]> git.proxmox.com Git - mirror_qemu.git/blame - target-sparc/ldst_helper.c
Merge remote-tracking branch 'remotes/mcayland/tags/qemu-sparc-signed' into staging
[mirror_qemu.git] / target-sparc / ldst_helper.c
CommitLineData
fafd8bce
BS
1/*
2 * Helpers for loads and stores
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "cpu.h"
2ef6175a 21#include "exec/helper-proto.h"
f08b6170 22#include "exec/cpu_ldst.h"
fafd8bce 23
fafd8bce
BS
24//#define DEBUG_MMU
25//#define DEBUG_MXCC
26//#define DEBUG_UNALIGNED
27//#define DEBUG_UNASSIGNED
28//#define DEBUG_ASI
29//#define DEBUG_CACHE_CONTROL
30
31#ifdef DEBUG_MMU
32#define DPRINTF_MMU(fmt, ...) \
33 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
34#else
35#define DPRINTF_MMU(fmt, ...) do {} while (0)
36#endif
37
38#ifdef DEBUG_MXCC
39#define DPRINTF_MXCC(fmt, ...) \
40 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
41#else
42#define DPRINTF_MXCC(fmt, ...) do {} while (0)
43#endif
44
45#ifdef DEBUG_ASI
46#define DPRINTF_ASI(fmt, ...) \
47 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
48#endif
49
50#ifdef DEBUG_CACHE_CONTROL
51#define DPRINTF_CACHE_CONTROL(fmt, ...) \
52 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
53#else
54#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
55#endif
56
57#ifdef TARGET_SPARC64
58#ifndef TARGET_ABI32
59#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
60#else
61#define AM_CHECK(env1) (1)
62#endif
63#endif
64
fafd8bce
BS
65#define QT0 (env->qt0)
66#define QT1 (env->qt1)
67
fafd8bce
BS
68#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
69/* Calculates TSB pointer value for fault page size 8k or 64k */
70static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
71 uint64_t tag_access_register,
72 int page_size)
73{
74 uint64_t tsb_base = tsb_register & ~0x1fffULL;
75 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
76 int tsb_size = tsb_register & 0xf;
77
78 /* discard lower 13 bits which hold tag access context */
79 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
80
81 /* now reorder bits */
82 uint64_t tsb_base_mask = ~0x1fffULL;
83 uint64_t va = tag_access_va;
84
85 /* move va bits to correct position */
86 if (page_size == 8*1024) {
87 va >>= 9;
88 } else if (page_size == 64*1024) {
89 va >>= 12;
90 }
91
92 if (tsb_size) {
93 tsb_base_mask <<= tsb_size;
94 }
95
96 /* calculate tsb_base mask and adjust va if split is in use */
97 if (tsb_split) {
98 if (page_size == 8*1024) {
99 va &= ~(1ULL << (13 + tsb_size));
100 } else if (page_size == 64*1024) {
101 va |= (1ULL << (13 + tsb_size));
102 }
103 tsb_base_mask <<= 1;
104 }
105
106 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
107}
108
109/* Calculates tag target register value by reordering bits
110 in tag access register */
111static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
112{
113 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
114}
115
116static void replace_tlb_entry(SparcTLBEntry *tlb,
117 uint64_t tlb_tag, uint64_t tlb_tte,
c5f9864e 118 CPUSPARCState *env1)
fafd8bce
BS
119{
120 target_ulong mask, size, va, offset;
121
122 /* flush page range if translation is valid */
123 if (TTE_IS_VALID(tlb->tte)) {
31b030d4 124 CPUState *cs = CPU(sparc_env_get_cpu(env1));
fafd8bce
BS
125
126 mask = 0xffffffffffffe000ULL;
127 mask <<= 3 * ((tlb->tte >> 61) & 3);
128 size = ~mask + 1;
129
130 va = tlb->tag & mask;
131
132 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
31b030d4 133 tlb_flush_page(cs, va + offset);
fafd8bce
BS
134 }
135 }
136
137 tlb->tag = tlb_tag;
138 tlb->tte = tlb_tte;
139}
140
141static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
c5f9864e 142 const char *strmmu, CPUSPARCState *env1)
fafd8bce
BS
143{
144 unsigned int i;
145 target_ulong mask;
146 uint64_t context;
147
148 int is_demap_context = (demap_addr >> 6) & 1;
149
150 /* demap context */
151 switch ((demap_addr >> 4) & 3) {
152 case 0: /* primary */
153 context = env1->dmmu.mmu_primary_context;
154 break;
155 case 1: /* secondary */
156 context = env1->dmmu.mmu_secondary_context;
157 break;
158 case 2: /* nucleus */
159 context = 0;
160 break;
161 case 3: /* reserved */
162 default:
163 return;
164 }
165
166 for (i = 0; i < 64; i++) {
167 if (TTE_IS_VALID(tlb[i].tte)) {
168
169 if (is_demap_context) {
170 /* will remove non-global entries matching context value */
171 if (TTE_IS_GLOBAL(tlb[i].tte) ||
172 !tlb_compare_context(&tlb[i], context)) {
173 continue;
174 }
175 } else {
176 /* demap page
177 will remove any entry matching VA */
178 mask = 0xffffffffffffe000ULL;
179 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
180
181 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
182 continue;
183 }
184
185 /* entry should be global or matching context value */
186 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
187 !tlb_compare_context(&tlb[i], context)) {
188 continue;
189 }
190 }
191
192 replace_tlb_entry(&tlb[i], 0, 0, env1);
193#ifdef DEBUG_MMU
194 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
195 dump_mmu(stdout, fprintf, env1);
196#endif
197 }
198 }
199}
200
201static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
202 uint64_t tlb_tag, uint64_t tlb_tte,
c5f9864e 203 const char *strmmu, CPUSPARCState *env1)
fafd8bce
BS
204{
205 unsigned int i, replace_used;
206
207 /* Try replacing invalid entry */
208 for (i = 0; i < 64; i++) {
209 if (!TTE_IS_VALID(tlb[i].tte)) {
210 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
211#ifdef DEBUG_MMU
212 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
213 dump_mmu(stdout, fprintf, env1);
214#endif
215 return;
216 }
217 }
218
219 /* All entries are valid, try replacing unlocked entry */
220
221 for (replace_used = 0; replace_used < 2; ++replace_used) {
222
223 /* Used entries are not replaced on first pass */
224
225 for (i = 0; i < 64; i++) {
226 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
227
228 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
229#ifdef DEBUG_MMU
230 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
231 strmmu, (replace_used ? "used" : "unused"), i);
232 dump_mmu(stdout, fprintf, env1);
233#endif
234 return;
235 }
236 }
237
238 /* Now reset used bit and search for unused entries again */
239
240 for (i = 0; i < 64; i++) {
241 TTE_SET_UNUSED(tlb[i].tte);
242 }
243 }
244
245#ifdef DEBUG_MMU
246 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
247#endif
248 /* error state? */
249}
250
251#endif
252
e60538c7 253#if defined(TARGET_SPARC64) || defined(CONFIG_USER_ONLY)
c5f9864e 254static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
fafd8bce
BS
255{
256#ifdef TARGET_SPARC64
257 if (AM_CHECK(env1)) {
258 addr &= 0xffffffffULL;
259 }
260#endif
261 return addr;
262}
e60538c7 263#endif
fafd8bce 264
69694625 265#ifdef TARGET_SPARC64
fafd8bce
BS
266/* returns true if access using this ASI is to have address translated by MMU
267 otherwise access is to raw physical address */
69694625 268/* TODO: check sparc32 bits */
fafd8bce
BS
269static inline int is_translating_asi(int asi)
270{
fafd8bce
BS
271 /* Ultrasparc IIi translating asi
272 - note this list is defined by cpu implementation
273 */
274 switch (asi) {
275 case 0x04 ... 0x11:
276 case 0x16 ... 0x19:
277 case 0x1E ... 0x1F:
278 case 0x24 ... 0x2C:
279 case 0x70 ... 0x73:
280 case 0x78 ... 0x79:
281 case 0x80 ... 0xFF:
282 return 1;
283
284 default:
285 return 0;
286 }
fafd8bce
BS
287}
288
fe8d8f0f 289static inline target_ulong asi_address_mask(CPUSPARCState *env,
fafd8bce
BS
290 int asi, target_ulong addr)
291{
292 if (is_translating_asi(asi)) {
293 return address_mask(env, addr);
294 } else {
295 return addr;
296 }
297}
e60538c7 298#endif
fafd8bce 299
fe8d8f0f 300void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
fafd8bce
BS
301{
302 if (addr & align) {
303#ifdef DEBUG_UNALIGNED
304 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
305 "\n", addr, env->pc);
306#endif
307 helper_raise_exception(env, TT_UNALIGNED);
308 }
309}
310
311#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
312 defined(DEBUG_MXCC)
c5f9864e 313static void dump_mxcc(CPUSPARCState *env)
fafd8bce
BS
314{
315 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
316 "\n",
317 env->mxccdata[0], env->mxccdata[1],
318 env->mxccdata[2], env->mxccdata[3]);
319 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
320 "\n"
321 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
322 "\n",
323 env->mxccregs[0], env->mxccregs[1],
324 env->mxccregs[2], env->mxccregs[3],
325 env->mxccregs[4], env->mxccregs[5],
326 env->mxccregs[6], env->mxccregs[7]);
327}
328#endif
329
330#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
331 && defined(DEBUG_ASI)
332static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
333 uint64_t r1)
334{
335 switch (size) {
336 case 1:
337 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
338 addr, asi, r1 & 0xff);
339 break;
340 case 2:
341 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
342 addr, asi, r1 & 0xffff);
343 break;
344 case 4:
345 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
346 addr, asi, r1 & 0xffffffff);
347 break;
348 case 8:
349 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
350 addr, asi, r1);
351 break;
352 }
353}
354#endif
355
356#ifndef TARGET_SPARC64
357#ifndef CONFIG_USER_ONLY
358
359
360/* Leon3 cache control */
361
fe8d8f0f
BS
362static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
363 uint64_t val, int size)
fafd8bce
BS
364{
365 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
366 addr, val, size);
367
368 if (size != 4) {
369 DPRINTF_CACHE_CONTROL("32bits only\n");
370 return;
371 }
372
373 switch (addr) {
374 case 0x00: /* Cache control */
375
376 /* These values must always be read as zeros */
377 val &= ~CACHE_CTRL_FD;
378 val &= ~CACHE_CTRL_FI;
379 val &= ~CACHE_CTRL_IB;
380 val &= ~CACHE_CTRL_IP;
381 val &= ~CACHE_CTRL_DP;
382
383 env->cache_control = val;
384 break;
385 case 0x04: /* Instruction cache configuration */
386 case 0x08: /* Data cache configuration */
387 /* Read Only */
388 break;
389 default:
390 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
391 break;
392 };
393}
394
fe8d8f0f
BS
395static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
396 int size)
fafd8bce
BS
397{
398 uint64_t ret = 0;
399
400 if (size != 4) {
401 DPRINTF_CACHE_CONTROL("32bits only\n");
402 return 0;
403 }
404
405 switch (addr) {
406 case 0x00: /* Cache control */
407 ret = env->cache_control;
408 break;
409
410 /* Configuration registers are read and only always keep those
411 predefined values */
412
413 case 0x04: /* Instruction cache configuration */
414 ret = 0x10220000;
415 break;
416 case 0x08: /* Data cache configuration */
417 ret = 0x18220000;
418 break;
419 default:
420 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
421 break;
422 };
423 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
424 addr, ret, size);
425 return ret;
426}
427
fe8d8f0f
BS
428uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
429 int sign)
fafd8bce 430{
2fad1112 431 CPUState *cs = CPU(sparc_env_get_cpu(env));
fafd8bce
BS
432 uint64_t ret = 0;
433#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
434 uint32_t last_addr = addr;
435#endif
436
fe8d8f0f 437 helper_check_align(env, addr, size - 1);
fafd8bce
BS
438 switch (asi) {
439 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
440 switch (addr) {
441 case 0x00: /* Leon3 Cache Control */
442 case 0x08: /* Leon3 Instruction Cache config */
443 case 0x0C: /* Leon3 Date Cache config */
444 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
fe8d8f0f 445 ret = leon3_cache_control_ld(env, addr, size);
fafd8bce
BS
446 }
447 break;
448 case 0x01c00a00: /* MXCC control register */
449 if (size == 8) {
450 ret = env->mxccregs[3];
451 } else {
71547a3b
BS
452 qemu_log_mask(LOG_UNIMP,
453 "%08x: unimplemented access size: %d\n", addr,
454 size);
fafd8bce
BS
455 }
456 break;
457 case 0x01c00a04: /* MXCC control register */
458 if (size == 4) {
459 ret = env->mxccregs[3];
460 } else {
71547a3b
BS
461 qemu_log_mask(LOG_UNIMP,
462 "%08x: unimplemented access size: %d\n", addr,
463 size);
fafd8bce
BS
464 }
465 break;
466 case 0x01c00c00: /* Module reset register */
467 if (size == 8) {
468 ret = env->mxccregs[5];
469 /* should we do something here? */
470 } else {
71547a3b
BS
471 qemu_log_mask(LOG_UNIMP,
472 "%08x: unimplemented access size: %d\n", addr,
473 size);
fafd8bce
BS
474 }
475 break;
476 case 0x01c00f00: /* MBus port address register */
477 if (size == 8) {
478 ret = env->mxccregs[7];
479 } else {
71547a3b
BS
480 qemu_log_mask(LOG_UNIMP,
481 "%08x: unimplemented access size: %d\n", addr,
482 size);
fafd8bce
BS
483 }
484 break;
485 default:
71547a3b
BS
486 qemu_log_mask(LOG_UNIMP,
487 "%08x: unimplemented address, size: %d\n", addr,
488 size);
fafd8bce
BS
489 break;
490 }
491 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
492 "addr = %08x -> ret = %" PRIx64 ","
493 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
494#ifdef DEBUG_MXCC
495 dump_mxcc(env);
496#endif
497 break;
498 case 3: /* MMU probe */
7a0a9c2c 499 case 0x18: /* LEON3 MMU probe */
fafd8bce
BS
500 {
501 int mmulev;
502
503 mmulev = (addr >> 8) & 15;
504 if (mmulev > 4) {
505 ret = 0;
506 } else {
507 ret = mmu_probe(env, addr, mmulev);
508 }
509 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
510 addr, mmulev, ret);
511 }
512 break;
513 case 4: /* read MMU regs */
7a0a9c2c 514 case 0x19: /* LEON3 read MMU regs */
fafd8bce
BS
515 {
516 int reg = (addr >> 8) & 0x1f;
517
518 ret = env->mmuregs[reg];
519 if (reg == 3) { /* Fault status cleared on read */
520 env->mmuregs[3] = 0;
521 } else if (reg == 0x13) { /* Fault status read */
522 ret = env->mmuregs[3];
523 } else if (reg == 0x14) { /* Fault address read */
524 ret = env->mmuregs[4];
525 }
526 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
527 }
528 break;
529 case 5: /* Turbosparc ITLB Diagnostic */
530 case 6: /* Turbosparc DTLB Diagnostic */
531 case 7: /* Turbosparc IOTLB Diagnostic */
532 break;
533 case 9: /* Supervisor code access */
534 switch (size) {
535 case 1:
0184e266 536 ret = cpu_ldub_code(env, addr);
fafd8bce
BS
537 break;
538 case 2:
0184e266 539 ret = cpu_lduw_code(env, addr);
fafd8bce
BS
540 break;
541 default:
542 case 4:
0184e266 543 ret = cpu_ldl_code(env, addr);
fafd8bce
BS
544 break;
545 case 8:
0184e266 546 ret = cpu_ldq_code(env, addr);
fafd8bce
BS
547 break;
548 }
549 break;
550 case 0xa: /* User data access */
551 switch (size) {
552 case 1:
fe8d8f0f 553 ret = cpu_ldub_user(env, addr);
fafd8bce
BS
554 break;
555 case 2:
fe8d8f0f 556 ret = cpu_lduw_user(env, addr);
fafd8bce
BS
557 break;
558 default:
559 case 4:
fe8d8f0f 560 ret = cpu_ldl_user(env, addr);
fafd8bce
BS
561 break;
562 case 8:
fe8d8f0f 563 ret = cpu_ldq_user(env, addr);
fafd8bce
BS
564 break;
565 }
566 break;
567 case 0xb: /* Supervisor data access */
16c358e9 568 case 0x80:
fafd8bce
BS
569 switch (size) {
570 case 1:
fe8d8f0f 571 ret = cpu_ldub_kernel(env, addr);
fafd8bce
BS
572 break;
573 case 2:
fe8d8f0f 574 ret = cpu_lduw_kernel(env, addr);
fafd8bce
BS
575 break;
576 default:
577 case 4:
fe8d8f0f 578 ret = cpu_ldl_kernel(env, addr);
fafd8bce
BS
579 break;
580 case 8:
fe8d8f0f 581 ret = cpu_ldq_kernel(env, addr);
fafd8bce
BS
582 break;
583 }
584 break;
585 case 0xc: /* I-cache tag */
586 case 0xd: /* I-cache data */
587 case 0xe: /* D-cache tag */
588 case 0xf: /* D-cache data */
589 break;
590 case 0x20: /* MMU passthrough */
7a0a9c2c 591 case 0x1c: /* LEON MMU passthrough */
fafd8bce
BS
592 switch (size) {
593 case 1:
2c17449b 594 ret = ldub_phys(cs->as, addr);
fafd8bce
BS
595 break;
596 case 2:
41701aa4 597 ret = lduw_phys(cs->as, addr);
fafd8bce
BS
598 break;
599 default:
600 case 4:
fdfba1a2 601 ret = ldl_phys(cs->as, addr);
fafd8bce
BS
602 break;
603 case 8:
2c17449b 604 ret = ldq_phys(cs->as, addr);
fafd8bce
BS
605 break;
606 }
607 break;
608 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
609 switch (size) {
610 case 1:
2c17449b 611 ret = ldub_phys(cs->as, (hwaddr)addr
a8170e5e 612 | ((hwaddr)(asi & 0xf) << 32));
fafd8bce
BS
613 break;
614 case 2:
41701aa4 615 ret = lduw_phys(cs->as, (hwaddr)addr
a8170e5e 616 | ((hwaddr)(asi & 0xf) << 32));
fafd8bce
BS
617 break;
618 default:
619 case 4:
fdfba1a2 620 ret = ldl_phys(cs->as, (hwaddr)addr
a8170e5e 621 | ((hwaddr)(asi & 0xf) << 32));
fafd8bce
BS
622 break;
623 case 8:
2c17449b 624 ret = ldq_phys(cs->as, (hwaddr)addr
a8170e5e 625 | ((hwaddr)(asi & 0xf) << 32));
fafd8bce
BS
626 break;
627 }
628 break;
629 case 0x30: /* Turbosparc secondary cache diagnostic */
630 case 0x31: /* Turbosparc RAM snoop */
631 case 0x32: /* Turbosparc page table descriptor diagnostic */
632 case 0x39: /* data cache diagnostic register */
633 ret = 0;
634 break;
635 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
636 {
637 int reg = (addr >> 8) & 3;
638
639 switch (reg) {
640 case 0: /* Breakpoint Value (Addr) */
641 ret = env->mmubpregs[reg];
642 break;
643 case 1: /* Breakpoint Mask */
644 ret = env->mmubpregs[reg];
645 break;
646 case 2: /* Breakpoint Control */
647 ret = env->mmubpregs[reg];
648 break;
649 case 3: /* Breakpoint Status */
650 ret = env->mmubpregs[reg];
651 env->mmubpregs[reg] = 0ULL;
652 break;
653 }
654 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
655 ret);
656 }
657 break;
658 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
659 ret = env->mmubpctrv;
660 break;
661 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
662 ret = env->mmubpctrc;
663 break;
664 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
665 ret = env->mmubpctrs;
666 break;
667 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
668 ret = env->mmubpaction;
669 break;
670 case 8: /* User code access, XXX */
671 default:
2fad1112 672 cpu_unassigned_access(cs, addr, false, false, asi, size);
fafd8bce
BS
673 ret = 0;
674 break;
675 }
676 if (sign) {
677 switch (size) {
678 case 1:
679 ret = (int8_t) ret;
680 break;
681 case 2:
682 ret = (int16_t) ret;
683 break;
684 case 4:
685 ret = (int32_t) ret;
686 break;
687 default:
688 break;
689 }
690 }
691#ifdef DEBUG_ASI
692 dump_asi("read ", last_addr, asi, size, ret);
693#endif
694 return ret;
695}
696
fe8d8f0f
BS
697void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, int asi,
698 int size)
fafd8bce 699{
31b030d4
AF
700 SPARCCPU *cpu = sparc_env_get_cpu(env);
701 CPUState *cs = CPU(cpu);
702
fe8d8f0f 703 helper_check_align(env, addr, size - 1);
fafd8bce
BS
704 switch (asi) {
705 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
706 switch (addr) {
707 case 0x00: /* Leon3 Cache Control */
708 case 0x08: /* Leon3 Instruction Cache config */
709 case 0x0C: /* Leon3 Date Cache config */
710 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
fe8d8f0f 711 leon3_cache_control_st(env, addr, val, size);
fafd8bce
BS
712 }
713 break;
714
715 case 0x01c00000: /* MXCC stream data register 0 */
716 if (size == 8) {
717 env->mxccdata[0] = val;
718 } else {
71547a3b
BS
719 qemu_log_mask(LOG_UNIMP,
720 "%08x: unimplemented access size: %d\n", addr,
721 size);
fafd8bce
BS
722 }
723 break;
724 case 0x01c00008: /* MXCC stream data register 1 */
725 if (size == 8) {
726 env->mxccdata[1] = val;
727 } else {
71547a3b
BS
728 qemu_log_mask(LOG_UNIMP,
729 "%08x: unimplemented access size: %d\n", addr,
730 size);
fafd8bce
BS
731 }
732 break;
733 case 0x01c00010: /* MXCC stream data register 2 */
734 if (size == 8) {
735 env->mxccdata[2] = val;
736 } else {
71547a3b
BS
737 qemu_log_mask(LOG_UNIMP,
738 "%08x: unimplemented access size: %d\n", addr,
739 size);
fafd8bce
BS
740 }
741 break;
742 case 0x01c00018: /* MXCC stream data register 3 */
743 if (size == 8) {
744 env->mxccdata[3] = val;
745 } else {
71547a3b
BS
746 qemu_log_mask(LOG_UNIMP,
747 "%08x: unimplemented access size: %d\n", addr,
748 size);
fafd8bce
BS
749 }
750 break;
751 case 0x01c00100: /* MXCC stream source */
752 if (size == 8) {
753 env->mxccregs[0] = val;
754 } else {
71547a3b
BS
755 qemu_log_mask(LOG_UNIMP,
756 "%08x: unimplemented access size: %d\n", addr,
757 size);
fafd8bce 758 }
2c17449b
EI
759 env->mxccdata[0] = ldq_phys(cs->as,
760 (env->mxccregs[0] & 0xffffffffULL) +
fafd8bce 761 0);
2c17449b
EI
762 env->mxccdata[1] = ldq_phys(cs->as,
763 (env->mxccregs[0] & 0xffffffffULL) +
fafd8bce 764 8);
2c17449b
EI
765 env->mxccdata[2] = ldq_phys(cs->as,
766 (env->mxccregs[0] & 0xffffffffULL) +
fafd8bce 767 16);
2c17449b
EI
768 env->mxccdata[3] = ldq_phys(cs->as,
769 (env->mxccregs[0] & 0xffffffffULL) +
fafd8bce
BS
770 24);
771 break;
772 case 0x01c00200: /* MXCC stream destination */
773 if (size == 8) {
774 env->mxccregs[1] = val;
775 } else {
71547a3b
BS
776 qemu_log_mask(LOG_UNIMP,
777 "%08x: unimplemented access size: %d\n", addr,
778 size);
fafd8bce 779 }
f606604f 780 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 0,
fafd8bce 781 env->mxccdata[0]);
f606604f 782 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 8,
fafd8bce 783 env->mxccdata[1]);
f606604f 784 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
fafd8bce 785 env->mxccdata[2]);
f606604f 786 stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
fafd8bce
BS
787 env->mxccdata[3]);
788 break;
789 case 0x01c00a00: /* MXCC control register */
790 if (size == 8) {
791 env->mxccregs[3] = val;
792 } else {
71547a3b
BS
793 qemu_log_mask(LOG_UNIMP,
794 "%08x: unimplemented access size: %d\n", addr,
795 size);
fafd8bce
BS
796 }
797 break;
798 case 0x01c00a04: /* MXCC control register */
799 if (size == 4) {
800 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
801 | val;
802 } else {
71547a3b
BS
803 qemu_log_mask(LOG_UNIMP,
804 "%08x: unimplemented access size: %d\n", addr,
805 size);
fafd8bce
BS
806 }
807 break;
808 case 0x01c00e00: /* MXCC error register */
809 /* writing a 1 bit clears the error */
810 if (size == 8) {
811 env->mxccregs[6] &= ~val;
812 } else {
71547a3b
BS
813 qemu_log_mask(LOG_UNIMP,
814 "%08x: unimplemented access size: %d\n", addr,
815 size);
fafd8bce
BS
816 }
817 break;
818 case 0x01c00f00: /* MBus port address register */
819 if (size == 8) {
820 env->mxccregs[7] = val;
821 } else {
71547a3b
BS
822 qemu_log_mask(LOG_UNIMP,
823 "%08x: unimplemented access size: %d\n", addr,
824 size);
fafd8bce
BS
825 }
826 break;
827 default:
71547a3b
BS
828 qemu_log_mask(LOG_UNIMP,
829 "%08x: unimplemented address, size: %d\n", addr,
830 size);
fafd8bce
BS
831 break;
832 }
833 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
834 asi, size, addr, val);
835#ifdef DEBUG_MXCC
836 dump_mxcc(env);
837#endif
838 break;
839 case 3: /* MMU flush */
7a0a9c2c 840 case 0x18: /* LEON3 MMU flush */
fafd8bce
BS
841 {
842 int mmulev;
843
844 mmulev = (addr >> 8) & 15;
845 DPRINTF_MMU("mmu flush level %d\n", mmulev);
846 switch (mmulev) {
847 case 0: /* flush page */
31b030d4 848 tlb_flush_page(CPU(cpu), addr & 0xfffff000);
fafd8bce
BS
849 break;
850 case 1: /* flush segment (256k) */
851 case 2: /* flush region (16M) */
852 case 3: /* flush context (4G) */
853 case 4: /* flush entire */
00c8cb0a 854 tlb_flush(CPU(cpu), 1);
fafd8bce
BS
855 break;
856 default:
857 break;
858 }
859#ifdef DEBUG_MMU
860 dump_mmu(stdout, fprintf, env);
861#endif
862 }
863 break;
864 case 4: /* write MMU regs */
7a0a9c2c 865 case 0x19: /* LEON3 write MMU regs */
fafd8bce
BS
866 {
867 int reg = (addr >> 8) & 0x1f;
868 uint32_t oldreg;
869
870 oldreg = env->mmuregs[reg];
871 switch (reg) {
872 case 0: /* Control Register */
873 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
874 (val & 0x00ffffff);
875 /* Mappings generated during no-fault mode or MMU
876 disabled mode are invalid in normal mode */
877 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
878 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) {
00c8cb0a 879 tlb_flush(CPU(cpu), 1);
fafd8bce
BS
880 }
881 break;
882 case 1: /* Context Table Pointer Register */
883 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
884 break;
885 case 2: /* Context Register */
886 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
887 if (oldreg != env->mmuregs[reg]) {
888 /* we flush when the MMU context changes because
889 QEMU has no MMU context support */
00c8cb0a 890 tlb_flush(CPU(cpu), 1);
fafd8bce
BS
891 }
892 break;
893 case 3: /* Synchronous Fault Status Register with Clear */
894 case 4: /* Synchronous Fault Address Register */
895 break;
896 case 0x10: /* TLB Replacement Control Register */
897 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
898 break;
899 case 0x13: /* Synchronous Fault Status Register with Read
900 and Clear */
901 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
902 break;
903 case 0x14: /* Synchronous Fault Address Register */
904 env->mmuregs[4] = val;
905 break;
906 default:
907 env->mmuregs[reg] = val;
908 break;
909 }
910 if (oldreg != env->mmuregs[reg]) {
911 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
912 reg, oldreg, env->mmuregs[reg]);
913 }
914#ifdef DEBUG_MMU
915 dump_mmu(stdout, fprintf, env);
916#endif
917 }
918 break;
919 case 5: /* Turbosparc ITLB Diagnostic */
920 case 6: /* Turbosparc DTLB Diagnostic */
921 case 7: /* Turbosparc IOTLB Diagnostic */
922 break;
923 case 0xa: /* User data access */
924 switch (size) {
925 case 1:
fe8d8f0f 926 cpu_stb_user(env, addr, val);
fafd8bce
BS
927 break;
928 case 2:
fe8d8f0f 929 cpu_stw_user(env, addr, val);
fafd8bce
BS
930 break;
931 default:
932 case 4:
fe8d8f0f 933 cpu_stl_user(env, addr, val);
fafd8bce
BS
934 break;
935 case 8:
fe8d8f0f 936 cpu_stq_user(env, addr, val);
fafd8bce
BS
937 break;
938 }
939 break;
940 case 0xb: /* Supervisor data access */
16c358e9 941 case 0x80:
fafd8bce
BS
942 switch (size) {
943 case 1:
fe8d8f0f 944 cpu_stb_kernel(env, addr, val);
fafd8bce
BS
945 break;
946 case 2:
fe8d8f0f 947 cpu_stw_kernel(env, addr, val);
fafd8bce
BS
948 break;
949 default:
950 case 4:
fe8d8f0f 951 cpu_stl_kernel(env, addr, val);
fafd8bce
BS
952 break;
953 case 8:
fe8d8f0f 954 cpu_stq_kernel(env, addr, val);
fafd8bce
BS
955 break;
956 }
957 break;
958 case 0xc: /* I-cache tag */
959 case 0xd: /* I-cache data */
960 case 0xe: /* D-cache tag */
961 case 0xf: /* D-cache data */
962 case 0x10: /* I/D-cache flush page */
963 case 0x11: /* I/D-cache flush segment */
964 case 0x12: /* I/D-cache flush region */
965 case 0x13: /* I/D-cache flush context */
966 case 0x14: /* I/D-cache flush user */
967 break;
968 case 0x17: /* Block copy, sta access */
969 {
970 /* val = src
971 addr = dst
972 copy 32 bytes */
973 unsigned int i;
974 uint32_t src = val & ~3, dst = addr & ~3, temp;
975
976 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
fe8d8f0f
BS
977 temp = cpu_ldl_kernel(env, src);
978 cpu_stl_kernel(env, dst, temp);
fafd8bce
BS
979 }
980 }
981 break;
982 case 0x1f: /* Block fill, stda access */
983 {
984 /* addr = dst
985 fill 32 bytes with val */
986 unsigned int i;
987 uint32_t dst = addr & 7;
988
989 for (i = 0; i < 32; i += 8, dst += 8) {
fe8d8f0f 990 cpu_stq_kernel(env, dst, val);
fafd8bce
BS
991 }
992 }
993 break;
994 case 0x20: /* MMU passthrough */
7a0a9c2c 995 case 0x1c: /* LEON MMU passthrough */
fafd8bce
BS
996 {
997 switch (size) {
998 case 1:
db3be60d 999 stb_phys(cs->as, addr, val);
fafd8bce
BS
1000 break;
1001 case 2:
5ce5944d 1002 stw_phys(cs->as, addr, val);
fafd8bce
BS
1003 break;
1004 case 4:
1005 default:
ab1da857 1006 stl_phys(cs->as, addr, val);
fafd8bce
BS
1007 break;
1008 case 8:
f606604f 1009 stq_phys(cs->as, addr, val);
fafd8bce
BS
1010 break;
1011 }
1012 }
1013 break;
1014 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1015 {
1016 switch (size) {
1017 case 1:
db3be60d 1018 stb_phys(cs->as, (hwaddr)addr
a8170e5e 1019 | ((hwaddr)(asi & 0xf) << 32), val);
fafd8bce
BS
1020 break;
1021 case 2:
5ce5944d 1022 stw_phys(cs->as, (hwaddr)addr
a8170e5e 1023 | ((hwaddr)(asi & 0xf) << 32), val);
fafd8bce
BS
1024 break;
1025 case 4:
1026 default:
ab1da857 1027 stl_phys(cs->as, (hwaddr)addr
a8170e5e 1028 | ((hwaddr)(asi & 0xf) << 32), val);
fafd8bce
BS
1029 break;
1030 case 8:
f606604f 1031 stq_phys(cs->as, (hwaddr)addr
a8170e5e 1032 | ((hwaddr)(asi & 0xf) << 32), val);
fafd8bce
BS
1033 break;
1034 }
1035 }
1036 break;
1037 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1038 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1039 Turbosparc snoop RAM */
1040 case 0x32: /* store buffer control or Turbosparc page table
1041 descriptor diagnostic */
1042 case 0x36: /* I-cache flash clear */
1043 case 0x37: /* D-cache flash clear */
1044 break;
1045 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1046 {
1047 int reg = (addr >> 8) & 3;
1048
1049 switch (reg) {
1050 case 0: /* Breakpoint Value (Addr) */
1051 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1052 break;
1053 case 1: /* Breakpoint Mask */
1054 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1055 break;
1056 case 2: /* Breakpoint Control */
1057 env->mmubpregs[reg] = (val & 0x7fULL);
1058 break;
1059 case 3: /* Breakpoint Status */
1060 env->mmubpregs[reg] = (val & 0xfULL);
1061 break;
1062 }
1063 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1064 env->mmuregs[reg]);
1065 }
1066 break;
1067 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1068 env->mmubpctrv = val & 0xffffffff;
1069 break;
1070 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1071 env->mmubpctrc = val & 0x3;
1072 break;
1073 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1074 env->mmubpctrs = val & 0x3;
1075 break;
1076 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1077 env->mmubpaction = val & 0x1fff;
1078 break;
1079 case 8: /* User code access, XXX */
1080 case 9: /* Supervisor code access, XXX */
1081 default:
c658b94f
AF
1082 cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
1083 addr, true, false, asi, size);
fafd8bce
BS
1084 break;
1085 }
1086#ifdef DEBUG_ASI
1087 dump_asi("write", addr, asi, size, val);
1088#endif
1089}
1090
1091#endif /* CONFIG_USER_ONLY */
1092#else /* TARGET_SPARC64 */
1093
1094#ifdef CONFIG_USER_ONLY
fe8d8f0f
BS
1095uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
1096 int sign)
fafd8bce
BS
1097{
1098 uint64_t ret = 0;
1099#if defined(DEBUG_ASI)
1100 target_ulong last_addr = addr;
1101#endif
1102
1103 if (asi < 0x80) {
1104 helper_raise_exception(env, TT_PRIV_ACT);
1105 }
1106
fe8d8f0f 1107 helper_check_align(env, addr, size - 1);
fafd8bce
BS
1108 addr = asi_address_mask(env, asi, addr);
1109
1110 switch (asi) {
1111 case 0x82: /* Primary no-fault */
1112 case 0x8a: /* Primary no-fault LE */
1113 if (page_check_range(addr, size, PAGE_READ) == -1) {
1114#ifdef DEBUG_ASI
1115 dump_asi("read ", last_addr, asi, size, ret);
1116#endif
1117 return 0;
1118 }
1119 /* Fall through */
1120 case 0x80: /* Primary */
1121 case 0x88: /* Primary LE */
1122 {
1123 switch (size) {
1124 case 1:
eb513f82 1125 ret = cpu_ldub_data(env, addr);
fafd8bce
BS
1126 break;
1127 case 2:
eb513f82 1128 ret = cpu_lduw_data(env, addr);
fafd8bce
BS
1129 break;
1130 case 4:
eb513f82 1131 ret = cpu_ldl_data(env, addr);
fafd8bce
BS
1132 break;
1133 default:
1134 case 8:
eb513f82 1135 ret = cpu_ldq_data(env, addr);
fafd8bce
BS
1136 break;
1137 }
1138 }
1139 break;
1140 case 0x83: /* Secondary no-fault */
1141 case 0x8b: /* Secondary no-fault LE */
1142 if (page_check_range(addr, size, PAGE_READ) == -1) {
1143#ifdef DEBUG_ASI
1144 dump_asi("read ", last_addr, asi, size, ret);
1145#endif
1146 return 0;
1147 }
1148 /* Fall through */
1149 case 0x81: /* Secondary */
1150 case 0x89: /* Secondary LE */
1151 /* XXX */
1152 break;
1153 default:
1154 break;
1155 }
1156
1157 /* Convert from little endian */
1158 switch (asi) {
1159 case 0x88: /* Primary LE */
1160 case 0x89: /* Secondary LE */
1161 case 0x8a: /* Primary no-fault LE */
1162 case 0x8b: /* Secondary no-fault LE */
1163 switch (size) {
1164 case 2:
1165 ret = bswap16(ret);
1166 break;
1167 case 4:
1168 ret = bswap32(ret);
1169 break;
1170 case 8:
1171 ret = bswap64(ret);
1172 break;
1173 default:
1174 break;
1175 }
1176 default:
1177 break;
1178 }
1179
1180 /* Convert to signed number */
1181 if (sign) {
1182 switch (size) {
1183 case 1:
1184 ret = (int8_t) ret;
1185 break;
1186 case 2:
1187 ret = (int16_t) ret;
1188 break;
1189 case 4:
1190 ret = (int32_t) ret;
1191 break;
1192 default:
1193 break;
1194 }
1195 }
1196#ifdef DEBUG_ASI
1197 dump_asi("read ", last_addr, asi, size, ret);
1198#endif
1199 return ret;
1200}
1201
fe8d8f0f
BS
1202void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1203 int asi, int size)
fafd8bce
BS
1204{
1205#ifdef DEBUG_ASI
1206 dump_asi("write", addr, asi, size, val);
1207#endif
1208 if (asi < 0x80) {
1209 helper_raise_exception(env, TT_PRIV_ACT);
1210 }
1211
fe8d8f0f 1212 helper_check_align(env, addr, size - 1);
fafd8bce
BS
1213 addr = asi_address_mask(env, asi, addr);
1214
1215 /* Convert to little endian */
1216 switch (asi) {
1217 case 0x88: /* Primary LE */
1218 case 0x89: /* Secondary LE */
1219 switch (size) {
1220 case 2:
1221 val = bswap16(val);
1222 break;
1223 case 4:
1224 val = bswap32(val);
1225 break;
1226 case 8:
1227 val = bswap64(val);
1228 break;
1229 default:
1230 break;
1231 }
1232 default:
1233 break;
1234 }
1235
1236 switch (asi) {
1237 case 0x80: /* Primary */
1238 case 0x88: /* Primary LE */
1239 {
1240 switch (size) {
1241 case 1:
eb513f82 1242 cpu_stb_data(env, addr, val);
fafd8bce
BS
1243 break;
1244 case 2:
eb513f82 1245 cpu_stw_data(env, addr, val);
fafd8bce
BS
1246 break;
1247 case 4:
eb513f82 1248 cpu_stl_data(env, addr, val);
fafd8bce
BS
1249 break;
1250 case 8:
1251 default:
eb513f82 1252 cpu_stq_data(env, addr, val);
fafd8bce
BS
1253 break;
1254 }
1255 }
1256 break;
1257 case 0x81: /* Secondary */
1258 case 0x89: /* Secondary LE */
1259 /* XXX */
1260 return;
1261
1262 case 0x82: /* Primary no-fault, RO */
1263 case 0x83: /* Secondary no-fault, RO */
1264 case 0x8a: /* Primary no-fault LE, RO */
1265 case 0x8b: /* Secondary no-fault LE, RO */
1266 default:
fe8d8f0f 1267 helper_raise_exception(env, TT_DATA_ACCESS);
fafd8bce
BS
1268 return;
1269 }
1270}
1271
1272#else /* CONFIG_USER_ONLY */
1273
fe8d8f0f
BS
1274uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
1275 int sign)
fafd8bce 1276{
2fad1112 1277 CPUState *cs = CPU(sparc_env_get_cpu(env));
fafd8bce
BS
1278 uint64_t ret = 0;
1279#if defined(DEBUG_ASI)
1280 target_ulong last_addr = addr;
1281#endif
1282
1283 asi &= 0xff;
1284
1285 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1286 || (cpu_has_hypervisor(env)
1287 && asi >= 0x30 && asi < 0x80
1288 && !(env->hpstate & HS_PRIV))) {
1289 helper_raise_exception(env, TT_PRIV_ACT);
1290 }
1291
fe8d8f0f 1292 helper_check_align(env, addr, size - 1);
fafd8bce
BS
1293 addr = asi_address_mask(env, asi, addr);
1294
1295 /* process nonfaulting loads first */
1296 if ((asi & 0xf6) == 0x82) {
1297 int mmu_idx;
1298
1299 /* secondary space access has lowest asi bit equal to 1 */
1300 if (env->pstate & PS_PRIV) {
1301 mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX;
1302 } else {
1303 mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX;
1304 }
1305
1306 if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) {
1307#ifdef DEBUG_ASI
1308 dump_asi("read ", last_addr, asi, size, ret);
1309#endif
1310 /* env->exception_index is set in get_physical_address_data(). */
27103424 1311 helper_raise_exception(env, cs->exception_index);
fafd8bce
BS
1312 }
1313
1314 /* convert nonfaulting load ASIs to normal load ASIs */
1315 asi &= ~0x02;
1316 }
1317
1318 switch (asi) {
1319 case 0x10: /* As if user primary */
1320 case 0x11: /* As if user secondary */
1321 case 0x18: /* As if user primary LE */
1322 case 0x19: /* As if user secondary LE */
1323 case 0x80: /* Primary */
1324 case 0x81: /* Secondary */
1325 case 0x88: /* Primary LE */
1326 case 0x89: /* Secondary LE */
1327 case 0xe2: /* UA2007 Primary block init */
1328 case 0xe3: /* UA2007 Secondary block init */
1329 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1330 if (cpu_hypervisor_mode(env)) {
1331 switch (size) {
1332 case 1:
fe8d8f0f 1333 ret = cpu_ldub_hypv(env, addr);
fafd8bce
BS
1334 break;
1335 case 2:
fe8d8f0f 1336 ret = cpu_lduw_hypv(env, addr);
fafd8bce
BS
1337 break;
1338 case 4:
fe8d8f0f 1339 ret = cpu_ldl_hypv(env, addr);
fafd8bce
BS
1340 break;
1341 default:
1342 case 8:
fe8d8f0f 1343 ret = cpu_ldq_hypv(env, addr);
fafd8bce
BS
1344 break;
1345 }
1346 } else {
1347 /* secondary space access has lowest asi bit equal to 1 */
1348 if (asi & 1) {
1349 switch (size) {
1350 case 1:
fe8d8f0f 1351 ret = cpu_ldub_kernel_secondary(env, addr);
fafd8bce
BS
1352 break;
1353 case 2:
fe8d8f0f 1354 ret = cpu_lduw_kernel_secondary(env, addr);
fafd8bce
BS
1355 break;
1356 case 4:
fe8d8f0f 1357 ret = cpu_ldl_kernel_secondary(env, addr);
fafd8bce
BS
1358 break;
1359 default:
1360 case 8:
fe8d8f0f 1361 ret = cpu_ldq_kernel_secondary(env, addr);
fafd8bce
BS
1362 break;
1363 }
1364 } else {
1365 switch (size) {
1366 case 1:
fe8d8f0f 1367 ret = cpu_ldub_kernel(env, addr);
fafd8bce
BS
1368 break;
1369 case 2:
fe8d8f0f 1370 ret = cpu_lduw_kernel(env, addr);
fafd8bce
BS
1371 break;
1372 case 4:
fe8d8f0f 1373 ret = cpu_ldl_kernel(env, addr);
fafd8bce
BS
1374 break;
1375 default:
1376 case 8:
fe8d8f0f 1377 ret = cpu_ldq_kernel(env, addr);
fafd8bce
BS
1378 break;
1379 }
1380 }
1381 }
1382 } else {
1383 /* secondary space access has lowest asi bit equal to 1 */
1384 if (asi & 1) {
1385 switch (size) {
1386 case 1:
fe8d8f0f 1387 ret = cpu_ldub_user_secondary(env, addr);
fafd8bce
BS
1388 break;
1389 case 2:
fe8d8f0f 1390 ret = cpu_lduw_user_secondary(env, addr);
fafd8bce
BS
1391 break;
1392 case 4:
fe8d8f0f 1393 ret = cpu_ldl_user_secondary(env, addr);
fafd8bce
BS
1394 break;
1395 default:
1396 case 8:
fe8d8f0f 1397 ret = cpu_ldq_user_secondary(env, addr);
fafd8bce
BS
1398 break;
1399 }
1400 } else {
1401 switch (size) {
1402 case 1:
fe8d8f0f 1403 ret = cpu_ldub_user(env, addr);
fafd8bce
BS
1404 break;
1405 case 2:
fe8d8f0f 1406 ret = cpu_lduw_user(env, addr);
fafd8bce
BS
1407 break;
1408 case 4:
fe8d8f0f 1409 ret = cpu_ldl_user(env, addr);
fafd8bce
BS
1410 break;
1411 default:
1412 case 8:
fe8d8f0f 1413 ret = cpu_ldq_user(env, addr);
fafd8bce
BS
1414 break;
1415 }
1416 }
1417 }
1418 break;
1419 case 0x14: /* Bypass */
1420 case 0x15: /* Bypass, non-cacheable */
1421 case 0x1c: /* Bypass LE */
1422 case 0x1d: /* Bypass, non-cacheable LE */
1423 {
1424 switch (size) {
1425 case 1:
2c17449b 1426 ret = ldub_phys(cs->as, addr);
fafd8bce
BS
1427 break;
1428 case 2:
41701aa4 1429 ret = lduw_phys(cs->as, addr);
fafd8bce
BS
1430 break;
1431 case 4:
fdfba1a2 1432 ret = ldl_phys(cs->as, addr);
fafd8bce
BS
1433 break;
1434 default:
1435 case 8:
2c17449b 1436 ret = ldq_phys(cs->as, addr);
fafd8bce
BS
1437 break;
1438 }
1439 break;
1440 }
1441 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1442 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1443 Only ldda allowed */
1444 helper_raise_exception(env, TT_ILL_INSN);
1445 return 0;
1446 case 0x04: /* Nucleus */
1447 case 0x0c: /* Nucleus Little Endian (LE) */
1448 {
1449 switch (size) {
1450 case 1:
fe8d8f0f 1451 ret = cpu_ldub_nucleus(env, addr);
fafd8bce
BS
1452 break;
1453 case 2:
fe8d8f0f 1454 ret = cpu_lduw_nucleus(env, addr);
fafd8bce
BS
1455 break;
1456 case 4:
fe8d8f0f 1457 ret = cpu_ldl_nucleus(env, addr);
fafd8bce
BS
1458 break;
1459 default:
1460 case 8:
fe8d8f0f 1461 ret = cpu_ldq_nucleus(env, addr);
fafd8bce
BS
1462 break;
1463 }
1464 break;
1465 }
1466 case 0x4a: /* UPA config */
1467 /* XXX */
1468 break;
1469 case 0x45: /* LSU */
1470 ret = env->lsu;
1471 break;
1472 case 0x50: /* I-MMU regs */
1473 {
1474 int reg = (addr >> 3) & 0xf;
1475
1476 if (reg == 0) {
1477 /* I-TSB Tag Target register */
1478 ret = ultrasparc_tag_target(env->immu.tag_access);
1479 } else {
1480 ret = env->immuregs[reg];
1481 }
1482
1483 break;
1484 }
1485 case 0x51: /* I-MMU 8k TSB pointer */
1486 {
1487 /* env->immuregs[5] holds I-MMU TSB register value
1488 env->immuregs[6] holds I-MMU Tag Access register value */
1489 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1490 8*1024);
1491 break;
1492 }
1493 case 0x52: /* I-MMU 64k TSB pointer */
1494 {
1495 /* env->immuregs[5] holds I-MMU TSB register value
1496 env->immuregs[6] holds I-MMU Tag Access register value */
1497 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1498 64*1024);
1499 break;
1500 }
1501 case 0x55: /* I-MMU data access */
1502 {
1503 int reg = (addr >> 3) & 0x3f;
1504
1505 ret = env->itlb[reg].tte;
1506 break;
1507 }
1508 case 0x56: /* I-MMU tag read */
1509 {
1510 int reg = (addr >> 3) & 0x3f;
1511
1512 ret = env->itlb[reg].tag;
1513 break;
1514 }
1515 case 0x58: /* D-MMU regs */
1516 {
1517 int reg = (addr >> 3) & 0xf;
1518
1519 if (reg == 0) {
1520 /* D-TSB Tag Target register */
1521 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1522 } else {
1523 ret = env->dmmuregs[reg];
1524 }
1525 break;
1526 }
1527 case 0x59: /* D-MMU 8k TSB pointer */
1528 {
1529 /* env->dmmuregs[5] holds D-MMU TSB register value
1530 env->dmmuregs[6] holds D-MMU Tag Access register value */
1531 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1532 8*1024);
1533 break;
1534 }
1535 case 0x5a: /* D-MMU 64k TSB pointer */
1536 {
1537 /* env->dmmuregs[5] holds D-MMU TSB register value
1538 env->dmmuregs[6] holds D-MMU Tag Access register value */
1539 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1540 64*1024);
1541 break;
1542 }
1543 case 0x5d: /* D-MMU data access */
1544 {
1545 int reg = (addr >> 3) & 0x3f;
1546
1547 ret = env->dtlb[reg].tte;
1548 break;
1549 }
1550 case 0x5e: /* D-MMU tag read */
1551 {
1552 int reg = (addr >> 3) & 0x3f;
1553
1554 ret = env->dtlb[reg].tag;
1555 break;
1556 }
361dea40
BS
1557 case 0x48: /* Interrupt dispatch, RO */
1558 break;
1559 case 0x49: /* Interrupt data receive */
1560 ret = env->ivec_status;
1561 break;
1562 case 0x7f: /* Incoming interrupt vector, RO */
1563 {
1564 int reg = (addr >> 4) & 0x3;
1565 if (reg < 3) {
1566 ret = env->ivec_data[reg];
1567 }
1568 break;
1569 }
fafd8bce
BS
1570 case 0x46: /* D-cache data */
1571 case 0x47: /* D-cache tag access */
1572 case 0x4b: /* E-cache error enable */
1573 case 0x4c: /* E-cache asynchronous fault status */
1574 case 0x4d: /* E-cache asynchronous fault address */
1575 case 0x4e: /* E-cache tag data */
1576 case 0x66: /* I-cache instruction access */
1577 case 0x67: /* I-cache tag access */
1578 case 0x6e: /* I-cache predecode */
1579 case 0x6f: /* I-cache LRU etc. */
1580 case 0x76: /* E-cache tag */
1581 case 0x7e: /* E-cache tag */
1582 break;
1583 case 0x5b: /* D-MMU data pointer */
fafd8bce
BS
1584 case 0x54: /* I-MMU data in, WO */
1585 case 0x57: /* I-MMU demap, WO */
1586 case 0x5c: /* D-MMU data in, WO */
1587 case 0x5f: /* D-MMU demap, WO */
1588 case 0x77: /* Interrupt vector, WO */
1589 default:
2fad1112 1590 cpu_unassigned_access(cs, addr, false, false, 1, size);
fafd8bce
BS
1591 ret = 0;
1592 break;
1593 }
1594
1595 /* Convert from little endian */
1596 switch (asi) {
1597 case 0x0c: /* Nucleus Little Endian (LE) */
1598 case 0x18: /* As if user primary LE */
1599 case 0x19: /* As if user secondary LE */
1600 case 0x1c: /* Bypass LE */
1601 case 0x1d: /* Bypass, non-cacheable LE */
1602 case 0x88: /* Primary LE */
1603 case 0x89: /* Secondary LE */
1604 switch(size) {
1605 case 2:
1606 ret = bswap16(ret);
1607 break;
1608 case 4:
1609 ret = bswap32(ret);
1610 break;
1611 case 8:
1612 ret = bswap64(ret);
1613 break;
1614 default:
1615 break;
1616 }
1617 default:
1618 break;
1619 }
1620
1621 /* Convert to signed number */
1622 if (sign) {
1623 switch (size) {
1624 case 1:
1625 ret = (int8_t) ret;
1626 break;
1627 case 2:
1628 ret = (int16_t) ret;
1629 break;
1630 case 4:
1631 ret = (int32_t) ret;
1632 break;
1633 default:
1634 break;
1635 }
1636 }
1637#ifdef DEBUG_ASI
1638 dump_asi("read ", last_addr, asi, size, ret);
1639#endif
1640 return ret;
1641}
1642
fe8d8f0f
BS
1643void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1644 int asi, int size)
fafd8bce 1645{
00c8cb0a
AF
1646 SPARCCPU *cpu = sparc_env_get_cpu(env);
1647 CPUState *cs = CPU(cpu);
1648
fafd8bce
BS
1649#ifdef DEBUG_ASI
1650 dump_asi("write", addr, asi, size, val);
1651#endif
1652
1653 asi &= 0xff;
1654
1655 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1656 || (cpu_has_hypervisor(env)
1657 && asi >= 0x30 && asi < 0x80
1658 && !(env->hpstate & HS_PRIV))) {
1659 helper_raise_exception(env, TT_PRIV_ACT);
1660 }
1661
fe8d8f0f 1662 helper_check_align(env, addr, size - 1);
fafd8bce
BS
1663 addr = asi_address_mask(env, asi, addr);
1664
1665 /* Convert to little endian */
1666 switch (asi) {
1667 case 0x0c: /* Nucleus Little Endian (LE) */
1668 case 0x18: /* As if user primary LE */
1669 case 0x19: /* As if user secondary LE */
1670 case 0x1c: /* Bypass LE */
1671 case 0x1d: /* Bypass, non-cacheable LE */
1672 case 0x88: /* Primary LE */
1673 case 0x89: /* Secondary LE */
1674 switch (size) {
1675 case 2:
1676 val = bswap16(val);
1677 break;
1678 case 4:
1679 val = bswap32(val);
1680 break;
1681 case 8:
1682 val = bswap64(val);
1683 break;
1684 default:
1685 break;
1686 }
1687 default:
1688 break;
1689 }
1690
1691 switch (asi) {
1692 case 0x10: /* As if user primary */
1693 case 0x11: /* As if user secondary */
1694 case 0x18: /* As if user primary LE */
1695 case 0x19: /* As if user secondary LE */
1696 case 0x80: /* Primary */
1697 case 0x81: /* Secondary */
1698 case 0x88: /* Primary LE */
1699 case 0x89: /* Secondary LE */
1700 case 0xe2: /* UA2007 Primary block init */
1701 case 0xe3: /* UA2007 Secondary block init */
1702 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1703 if (cpu_hypervisor_mode(env)) {
1704 switch (size) {
1705 case 1:
fe8d8f0f 1706 cpu_stb_hypv(env, addr, val);
fafd8bce
BS
1707 break;
1708 case 2:
fe8d8f0f 1709 cpu_stw_hypv(env, addr, val);
fafd8bce
BS
1710 break;
1711 case 4:
fe8d8f0f 1712 cpu_stl_hypv(env, addr, val);
fafd8bce
BS
1713 break;
1714 case 8:
1715 default:
fe8d8f0f 1716 cpu_stq_hypv(env, addr, val);
fafd8bce
BS
1717 break;
1718 }
1719 } else {
1720 /* secondary space access has lowest asi bit equal to 1 */
1721 if (asi & 1) {
1722 switch (size) {
1723 case 1:
fe8d8f0f 1724 cpu_stb_kernel_secondary(env, addr, val);
fafd8bce
BS
1725 break;
1726 case 2:
fe8d8f0f 1727 cpu_stw_kernel_secondary(env, addr, val);
fafd8bce
BS
1728 break;
1729 case 4:
fe8d8f0f 1730 cpu_stl_kernel_secondary(env, addr, val);
fafd8bce
BS
1731 break;
1732 case 8:
1733 default:
fe8d8f0f 1734 cpu_stq_kernel_secondary(env, addr, val);
fafd8bce
BS
1735 break;
1736 }
1737 } else {
1738 switch (size) {
1739 case 1:
fe8d8f0f 1740 cpu_stb_kernel(env, addr, val);
fafd8bce
BS
1741 break;
1742 case 2:
fe8d8f0f 1743 cpu_stw_kernel(env, addr, val);
fafd8bce
BS
1744 break;
1745 case 4:
fe8d8f0f 1746 cpu_stl_kernel(env, addr, val);
fafd8bce
BS
1747 break;
1748 case 8:
1749 default:
fe8d8f0f 1750 cpu_stq_kernel(env, addr, val);
fafd8bce
BS
1751 break;
1752 }
1753 }
1754 }
1755 } else {
1756 /* secondary space access has lowest asi bit equal to 1 */
1757 if (asi & 1) {
1758 switch (size) {
1759 case 1:
fe8d8f0f 1760 cpu_stb_user_secondary(env, addr, val);
fafd8bce
BS
1761 break;
1762 case 2:
fe8d8f0f 1763 cpu_stw_user_secondary(env, addr, val);
fafd8bce
BS
1764 break;
1765 case 4:
fe8d8f0f 1766 cpu_stl_user_secondary(env, addr, val);
fafd8bce
BS
1767 break;
1768 case 8:
1769 default:
fe8d8f0f 1770 cpu_stq_user_secondary(env, addr, val);
fafd8bce
BS
1771 break;
1772 }
1773 } else {
1774 switch (size) {
1775 case 1:
fe8d8f0f 1776 cpu_stb_user(env, addr, val);
fafd8bce
BS
1777 break;
1778 case 2:
fe8d8f0f 1779 cpu_stw_user(env, addr, val);
fafd8bce
BS
1780 break;
1781 case 4:
fe8d8f0f 1782 cpu_stl_user(env, addr, val);
fafd8bce
BS
1783 break;
1784 case 8:
1785 default:
fe8d8f0f 1786 cpu_stq_user(env, addr, val);
fafd8bce
BS
1787 break;
1788 }
1789 }
1790 }
1791 break;
1792 case 0x14: /* Bypass */
1793 case 0x15: /* Bypass, non-cacheable */
1794 case 0x1c: /* Bypass LE */
1795 case 0x1d: /* Bypass, non-cacheable LE */
1796 {
1797 switch (size) {
1798 case 1:
db3be60d 1799 stb_phys(cs->as, addr, val);
fafd8bce
BS
1800 break;
1801 case 2:
5ce5944d 1802 stw_phys(cs->as, addr, val);
fafd8bce
BS
1803 break;
1804 case 4:
ab1da857 1805 stl_phys(cs->as, addr, val);
fafd8bce
BS
1806 break;
1807 case 8:
1808 default:
f606604f 1809 stq_phys(cs->as, addr, val);
fafd8bce
BS
1810 break;
1811 }
1812 }
1813 return;
1814 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1815 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1816 Only ldda allowed */
1817 helper_raise_exception(env, TT_ILL_INSN);
1818 return;
1819 case 0x04: /* Nucleus */
1820 case 0x0c: /* Nucleus Little Endian (LE) */
1821 {
1822 switch (size) {
1823 case 1:
fe8d8f0f 1824 cpu_stb_nucleus(env, addr, val);
fafd8bce
BS
1825 break;
1826 case 2:
fe8d8f0f 1827 cpu_stw_nucleus(env, addr, val);
fafd8bce
BS
1828 break;
1829 case 4:
fe8d8f0f 1830 cpu_stl_nucleus(env, addr, val);
fafd8bce
BS
1831 break;
1832 default:
1833 case 8:
fe8d8f0f 1834 cpu_stq_nucleus(env, addr, val);
fafd8bce
BS
1835 break;
1836 }
1837 break;
1838 }
1839
1840 case 0x4a: /* UPA config */
1841 /* XXX */
1842 return;
1843 case 0x45: /* LSU */
1844 {
1845 uint64_t oldreg;
1846
1847 oldreg = env->lsu;
1848 env->lsu = val & (DMMU_E | IMMU_E);
1849 /* Mappings generated during D/I MMU disabled mode are
1850 invalid in normal mode */
1851 if (oldreg != env->lsu) {
1852 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1853 oldreg, env->lsu);
1854#ifdef DEBUG_MMU
05499f4b 1855 dump_mmu(stdout, fprintf, env);
fafd8bce 1856#endif
00c8cb0a 1857 tlb_flush(CPU(cpu), 1);
fafd8bce
BS
1858 }
1859 return;
1860 }
1861 case 0x50: /* I-MMU regs */
1862 {
1863 int reg = (addr >> 3) & 0xf;
1864 uint64_t oldreg;
1865
1866 oldreg = env->immuregs[reg];
1867 switch (reg) {
1868 case 0: /* RO */
1869 return;
1870 case 1: /* Not in I-MMU */
1871 case 2:
1872 return;
1873 case 3: /* SFSR */
1874 if ((val & 1) == 0) {
1875 val = 0; /* Clear SFSR */
1876 }
1877 env->immu.sfsr = val;
1878 break;
1879 case 4: /* RO */
1880 return;
1881 case 5: /* TSB access */
1882 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1883 PRIx64 "\n", env->immu.tsb, val);
1884 env->immu.tsb = val;
1885 break;
1886 case 6: /* Tag access */
1887 env->immu.tag_access = val;
1888 break;
1889 case 7:
1890 case 8:
1891 return;
1892 default:
1893 break;
1894 }
1895
1896 if (oldreg != env->immuregs[reg]) {
1897 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1898 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1899 }
1900#ifdef DEBUG_MMU
1901 dump_mmu(stdout, fprintf, env);
1902#endif
1903 return;
1904 }
1905 case 0x54: /* I-MMU data in */
1906 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
1907 return;
1908 case 0x55: /* I-MMU data access */
1909 {
1910 /* TODO: auto demap */
1911
1912 unsigned int i = (addr >> 3) & 0x3f;
1913
1914 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
1915
1916#ifdef DEBUG_MMU
1917 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1918 dump_mmu(stdout, fprintf, env);
1919#endif
1920 return;
1921 }
1922 case 0x57: /* I-MMU demap */
1923 demap_tlb(env->itlb, addr, "immu", env);
1924 return;
1925 case 0x58: /* D-MMU regs */
1926 {
1927 int reg = (addr >> 3) & 0xf;
1928 uint64_t oldreg;
1929
1930 oldreg = env->dmmuregs[reg];
1931 switch (reg) {
1932 case 0: /* RO */
1933 case 4:
1934 return;
1935 case 3: /* SFSR */
1936 if ((val & 1) == 0) {
1937 val = 0; /* Clear SFSR, Fault address */
1938 env->dmmu.sfar = 0;
1939 }
1940 env->dmmu.sfsr = val;
1941 break;
1942 case 1: /* Primary context */
1943 env->dmmu.mmu_primary_context = val;
1944 /* can be optimized to only flush MMU_USER_IDX
1945 and MMU_KERNEL_IDX entries */
00c8cb0a 1946 tlb_flush(CPU(cpu), 1);
fafd8bce
BS
1947 break;
1948 case 2: /* Secondary context */
1949 env->dmmu.mmu_secondary_context = val;
1950 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1951 and MMU_KERNEL_SECONDARY_IDX entries */
00c8cb0a 1952 tlb_flush(CPU(cpu), 1);
fafd8bce
BS
1953 break;
1954 case 5: /* TSB access */
1955 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1956 PRIx64 "\n", env->dmmu.tsb, val);
1957 env->dmmu.tsb = val;
1958 break;
1959 case 6: /* Tag access */
1960 env->dmmu.tag_access = val;
1961 break;
1962 case 7: /* Virtual Watchpoint */
1963 case 8: /* Physical Watchpoint */
1964 default:
1965 env->dmmuregs[reg] = val;
1966 break;
1967 }
1968
1969 if (oldreg != env->dmmuregs[reg]) {
1970 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1971 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1972 }
1973#ifdef DEBUG_MMU
1974 dump_mmu(stdout, fprintf, env);
1975#endif
1976 return;
1977 }
1978 case 0x5c: /* D-MMU data in */
1979 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
1980 return;
1981 case 0x5d: /* D-MMU data access */
1982 {
1983 unsigned int i = (addr >> 3) & 0x3f;
1984
1985 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
1986
1987#ifdef DEBUG_MMU
1988 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1989 dump_mmu(stdout, fprintf, env);
1990#endif
1991 return;
1992 }
1993 case 0x5f: /* D-MMU demap */
1994 demap_tlb(env->dtlb, addr, "dmmu", env);
1995 return;
1996 case 0x49: /* Interrupt data receive */
361dea40 1997 env->ivec_status = val & 0x20;
fafd8bce
BS
1998 return;
1999 case 0x46: /* D-cache data */
2000 case 0x47: /* D-cache tag access */
2001 case 0x4b: /* E-cache error enable */
2002 case 0x4c: /* E-cache asynchronous fault status */
2003 case 0x4d: /* E-cache asynchronous fault address */
2004 case 0x4e: /* E-cache tag data */
2005 case 0x66: /* I-cache instruction access */
2006 case 0x67: /* I-cache tag access */
2007 case 0x6e: /* I-cache predecode */
2008 case 0x6f: /* I-cache LRU etc. */
2009 case 0x76: /* E-cache tag */
2010 case 0x7e: /* E-cache tag */
2011 return;
2012 case 0x51: /* I-MMU 8k TSB pointer, RO */
2013 case 0x52: /* I-MMU 64k TSB pointer, RO */
2014 case 0x56: /* I-MMU tag read, RO */
2015 case 0x59: /* D-MMU 8k TSB pointer, RO */
2016 case 0x5a: /* D-MMU 64k TSB pointer, RO */
2017 case 0x5b: /* D-MMU data pointer, RO */
2018 case 0x5e: /* D-MMU tag read, RO */
2019 case 0x48: /* Interrupt dispatch, RO */
2020 case 0x7f: /* Incoming interrupt vector, RO */
2021 case 0x82: /* Primary no-fault, RO */
2022 case 0x83: /* Secondary no-fault, RO */
2023 case 0x8a: /* Primary no-fault LE, RO */
2024 case 0x8b: /* Secondary no-fault LE, RO */
2025 default:
2fad1112 2026 cpu_unassigned_access(cs, addr, true, false, 1, size);
fafd8bce
BS
2027 return;
2028 }
2029}
2030#endif /* CONFIG_USER_ONLY */
2031
fe8d8f0f 2032void helper_ldda_asi(CPUSPARCState *env, target_ulong addr, int asi, int rd)
fafd8bce
BS
2033{
2034 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2035 || (cpu_has_hypervisor(env)
2036 && asi >= 0x30 && asi < 0x80
2037 && !(env->hpstate & HS_PRIV))) {
2038 helper_raise_exception(env, TT_PRIV_ACT);
2039 }
2040
2041 addr = asi_address_mask(env, asi, addr);
2042
2043 switch (asi) {
2044#if !defined(CONFIG_USER_ONLY)
2045 case 0x24: /* Nucleus quad LDD 128 bit atomic */
2046 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
fe8d8f0f 2047 helper_check_align(env, addr, 0xf);
fafd8bce 2048 if (rd == 0) {
fe8d8f0f 2049 env->gregs[1] = cpu_ldq_nucleus(env, addr + 8);
fafd8bce
BS
2050 if (asi == 0x2c) {
2051 bswap64s(&env->gregs[1]);
2052 }
2053 } else if (rd < 8) {
fe8d8f0f
BS
2054 env->gregs[rd] = cpu_ldq_nucleus(env, addr);
2055 env->gregs[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
fafd8bce
BS
2056 if (asi == 0x2c) {
2057 bswap64s(&env->gregs[rd]);
2058 bswap64s(&env->gregs[rd + 1]);
2059 }
2060 } else {
fe8d8f0f
BS
2061 env->regwptr[rd] = cpu_ldq_nucleus(env, addr);
2062 env->regwptr[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
fafd8bce
BS
2063 if (asi == 0x2c) {
2064 bswap64s(&env->regwptr[rd]);
2065 bswap64s(&env->regwptr[rd + 1]);
2066 }
2067 }
2068 break;
2069#endif
2070 default:
fe8d8f0f 2071 helper_check_align(env, addr, 0x3);
fafd8bce 2072 if (rd == 0) {
fe8d8f0f 2073 env->gregs[1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
fafd8bce 2074 } else if (rd < 8) {
fe8d8f0f
BS
2075 env->gregs[rd] = helper_ld_asi(env, addr, asi, 4, 0);
2076 env->gregs[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
fafd8bce 2077 } else {
fe8d8f0f
BS
2078 env->regwptr[rd] = helper_ld_asi(env, addr, asi, 4, 0);
2079 env->regwptr[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
fafd8bce
BS
2080 }
2081 break;
2082 }
2083}
2084
fe8d8f0f
BS
2085void helper_ldf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
2086 int rd)
fafd8bce
BS
2087{
2088 unsigned int i;
30038fd8 2089 target_ulong val;
fafd8bce 2090
fe8d8f0f 2091 helper_check_align(env, addr, 3);
fafd8bce
BS
2092 addr = asi_address_mask(env, asi, addr);
2093
2094 switch (asi) {
2095 case 0xf0: /* UA2007/JPS1 Block load primary */
2096 case 0xf1: /* UA2007/JPS1 Block load secondary */
2097 case 0xf8: /* UA2007/JPS1 Block load primary LE */
2098 case 0xf9: /* UA2007/JPS1 Block load secondary LE */
2099 if (rd & 7) {
2100 helper_raise_exception(env, TT_ILL_INSN);
2101 return;
2102 }
fe8d8f0f 2103 helper_check_align(env, addr, 0x3f);
30038fd8 2104 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
fe8d8f0f 2105 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x8f, 8, 0);
fafd8bce 2106 }
fafd8bce 2107 return;
30038fd8 2108
fafd8bce
BS
2109 case 0x16: /* UA2007 Block load primary, user privilege */
2110 case 0x17: /* UA2007 Block load secondary, user privilege */
2111 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2112 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2113 case 0x70: /* JPS1 Block load primary, user privilege */
2114 case 0x71: /* JPS1 Block load secondary, user privilege */
2115 case 0x78: /* JPS1 Block load primary LE, user privilege */
2116 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2117 if (rd & 7) {
2118 helper_raise_exception(env, TT_ILL_INSN);
2119 return;
2120 }
fe8d8f0f 2121 helper_check_align(env, addr, 0x3f);
00b2ace5 2122 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
fe8d8f0f 2123 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x19, 8, 0);
fafd8bce 2124 }
fafd8bce 2125 return;
30038fd8 2126
fafd8bce
BS
2127 default:
2128 break;
2129 }
2130
2131 switch (size) {
2132 default:
2133 case 4:
fe8d8f0f 2134 val = helper_ld_asi(env, addr, asi, size, 0);
30038fd8 2135 if (rd & 1) {
fe8d8f0f 2136 env->fpr[rd / 2].l.lower = val;
30038fd8 2137 } else {
fe8d8f0f 2138 env->fpr[rd / 2].l.upper = val;
30038fd8 2139 }
fafd8bce
BS
2140 break;
2141 case 8:
fe8d8f0f 2142 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, size, 0);
fafd8bce
BS
2143 break;
2144 case 16:
fe8d8f0f
BS
2145 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, 8, 0);
2146 env->fpr[rd / 2 + 1].ll = helper_ld_asi(env, addr + 8, asi, 8, 0);
fafd8bce
BS
2147 break;
2148 }
2149}
2150
fe8d8f0f
BS
2151void helper_stf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
2152 int rd)
fafd8bce
BS
2153{
2154 unsigned int i;
30038fd8 2155 target_ulong val;
fafd8bce 2156
fafd8bce
BS
2157 addr = asi_address_mask(env, asi, addr);
2158
2159 switch (asi) {
2160 case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
2161 case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
2162 case 0xf0: /* UA2007/JPS1 Block store primary */
2163 case 0xf1: /* UA2007/JPS1 Block store secondary */
2164 case 0xf8: /* UA2007/JPS1 Block store primary LE */
2165 case 0xf9: /* UA2007/JPS1 Block store secondary LE */
2166 if (rd & 7) {
2167 helper_raise_exception(env, TT_ILL_INSN);
2168 return;
2169 }
fe8d8f0f 2170 helper_check_align(env, addr, 0x3f);
30038fd8 2171 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
fe8d8f0f 2172 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x8f, 8);
fafd8bce
BS
2173 }
2174
2175 return;
2176 case 0x16: /* UA2007 Block load primary, user privilege */
2177 case 0x17: /* UA2007 Block load secondary, user privilege */
2178 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2179 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2180 case 0x70: /* JPS1 Block store primary, user privilege */
2181 case 0x71: /* JPS1 Block store secondary, user privilege */
2182 case 0x78: /* JPS1 Block load primary LE, user privilege */
2183 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2184 if (rd & 7) {
2185 helper_raise_exception(env, TT_ILL_INSN);
2186 return;
2187 }
fe8d8f0f 2188 helper_check_align(env, addr, 0x3f);
30038fd8 2189 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
fe8d8f0f 2190 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x19, 8);
fafd8bce
BS
2191 }
2192
2a5fade7
AT
2193 return;
2194 case 0xd2: /* 16-bit floating point load primary */
2195 case 0xd3: /* 16-bit floating point load secondary */
2196 case 0xda: /* 16-bit floating point load primary, LE */
2197 case 0xdb: /* 16-bit floating point load secondary, LE */
2198 helper_check_align(env, addr, 1);
2199 /* Fall through */
2200 case 0xd0: /* 8-bit floating point load primary */
2201 case 0xd1: /* 8-bit floating point load secondary */
2202 case 0xd8: /* 8-bit floating point load primary, LE */
2203 case 0xd9: /* 8-bit floating point load secondary, LE */
2204 val = env->fpr[rd / 2].l.lower;
2205 helper_st_asi(env, addr, val, asi & 0x8d, ((asi & 2) >> 1) + 1);
fafd8bce
BS
2206 return;
2207 default:
2a5fade7 2208 helper_check_align(env, addr, 3);
fafd8bce
BS
2209 break;
2210 }
2211
2212 switch (size) {
2213 default:
2214 case 4:
30038fd8 2215 if (rd & 1) {
fe8d8f0f 2216 val = env->fpr[rd / 2].l.lower;
30038fd8 2217 } else {
fe8d8f0f 2218 val = env->fpr[rd / 2].l.upper;
30038fd8 2219 }
fe8d8f0f 2220 helper_st_asi(env, addr, val, asi, size);
fafd8bce
BS
2221 break;
2222 case 8:
fe8d8f0f 2223 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, size);
fafd8bce
BS
2224 break;
2225 case 16:
fe8d8f0f
BS
2226 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, 8);
2227 helper_st_asi(env, addr + 8, env->fpr[rd / 2 + 1].ll, asi, 8);
fafd8bce
BS
2228 break;
2229 }
2230}
2231
16c358e9
SH
2232target_ulong helper_casx_asi(CPUSPARCState *env, target_ulong addr,
2233 target_ulong val1, target_ulong val2,
2234 uint32_t asi)
fafd8bce
BS
2235{
2236 target_ulong ret;
2237
16c358e9 2238 ret = helper_ld_asi(env, addr, asi, 8, 0);
fafd8bce 2239 if (val2 == ret) {
16c358e9 2240 helper_st_asi(env, addr, val1, asi, 8);
fafd8bce
BS
2241 }
2242 return ret;
2243}
16c358e9 2244#endif /* TARGET_SPARC64 */
fafd8bce 2245
16c358e9
SH
2246#if !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64)
2247target_ulong helper_cas_asi(CPUSPARCState *env, target_ulong addr,
2248 target_ulong val1, target_ulong val2, uint32_t asi)
fafd8bce
BS
2249{
2250 target_ulong ret;
2251
16c358e9
SH
2252 val2 &= 0xffffffffUL;
2253 ret = helper_ld_asi(env, addr, asi, 4, 0);
2254 ret &= 0xffffffffUL;
fafd8bce 2255 if (val2 == ret) {
16c358e9 2256 helper_st_asi(env, addr, val1 & 0xffffffffUL, asi, 4);
fafd8bce
BS
2257 }
2258 return ret;
2259}
16c358e9 2260#endif /* !defined(CONFIG_USER_ONLY) || defined(TARGET_SPARC64) */
fafd8bce 2261
fe8d8f0f 2262void helper_ldqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
fafd8bce
BS
2263{
2264 /* XXX add 128 bit load */
2265 CPU_QuadU u;
2266
fe8d8f0f 2267 helper_check_align(env, addr, 7);
fafd8bce
BS
2268#if !defined(CONFIG_USER_ONLY)
2269 switch (mem_idx) {
2270 case MMU_USER_IDX:
fe8d8f0f
BS
2271 u.ll.upper = cpu_ldq_user(env, addr);
2272 u.ll.lower = cpu_ldq_user(env, addr + 8);
fafd8bce
BS
2273 QT0 = u.q;
2274 break;
2275 case MMU_KERNEL_IDX:
fe8d8f0f
BS
2276 u.ll.upper = cpu_ldq_kernel(env, addr);
2277 u.ll.lower = cpu_ldq_kernel(env, addr + 8);
fafd8bce
BS
2278 QT0 = u.q;
2279 break;
2280#ifdef TARGET_SPARC64
2281 case MMU_HYPV_IDX:
fe8d8f0f
BS
2282 u.ll.upper = cpu_ldq_hypv(env, addr);
2283 u.ll.lower = cpu_ldq_hypv(env, addr + 8);
fafd8bce
BS
2284 QT0 = u.q;
2285 break;
2286#endif
2287 default:
2288 DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
2289 break;
2290 }
2291#else
eb513f82
PM
2292 u.ll.upper = cpu_ldq_data(env, address_mask(env, addr));
2293 u.ll.lower = cpu_ldq_data(env, address_mask(env, addr + 8));
fafd8bce
BS
2294 QT0 = u.q;
2295#endif
2296}
2297
fe8d8f0f 2298void helper_stqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
fafd8bce
BS
2299{
2300 /* XXX add 128 bit store */
2301 CPU_QuadU u;
2302
fe8d8f0f 2303 helper_check_align(env, addr, 7);
fafd8bce
BS
2304#if !defined(CONFIG_USER_ONLY)
2305 switch (mem_idx) {
2306 case MMU_USER_IDX:
2307 u.q = QT0;
fe8d8f0f
BS
2308 cpu_stq_user(env, addr, u.ll.upper);
2309 cpu_stq_user(env, addr + 8, u.ll.lower);
fafd8bce
BS
2310 break;
2311 case MMU_KERNEL_IDX:
2312 u.q = QT0;
fe8d8f0f
BS
2313 cpu_stq_kernel(env, addr, u.ll.upper);
2314 cpu_stq_kernel(env, addr + 8, u.ll.lower);
fafd8bce
BS
2315 break;
2316#ifdef TARGET_SPARC64
2317 case MMU_HYPV_IDX:
2318 u.q = QT0;
fe8d8f0f
BS
2319 cpu_stq_hypv(env, addr, u.ll.upper);
2320 cpu_stq_hypv(env, addr + 8, u.ll.lower);
fafd8bce
BS
2321 break;
2322#endif
2323 default:
2324 DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
2325 break;
2326 }
2327#else
2328 u.q = QT0;
eb513f82
PM
2329 cpu_stq_data(env, address_mask(env, addr), u.ll.upper);
2330 cpu_stq_data(env, address_mask(env, addr + 8), u.ll.lower);
fafd8bce
BS
2331#endif
2332}
2333
fafd8bce 2334#if !defined(CONFIG_USER_ONLY)
fe8d8f0f 2335#ifndef TARGET_SPARC64
c658b94f
AF
2336void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2337 bool is_write, bool is_exec, int is_asi,
2338 unsigned size)
fafd8bce 2339{
c658b94f
AF
2340 SPARCCPU *cpu = SPARC_CPU(cs);
2341 CPUSPARCState *env = &cpu->env;
fafd8bce
BS
2342 int fault_type;
2343
2344#ifdef DEBUG_UNASSIGNED
2345 if (is_asi) {
2346 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2347 " asi 0x%02x from " TARGET_FMT_lx "\n",
2348 is_exec ? "exec" : is_write ? "write" : "read", size,
2349 size == 1 ? "" : "s", addr, is_asi, env->pc);
2350 } else {
2351 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2352 " from " TARGET_FMT_lx "\n",
2353 is_exec ? "exec" : is_write ? "write" : "read", size,
2354 size == 1 ? "" : "s", addr, env->pc);
2355 }
2356#endif
2357 /* Don't overwrite translation and access faults */
2358 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
2359 if ((fault_type > 4) || (fault_type == 0)) {
2360 env->mmuregs[3] = 0; /* Fault status register */
2361 if (is_asi) {
2362 env->mmuregs[3] |= 1 << 16;
2363 }
2364 if (env->psrs) {
2365 env->mmuregs[3] |= 1 << 5;
2366 }
2367 if (is_exec) {
2368 env->mmuregs[3] |= 1 << 6;
2369 }
2370 if (is_write) {
2371 env->mmuregs[3] |= 1 << 7;
2372 }
2373 env->mmuregs[3] |= (5 << 2) | 2;
2374 /* SuperSPARC will never place instruction fault addresses in the FAR */
2375 if (!is_exec) {
2376 env->mmuregs[4] = addr; /* Fault address register */
2377 }
2378 }
2379 /* overflow (same type fault was not read before another fault) */
2380 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
2381 env->mmuregs[3] |= 1;
2382 }
2383
2384 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
2385 if (is_exec) {
2386 helper_raise_exception(env, TT_CODE_ACCESS);
2387 } else {
2388 helper_raise_exception(env, TT_DATA_ACCESS);
2389 }
2390 }
2391
2392 /* flush neverland mappings created during no-fault mode,
2393 so the sequential MMU faults report proper fault types */
2394 if (env->mmuregs[0] & MMU_NF) {
00c8cb0a 2395 tlb_flush(cs, 1);
fafd8bce
BS
2396 }
2397}
fafd8bce 2398#else
c658b94f
AF
2399void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2400 bool is_write, bool is_exec, int is_asi,
2401 unsigned size)
fafd8bce 2402{
c658b94f
AF
2403 SPARCCPU *cpu = SPARC_CPU(cs);
2404 CPUSPARCState *env = &cpu->env;
2405
fafd8bce
BS
2406#ifdef DEBUG_UNASSIGNED
2407 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
2408 "\n", addr, env->pc);
2409#endif
2410
2411 if (is_exec) {
2412 helper_raise_exception(env, TT_CODE_ACCESS);
2413 } else {
2414 helper_raise_exception(env, TT_DATA_ACCESS);
2415 }
2416}
2417#endif
fafd8bce 2418#endif
0184e266 2419
c28ae41e 2420#if !defined(CONFIG_USER_ONLY)
93e22326
PB
2421void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs,
2422 vaddr addr, int is_write,
2423 int is_user, uintptr_t retaddr)
0184e266 2424{
93e22326
PB
2425 SPARCCPU *cpu = SPARC_CPU(cs);
2426 CPUSPARCState *env = &cpu->env;
2427
0184e266
BS
2428#ifdef DEBUG_UNALIGNED
2429 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
2430 "\n", addr, env->pc);
2431#endif
a8a826a3 2432 if (retaddr) {
3f38f309 2433 cpu_restore_state(CPU(cpu), retaddr);
a8a826a3 2434 }
0184e266
BS
2435 helper_raise_exception(env, TT_UNALIGNED);
2436}
2437
2438/* try to fill the TLB and return an exception if error. If retaddr is
2439 NULL, it means that the function was called in C code (i.e. not
2440 from generated code or from helper.c) */
2441/* XXX: fix it to restore all registers */
d5a11fef 2442void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
20503968 2443 uintptr_t retaddr)
0184e266
BS
2444{
2445 int ret;
2446
d5a11fef 2447 ret = sparc_cpu_handle_mmu_fault(cs, addr, is_write, mmu_idx);
0184e266 2448 if (ret) {
a8a826a3 2449 if (retaddr) {
3f38f309 2450 cpu_restore_state(cs, retaddr);
a8a826a3 2451 }
5638d180 2452 cpu_loop_exit(cs);
0184e266
BS
2453 }
2454}
2455#endif