]> git.proxmox.com Git - mirror_qemu.git/blame - target-ppc/mem_helper.c
vhost-user-test: use tmpfs by default
[mirror_qemu.git] / target-ppc / mem_helper.c
CommitLineData
9a64fbe4 1/*
2f5a189c 2 * PowerPC memory access emulation helpers for QEMU.
5fafdf24 3 *
76a66253 4 * Copyright (c) 2003-2007 Jocelyn Mayer
9a64fbe4
FB
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
9a64fbe4 18 */
3e457172 19#include "cpu.h"
1de7afc9 20#include "qemu/host-utils.h"
2ef6175a 21#include "exec/helper-proto.h"
9a64fbe4 22
0411a972 23#include "helper_regs.h"
f08b6170 24#include "exec/cpu_ldst.h"
3e457172 25
fdabc366 26//#define DEBUG_OP
d12d51d5 27
e22c357b
DK
28static inline bool needs_byteswap(const CPUPPCState *env)
29{
30#if defined(TARGET_WORDS_BIGENDIAN)
31 return msr_le;
32#else
33 return !msr_le;
34#endif
35}
36
ff4a62cd
AJ
37/*****************************************************************************/
38/* Memory load and stores */
39
2f5a189c
BS
40static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
41 target_long arg)
ff4a62cd
AJ
42{
43#if defined(TARGET_PPC64)
e42a61f1 44 if (!msr_is_64bit(env, env->msr)) {
b327c654
BS
45 return (uint32_t)(addr + arg);
46 } else
ff4a62cd 47#endif
b327c654
BS
48 {
49 return addr + arg;
50 }
ff4a62cd
AJ
51}
52
2f5a189c 53void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
ff4a62cd 54{
76db3ba4 55 for (; reg < 32; reg++) {
e22c357b 56 if (needs_byteswap(env)) {
2f5a189c 57 env->gpr[reg] = bswap32(cpu_ldl_data(env, addr));
b327c654 58 } else {
2f5a189c 59 env->gpr[reg] = cpu_ldl_data(env, addr);
b327c654 60 }
2f5a189c 61 addr = addr_add(env, addr, 4);
ff4a62cd
AJ
62 }
63}
64
2f5a189c 65void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
ff4a62cd 66{
76db3ba4 67 for (; reg < 32; reg++) {
e22c357b 68 if (needs_byteswap(env)) {
2f5a189c 69 cpu_stl_data(env, addr, bswap32((uint32_t)env->gpr[reg]));
b327c654 70 } else {
2f5a189c 71 cpu_stl_data(env, addr, (uint32_t)env->gpr[reg]);
b327c654 72 }
2f5a189c 73 addr = addr_add(env, addr, 4);
ff4a62cd
AJ
74 }
75}
76
2f5a189c 77void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
dfbc799d
AJ
78{
79 int sh;
b327c654 80
76db3ba4 81 for (; nb > 3; nb -= 4) {
2f5a189c 82 env->gpr[reg] = cpu_ldl_data(env, addr);
dfbc799d 83 reg = (reg + 1) % 32;
2f5a189c 84 addr = addr_add(env, addr, 4);
dfbc799d
AJ
85 }
86 if (unlikely(nb > 0)) {
87 env->gpr[reg] = 0;
76db3ba4 88 for (sh = 24; nb > 0; nb--, sh -= 8) {
2f5a189c
BS
89 env->gpr[reg] |= cpu_ldub_data(env, addr) << sh;
90 addr = addr_add(env, addr, 1);
dfbc799d
AJ
91 }
92 }
93}
94/* PPC32 specification says we must generate an exception if
95 * rA is in the range of registers to be loaded.
96 * In an other hand, IBM says this is valid, but rA won't be loaded.
97 * For now, I'll follow the spec...
98 */
2f5a189c
BS
99void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
100 uint32_t ra, uint32_t rb)
dfbc799d
AJ
101{
102 if (likely(xer_bc != 0)) {
103 if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) ||
104 (reg < rb && (reg + xer_bc) > rb))) {
e5f17ac6 105 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
e06fcd75
AJ
106 POWERPC_EXCP_INVAL |
107 POWERPC_EXCP_INVAL_LSWX);
dfbc799d 108 } else {
2f5a189c 109 helper_lsw(env, addr, xer_bc, reg);
dfbc799d
AJ
110 }
111 }
112}
113
2f5a189c
BS
114void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
115 uint32_t reg)
dfbc799d
AJ
116{
117 int sh;
b327c654 118
76db3ba4 119 for (; nb > 3; nb -= 4) {
2f5a189c 120 cpu_stl_data(env, addr, env->gpr[reg]);
dfbc799d 121 reg = (reg + 1) % 32;
2f5a189c 122 addr = addr_add(env, addr, 4);
dfbc799d
AJ
123 }
124 if (unlikely(nb > 0)) {
a16b45e7 125 for (sh = 24; nb > 0; nb--, sh -= 8) {
2f5a189c
BS
126 cpu_stb_data(env, addr, (env->gpr[reg] >> sh) & 0xFF);
127 addr = addr_add(env, addr, 1);
a16b45e7 128 }
dfbc799d
AJ
129 }
130}
131
2f5a189c 132static void do_dcbz(CPUPPCState *env, target_ulong addr, int dcache_line_size)
799a8c8d 133{
799a8c8d 134 int i;
b327c654
BS
135
136 addr &= ~(dcache_line_size - 1);
137 for (i = 0; i < dcache_line_size; i += 4) {
2f5a189c 138 cpu_stl_data(env, addr + i, 0);
799a8c8d 139 }
b327c654 140 if (env->reserve_addr == addr) {
18b21a2f 141 env->reserve_addr = (target_ulong)-1ULL;
b327c654 142 }
799a8c8d
AJ
143}
144
8e33944f 145void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t is_dcbzl)
799a8c8d 146{
8e33944f 147 int dcbz_size = env->dcache_line_size;
799a8c8d 148
414f5d14 149#if defined(TARGET_PPC64)
8e33944f
AG
150 if (!is_dcbzl &&
151 (env->excp_model == POWERPC_EXCP_970) &&
152 ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
153 dcbz_size = 32;
b327c654 154 }
8e33944f
AG
155#endif
156
157 /* XXX add e500mc support */
158
159 do_dcbz(env, addr, dcbz_size);
799a8c8d
AJ
160}
161
2f5a189c 162void helper_icbi(CPUPPCState *env, target_ulong addr)
37d269df 163{
76db3ba4 164 addr &= ~(env->dcache_line_size - 1);
37d269df
AJ
165 /* Invalidate one cache line :
166 * PowerPC specification says this is to be treated like a load
167 * (not a fetch) by the MMU. To be sure it will be so,
168 * do the load "by hand".
169 */
2f5a189c 170 cpu_ldl_data(env, addr);
37d269df
AJ
171}
172
b327c654 173/* XXX: to be tested */
2f5a189c
BS
174target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
175 uint32_t ra, uint32_t rb)
bdb4b689
AJ
176{
177 int i, c, d;
b327c654 178
bdb4b689
AJ
179 d = 24;
180 for (i = 0; i < xer_bc; i++) {
2f5a189c
BS
181 c = cpu_ldub_data(env, addr);
182 addr = addr_add(env, addr, 1);
bdb4b689
AJ
183 /* ra (if not 0) and rb are never modified */
184 if (likely(reg != rb && (ra == 0 || reg != ra))) {
185 env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
186 }
b327c654 187 if (unlikely(c == xer_cmp)) {
bdb4b689 188 break;
b327c654 189 }
bdb4b689
AJ
190 if (likely(d != 0)) {
191 d -= 8;
192 } else {
193 d = 24;
194 reg++;
195 reg = reg & 0x1F;
196 }
197 }
198 return i;
199}
200
d6a46fe8
AJ
201/*****************************************************************************/
202/* Altivec extension helpers */
e2542fe2 203#if defined(HOST_WORDS_BIGENDIAN)
d6a46fe8
AJ
204#define HI_IDX 0
205#define LO_IDX 1
206#else
207#define HI_IDX 1
208#define LO_IDX 0
209#endif
210
e22c357b
DK
211/* We use msr_le to determine index ordering in a vector. However,
212 byteswapping is not simply controlled by msr_le. We also need to take
213 into account endianness of the target. This is done for the little-endian
214 PPC64 user-mode target. */
215
cbfb6ae9 216#define LVE(name, access, swap, element) \
2f5a189c
BS
217 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
218 target_ulong addr) \
cbfb6ae9
AJ
219 { \
220 size_t n_elems = ARRAY_SIZE(r->element); \
b327c654 221 int adjust = HI_IDX*(n_elems - 1); \
cbfb6ae9
AJ
222 int sh = sizeof(r->element[0]) >> 1; \
223 int index = (addr & 0xf) >> sh; \
b327c654 224 if (msr_le) { \
bbfb6f13 225 index = n_elems - index - 1; \
e22c357b
DK
226 } \
227 \
228 if (needs_byteswap(env)) { \
b327c654 229 r->element[LO_IDX ? index : (adjust - index)] = \
2f5a189c 230 swap(access(env, addr)); \
b327c654
BS
231 } else { \
232 r->element[LO_IDX ? index : (adjust - index)] = \
2f5a189c 233 access(env, addr); \
b327c654 234 } \
cbfb6ae9
AJ
235 }
236#define I(x) (x)
2f5a189c
BS
237LVE(lvebx, cpu_ldub_data, I, u8)
238LVE(lvehx, cpu_lduw_data, bswap16, u16)
239LVE(lvewx, cpu_ldl_data, bswap32, u32)
cbfb6ae9
AJ
240#undef I
241#undef LVE
242
b327c654 243#define STVE(name, access, swap, element) \
2f5a189c
BS
244 void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
245 target_ulong addr) \
b327c654
BS
246 { \
247 size_t n_elems = ARRAY_SIZE(r->element); \
248 int adjust = HI_IDX * (n_elems - 1); \
249 int sh = sizeof(r->element[0]) >> 1; \
250 int index = (addr & 0xf) >> sh; \
b327c654 251 if (msr_le) { \
bbfb6f13 252 index = n_elems - index - 1; \
e22c357b
DK
253 } \
254 \
255 if (needs_byteswap(env)) { \
2f5a189c
BS
256 access(env, addr, swap(r->element[LO_IDX ? index : \
257 (adjust - index)])); \
cbfb6ae9 258 } else { \
2f5a189c
BS
259 access(env, addr, r->element[LO_IDX ? index : \
260 (adjust - index)]); \
cbfb6ae9
AJ
261 } \
262 }
263#define I(x) (x)
2f5a189c
BS
264STVE(stvebx, cpu_stb_data, I, u8)
265STVE(stvehx, cpu_stw_data, bswap16, u16)
266STVE(stvewx, cpu_stl_data, bswap32, u32)
cbfb6ae9
AJ
267#undef I
268#undef LVE
269
d6a46fe8
AJ
270#undef HI_IDX
271#undef LO_IDX
0ff93d11
TM
272
273void helper_tbegin(CPUPPCState *env)
274{
275 /* As a degenerate implementation, always fail tbegin. The reason
276 * given is "Nesting overflow". The "persistent" bit is set,
277 * providing a hint to the error handler to not retry. The TFIAR
278 * captures the address of the failure, which is this tbegin
279 * instruction. Instruction execution will continue with the
280 * next instruction in memory, which is precisely what we want.
281 */
282
283 env->spr[SPR_TEXASR] =
284 (1ULL << TEXASR_FAILURE_PERSISTENT) |
285 (1ULL << TEXASR_NESTING_OVERFLOW) |
286 (msr_hv << TEXASR_PRIVILEGE_HV) |
287 (msr_pr << TEXASR_PRIVILEGE_PR) |
288 (1ULL << TEXASR_FAILURE_SUMMARY) |
289 (1ULL << TEXASR_TFIAR_EXACT);
290 env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
291 env->spr[SPR_TFHAR] = env->nip + 4;
292 env->crf[0] = 0xB; /* 0b1010 = transaction failure */
293}