588 (int64_t)(u_arg1 - u_arg2) :
589 0;
590 } else {
591 uint64_t u_arg2 = (uint64_t)(-arg2);
592 return (u_arg1 < max_uint - u_arg2) ?
593 (int64_t)(u_arg1 + u_arg2) :
594 (int64_t)max_uint;
595 }
596}
597
598static inline int64_t msa_subsuu_s_df(uint32_t df, int64_t arg1, int64_t arg2)
599{
600 uint64_t u_arg1 = UNSIGNED(arg1, df);
601 uint64_t u_arg2 = UNSIGNED(arg2, df);
602 int64_t max_int = DF_MAX_INT(df);
603 int64_t min_int = DF_MIN_INT(df);
604 if (u_arg1 > u_arg2) {
605 return u_arg1 - u_arg2 < (uint64_t)max_int ?
606 (int64_t)(u_arg1 - u_arg2) :
607 max_int;
608 } else {
609 return u_arg2 - u_arg1 < (uint64_t)(-min_int) ?
610 (int64_t)(u_arg1 - u_arg2) :
611 min_int;
612 }
613}
614
615static inline int64_t msa_asub_s_df(uint32_t df, int64_t arg1, int64_t arg2)
616{
617 /* signed compare */
618 return (arg1 < arg2) ?
619 (uint64_t)(arg2 - arg1) : (uint64_t)(arg1 - arg2);
620}
621
622static inline uint64_t msa_asub_u_df(uint32_t df, uint64_t arg1, uint64_t arg2)
623{
624 uint64_t u_arg1 = UNSIGNED(arg1, df);
625 uint64_t u_arg2 = UNSIGNED(arg2, df);
626 /* unsigned compare */
627 return (u_arg1 < u_arg2) ?
628 (uint64_t)(u_arg2 - u_arg1) : (uint64_t)(u_arg1 - u_arg2);
629}
630
631static inline int64_t msa_mulv_df(uint32_t df, int64_t arg1, int64_t arg2)
632{
633 return arg1 * arg2;
634}
635
636static inline int64_t msa_div_s_df(uint32_t df, int64_t arg1, int64_t arg2)
637{
638 if (arg1 == DF_MIN_INT(df) && arg2 == -1) {
639 return DF_MIN_INT(df);
640 }
641 return arg2 ? arg1 / arg2 : 0;
642}
643
644static inline int64_t msa_div_u_df(uint32_t df, int64_t arg1, int64_t arg2)
645{
646 uint64_t u_arg1 = UNSIGNED(arg1, df);
647 uint64_t u_arg2 = UNSIGNED(arg2, df);
648 return u_arg2 ? u_arg1 / u_arg2 : 0;
649}
650
651static inline int64_t msa_mod_s_df(uint32_t df, int64_t arg1, int64_t arg2)
652{
653 if (arg1 == DF_MIN_INT(df) && arg2 == -1) {
654 return 0;
655 }
656 return arg2 ? arg1 % arg2 : 0;
657}
658
659static inline int64_t msa_mod_u_df(uint32_t df, int64_t arg1, int64_t arg2)
660{
661 uint64_t u_arg1 = UNSIGNED(arg1, df);
662 uint64_t u_arg2 = UNSIGNED(arg2, df);
663 return u_arg2 ? u_arg1 % u_arg2 : 0;
664}
665
666#define SIGNED_EVEN(a, df) \
667 ((((int64_t)(a)) << (64 - DF_BITS(df)/2)) >> (64 - DF_BITS(df)/2))
668
669#define UNSIGNED_EVEN(a, df) \
670 ((((uint64_t)(a)) << (64 - DF_BITS(df)/2)) >> (64 - DF_BITS(df)/2))
671
672#define SIGNED_ODD(a, df) \
673 ((((int64_t)(a)) << (64 - DF_BITS(df))) >> (64 - DF_BITS(df)/2))
674
675#define UNSIGNED_ODD(a, df) \
676 ((((uint64_t)(a)) << (64 - DF_BITS(df))) >> (64 - DF_BITS(df)/2))
677
678#define SIGNED_EXTRACT(e, o, a, df) \
679 do { \
680 e = SIGNED_EVEN(a, df); \
681 o = SIGNED_ODD(a, df); \
682 } while (0);
683
684#define UNSIGNED_EXTRACT(e, o, a, df) \
685 do { \
686 e = UNSIGNED_EVEN(a, df); \
687 o = UNSIGNED_ODD(a, df); \
688 } while (0);
689
690static inline int64_t msa_dotp_s_df(uint32_t df, int64_t arg1, int64_t arg2)
691{
692 int64_t even_arg1;
693 int64_t even_arg2;
694 int64_t odd_arg1;
695 int64_t odd_arg2;
696 SIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
697 SIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
698 return (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2);
699}
700
701static inline int64_t msa_dotp_u_df(uint32_t df, int64_t arg1, int64_t arg2)
702{
703 int64_t even_arg1;
704 int64_t even_arg2;
705 int64_t odd_arg1;
706 int64_t odd_arg2;
707 UNSIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
708 UNSIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
709 return (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2);
710}
711
712#define CONCATENATE_AND_SLIDE(s, k) \
713 do { \
714 for (i = 0; i < s; i++) { \
715 v[i] = pws->b[s * k + i]; \
716 v[i + s] = pwd->b[s * k + i]; \
717 } \
718 for (i = 0; i < s; i++) { \
719 pwd->b[s * k + i] = v[i + n]; \
720 } \
721 } while (0)
722
723static inline void msa_sld_df(uint32_t df, wr_t *pwd,
724 wr_t *pws, target_ulong rt)
725{
726 uint32_t n = rt % DF_ELEMENTS(df);
727 uint8_t v[64];
728 uint32_t i, k;
729
730 switch (df) {
731 case DF_BYTE:
732 CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_BYTE), 0);
733 break;
734 case DF_HALF:
735 for (k = 0; k < 2; k++) {
736 CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_HALF), k);
737 }
738 break;
739 case DF_WORD:
740 for (k = 0; k < 4; k++) {
741 CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_WORD), k);
742 }
743 break;
744 case DF_DOUBLE:
745 for (k = 0; k < 8; k++) {
746 CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_DOUBLE), k);
747 }
748 break;
749 default:
750 assert(0);
751 }
752}
753
754static inline int64_t msa_hadd_s_df(uint32_t df, int64_t arg1, int64_t arg2)
755{
756 return SIGNED_ODD(arg1, df) + SIGNED_EVEN(arg2, df);
757}
758
759static inline int64_t msa_hadd_u_df(uint32_t df, int64_t arg1, int64_t arg2)
760{
761 return UNSIGNED_ODD(arg1, df) + UNSIGNED_EVEN(arg2, df);
762}
763
764static inline int64_t msa_hsub_s_df(uint32_t df, int64_t arg1, int64_t arg2)
765{
766 return SIGNED_ODD(arg1, df) - SIGNED_EVEN(arg2, df);
767}
768
769static inline int64_t msa_hsub_u_df(uint32_t df, int64_t arg1, int64_t arg2)
770{
771 return UNSIGNED_ODD(arg1, df) - UNSIGNED_EVEN(arg2, df);
772}
773
7d05b9c8
YK
774static inline int64_t msa_mul_q_df(uint32_t df, int64_t arg1, int64_t arg2)
775{
776 int64_t q_min = DF_MIN_INT(df);
777 int64_t q_max = DF_MAX_INT(df);
778
779 if (arg1 == q_min && arg2 == q_min) {
780 return q_max;
781 }
782 return (arg1 * arg2) >> (DF_BITS(df) - 1);
783}
784
785static inline int64_t msa_mulr_q_df(uint32_t df, int64_t arg1, int64_t arg2)
786{
787 int64_t q_min = DF_MIN_INT(df);
788 int64_t q_max = DF_MAX_INT(df);
789 int64_t r_bit = 1 << (DF_BITS(df) - 2);
790
791 if (arg1 == q_min && arg2 == q_min) {
792 return q_max;
793 }
794 return (arg1 * arg2 + r_bit) >> (DF_BITS(df) - 1);
795}
796
28f99f08
YK
797#define MSA_BINOP_DF(func) \
798void helper_msa_ ## func ## _df(CPUMIPSState *env, uint32_t df, \
799 uint32_t wd, uint32_t ws, uint32_t wt) \
800{ \
801 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
802 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
803 wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \
804 uint32_t i; \
805 \
806 switch (df) { \
807 case DF_BYTE: \
808 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
809 pwd->b[i] = msa_ ## func ## _df(df, pws->b[i], pwt->b[i]); \
810 } \
811 break; \
812 case DF_HALF: \
813 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
814 pwd->h[i] = msa_ ## func ## _df(df, pws->h[i], pwt->h[i]); \
815 } \
816 break; \
817 case DF_WORD: \
818 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
819 pwd->w[i] = msa_ ## func ## _df(df, pws->w[i], pwt->w[i]); \
820 } \
821 break; \
822 case DF_DOUBLE: \
823 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
824 pwd->d[i] = msa_ ## func ## _df(df, pws->d[i], pwt->d[i]); \
825 } \
826 break; \
827 default: \
828 assert(0); \
829 } \
830}
831
832MSA_BINOP_DF(sll)
833MSA_BINOP_DF(sra)
834MSA_BINOP_DF(srl)
835MSA_BINOP_DF(bclr)
836MSA_BINOP_DF(bset)
837MSA_BINOP_DF(bneg)
838MSA_BINOP_DF(addv)
839MSA_BINOP_DF(subv)
840MSA_BINOP_DF(max_s)
841MSA_BINOP_DF(max_u)
842MSA_BINOP_DF(min_s)
843MSA_BINOP_DF(min_u)
844MSA_BINOP_DF(max_a)
845MSA_BINOP_DF(min_a)
846MSA_BINOP_DF(ceq)
847MSA_BINOP_DF(clt_s)
848MSA_BINOP_DF(clt_u)
849MSA_BINOP_DF(cle_s)
850MSA_BINOP_DF(cle_u)
851MSA_BINOP_DF(add_a)
852MSA_BINOP_DF(adds_a)
853MSA_BINOP_DF(adds_s)
854MSA_BINOP_DF(adds_u)
855MSA_BINOP_DF(ave_s)
856MSA_BINOP_DF(ave_u)
857MSA_BINOP_DF(aver_s)
858MSA_BINOP_DF(aver_u)
859MSA_BINOP_DF(subs_s)
860MSA_BINOP_DF(subs_u)
861MSA_BINOP_DF(subsus_u)
862MSA_BINOP_DF(subsuu_s)
863MSA_BINOP_DF(asub_s)
864MSA_BINOP_DF(asub_u)
865MSA_BINOP_DF(mulv)
866MSA_BINOP_DF(div_s)
867MSA_BINOP_DF(div_u)
868MSA_BINOP_DF(mod_s)
869MSA_BINOP_DF(mod_u)
870MSA_BINOP_DF(dotp_s)
871MSA_BINOP_DF(dotp_u)
872MSA_BINOP_DF(srar)
873MSA_BINOP_DF(srlr)
874MSA_BINOP_DF(hadd_s)
875MSA_BINOP_DF(hadd_u)
876MSA_BINOP_DF(hsub_s)
877MSA_BINOP_DF(hsub_u)
7d05b9c8
YK
878
879MSA_BINOP_DF(mul_q)
880MSA_BINOP_DF(mulr_q)
28f99f08
YK
881#undef MSA_BINOP_DF
882
883void helper_msa_sld_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
884 uint32_t ws, uint32_t rt)
885{
886 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
887 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
888
889 msa_sld_df(df, pwd, pws, env->active_tc.gpr[rt]);
890}
891
892static inline int64_t msa_maddv_df(uint32_t df, int64_t dest, int64_t arg1,
893 int64_t arg2)
894{
895 return dest + arg1 * arg2;
896}
897
898static inline int64_t msa_msubv_df(uint32_t df, int64_t dest, int64_t arg1,
899 int64_t arg2)
900{
901 return dest - arg1 * arg2;
902}
903
904static inline int64_t msa_dpadd_s_df(uint32_t df, int64_t dest, int64_t arg1,
905 int64_t arg2)
906{
907 int64_t even_arg1;
908 int64_t even_arg2;
909 int64_t odd_arg1;
910 int64_t odd_arg2;
911 SIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
912 SIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
913 return dest + (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2);
914}
915
916static inline int64_t msa_dpadd_u_df(uint32_t df, int64_t dest, int64_t arg1,
917 int64_t arg2)
918{
919 int64_t even_arg1;
920 int64_t even_arg2;
921 int64_t odd_arg1;
922 int64_t odd_arg2;
923 UNSIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
924 UNSIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
925 return dest + (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2);
926}
927
928static inline int64_t msa_dpsub_s_df(uint32_t df, int64_t dest, int64_t arg1,
929 int64_t arg2)
930{
931 int64_t even_arg1;
932 int64_t even_arg2;
933 int64_t odd_arg1;
934 int64_t odd_arg2;
935 SIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
936 SIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
937 return dest - ((even_arg1 * even_arg2) + (odd_arg1 * odd_arg2));
938}
939
940static inline int64_t msa_dpsub_u_df(uint32_t df, int64_t dest, int64_t arg1,
941 int64_t arg2)
942{
943 int64_t even_arg1;
944 int64_t even_arg2;
945 int64_t odd_arg1;
946 int64_t odd_arg2;
947 UNSIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
948 UNSIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
949 return dest - ((even_arg1 * even_arg2) + (odd_arg1 * odd_arg2));
950}
951
7d05b9c8
YK
952static inline int64_t msa_madd_q_df(uint32_t df, int64_t dest, int64_t arg1,
953 int64_t arg2)
954{
955 int64_t q_prod, q_ret;
956
957 int64_t q_max = DF_MAX_INT(df);
958 int64_t q_min = DF_MIN_INT(df);
959
960 q_prod = arg1 * arg2;
961 q_ret = ((dest << (DF_BITS(df) - 1)) + q_prod) >> (DF_BITS(df) - 1);
962
963 return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret;
964}
965
966static inline int64_t msa_msub_q_df(uint32_t df, int64_t dest, int64_t arg1,
967 int64_t arg2)
968{
969 int64_t q_prod, q_ret;
970
971 int64_t q_max = DF_MAX_INT(df);
972 int64_t q_min = DF_MIN_INT(df);
973
974 q_prod = arg1 * arg2;
975 q_ret = ((dest << (DF_BITS(df) - 1)) - q_prod) >> (DF_BITS(df) - 1);
976
977 return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret;
978}
979
980static inline int64_t msa_maddr_q_df(uint32_t df, int64_t dest, int64_t arg1,
981 int64_t arg2)
982{
983 int64_t q_prod, q_ret;
984
985 int64_t q_max = DF_MAX_INT(df);
986 int64_t q_min = DF_MIN_INT(df);
987 int64_t r_bit = 1 << (DF_BITS(df) - 2);
988
989 q_prod = arg1 * arg2;
990 q_ret = ((dest << (DF_BITS(df) - 1)) + q_prod + r_bit) >> (DF_BITS(df) - 1);
991
992 return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret;
993}
994
995static inline int64_t msa_msubr_q_df(uint32_t df, int64_t dest, int64_t arg1,
996 int64_t arg2)
997{
998 int64_t q_prod, q_ret;
999
1000 int64_t q_max = DF_MAX_INT(df);
1001 int64_t q_min = DF_MIN_INT(df);
1002 int64_t r_bit = 1 << (DF_BITS(df) - 2);
1003
1004 q_prod = arg1 * arg2;
1005 q_ret = ((dest << (DF_BITS(df) - 1)) - q_prod + r_bit) >> (DF_BITS(df) - 1);
1006
1007 return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret;
1008}
1009
28f99f08
YK
1010#define MSA_TEROP_DF(func) \
1011void helper_msa_ ## func ## _df(CPUMIPSState *env, uint32_t df, uint32_t wd, \
1012 uint32_t ws, uint32_t wt) \
1013{ \
1014 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
1015 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
1016 wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \
1017 uint32_t i; \
1018 \
1019 switch (df) { \
1020 case DF_BYTE: \
1021 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
1022 pwd->b[i] = msa_ ## func ## _df(df, pwd->b[i], pws->b[i], \
1023 pwt->b[i]); \
1024 } \
1025 break; \
1026 case DF_HALF: \
1027 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
1028 pwd->h[i] = msa_ ## func ## _df(df, pwd->h[i], pws->h[i], \
1029 pwt->h[i]); \
1030 } \
1031 break; \
1032 case DF_WORD: \
1033 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
1034 pwd->w[i] = msa_ ## func ## _df(df, pwd->w[i], pws->w[i], \
1035 pwt->w[i]); \
1036 } \
1037 break; \
1038 case DF_DOUBLE: \
1039 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
1040 pwd->d[i] = msa_ ## func ## _df(df, pwd->d[i], pws->d[i], \
1041 pwt->d[i]); \
1042 } \
1043 break; \
1044 default: \
1045 assert(0); \
1046 } \
1047}
1048
1049MSA_TEROP_DF(maddv)
1050MSA_TEROP_DF(msubv)
1051MSA_TEROP_DF(dpadd_s)
1052MSA_TEROP_DF(dpadd_u)
1053MSA_TEROP_DF(dpsub_s)
1054MSA_TEROP_DF(dpsub_u)
1055MSA_TEROP_DF(binsl)
1056MSA_TEROP_DF(binsr)
7d05b9c8
YK
1057MSA_TEROP_DF(madd_q)
1058MSA_TEROP_DF(msub_q)
1059MSA_TEROP_DF(maddr_q)
1060MSA_TEROP_DF(msubr_q)
28f99f08
YK
1061#undef MSA_TEROP_DF
1062
1063static inline void msa_splat_df(uint32_t df, wr_t *pwd,
1064 wr_t *pws, target_ulong rt)
1065{
1066 uint32_t n = rt % DF_ELEMENTS(df);
1067 uint32_t i;
1068
1069 switch (df) {
1070 case DF_BYTE:
1071 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {
1072 pwd->b[i] = pws->b[n];
1073 }
1074 break;
1075 case DF_HALF:
1076 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {
1077 pwd->h[i] = pws->h[n];
1078 }
1079 break;
1080 case DF_WORD:
1081 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
1082 pwd->w[i] = pws->w[n];
1083 }
1084 break;
1085 case DF_DOUBLE:
1086 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
1087 pwd->d[i] = pws->d[n];
1088 }
1089 break;
1090 default:
1091 assert(0);
1092 }
1093}
1094
1095void helper_msa_splat_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
1096 uint32_t ws, uint32_t rt)
1097{
1098 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
1099 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
1100
1101 msa_splat_df(df, pwd, pws, env->active_tc.gpr[rt]);
1102}
1103
1104#define MSA_DO_B MSA_DO(b)
1105#define MSA_DO_H MSA_DO(h)
1106#define MSA_DO_W MSA_DO(w)
1107#define MSA_DO_D MSA_DO(d)
1108
1109#define MSA_LOOP_B MSA_LOOP(B)
1110#define MSA_LOOP_H MSA_LOOP(H)
1111#define MSA_LOOP_W MSA_LOOP(W)
1112#define MSA_LOOP_D MSA_LOOP(D)
1113
1114#define MSA_LOOP_COND_B MSA_LOOP_COND(DF_BYTE)
1115#define MSA_LOOP_COND_H MSA_LOOP_COND(DF_HALF)
1116#define MSA_LOOP_COND_W MSA_LOOP_COND(DF_WORD)
1117#define MSA_LOOP_COND_D MSA_LOOP_COND(DF_DOUBLE)
1118
1119#define MSA_LOOP(DF) \
1120 for (i = 0; i < (MSA_LOOP_COND_ ## DF) ; i++) { \
1121 MSA_DO_ ## DF \
1122 }
1123
1124#define MSA_FN_DF(FUNC) \
1125void helper_msa_##FUNC(CPUMIPSState *env, uint32_t df, uint32_t wd, \
1126 uint32_t ws, uint32_t wt) \
1127{ \
1128 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
1129 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
1130 wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \
1131 wr_t wx, *pwx = &wx; \
1132 uint32_t i; \
1133 switch (df) { \
1134 case DF_BYTE: \
1135 MSA_LOOP_B \
1136 break; \
1137 case DF_HALF: \
1138 MSA_LOOP_H \
1139 break; \
1140 case DF_WORD: \
1141 MSA_LOOP_W \
1142 break; \
1143 case DF_DOUBLE: \
1144 MSA_LOOP_D \
1145 break; \
1146 default: \
1147 assert(0); \
1148 } \
1149 msa_move_v(pwd, pwx); \
1150}
1151
1152#define MSA_LOOP_COND(DF) \
1153 (DF_ELEMENTS(DF) / 2)
1154
1155#define Rb(pwr, i) (pwr->b[i])
1156#define Lb(pwr, i) (pwr->b[i + DF_ELEMENTS(DF_BYTE)/2])
1157#define Rh(pwr, i) (pwr->h[i])
1158#define Lh(pwr, i) (pwr->h[i + DF_ELEMENTS(DF_HALF)/2])
1159#define Rw(pwr, i) (pwr->w[i])
1160#define Lw(pwr, i) (pwr->w[i + DF_ELEMENTS(DF_WORD)/2])
1161#define Rd(pwr, i) (pwr->d[i])
1162#define Ld(pwr, i) (pwr->d[i + DF_ELEMENTS(DF_DOUBLE)/2])
1163
1164#define MSA_DO(DF) \
1165 do { \
1166 R##DF(pwx, i) = pwt->DF[2*i]; \
1167 L##DF(pwx, i) = pws->DF[2*i]; \
1168 } while (0);
1169MSA_FN_DF(pckev_df)
1170#undef MSA_DO
1171
1172#define MSA_DO(DF) \
1173 do { \
1174 R##DF(pwx, i) = pwt->DF[2*i+1]; \
1175 L##DF(pwx, i) = pws->DF[2*i+1]; \
1176 } while (0);
1177MSA_FN_DF(pckod_df)
1178#undef MSA_DO
1179
1180#define MSA_DO(DF) \
1181 do { \
1182 pwx->DF[2*i] = L##DF(pwt, i); \
1183 pwx->DF[2*i+1] = L##DF(pws, i); \
1184 } while (0);
1185MSA_FN_DF(ilvl_df)
1186#undef MSA_DO
1187
1188#define MSA_DO(DF) \
1189 do { \
1190 pwx->DF[2*i] = R##DF(pwt, i); \
1191 pwx->DF[2*i+1] = R##DF(pws, i); \
1192 } while (0);
1193MSA_FN_DF(ilvr_df)
1194#undef MSA_DO
1195
1196#define MSA_DO(DF) \
1197 do { \
1198 pwx->DF[2*i] = pwt->DF[2*i]; \
1199 pwx->DF[2*i+1] = pws->DF[2*i]; \
1200 } while (0);
1201MSA_FN_DF(ilvev_df)
1202#undef MSA_DO
1203
1204#define MSA_DO(DF) \
1205 do { \
1206 pwx->DF[2*i] = pwt->DF[2*i+1]; \
1207 pwx->DF[2*i+1] = pws->DF[2*i+1]; \
1208 } while (0);
1209MSA_FN_DF(ilvod_df)
1210#undef MSA_DO
1211#undef MSA_LOOP_COND
1212
1213#define MSA_LOOP_COND(DF) \
1214 (DF_ELEMENTS(DF))
1215
1216#define MSA_DO(DF) \
1217 do { \
1218 uint32_t n = DF_ELEMENTS(df); \
1219 uint32_t k = (pwd->DF[i] & 0x3f) % (2 * n); \
1220 pwx->DF[i] = \
1221 (pwd->DF[i] & 0xc0) ? 0 : k < n ? pwt->DF[k] : pws->DF[k - n]; \
1222 } while (0);
1223MSA_FN_DF(vshf_df)
1224#undef MSA_DO
1225#undef MSA_LOOP_COND
1226#undef MSA_FN_DF
1e608ec1
YK
1227
1228void helper_msa_sldi_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
1229 uint32_t ws, uint32_t n)
1230{
1231 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
1232 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
1233
1234 msa_sld_df(df, pwd, pws, n);
1235}
1236
1237void helper_msa_splati_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
1238 uint32_t ws, uint32_t n)
1239{
1240 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
1241 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
1242
1243 msa_splat_df(df, pwd, pws, n);
1244}
1245
1246void helper_msa_copy_s_df(CPUMIPSState *env, uint32_t df, uint32_t rd,
1247 uint32_t ws, uint32_t n)
1248{
1249 n %= DF_ELEMENTS(df);
1250
1251 switch (df) {
1252 case DF_BYTE:
1253 env->active_tc.gpr[rd] = (int8_t)env->active_fpu.fpr[ws].wr.b[n];
1254 break;
1255 case DF_HALF:
1256 env->active_tc.gpr[rd] = (int16_t)env->active_fpu.fpr[ws].wr.h[n];
1257 break;
1258 case DF_WORD:
1259 env->active_tc.gpr[rd] = (int32_t)env->active_fpu.fpr[ws].wr.w[n];
1260 break;
1261#ifdef TARGET_MIPS64
1262 case DF_DOUBLE:
1263 env->active_tc.gpr[rd] = (int64_t)env->active_fpu.fpr[ws].wr.d[n];
1264 break;
1265#endif
1266 default:
1267 assert(0);
1268 }
1269}
1270
1271void helper_msa_copy_u_df(CPUMIPSState *env, uint32_t df, uint32_t rd,
1272 uint32_t ws, uint32_t n)
1273{
1274 n %= DF_ELEMENTS(df);
1275
1276 switch (df) {
1277 case DF_BYTE:
1278 env->active_tc.gpr[rd] = (uint8_t)env->active_fpu.fpr[ws].wr.b[n];
1279 break;
1280 case DF_HALF:
1281 env->active_tc.gpr[rd] = (uint16_t)env->active_fpu.fpr[ws].wr.h[n];
1282 break;
1283 case DF_WORD:
1284 env->active_tc.gpr[rd] = (uint32_t)env->active_fpu.fpr[ws].wr.w[n];
1285 break;
1286#ifdef TARGET_MIPS64
1287 case DF_DOUBLE:
1288 env->active_tc.gpr[rd] = (uint64_t)env->active_fpu.fpr[ws].wr.d[n];
1289 break;
1290#endif
1291 default:
1292 assert(0);
1293 }
1294}
1295
1296void helper_msa_insert_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
1297 uint32_t rs_num, uint32_t n)
1298{
1299 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
1300 target_ulong rs = env->active_tc.gpr[rs_num];
1301
1302 switch (df) {
1303 case DF_BYTE:
1304 pwd->b[n] = (int8_t)rs;
1305 break;
1306 case DF_HALF:
1307 pwd->h[n] = (int16_t)rs;
1308 break;
1309 case DF_WORD:
1310 pwd->w[n] = (int32_t)rs;
1311 break;
1312 case DF_DOUBLE:
1313 pwd->d[n] = (int64_t)rs;
1314 break;
1315 default:
1316 assert(0);
1317 }
1318}
1319
1320void helper_msa_insve_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
1321 uint32_t ws, uint32_t n)
1322{
1323 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
1324 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
1325
1326 switch (df) {
1327 case DF_BYTE:
1328 pwd->b[n] = (int8_t)pws->b[0];
1329 break;
1330 case DF_HALF:
1331 pwd->h[n] = (int16_t)pws->h[0];
1332 break;
1333 case DF_WORD:
1334 pwd->w[n] = (int32_t)pws->w[0];
1335 break;
1336 case DF_DOUBLE:
1337 pwd->d[n] = (int64_t)pws->d[0];
1338 break;
1339 default:
1340 assert(0);
1341 }
1342}
1343
1344void helper_msa_ctcmsa(CPUMIPSState *env, target_ulong elm, uint32_t cd)
1345{
1346 switch (cd) {
1347 case 0:
1348 break;
1349 case 1:
1350 env->active_tc.msacsr = (int32_t)elm & MSACSR_MASK;
1351 /* set float_status rounding mode */
1352 set_float_rounding_mode(
1353 ieee_rm[(env->active_tc.msacsr & MSACSR_RM_MASK) >> MSACSR_RM],
1354 &env->active_tc.msa_fp_status);
1355 /* set float_status flush modes */
1356 set_flush_to_zero(
1357 (env->active_tc.msacsr & MSACSR_FS_MASK) != 0 ? 1 : 0,
1358 &env->active_tc.msa_fp_status);
1359 set_flush_inputs_to_zero(
1360 (env->active_tc.msacsr & MSACSR_FS_MASK) != 0 ? 1 : 0,
1361 &env->active_tc.msa_fp_status);
1362 /* check exception */
1363 if ((GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED)
1364 & GET_FP_CAUSE(env->active_tc.msacsr)) {
1365 helper_raise_exception(env, EXCP_MSAFPE);
1366 }
1367 break;
1368 }
1369}
1370
1371target_ulong helper_msa_cfcmsa(CPUMIPSState *env, uint32_t cs)
1372{
1373 switch (cs) {
1374 case 0:
1375 return env->msair;
1376 case 1:
1377 return env->active_tc.msacsr & MSACSR_MASK;
1378 }
1379 return 0;
1380}
1381
1382void helper_msa_move_v(CPUMIPSState *env, uint32_t wd, uint32_t ws)
1383{
1384 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
1385 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
1386
1387 msa_move_v(pwd, pws);
1388}
7d05b9c8 1389
cbe50b9a
YK
1390static inline int64_t msa_pcnt_df(uint32_t df, int64_t arg)
1391{
1392 uint64_t x;
1393
1394 x = UNSIGNED(arg, df);
1395
1396 x = (x & 0x5555555555555555ULL) + ((x >> 1) & 0x5555555555555555ULL);
1397 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
1398 x = (x & 0x0F0F0F0F0F0F0F0FULL) + ((x >> 4) & 0x0F0F0F0F0F0F0F0FULL);
1399 x = (x & 0x00FF00FF00FF00FFULL) + ((x >> 8) & 0x00FF00FF00FF00FFULL);
1400 x = (x & 0x0000FFFF0000FFFFULL) + ((x >> 16) & 0x0000FFFF0000FFFFULL);
1401 x = (x & 0x00000000FFFFFFFFULL) + ((x >> 32));
1402
1403 return x;
1404}
1405
1406static inline int64_t msa_nlzc_df(uint32_t df, int64_t arg)
1407{
1408 uint64_t x, y;
1409 int n, c;
1410
1411 x = UNSIGNED(arg, df);
1412 n = DF_BITS(df);
1413 c = DF_BITS(df) / 2;
1414
1415 do {
1416 y = x >> c;
1417 if (y != 0) {
1418 n = n - c;
1419 x = y;
1420 }
1421 c = c >> 1;
1422 } while (c != 0);
1423
1424 return n - x;
1425}
1426
1427static inline int64_t msa_nloc_df(uint32_t df, int64_t arg)
1428{
1429 return msa_nlzc_df(df, UNSIGNED((~arg), df));
1430}
1431
1432void helper_msa_fill_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
1433 uint32_t rs)
1434{
1435 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
1436 uint32_t i;
1437
1438 switch (df) {
1439 case DF_BYTE:
1440 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {
1441 pwd->b[i] = (int8_t)env->active_tc.gpr[rs];
1442 }
1443 break;
1444 case DF_HALF:
1445 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {
1446 pwd->h[i] = (int16_t)env->active_tc.gpr[rs];
1447 }
1448 break;
1449 case DF_WORD:
1450 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
1451 pwd->w[i] = (int32_t)env->active_tc.gpr[rs];
1452 }
1453 break;
1454 case DF_DOUBLE:
1455 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
1456 pwd->d[i] = (int64_t)env->active_tc.gpr[rs];
1457 }
1458 break;
1459 default:
1460 assert(0);
1461 }
1462}
1463
1464#define MSA_UNOP_DF(func) \
1465void helper_msa_ ## func ## _df(CPUMIPSState *env, uint32_t df, \
1466 uint32_t wd, uint32_t ws) \
1467{ \
1468 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
1469 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
1470 uint32_t i; \
1471 \
1472 switch (df) { \
1473 case DF_BYTE: \
1474 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
1475 pwd->b[i] = msa_ ## func ## _df(df, pws->b[i]); \
1476 } \
1477 break; \
1478 case DF_HALF: \
1479 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
1480 pwd->h[i] = msa_ ## func ## _df(df, pws->h[i]); \
1481 } \
1482 break; \
1483 case DF_WORD: \
1484 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
1485 pwd->w[i] = msa_ ## func ## _df(df, pws->w[i]); \
1486 } \
1487 break; \
1488 case DF_DOUBLE: \
1489 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
1490 pwd->d[i] = msa_ ## func ## _df(df, pws->d[i]); \
1491 } \
1492 break; \
1493 default: \
1494 assert(0); \
1495 } \
1496}
1497
1498MSA_UNOP_DF(nlzc)
1499MSA_UNOP_DF(nloc)
1500MSA_UNOP_DF(pcnt)
3bdeb688 1501#undef MSA_UNOP_DF
cbe50b9a 1502
7d05b9c8
YK
1503#define FLOAT_ONE32 make_float32(0x3f8 << 20)
1504#define FLOAT_ONE64 make_float64(0x3ffULL << 52)
1505
1506#define FLOAT_SNAN16 (float16_default_nan ^ 0x0220)
1507 /* 0x7c20 */
1508#define FLOAT_SNAN32 (float32_default_nan ^ 0x00400020)
1509 /* 0x7f800020 */
1510#define FLOAT_SNAN64 (float64_default_nan ^ 0x0008000000000020ULL)
1511 /* 0x7ff0000000000020 */
1512
1513static inline void clear_msacsr_cause(CPUMIPSState *env)
1514{
1515 SET_FP_CAUSE(env->active_tc.msacsr, 0);
1516}
1517
1518static inline void check_msacsr_cause(CPUMIPSState *env)
1519{
1520 if ((GET_FP_CAUSE(env->active_tc.msacsr) &
1521 (GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED)) == 0) {
1522 UPDATE_FP_FLAGS(env->active_tc.msacsr,
1523 GET_FP_CAUSE(env->active_tc.msacsr));
1524 } else {
1525 helper_raise_exception(env, EXCP_MSAFPE);
1526 }
1527}
1528
1529/* Flush-to-zero use cases for update_msacsr() */
1530#define CLEAR_FS_UNDERFLOW 1
1531#define CLEAR_IS_INEXACT 2
1532#define RECIPROCAL_INEXACT 4
1533
1534static inline int update_msacsr(CPUMIPSState *env, int action, int denormal)
1535{
1536 int ieee_ex;
1537
1538 int c;
1539 int cause;
1540 int enable;
1541
1542 ieee_ex = get_float_exception_flags(&env->active_tc.msa_fp_status);
1543
1544 /* QEMU softfloat does not signal all underflow cases */
1545 if (denormal) {
1546 ieee_ex |= float_flag_underflow;
1547 }
1548
1549 c = ieee_ex_to_mips(ieee_ex);
1550 enable = GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED;
1551
1552 /* Set Inexact (I) when flushing inputs to zero */
1553 if ((ieee_ex & float_flag_input_denormal) &&
1554 (env->active_tc.msacsr & MSACSR_FS_MASK) != 0) {
1555 if (action & CLEAR_IS_INEXACT) {
1556 c &= ~FP_INEXACT;
1557 } else {
1558 c |= FP_INEXACT;
1559 }
1560 }
1561
1562 /* Set Inexact (I) and Underflow (U) when flushing outputs to zero */
1563 if ((ieee_ex & float_flag_output_denormal) &&
1564 (env->active_tc.msacsr & MSACSR_FS_MASK) != 0) {
1565 c |= FP_INEXACT;
1566 if (action & CLEAR_FS_UNDERFLOW) {
1567 c &= ~FP_UNDERFLOW;
1568 } else {
1569 c |= FP_UNDERFLOW;
1570 }
1571 }
1572
1573 /* Set Inexact (I) when Overflow (O) is not enabled */
1574 if ((c & FP_OVERFLOW) != 0 && (enable & FP_OVERFLOW) == 0) {
1575 c |= FP_INEXACT;
1576 }
1577
1578 /* Clear Exact Underflow when Underflow (U) is not enabled */
1579 if ((c & FP_UNDERFLOW) != 0 && (enable & FP_UNDERFLOW) == 0 &&
1580 (c & FP_INEXACT) == 0) {
1581 c &= ~FP_UNDERFLOW;
1582 }
1583
1584 /* Reciprocal operations set only Inexact when valid and not
1585 divide by zero */
1586 if ((action & RECIPROCAL_INEXACT) &&
1587 (c & (FP_INVALID | FP_DIV0)) == 0) {
1588 c = FP_INEXACT;
1589 }
1590
1591 cause = c & enable; /* all current enabled exceptions */
1592
1593 if (cause == 0) {
1594 /* No enabled exception, update the MSACSR Cause
1595 with all current exceptions */
1596 SET_FP_CAUSE(env->active_tc.msacsr,
1597 (GET_FP_CAUSE(env->active_tc.msacsr) | c));
1598 } else {
1599 /* Current exceptions are enabled */
1600 if ((env->active_tc.msacsr & MSACSR_NX_MASK) == 0) {
1601 /* Exception(s) will trap, update MSACSR Cause
1602 with all enabled exceptions */
1603 SET_FP_CAUSE(env->active_tc.msacsr,
1604 (GET_FP_CAUSE(env->active_tc.msacsr) | c));
1605 }
1606 }
1607
1608 return c;
1609}
1610
1611static inline int get_enabled_exceptions(const CPUMIPSState *env, int c)
1612{
1613 int enable = GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED;
1614 return c & enable;
1615}
1616
e5a41ffa
PM
1617static inline float16 float16_from_float32(int32 a, flag ieee,
1618 float_status *status)
7d05b9c8
YK
1619{
1620 float16 f_val;
1621
1622 f_val = float32_to_float16((float32)a, ieee STATUS_VAR);
1623 f_val = float16_maybe_silence_nan(f_val);
1624
1625 return a < 0 ? (f_val | (1 << 15)) : f_val;
1626}
1627
e5a41ffa 1628static inline float32 float32_from_float64(int64 a, float_status *status)
7d05b9c8
YK
1629{
1630 float32 f_val;
1631
1632 f_val = float64_to_float32((float64)a STATUS_VAR);
1633 f_val = float32_maybe_silence_nan(f_val);
1634
1635 return a < 0 ? (f_val | (1 << 31)) : f_val;
1636}
1637
e5a41ffa
PM
1638static inline float32 float32_from_float16(int16_t a, flag ieee,
1639 float_status *status)
7d05b9c8
YK
1640{
1641 float32 f_val;
1642
1643 f_val = float16_to_float32((float16)a, ieee STATUS_VAR);
1644 f_val = float32_maybe_silence_nan(f_val);
1645
1646 return a < 0 ? (f_val | (1 << 31)) : f_val;
1647}
1648
e5a41ffa 1649static inline float64 float64_from_float32(int32 a, float_status *status)
7d05b9c8
YK
1650{
1651 float64 f_val;
1652
1653 f_val = float32_to_float64((float64)a STATUS_VAR);
1654 f_val = float64_maybe_silence_nan(f_val);
1655
1656 return a < 0 ? (f_val | (1ULL << 63)) : f_val;
1657}
1658
e5a41ffa 1659static inline float32 float32_from_q16(int16_t a, float_status *status)
7d05b9c8
YK
1660{
1661 float32 f_val;
1662
1663 /* conversion as integer and scaling */
1664 f_val = int32_to_float32(a STATUS_VAR);
1665 f_val = float32_scalbn(f_val, -15 STATUS_VAR);
1666
1667 return f_val;
1668}
1669
e5a41ffa 1670static inline float64 float64_from_q32(int32 a, float_status *status)
7d05b9c8
YK
1671{
1672 float64 f_val;
1673
1674 /* conversion as integer and scaling */
1675 f_val = int32_to_float64(a STATUS_VAR);
1676 f_val = float64_scalbn(f_val, -31 STATUS_VAR);
1677
1678 return f_val;
1679}
1680
e5a41ffa 1681static inline int16_t float32_to_q16(float32 a, float_status *status)
7d05b9c8
YK
1682{
1683 int32 q_val;
1684 int32 q_min = 0xffff8000;
1685 int32 q_max = 0x00007fff;
1686
1687 int ieee_ex;
1688
1689 if (float32_is_any_nan(a)) {
1690 float_raise(float_flag_invalid STATUS_VAR);
1691 return 0;
1692 }
1693
1694 /* scaling */
1695 a = float32_scalbn(a, 15 STATUS_VAR);
1696
1697 ieee_ex = get_float_exception_flags(status);
1698 set_float_exception_flags(ieee_ex & (~float_flag_underflow)
1699 STATUS_VAR);
1700
1701 if (ieee_ex & float_flag_overflow) {
1702 float_raise(float_flag_inexact STATUS_VAR);
1703 return (int32)a < 0 ? q_min : q_max;
1704 }
1705
1706 /* conversion to int */
1707 q_val = float32_to_int32(a STATUS_VAR);
1708
1709 ieee_ex = get_float_exception_flags(status);
1710 set_float_exception_flags(ieee_ex & (~float_flag_underflow)
1711 STATUS_VAR);
1712
1713 if (ieee_ex & float_flag_invalid) {
1714 set_float_exception_flags(ieee_ex & (~float_flag_invalid)
1715 STATUS_VAR);
1716 float_raise(float_flag_overflow | float_flag_inexact STATUS_VAR);
1717 return (int32)a < 0 ? q_min : q_max;
1718 }
1719
1720 if (q_val < q_min) {
1721 float_raise(float_flag_overflow | float_flag_inexact STATUS_VAR);
1722 return (int16_t)q_min;
1723 }
1724
1725 if (q_max < q_val) {
1726 float_raise(float_flag_overflow | float_flag_inexact STATUS_VAR);
1727 return (int16_t)q_max;
1728 }
1729
1730 return (int16_t)q_val;
1731}
1732
e5a41ffa 1733static inline int32 float64_to_q32(float64 a, float_status *status)
7d05b9c8
YK
1734{
1735 int64 q_val;
1736 int64 q_min = 0xffffffff80000000LL;
1737 int64 q_max = 0x000000007fffffffLL;
1738
1739 int ieee_ex;
1740
1741 if (float64_is_any_nan(a)) {
1742 float_raise(float_flag_invalid STATUS_VAR);
1743 return 0;
1744 }
1745
1746 /* scaling */
1747 a = float64_scalbn(a, 31 STATUS_VAR);
1748
1749 ieee_ex = get_float_exception_flags(status);
1750 set_float_exception_flags(ieee_ex & (~float_flag_underflow)
1751 STATUS_VAR);
1752
1753 if (ieee_ex & float_flag_overflow) {
1754 float_raise(float_flag_inexact STATUS_VAR);
1755 return (int64)a < 0 ? q_min : q_max;
1756 }
1757
1758 /* conversion to integer */
1759 q_val = float64_to_int64(a STATUS_VAR);
1760
1761 ieee_ex = get_float_exception_flags(status);
1762 set_float_exception_flags(ieee_ex & (~float_flag_underflow)
1763 STATUS_VAR);
1764
1765 if (ieee_ex & float_flag_invalid) {
1766 set_float_exception_flags(ieee_ex & (~float_flag_invalid)
1767 STATUS_VAR);
1768 float_raise(float_flag_overflow | float_flag_inexact STATUS_VAR);
1769 return (int64)a < 0 ? q_min : q_max;
1770 }
1771
1772 if (q_val < q_min) {
1773 float_raise(float_flag_overflow | float_flag_inexact STATUS_VAR);
1774 return (int32)q_min;
1775 }
1776
1777 if (q_max < q_val) {
1778 float_raise(float_flag_overflow | float_flag_inexact STATUS_VAR);
1779 return (int32)q_max;
1780 }
1781
1782 return (int32)q_val;
1783}
1784
1785#define MSA_FLOAT_COND(DEST, OP, ARG1, ARG2, BITS, QUIET) \
1786 do { \
1a4d5700 1787 float_status *status = &env->active_tc.msa_fp_status; \
7d05b9c8
YK
1788 int c; \
1789 int64_t cond; \
1a4d5700 1790 set_float_exception_flags(0, status); \
7d05b9c8 1791 if (!QUIET) { \
1a4d5700 1792 cond = float ## BITS ## _ ## OP(ARG1, ARG2, status); \
7d05b9c8 1793 } else { \
1a4d5700 1794 cond = float ## BITS ## _ ## OP ## _quiet(ARG1, ARG2, status); \
7d05b9c8
YK
1795 } \
1796 DEST = cond ? M_MAX_UINT(BITS) : 0; \
1797 c = update_msacsr(env, CLEAR_IS_INEXACT, 0); \
1798 \
1799 if (get_enabled_exceptions(env, c)) { \
1800 DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \
1801 } \
1802 } while (0)
1803
1804#define MSA_FLOAT_AF(DEST, ARG1, ARG2, BITS, QUIET) \
1805 do { \
1806 MSA_FLOAT_COND(DEST, eq, ARG1, ARG2, BITS, QUIET); \
1807 if ((DEST & M_MAX_UINT(BITS)) == M_MAX_UINT(BITS)) { \
1808 DEST = 0; \
1809 } \
1810 } while (0)
1811
1812#define MSA_FLOAT_UEQ(DEST, ARG1, ARG2, BITS, QUIET) \
1813 do { \
1814 MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \
1815 if (DEST == 0) { \
1816 MSA_FLOAT_COND(DEST, eq, ARG1, ARG2, BITS, QUIET); \
1817 } \
1818 } while (0)
1819
1820#define MSA_FLOAT_NE(DEST, ARG1, ARG2, BITS, QUIET) \
1821 do { \
1822 MSA_FLOAT_COND(DEST, lt, ARG1, ARG2, BITS, QUIET); \
1823 if (DEST == 0) { \
1824 MSA_FLOAT_COND(DEST, lt, ARG2, ARG1, BITS, QUIET); \
1825 } \
1826 } while (0)
1827
1828#define MSA_FLOAT_UNE(DEST, ARG1, ARG2, BITS, QUIET) \
1829 do { \
1830 MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \
1831 if (DEST == 0) { \
1832 MSA_FLOAT_COND(DEST, lt, ARG1, ARG2, BITS, QUIET); \
1833 if (DEST == 0) { \
1834 MSA_FLOAT_COND(DEST, lt, ARG2, ARG1, BITS, QUIET); \
1835 } \
1836 } \
1837 } while (0)
1838
1839#define MSA_FLOAT_ULE(DEST, ARG1, ARG2, BITS, QUIET) \
1840 do { \
1841 MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \
1842 if (DEST == 0) { \
1843 MSA_FLOAT_COND(DEST, le, ARG1, ARG2, BITS, QUIET); \
1844 } \
1845 } while (0)
1846
1847#define MSA_FLOAT_ULT(DEST, ARG1, ARG2, BITS, QUIET) \
1848 do { \
1849 MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \
1850 if (DEST == 0) { \
1851 MSA_FLOAT_COND(DEST, lt, ARG1, ARG2, BITS, QUIET); \
1852 } \
1853 } while (0)
1854
1855#define MSA_FLOAT_OR(DEST, ARG1, ARG2, BITS, QUIET) \
1856 do { \
1857 MSA_FLOAT_COND(DEST, le, ARG1, ARG2, BITS, QUIET); \
1858 if (DEST == 0) { \
1859 MSA_FLOAT_COND(DEST, le, ARG2, ARG1, BITS, QUIET); \
1860 } \
1861 } while (0)
1862
1863static inline void compare_af(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
1864 wr_t *pwt, uint32_t df, int quiet)
1865{
1866 wr_t wx, *pwx = &wx;
1867 uint32_t i;
1868
1869 clear_msacsr_cause(env);
1870
1871 switch (df) {
1872 case DF_WORD:
1873 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
1874 MSA_FLOAT_AF(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
1875 }
1876 break;
1877 case DF_DOUBLE:
1878 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
1879 MSA_FLOAT_AF(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
1880 }
1881 break;
1882 default:
1883 assert(0);
1884 }
1885
1886 check_msacsr_cause(env);
1887
1888 msa_move_v(pwd, pwx);
1889}
1890
1891static inline void compare_un(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
1892 wr_t *pwt, uint32_t df, int quiet)
1893{
1894 wr_t wx, *pwx = &wx;
1895 uint32_t i;
1896
1897 clear_msacsr_cause(env);
1898
1899 switch (df) {
1900 case DF_WORD:
1901 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
1902 MSA_FLOAT_COND(pwx->w[i], unordered, pws->w[i], pwt->w[i], 32,
1903 quiet);
1904 }
1905 break;
1906 case DF_DOUBLE:
1907 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
1908 MSA_FLOAT_COND(pwx->d[i], unordered, pws->d[i], pwt->d[i], 64,
1909 quiet);
1910 }
1911 break;
1912 default:
1913 assert(0);
1914 }
1915
1916 check_msacsr_cause(env);
1917
1918 msa_move_v(pwd, pwx);
1919}
1920
1921static inline void compare_eq(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
1922 wr_t *pwt, uint32_t df, int quiet)
1923{
1924 wr_t wx, *pwx = &wx;
1925 uint32_t i;
1926
1927 clear_msacsr_cause(env);
1928
1929 switch (df) {
1930 case DF_WORD:
1931 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
1932 MSA_FLOAT_COND(pwx->w[i], eq, pws->w[i], pwt->w[i], 32, quiet);
1933 }
1934 break;
1935 case DF_DOUBLE:
1936 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
1937 MSA_FLOAT_COND(pwx->d[i], eq, pws->d[i], pwt->d[i], 64, quiet);
1938 }
1939 break;
1940 default:
1941 assert(0);
1942 }
1943
1944 check_msacsr_cause(env);
1945
1946 msa_move_v(pwd, pwx);
1947}
1948
1949static inline void compare_ueq(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
1950 wr_t *pwt, uint32_t df, int quiet)
1951{
1952 wr_t wx, *pwx = &wx;
1953 uint32_t i;
1954
1955 clear_msacsr_cause(env);
1956
1957 switch (df) {
1958 case DF_WORD:
1959 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
1960 MSA_FLOAT_UEQ(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
1961 }
1962 break;
1963 case DF_DOUBLE:
1964 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
1965 MSA_FLOAT_UEQ(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
1966 }
1967 break;
1968 default:
1969 assert(0);
1970 }
1971
1972 check_msacsr_cause(env);
1973
1974 msa_move_v(pwd, pwx);
1975}
1976
1977static inline void compare_lt(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
1978 wr_t *pwt, uint32_t df, int quiet)
1979{
1980 wr_t wx, *pwx = &wx;
1981 uint32_t i;
1982
1983 clear_msacsr_cause(env);
1984
1985 switch (df) {
1986 case DF_WORD:
1987 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
1988 MSA_FLOAT_COND(pwx->w[i], lt, pws->w[i], pwt->w[i], 32, quiet);
1989 }
1990 break;
1991 case DF_DOUBLE:
1992 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
1993 MSA_FLOAT_COND(pwx->d[i], lt, pws->d[i], pwt->d[i], 64, quiet);
1994 }
1995 break;
1996 default:
1997 assert(0);
1998 }
1999
2000 check_msacsr_cause(env);
2001
2002 msa_move_v(pwd, pwx);
2003}
2004
2005static inline void compare_ult(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
2006 wr_t *pwt, uint32_t df, int quiet)
2007{
2008 wr_t wx, *pwx = &wx;
2009 uint32_t i;
2010
2011 clear_msacsr_cause(env);
2012
2013 switch (df) {
2014 case DF_WORD:
2015 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2016 MSA_FLOAT_ULT(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
2017 }
2018 break;
2019 case DF_DOUBLE:
2020 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2021 MSA_FLOAT_ULT(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
2022 }
2023 break;
2024 default:
2025 assert(0);
2026 }
2027
2028 check_msacsr_cause(env);
2029
2030 msa_move_v(pwd, pwx);
2031}
2032
2033static inline void compare_le(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
2034 wr_t *pwt, uint32_t df, int quiet)
2035{
2036 wr_t wx, *pwx = &wx;
2037 uint32_t i;
2038
2039 clear_msacsr_cause(env);
2040
2041 switch (df) {
2042 case DF_WORD:
2043 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2044 MSA_FLOAT_COND(pwx->w[i], le, pws->w[i], pwt->w[i], 32, quiet);
2045 }
2046 break;
2047 case DF_DOUBLE:
2048 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2049 MSA_FLOAT_COND(pwx->d[i], le, pws->d[i], pwt->d[i], 64, quiet);
2050 }
2051 break;
2052 default:
2053 assert(0);
2054 }
2055
2056 check_msacsr_cause(env);
2057
2058 msa_move_v(pwd, pwx);
2059}
2060
2061static inline void compare_ule(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
2062 wr_t *pwt, uint32_t df, int quiet)
2063{
2064 wr_t wx, *pwx = &wx;
2065 uint32_t i;
2066
2067 clear_msacsr_cause(env);
2068
2069 switch (df) {
2070 case DF_WORD:
2071 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2072 MSA_FLOAT_ULE(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
2073 }
2074 break;
2075 case DF_DOUBLE:
2076 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2077 MSA_FLOAT_ULE(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
2078 }
2079 break;
2080 default:
2081 assert(0);
2082 }
2083
2084 check_msacsr_cause(env);
2085
2086 msa_move_v(pwd, pwx);
2087}
2088
2089static inline void compare_or(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
2090 wr_t *pwt, uint32_t df, int quiet)
2091{
2092 wr_t wx, *pwx = &wx;
2093 uint32_t i;
2094
2095 clear_msacsr_cause(env);
2096
2097 switch (df) {
2098 case DF_WORD:
2099 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2100 MSA_FLOAT_OR(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
2101 }
2102 break;
2103 case DF_DOUBLE:
2104 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2105 MSA_FLOAT_OR(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
2106 }
2107 break;
2108 default:
2109 assert(0);
2110 }
2111
2112 check_msacsr_cause(env);
2113
2114 msa_move_v(pwd, pwx);
2115}
2116
2117static inline void compare_une(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
2118 wr_t *pwt, uint32_t df, int quiet)
2119{
2120 wr_t wx, *pwx = &wx;
2121 uint32_t i;
2122
2123 clear_msacsr_cause(env);
2124
2125 switch (df) {
2126 case DF_WORD:
2127 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2128 MSA_FLOAT_UNE(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
2129 }
2130 break;
2131 case DF_DOUBLE:
2132 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2133 MSA_FLOAT_UNE(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
2134 }
2135 break;
2136 default:
2137 assert(0);
2138 }
2139
2140 check_msacsr_cause(env);
2141
2142 msa_move_v(pwd, pwx);
2143}
2144
2145static inline void compare_ne(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
2146 wr_t *pwt, uint32_t df, int quiet) {
2147 wr_t wx, *pwx = &wx;
2148 uint32_t i;
2149
2150 clear_msacsr_cause(env);
2151
2152 switch (df) {
2153 case DF_WORD:
2154 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2155 MSA_FLOAT_NE(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
2156 }
2157 break;
2158 case DF_DOUBLE:
2159 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2160 MSA_FLOAT_NE(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
2161 }
2162 break;
2163 default:
2164 assert(0);
2165 }
2166
2167 check_msacsr_cause(env);
2168
2169 msa_move_v(pwd, pwx);
2170}
2171
2172void helper_msa_fcaf_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2173 uint32_t ws, uint32_t wt)
2174{
2175 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2176 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2177 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2178 compare_af(env, pwd, pws, pwt, df, 1);
2179}
2180
2181void helper_msa_fcun_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2182 uint32_t ws, uint32_t wt)
2183{
2184 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2185 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2186 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2187 compare_un(env, pwd, pws, pwt, df, 1);
2188}
2189
2190void helper_msa_fceq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2191 uint32_t ws, uint32_t wt)
2192{
2193 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2194 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2195 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2196 compare_eq(env, pwd, pws, pwt, df, 1);
2197}
2198
2199void helper_msa_fcueq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2200 uint32_t ws, uint32_t wt)
2201{
2202 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2203 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2204 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2205 compare_ueq(env, pwd, pws, pwt, df, 1);
2206}
2207
2208void helper_msa_fclt_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2209 uint32_t ws, uint32_t wt)
2210{
2211 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2212 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2213 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2214 compare_lt(env, pwd, pws, pwt, df, 1);
2215}
2216
2217void helper_msa_fcult_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2218 uint32_t ws, uint32_t wt)
2219{
2220 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2221 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2222 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2223 compare_ult(env, pwd, pws, pwt, df, 1);
2224}
2225
2226void helper_msa_fcle_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2227 uint32_t ws, uint32_t wt)
2228{
2229 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2230 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2231 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2232 compare_le(env, pwd, pws, pwt, df, 1);
2233}
2234
2235void helper_msa_fcule_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2236 uint32_t ws, uint32_t wt)
2237{
2238 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2239 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2240 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2241 compare_ule(env, pwd, pws, pwt, df, 1);
2242}
2243
2244void helper_msa_fsaf_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2245 uint32_t ws, uint32_t wt)
2246{
2247 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2248 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2249 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2250 compare_af(env, pwd, pws, pwt, df, 0);
2251}
2252
2253void helper_msa_fsun_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2254 uint32_t ws, uint32_t wt)
2255{
2256 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2257 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2258 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2259 compare_un(env, pwd, pws, pwt, df, 0);
2260}
2261
2262void helper_msa_fseq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2263 uint32_t ws, uint32_t wt)
2264{
2265 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2266 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2267 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2268 compare_eq(env, pwd, pws, pwt, df, 0);
2269}
2270
2271void helper_msa_fsueq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2272 uint32_t ws, uint32_t wt)
2273{
2274 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2275 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2276 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2277 compare_ueq(env, pwd, pws, pwt, df, 0);
2278}
2279
2280void helper_msa_fslt_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2281 uint32_t ws, uint32_t wt)
2282{
2283 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2284 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2285 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2286 compare_lt(env, pwd, pws, pwt, df, 0);
2287}
2288
2289void helper_msa_fsult_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2290 uint32_t ws, uint32_t wt)
2291{
2292 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2293 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2294 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2295 compare_ult(env, pwd, pws, pwt, df, 0);
2296}
2297
2298void helper_msa_fsle_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2299 uint32_t ws, uint32_t wt)
2300{
2301 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2302 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2303 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2304 compare_le(env, pwd, pws, pwt, df, 0);
2305}
2306
2307void helper_msa_fsule_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2308 uint32_t ws, uint32_t wt)
2309{
2310 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2311 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2312 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2313 compare_ule(env, pwd, pws, pwt, df, 0);
2314}
2315
2316void helper_msa_fcor_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2317 uint32_t ws, uint32_t wt)
2318{
2319 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2320 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2321 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2322 compare_or(env, pwd, pws, pwt, df, 1);
2323}
2324
2325void helper_msa_fcune_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2326 uint32_t ws, uint32_t wt)
2327{
2328 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2329 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2330 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2331 compare_une(env, pwd, pws, pwt, df, 1);
2332}
2333
2334void helper_msa_fcne_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2335 uint32_t ws, uint32_t wt)
2336{
2337 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2338 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2339 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2340 compare_ne(env, pwd, pws, pwt, df, 1);
2341}
2342
2343void helper_msa_fsor_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2344 uint32_t ws, uint32_t wt)
2345{
2346 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2347 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2348 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2349 compare_or(env, pwd, pws, pwt, df, 0);
2350}
2351
2352void helper_msa_fsune_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2353 uint32_t ws, uint32_t wt)
2354{
2355 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2356 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2357 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2358 compare_une(env, pwd, pws, pwt, df, 0);
2359}
2360
2361void helper_msa_fsne_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2362 uint32_t ws, uint32_t wt)
2363{
2364 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2365 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2366 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2367 compare_ne(env, pwd, pws, pwt, df, 0);
2368}
2369
2370#define float16_is_zero(ARG) 0
2371#define float16_is_zero_or_denormal(ARG) 0
2372
2373#define IS_DENORMAL(ARG, BITS) \
2374 (!float ## BITS ## _is_zero(ARG) \
2375 && float ## BITS ## _is_zero_or_denormal(ARG))
2376
2377#define MSA_FLOAT_BINOP(DEST, OP, ARG1, ARG2, BITS) \
2378 do { \
1a4d5700 2379 float_status *status = &env->active_tc.msa_fp_status; \
7d05b9c8
YK
2380 int c; \
2381 \
1a4d5700
MR
2382 set_float_exception_flags(0, status); \
2383 DEST = float ## BITS ## _ ## OP(ARG1, ARG2, status); \
7d05b9c8
YK
2384 c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
2385 \
2386 if (get_enabled_exceptions(env, c)) { \
2387 DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \
2388 } \
2389 } while (0)
2390
2391void helper_msa_fadd_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2392 uint32_t ws, uint32_t wt)
2393{
2394 wr_t wx, *pwx = &wx;
2395 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2396 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2397 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2398 uint32_t i;
2399
2400 clear_msacsr_cause(env);
2401
2402 switch (df) {
2403 case DF_WORD:
2404 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2405 MSA_FLOAT_BINOP(pwx->w[i], add, pws->w[i], pwt->w[i], 32);
2406 }
2407 break;
2408 case DF_DOUBLE:
2409 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2410 MSA_FLOAT_BINOP(pwx->d[i], add, pws->d[i], pwt->d[i], 64);
2411 }
2412 break;
2413 default:
2414 assert(0);
2415 }
2416
2417 check_msacsr_cause(env);
2418 msa_move_v(pwd, pwx);
2419}
2420
2421void helper_msa_fsub_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2422 uint32_t ws, uint32_t wt)
2423{
2424 wr_t wx, *pwx = &wx;
2425 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2426 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2427 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2428 uint32_t i;
2429
2430 clear_msacsr_cause(env);
2431
2432 switch (df) {
2433 case DF_WORD:
2434 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2435 MSA_FLOAT_BINOP(pwx->w[i], sub, pws->w[i], pwt->w[i], 32);
2436 }
2437 break;
2438 case DF_DOUBLE:
2439 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2440 MSA_FLOAT_BINOP(pwx->d[i], sub, pws->d[i], pwt->d[i], 64);
2441 }
2442 break;
2443 default:
2444 assert(0);
2445 }
2446
2447 check_msacsr_cause(env);
2448 msa_move_v(pwd, pwx);
2449}
2450
2451void helper_msa_fmul_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2452 uint32_t ws, uint32_t wt)
2453{
2454 wr_t wx, *pwx = &wx;
2455 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2456 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2457 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2458 uint32_t i;
2459
2460 clear_msacsr_cause(env);
2461
2462 switch (df) {
2463 case DF_WORD:
2464 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2465 MSA_FLOAT_BINOP(pwx->w[i], mul, pws->w[i], pwt->w[i], 32);
2466 }
2467 break;
2468 case DF_DOUBLE:
2469 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2470 MSA_FLOAT_BINOP(pwx->d[i], mul, pws->d[i], pwt->d[i], 64);
2471 }
2472 break;
2473 default:
2474 assert(0);
2475 }
2476
2477 check_msacsr_cause(env);
2478
2479 msa_move_v(pwd, pwx);
2480}
2481
2482void helper_msa_fdiv_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2483 uint32_t ws, uint32_t wt)
2484{
2485 wr_t wx, *pwx = &wx;
2486 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2487 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2488 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2489 uint32_t i;
2490
2491 clear_msacsr_cause(env);
2492
2493 switch (df) {
2494 case DF_WORD:
2495 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2496 MSA_FLOAT_BINOP(pwx->w[i], div, pws->w[i], pwt->w[i], 32);
2497 }
2498 break;
2499 case DF_DOUBLE:
2500 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2501 MSA_FLOAT_BINOP(pwx->d[i], div, pws->d[i], pwt->d[i], 64);
2502 }
2503 break;
2504 default:
2505 assert(0);
2506 }
2507
2508 check_msacsr_cause(env);
2509
2510 msa_move_v(pwd, pwx);
2511}
2512
2513#define MSA_FLOAT_MULADD(DEST, ARG1, ARG2, ARG3, NEGATE, BITS) \
2514 do { \
1a4d5700 2515 float_status *status = &env->active_tc.msa_fp_status; \
7d05b9c8
YK
2516 int c; \
2517 \
1a4d5700
MR
2518 set_float_exception_flags(0, status); \
2519 DEST = float ## BITS ## _muladd(ARG2, ARG3, ARG1, NEGATE, status); \
7d05b9c8
YK
2520 c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
2521 \
2522 if (get_enabled_exceptions(env, c)) { \
2523 DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \
2524 } \
2525 } while (0)
2526
2527void helper_msa_fmadd_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2528 uint32_t ws, uint32_t wt)
2529{
2530 wr_t wx, *pwx = &wx;
2531 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2532 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2533 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2534 uint32_t i;
2535
2536 clear_msacsr_cause(env);
2537
2538 switch (df) {
2539 case DF_WORD:
2540 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2541 MSA_FLOAT_MULADD(pwx->w[i], pwd->w[i],
2542 pws->w[i], pwt->w[i], 0, 32);
2543 }
2544 break;
2545 case DF_DOUBLE:
2546 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2547 MSA_FLOAT_MULADD(pwx->d[i], pwd->d[i],
2548 pws->d[i], pwt->d[i], 0, 64);
2549 }
2550 break;
2551 default:
2552 assert(0);
2553 }
2554
2555 check_msacsr_cause(env);
2556
2557 msa_move_v(pwd, pwx);
2558}
2559
2560void helper_msa_fmsub_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2561 uint32_t ws, uint32_t wt)
2562{
2563 wr_t wx, *pwx = &wx;
2564 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2565 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2566 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2567 uint32_t i;
2568
2569 clear_msacsr_cause(env);
2570
2571 switch (df) {
2572 case DF_WORD:
2573 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2574 MSA_FLOAT_MULADD(pwx->w[i], pwd->w[i],
2575 pws->w[i], pwt->w[i],
2576 float_muladd_negate_product, 32);
2577 }
2578 break;
2579 case DF_DOUBLE:
2580 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2581 MSA_FLOAT_MULADD(pwx->d[i], pwd->d[i],
2582 pws->d[i], pwt->d[i],
2583 float_muladd_negate_product, 64);
2584 }
2585 break;
2586 default:
2587 assert(0);
2588 }
2589
2590 check_msacsr_cause(env);
2591
2592 msa_move_v(pwd, pwx);
2593}
2594
2595void helper_msa_fexp2_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2596 uint32_t ws, uint32_t wt)
2597{
2598 wr_t wx, *pwx = &wx;
2599 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2600 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2601 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2602 uint32_t i;
2603
2604 clear_msacsr_cause(env);
2605
2606 switch (df) {
2607 case DF_WORD:
2608 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2609 MSA_FLOAT_BINOP(pwx->w[i], scalbn, pws->w[i],
2610 pwt->w[i] > 0x200 ? 0x200 :
2611 pwt->w[i] < -0x200 ? -0x200 : pwt->w[i],
2612 32);
2613 }
2614 break;
2615 case DF_DOUBLE:
2616 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2617 MSA_FLOAT_BINOP(pwx->d[i], scalbn, pws->d[i],
2618 pwt->d[i] > 0x1000 ? 0x1000 :
2619 pwt->d[i] < -0x1000 ? -0x1000 : pwt->d[i],
2620 64);
2621 }
2622 break;
2623 default:
2624 assert(0);
2625 }
2626
2627 check_msacsr_cause(env);
2628
2629 msa_move_v(pwd, pwx);
2630}
2631
2632#define MSA_FLOAT_UNOP(DEST, OP, ARG, BITS) \
2633 do { \
1a4d5700 2634 float_status *status = &env->active_tc.msa_fp_status; \
7d05b9c8
YK
2635 int c; \
2636 \
1a4d5700
MR
2637 set_float_exception_flags(0, status); \
2638 DEST = float ## BITS ## _ ## OP(ARG, status); \
7d05b9c8
YK
2639 c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
2640 \
2641 if (get_enabled_exceptions(env, c)) { \
2642 DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \
2643 } \
2644 } while (0)
2645
2646void helper_msa_fexdo_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2647 uint32_t ws, uint32_t wt)
2648{
2649 wr_t wx, *pwx = &wx;
2650 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2651 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2652 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2653 uint32_t i;
2654
2655 switch (df) {
2656 case DF_WORD:
2657 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2658 /* Half precision floats come in two formats: standard
2659 IEEE and "ARM" format. The latter gains extra exponent
2660 range by omitting the NaN/Inf encodings. */
2661 flag ieee = 1;
2662
2663 MSA_FLOAT_BINOP(Lh(pwx, i), from_float32, pws->w[i], ieee, 16);
2664 MSA_FLOAT_BINOP(Rh(pwx, i), from_float32, pwt->w[i], ieee, 16);
2665 }
2666 break;
2667 case DF_DOUBLE:
2668 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2669 MSA_FLOAT_UNOP(Lw(pwx, i), from_float64, pws->d[i], 32);
2670 MSA_FLOAT_UNOP(Rw(pwx, i), from_float64, pwt->d[i], 32);
2671 }
2672 break;
2673 default:
2674 assert(0);
2675 }
2676
2677 check_msacsr_cause(env);
2678 msa_move_v(pwd, pwx);
2679}
2680
2681#define MSA_FLOAT_UNOP_XD(DEST, OP, ARG, BITS, XBITS) \
2682 do { \
1a4d5700 2683 float_status *status = &env->active_tc.msa_fp_status; \
7d05b9c8
YK
2684 int c; \
2685 \
1a4d5700
MR
2686 set_float_exception_flags(0, status); \
2687 DEST = float ## BITS ## _ ## OP(ARG, status); \
7d05b9c8
YK
2688 c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0); \
2689 \
2690 if (get_enabled_exceptions(env, c)) { \
2691 DEST = ((FLOAT_SNAN ## XBITS >> 6) << 6) | c; \
2692 } \
2693 } while (0)
2694
2695void helper_msa_ftq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2696 uint32_t ws, uint32_t wt)
2697{
2698 wr_t wx, *pwx = &wx;
2699 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2700 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2701 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2702 uint32_t i;
2703
2704 clear_msacsr_cause(env);
2705
2706 switch (df) {
2707 case DF_WORD:
2708 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2709 MSA_FLOAT_UNOP_XD(Lh(pwx, i), to_q16, pws->w[i], 32, 16);
2710 MSA_FLOAT_UNOP_XD(Rh(pwx, i), to_q16, pwt->w[i], 32, 16);
2711 }
2712 break;
2713 case DF_DOUBLE:
2714 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2715 MSA_FLOAT_UNOP_XD(Lw(pwx, i), to_q32, pws->d[i], 64, 32);
2716 MSA_FLOAT_UNOP_XD(Rw(pwx, i), to_q32, pwt->d[i], 64, 32);
2717 }
2718 break;
2719 default:
2720 assert(0);
2721 }
2722
2723 check_msacsr_cause(env);
2724
2725 msa_move_v(pwd, pwx);
2726}
2727
2728#define NUMBER_QNAN_PAIR(ARG1, ARG2, BITS) \
2729 !float ## BITS ## _is_any_nan(ARG1) \
2730 && float ## BITS ## _is_quiet_nan(ARG2)
2731
2732#define MSA_FLOAT_MAXOP(DEST, OP, ARG1, ARG2, BITS) \
2733 do { \
1a4d5700 2734 float_status *status = &env->active_tc.msa_fp_status; \
7d05b9c8
YK
2735 int c; \
2736 \
1a4d5700
MR
2737 set_float_exception_flags(0, status); \
2738 DEST = float ## BITS ## _ ## OP(ARG1, ARG2, status); \
7d05b9c8
YK
2739 c = update_msacsr(env, 0, 0); \
2740 \
2741 if (get_enabled_exceptions(env, c)) { \
2742 DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \
2743 } \
2744 } while (0)
2745
2746#define FMAXMIN_A(F, G, X, _S, _T, BITS) \
2747 do { \
2748 uint## BITS ##_t S = _S, T = _T; \
2749 uint## BITS ##_t as, at, xs, xt, xd; \
2750 if (NUMBER_QNAN_PAIR(S, T, BITS)) { \
2751 T = S; \
2752 } \
2753 else if (NUMBER_QNAN_PAIR(T, S, BITS)) { \
2754 S = T; \
2755 } \
2756 as = float## BITS ##_abs(S); \
2757 at = float## BITS ##_abs(T); \
2758 MSA_FLOAT_MAXOP(xs, F, S, T, BITS); \
2759 MSA_FLOAT_MAXOP(xt, G, S, T, BITS); \
2760 MSA_FLOAT_MAXOP(xd, F, as, at, BITS); \
2761 X = (as == at || xd == float## BITS ##_abs(xs)) ? xs : xt; \
2762 } while (0)
2763
2764void helper_msa_fmin_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2765 uint32_t ws, uint32_t wt)
2766{
2767 wr_t wx, *pwx = &wx;
2768 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2769 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2770 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2771 uint32_t i;
2772
2773 clear_msacsr_cause(env);
2774
2775 switch (df) {
2776 case DF_WORD:
2777 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2778 if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32)) {
2779 MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pws->w[i], 32);
2780 } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32)) {
2781 MSA_FLOAT_MAXOP(pwx->w[i], min, pwt->w[i], pwt->w[i], 32);
2782 } else {
2783 MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pwt->w[i], 32);
2784 }
2785 }
2786 break;
2787 case DF_DOUBLE:
2788 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2789 if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64)) {
2790 MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pws->d[i], 64);
2791 } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64)) {
2792 MSA_FLOAT_MAXOP(pwx->d[i], min, pwt->d[i], pwt->d[i], 64);
2793 } else {
2794 MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pwt->d[i], 64);
2795 }
2796 }
2797 break;
2798 default:
2799 assert(0);
2800 }
2801
2802 check_msacsr_cause(env);
2803
2804 msa_move_v(pwd, pwx);
2805}
2806
2807void helper_msa_fmin_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2808 uint32_t ws, uint32_t wt)
2809{
2810 wr_t wx, *pwx = &wx;
2811 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2812 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2813 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2814 uint32_t i;
2815
2816 clear_msacsr_cause(env);
2817
2818 switch (df) {
2819 case DF_WORD:
2820 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2821 FMAXMIN_A(min, max, pwx->w[i], pws->w[i], pwt->w[i], 32);
2822 }
2823 break;
2824 case DF_DOUBLE:
2825 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2826 FMAXMIN_A(min, max, pwx->d[i], pws->d[i], pwt->d[i], 64);
2827 }
2828 break;
2829 default:
2830 assert(0);
2831 }
2832
2833 check_msacsr_cause(env);
2834
2835 msa_move_v(pwd, pwx);
2836}
2837
2838void helper_msa_fmax_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2839 uint32_t ws, uint32_t wt)
2840{
2841 wr_t wx, *pwx = &wx;
2842 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2843 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2844 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2845 uint32_t i;
2846
2847 clear_msacsr_cause(env);
2848
2849 switch (df) {
2850 case DF_WORD:
2851 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2852 if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32)) {
2853 MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pws->w[i], 32);
2854 } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32)) {
2855 MSA_FLOAT_MAXOP(pwx->w[i], max, pwt->w[i], pwt->w[i], 32);
2856 } else {
2857 MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pwt->w[i], 32);
2858 }
2859 }
2860 break;
2861 case DF_DOUBLE:
2862 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2863 if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64)) {
2864 MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pws->d[i], 64);
2865 } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64)) {
2866 MSA_FLOAT_MAXOP(pwx->d[i], max, pwt->d[i], pwt->d[i], 64);
2867 } else {
2868 MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pwt->d[i], 64);
2869 }
2870 }
2871 break;
2872 default:
2873 assert(0);
2874 }
2875
2876 check_msacsr_cause(env);
2877
2878 msa_move_v(pwd, pwx);
2879}
2880
2881void helper_msa_fmax_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2882 uint32_t ws, uint32_t wt)
2883{
2884 wr_t wx, *pwx = &wx;
2885 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2886 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2887 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2888 uint32_t i;
2889
2890 clear_msacsr_cause(env);
2891
2892 switch (df) {
2893 case DF_WORD:
2894 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2895 FMAXMIN_A(max, min, pwx->w[i], pws->w[i], pwt->w[i], 32);
2896 }
2897 break;
2898 case DF_DOUBLE:
2899 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2900 FMAXMIN_A(max, min, pwx->d[i], pws->d[i], pwt->d[i], 64);
2901 }
2902 break;
2903 default:
2904 assert(0);
2905 }
2906
2907 check_msacsr_cause(env);
2908
2909 msa_move_v(pwd, pwx);
2910}
3bdeb688
YK
2911
2912void helper_msa_fclass_df(CPUMIPSState *env, uint32_t df,
2913 uint32_t wd, uint32_t ws)
2914{
2915 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2916 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2917 if (df == DF_WORD) {
2918 pwd->w[0] = helper_float_class_s(pws->w[0]);
2919 pwd->w[1] = helper_float_class_s(pws->w[1]);
2920 pwd->w[2] = helper_float_class_s(pws->w[2]);
2921 pwd->w[3] = helper_float_class_s(pws->w[3]);
2922 } else {
2923 pwd->d[0] = helper_float_class_d(pws->d[0]);
2924 pwd->d[1] = helper_float_class_d(pws->d[1]);
2925 }
2926}
2927
2928#define MSA_FLOAT_UNOP0(DEST, OP, ARG, BITS) \
2929 do { \
1a4d5700 2930 float_status *status = &env->active_tc.msa_fp_status; \
3bdeb688
YK
2931 int c; \
2932 \
1a4d5700
MR
2933 set_float_exception_flags(0, status); \
2934 DEST = float ## BITS ## _ ## OP(ARG, status); \
3bdeb688
YK
2935 c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0); \
2936 \
2937 if (get_enabled_exceptions(env, c)) { \
2938 DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \
2939 } else if (float ## BITS ## _is_any_nan(ARG)) { \
2940 DEST = 0; \
2941 } \
2942 } while (0)
2943
2944void helper_msa_ftrunc_s_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2945 uint32_t ws)
2946{
2947 wr_t wx, *pwx = &wx;
2948 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2949 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2950 uint32_t i;
2951
2952 clear_msacsr_cause(env);
2953
2954 switch (df) {
2955 case DF_WORD:
2956 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2957 MSA_FLOAT_UNOP0(pwx->w[i], to_int32_round_to_zero, pws->w[i], 32);
2958 }
2959 break;
2960 case DF_DOUBLE:
2961 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2962 MSA_FLOAT_UNOP0(pwx->d[i], to_int64_round_to_zero, pws->d[i], 64);
2963 }
2964 break;
2965 default:
2966 assert(0);
2967 }
2968
2969 check_msacsr_cause(env);
2970
2971 msa_move_v(pwd, pwx);
2972}
2973
2974void helper_msa_ftrunc_u_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2975 uint32_t ws)
2976{
2977 wr_t wx, *pwx = &wx;
2978 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2979 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2980 uint32_t i;
2981
2982 clear_msacsr_cause(env);
2983
2984 switch (df) {
2985 case DF_WORD:
2986 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2987 MSA_FLOAT_UNOP0(pwx->w[i], to_uint32_round_to_zero, pws->w[i], 32);
2988 }
2989 break;
2990 case DF_DOUBLE:
2991 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2992 MSA_FLOAT_UNOP0(pwx->d[i], to_uint64_round_to_zero, pws->d[i], 64);
2993 }
2994 break;
2995 default:
2996 assert(0);
2997 }
2998
2999 check_msacsr_cause(env);
3000
3001 msa_move_v(pwd, pwx);
3002}
3003
3004void helper_msa_fsqrt_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3005 uint32_t ws)
3006{
3007 wr_t wx, *pwx = &wx;
3008 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3009 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3010 uint32_t i;
3011
3012 clear_msacsr_cause(env);
3013
3014 switch (df) {
3015 case DF_WORD:
3016 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3017 MSA_FLOAT_UNOP(pwx->w[i], sqrt, pws->w[i], 32);
3018 }
3019 break;
3020 case DF_DOUBLE:
3021 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3022 MSA_FLOAT_UNOP(pwx->d[i], sqrt, pws->d[i], 64);
3023 }
3024 break;
3025 default:
3026 assert(0);
3027 }
3028
3029 check_msacsr_cause(env);
3030
3031 msa_move_v(pwd, pwx);
3032}
3033
3034#define MSA_FLOAT_RECIPROCAL(DEST, ARG, BITS) \
3035 do { \
1a4d5700 3036 float_status *status = &env->active_tc.msa_fp_status; \
3bdeb688
YK
3037 int c; \
3038 \
1a4d5700
MR
3039 set_float_exception_flags(0, status); \
3040 DEST = float ## BITS ## _ ## div(FLOAT_ONE ## BITS, ARG, status); \
3bdeb688
YK
3041 c = update_msacsr(env, float ## BITS ## _is_infinity(ARG) || \
3042 float ## BITS ## _is_quiet_nan(DEST) ? \
3043 0 : RECIPROCAL_INEXACT, \
3044 IS_DENORMAL(DEST, BITS)); \
3045 \
3046 if (get_enabled_exceptions(env, c)) { \
3047 DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \
3048 } \
3049 } while (0)
3050
3051void helper_msa_frsqrt_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3052 uint32_t ws)
3053{
3054 wr_t wx, *pwx = &wx;
3055 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3056 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3057 uint32_t i;
3058
3059 clear_msacsr_cause(env);
3060
3061 switch (df) {
3062 case DF_WORD:
3063 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3064 MSA_FLOAT_RECIPROCAL(pwx->w[i], float32_sqrt(pws->w[i],
3065 &env->active_tc.msa_fp_status), 32);
3066 }
3067 break;
3068 case DF_DOUBLE:
3069 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3070 MSA_FLOAT_RECIPROCAL(pwx->d[i], float64_sqrt(pws->d[i],
3071 &env->active_tc.msa_fp_status), 64);
3072 }
3073 break;
3074 default:
3075 assert(0);
3076 }
3077
3078 check_msacsr_cause(env);
3079
3080 msa_move_v(pwd, pwx);
3081}
3082
3083void helper_msa_frcp_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3084 uint32_t ws)
3085{
3086 wr_t wx, *pwx = &wx;
3087 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3088 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3089 uint32_t i;
3090
3091 clear_msacsr_cause(env);
3092
3093 switch (df) {
3094 case DF_WORD:
3095 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3096 MSA_FLOAT_RECIPROCAL(pwx->w[i], pws->w[i], 32);
3097 }
3098 break;
3099 case DF_DOUBLE:
3100 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3101 MSA_FLOAT_RECIPROCAL(pwx->d[i], pws->d[i], 64);
3102 }
3103 break;
3104 default:
3105 assert(0);
3106 }
3107
3108 check_msacsr_cause(env);
3109
3110 msa_move_v(pwd, pwx);
3111}
3112
3113void helper_msa_frint_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3114 uint32_t ws)
3115{
3116 wr_t wx, *pwx = &wx;
3117 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3118 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3119 uint32_t i;
3120
3121 clear_msacsr_cause(env);
3122
3123 switch (df) {
3124 case DF_WORD:
3125 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3126 MSA_FLOAT_UNOP(pwx->w[i], round_to_int, pws->w[i], 32);
3127 }
3128 break;
3129 case DF_DOUBLE:
3130 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3131 MSA_FLOAT_UNOP(pwx->d[i], round_to_int, pws->d[i], 64);
3132 }
3133 break;
3134 default:
3135 assert(0);
3136 }
3137
3138 check_msacsr_cause(env);
3139
3140 msa_move_v(pwd, pwx);
3141}
3142
3143#define MSA_FLOAT_LOGB(DEST, ARG, BITS) \
3144 do { \
1a4d5700 3145 float_status *status = &env->active_tc.msa_fp_status; \
3bdeb688
YK
3146 int c; \
3147 \
1a4d5700
MR
3148 set_float_exception_flags(0, status); \
3149 set_float_rounding_mode(float_round_down, status); \
3150 DEST = float ## BITS ## _ ## log2(ARG, status); \
3151 DEST = float ## BITS ## _ ## round_to_int(DEST, status); \
3bdeb688
YK
3152 set_float_rounding_mode(ieee_rm[(env->active_tc.msacsr & \
3153 MSACSR_RM_MASK) >> MSACSR_RM], \
1a4d5700 3154 status); \
3bdeb688 3155 \
1a4d5700
MR
3156 set_float_exception_flags(get_float_exception_flags(status) & \
3157 (~float_flag_inexact), \
3158 status); \
3bdeb688
YK
3159 \
3160 c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
3161 \
3162 if (get_enabled_exceptions(env, c)) { \
3163 DEST = ((FLOAT_SNAN ## BITS >> 6) << 6) | c; \
3164 } \
3165 } while (0)
3166
3167void helper_msa_flog2_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3168 uint32_t ws)
3169{
3170 wr_t wx, *pwx = &wx;
3171 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3172 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3173 uint32_t i;
3174
3175 clear_msacsr_cause(env);
3176
3177 switch (df) {
3178 case DF_WORD:
3179 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3180 MSA_FLOAT_LOGB(pwx->w[i], pws->w[i], 32);
3181 }
3182 break;
3183 case DF_DOUBLE:
3184 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3185 MSA_FLOAT_LOGB(pwx->d[i], pws->d[i], 64);
3186 }
3187 break;
3188 default:
3189 assert(0);
3190 }
3191
3192 check_msacsr_cause(env);
3193
3194 msa_move_v(pwd, pwx);
3195}
3196
3197void helper_msa_fexupl_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3198 uint32_t ws)
3199{
3200 wr_t wx, *pwx = &wx;
3201 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3202 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3203 uint32_t i;
3204
3205 switch (df) {
3206 case DF_WORD:
3207 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3208 /* Half precision floats come in two formats: standard
3209 IEEE and "ARM" format. The latter gains extra exponent
3210 range by omitting the NaN/Inf encodings. */
3211 flag ieee = 1;
3212
3213 MSA_FLOAT_BINOP(pwx->w[i], from_float16, Lh(pws, i), ieee, 32);
3214 }
3215 break;
3216 case DF_DOUBLE:
3217 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3218 MSA_FLOAT_UNOP(pwx->d[i], from_float32, Lw(pws, i), 64);
3219 }
3220 break;
3221 default:
3222 assert(0);
3223 }
3224
3225 check_msacsr_cause(env);
3226 msa_move_v(pwd, pwx);
3227}
3228
3229void helper_msa_fexupr_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3230 uint32_t ws)
3231{
3232 wr_t wx, *pwx = &wx;
3233 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3234 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3235 uint32_t i;
3236
3237 switch (df) {
3238 case DF_WORD:
3239 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3240 /* Half precision floats come in two formats: standard
3241 IEEE and "ARM" format. The latter gains extra exponent
3242 range by omitting the NaN/Inf encodings. */
3243 flag ieee = 1;
3244
3245 MSA_FLOAT_BINOP(pwx->w[i], from_float16, Rh(pws, i), ieee, 32);
3246 }
3247 break;
3248 case DF_DOUBLE:
3249 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3250 MSA_FLOAT_UNOP(pwx->d[i], from_float32, Rw(pws, i), 64);
3251 }
3252 break;
3253 default:
3254 assert(0);
3255 }
3256
3257 check_msacsr_cause(env);
3258 msa_move_v(pwd, pwx);
3259}
3260
3261void helper_msa_ffql_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3262 uint32_t ws)
3263{
3264 wr_t wx, *pwx = &wx;
3265 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3266 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3267 uint32_t i;
3268
3269 switch (df) {
3270 case DF_WORD:
3271 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3272 MSA_FLOAT_UNOP(pwx->w[i], from_q16, Lh(pws, i), 32);
3273 }
3274 break;
3275 case DF_DOUBLE:
3276 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3277 MSA_FLOAT_UNOP(pwx->d[i], from_q32, Lw(pws, i), 64);
3278 }
3279 break;
3280 default:
3281 assert(0);
3282 }
3283
3284 msa_move_v(pwd, pwx);
3285}
3286
3287void helper_msa_ffqr_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3288 uint32_t ws)
3289{
3290 wr_t wx, *pwx = &wx;
3291 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3292 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3293 uint32_t i;
3294
3295 switch (df) {
3296 case DF_WORD:
3297 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3298 MSA_FLOAT_UNOP(pwx->w[i], from_q16, Rh(pws, i), 32);
3299 }
3300 break;
3301 case DF_DOUBLE:
3302 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3303 MSA_FLOAT_UNOP(pwx->d[i], from_q32, Rw(pws, i), 64);
3304 }
3305 break;
3306 default:
3307 assert(0);
3308 }
3309
3310 msa_move_v(pwd, pwx);
3311}
3312
3313void helper_msa_ftint_s_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3314 uint32_t ws)
3315{
3316 wr_t wx, *pwx = &wx;
3317 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3318 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3319 uint32_t i;
3320
3321 clear_msacsr_cause(env);
3322
3323 switch (df) {
3324 case DF_WORD:
3325 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3326 MSA_FLOAT_UNOP0(pwx->w[i], to_int32, pws->w[i], 32);
3327 }
3328 break;
3329 case DF_DOUBLE:
3330 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3331 MSA_FLOAT_UNOP0(pwx->d[i], to_int64, pws->d[i], 64);
3332 }
3333 break;
3334 default:
3335 assert(0);
3336 }
3337
3338 check_msacsr_cause(env);
3339
3340 msa_move_v(pwd, pwx);
3341}
3342
3343void helper_msa_ftint_u_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3344 uint32_t ws)
3345{
3346 wr_t wx, *pwx = &wx;
3347 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3348 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3349 uint32_t i;
3350
3351 clear_msacsr_cause(env);
3352
3353 switch (df) {
3354 case DF_WORD:
3355 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3356 MSA_FLOAT_UNOP0(pwx->w[i], to_uint32, pws->w[i], 32);
3357 }
3358 break;
3359 case DF_DOUBLE:
3360 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3361 MSA_FLOAT_UNOP0(pwx->d[i], to_uint64, pws->d[i], 64);
3362 }
3363 break;
3364 default:
3365 assert(0);
3366 }
3367
3368 check_msacsr_cause(env);
3369
3370 msa_move_v(pwd, pwx);
3371}
3372
3373#define float32_from_int32 int32_to_float32
3374#define float32_from_uint32 uint32_to_float32
3375
3376#define float64_from_int64 int64_to_float64
3377#define float64_from_uint64 uint64_to_float64
3378
3379void helper_msa_ffint_s_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3380 uint32_t ws)
3381{
3382 wr_t wx, *pwx = &wx;
3383 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3384 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3385 uint32_t i;
3386
3387 clear_msacsr_cause(env);
3388
3389 switch (df) {
3390 case DF_WORD:
3391 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3392 MSA_FLOAT_UNOP(pwx->w[i], from_int32, pws->w[i], 32);
3393 }
3394 break;
3395 case DF_DOUBLE:
3396 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3397 MSA_FLOAT_UNOP(pwx->d[i], from_int64, pws->d[i], 64);
3398 }
3399 break;
3400 default:
3401 assert(0);
3402 }
3403
3404 check_msacsr_cause(env);
3405
3406 msa_move_v(pwd, pwx);
3407}
3408
3409void helper_msa_ffint_u_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3410 uint32_t ws)
3411{
3412 wr_t wx, *pwx = &wx;
3413 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3414 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3415 uint32_t i;
3416
3417 clear_msacsr_cause(env);
3418
3419 switch (df) {
3420 case DF_WORD:
3421 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3422 MSA_FLOAT_UNOP(pwx->w[i], from_uint32, pws->w[i], 32);
3423 }
3424 break;
3425 case DF_DOUBLE:
3426 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3427 MSA_FLOAT_UNOP(pwx->d[i], from_uint64, pws->d[i], 64);
3428 }
3429 break;
3430 default:
3431 assert(0);
3432 }
3433
3434 check_msacsr_cause(env);
3435
3436 msa_move_v(pwd, pwx);
3437}