]> git.proxmox.com Git - mirror_qemu.git/blame - target-sparc/op_helper.c
Fix Sparc64 boot on i386 host:
[mirror_qemu.git] / target-sparc / op_helper.c
CommitLineData
e8af50a3 1#include "exec.h"
eed152bb 2#include "host-utils.h"
1a2fb1c0 3#include "helper.h"
0828b448
BS
4#if !defined(CONFIG_USER_ONLY)
5#include "softmmu_exec.h"
6#endif /* !defined(CONFIG_USER_ONLY) */
e8af50a3 7
e80cfcfc 8//#define DEBUG_MMU
952a328f 9//#define DEBUG_MXCC
94554550 10//#define DEBUG_UNALIGNED
6c36d3fa 11//#define DEBUG_UNASSIGNED
8543e2cf 12//#define DEBUG_ASI
e80cfcfc 13
952a328f
BS
14#ifdef DEBUG_MMU
15#define DPRINTF_MMU(fmt, args...) \
16do { printf("MMU: " fmt , ##args); } while (0)
17#else
22548760 18#define DPRINTF_MMU(fmt, args...) do {} while (0)
952a328f
BS
19#endif
20
21#ifdef DEBUG_MXCC
22#define DPRINTF_MXCC(fmt, args...) \
23do { printf("MXCC: " fmt , ##args); } while (0)
24#else
22548760 25#define DPRINTF_MXCC(fmt, args...) do {} while (0)
952a328f
BS
26#endif
27
8543e2cf
BS
28#ifdef DEBUG_ASI
29#define DPRINTF_ASI(fmt, args...) \
30do { printf("ASI: " fmt , ##args); } while (0)
31#else
22548760 32#define DPRINTF_ASI(fmt, args...) do {} while (0)
8543e2cf
BS
33#endif
34
2cade6a3
BS
35#ifdef TARGET_SPARC64
36#ifndef TARGET_ABI32
37#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
c2bc0e38 38#else
2cade6a3
BS
39#define AM_CHECK(env1) (1)
40#endif
c2bc0e38
BS
41#endif
42
2cade6a3
BS
43static inline void address_mask(CPUState *env1, target_ulong *addr)
44{
45#ifdef TARGET_SPARC64
46 if (AM_CHECK(env1))
47 *addr &= 0xffffffffULL;
48#endif
49}
50
9d893301
FB
51void raise_exception(int tt)
52{
53 env->exception_index = tt;
54 cpu_loop_exit();
3b46e624 55}
9d893301 56
1a2fb1c0 57void helper_trap(target_ulong nb_trap)
417454b0 58{
1a2fb1c0
BS
59 env->exception_index = TT_TRAP + (nb_trap & 0x7f);
60 cpu_loop_exit();
61}
62
63void helper_trapcc(target_ulong nb_trap, target_ulong do_trap)
64{
65 if (do_trap) {
66 env->exception_index = TT_TRAP + (nb_trap & 0x7f);
67 cpu_loop_exit();
68 }
69}
70
91736d37
BS
71static inline void set_cwp(int new_cwp)
72{
73 cpu_set_cwp(env, new_cwp);
74}
75
2b29924f
BS
76void helper_check_align(target_ulong addr, uint32_t align)
77{
c2bc0e38
BS
78 if (addr & align) {
79#ifdef DEBUG_UNALIGNED
80 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
81 "\n", addr, env->pc);
82#endif
2b29924f 83 raise_exception(TT_UNALIGNED);
c2bc0e38 84 }
2b29924f
BS
85}
86
44e7757c
BS
87#define F_HELPER(name, p) void helper_f##name##p(void)
88
44e7757c
BS
89#define F_BINOP(name) \
90 F_HELPER(name, s) \
91 { \
92 FT0 = float32_ ## name (FT0, FT1, &env->fp_status); \
93 } \
94 F_HELPER(name, d) \
95 { \
96 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
4e14008f
BS
97 } \
98 F_HELPER(name, q) \
99 { \
100 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
44e7757c 101 }
44e7757c
BS
102
103F_BINOP(add);
104F_BINOP(sub);
105F_BINOP(mul);
106F_BINOP(div);
107#undef F_BINOP
108
109void helper_fsmuld(void)
1a2fb1c0 110{
44e7757c
BS
111 DT0 = float64_mul(float32_to_float64(FT0, &env->fp_status),
112 float32_to_float64(FT1, &env->fp_status),
113 &env->fp_status);
114}
1a2fb1c0 115
4e14008f
BS
116void helper_fdmulq(void)
117{
118 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
119 float64_to_float128(DT1, &env->fp_status),
120 &env->fp_status);
121}
4e14008f 122
44e7757c
BS
123F_HELPER(neg, s)
124{
125 FT0 = float32_chs(FT1);
417454b0
BS
126}
127
44e7757c
BS
128#ifdef TARGET_SPARC64
129F_HELPER(neg, d)
7e8c2b6c 130{
44e7757c 131 DT0 = float64_chs(DT1);
7e8c2b6c 132}
4e14008f 133
4e14008f
BS
134F_HELPER(neg, q)
135{
136 QT0 = float128_chs(QT1);
137}
138#endif
44e7757c
BS
139
140/* Integer to float conversion. */
141F_HELPER(ito, s)
a0c4cb4a 142{
ec230928 143 FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
a0c4cb4a
FB
144}
145
44e7757c 146F_HELPER(ito, d)
a0c4cb4a 147{
ec230928 148 DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
a0c4cb4a 149}
9c2b428e 150
4e14008f
BS
151F_HELPER(ito, q)
152{
153 QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status);
154}
4e14008f 155
1e64e78d 156#ifdef TARGET_SPARC64
44e7757c 157F_HELPER(xto, s)
1e64e78d 158{
1e64e78d 159 FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
1e64e78d
BS
160}
161
44e7757c 162F_HELPER(xto, d)
1e64e78d 163{
1e64e78d 164 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
1e64e78d 165}
64a88d5d 166
4e14008f
BS
167F_HELPER(xto, q)
168{
169 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
170}
171#endif
44e7757c
BS
172#undef F_HELPER
173
174/* floating point conversion */
175void helper_fdtos(void)
176{
177 FT0 = float64_to_float32(DT1, &env->fp_status);
178}
179
180void helper_fstod(void)
181{
182 DT0 = float32_to_float64(FT1, &env->fp_status);
183}
9c2b428e 184
4e14008f
BS
185void helper_fqtos(void)
186{
187 FT0 = float128_to_float32(QT1, &env->fp_status);
188}
189
190void helper_fstoq(void)
191{
192 QT0 = float32_to_float128(FT1, &env->fp_status);
193}
194
195void helper_fqtod(void)
196{
197 DT0 = float128_to_float64(QT1, &env->fp_status);
198}
199
200void helper_fdtoq(void)
201{
202 QT0 = float64_to_float128(DT1, &env->fp_status);
203}
4e14008f 204
44e7757c
BS
205/* Float to integer conversion. */
206void helper_fstoi(void)
207{
208 *((int32_t *)&FT0) = float32_to_int32_round_to_zero(FT1, &env->fp_status);
209}
210
211void helper_fdtoi(void)
212{
213 *((int32_t *)&FT0) = float64_to_int32_round_to_zero(DT1, &env->fp_status);
214}
215
4e14008f
BS
216void helper_fqtoi(void)
217{
218 *((int32_t *)&FT0) = float128_to_int32_round_to_zero(QT1, &env->fp_status);
219}
4e14008f 220
44e7757c
BS
221#ifdef TARGET_SPARC64
222void helper_fstox(void)
223{
224 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(FT1, &env->fp_status);
225}
226
227void helper_fdtox(void)
228{
229 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
230}
231
4e14008f
BS
232void helper_fqtox(void)
233{
234 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
235}
4e14008f 236
44e7757c
BS
237void helper_faligndata(void)
238{
239 uint64_t tmp;
240
241 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
06057e6f
BS
242 /* on many architectures a shift of 64 does nothing */
243 if ((env->gsr & 7) != 0) {
244 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
245 }
44e7757c
BS
246 *((uint64_t *)&DT0) = tmp;
247}
248
249void helper_movl_FT0_0(void)
250{
251 *((uint32_t *)&FT0) = 0;
252}
253
254void helper_movl_DT0_0(void)
255{
256 *((uint64_t *)&DT0) = 0;
257}
258
259void helper_movl_FT0_1(void)
260{
261 *((uint32_t *)&FT0) = 0xffffffff;
262}
263
264void helper_movl_DT0_1(void)
265{
266 *((uint64_t *)&DT0) = 0xffffffffffffffffULL;
267}
268
269void helper_fnot(void)
270{
271 *(uint64_t *)&DT0 = ~*(uint64_t *)&DT1;
272}
273
274void helper_fnots(void)
275{
276 *(uint32_t *)&FT0 = ~*(uint32_t *)&FT1;
277}
278
279void helper_fnor(void)
280{
281 *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 | *(uint64_t *)&DT1);
282}
283
284void helper_fnors(void)
285{
286 *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 | *(uint32_t *)&FT1);
287}
288
289void helper_for(void)
290{
291 *(uint64_t *)&DT0 |= *(uint64_t *)&DT1;
292}
293
294void helper_fors(void)
295{
296 *(uint32_t *)&FT0 |= *(uint32_t *)&FT1;
297}
298
299void helper_fxor(void)
300{
301 *(uint64_t *)&DT0 ^= *(uint64_t *)&DT1;
302}
303
304void helper_fxors(void)
305{
306 *(uint32_t *)&FT0 ^= *(uint32_t *)&FT1;
307}
308
309void helper_fand(void)
310{
311 *(uint64_t *)&DT0 &= *(uint64_t *)&DT1;
312}
313
314void helper_fands(void)
315{
316 *(uint32_t *)&FT0 &= *(uint32_t *)&FT1;
317}
318
319void helper_fornot(void)
320{
321 *(uint64_t *)&DT0 = *(uint64_t *)&DT0 | ~*(uint64_t *)&DT1;
322}
323
324void helper_fornots(void)
325{
326 *(uint32_t *)&FT0 = *(uint32_t *)&FT0 | ~*(uint32_t *)&FT1;
327}
328
329void helper_fandnot(void)
330{
331 *(uint64_t *)&DT0 = *(uint64_t *)&DT0 & ~*(uint64_t *)&DT1;
332}
333
334void helper_fandnots(void)
335{
336 *(uint32_t *)&FT0 = *(uint32_t *)&FT0 & ~*(uint32_t *)&FT1;
337}
338
339void helper_fnand(void)
340{
341 *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 & *(uint64_t *)&DT1);
342}
343
344void helper_fnands(void)
345{
346 *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 & *(uint32_t *)&FT1);
347}
348
349void helper_fxnor(void)
350{
351 *(uint64_t *)&DT0 ^= ~*(uint64_t *)&DT1;
352}
353
354void helper_fxnors(void)
355{
356 *(uint32_t *)&FT0 ^= ~*(uint32_t *)&FT1;
357}
358
359#ifdef WORDS_BIGENDIAN
360#define VIS_B64(n) b[7 - (n)]
361#define VIS_W64(n) w[3 - (n)]
362#define VIS_SW64(n) sw[3 - (n)]
363#define VIS_L64(n) l[1 - (n)]
364#define VIS_B32(n) b[3 - (n)]
365#define VIS_W32(n) w[1 - (n)]
366#else
367#define VIS_B64(n) b[n]
368#define VIS_W64(n) w[n]
369#define VIS_SW64(n) sw[n]
370#define VIS_L64(n) l[n]
371#define VIS_B32(n) b[n]
372#define VIS_W32(n) w[n]
373#endif
374
375typedef union {
376 uint8_t b[8];
377 uint16_t w[4];
378 int16_t sw[4];
379 uint32_t l[2];
380 float64 d;
381} vis64;
382
383typedef union {
384 uint8_t b[4];
385 uint16_t w[2];
386 uint32_t l;
387 float32 f;
388} vis32;
389
390void helper_fpmerge(void)
391{
392 vis64 s, d;
393
394 s.d = DT0;
395 d.d = DT1;
396
397 // Reverse calculation order to handle overlap
398 d.VIS_B64(7) = s.VIS_B64(3);
399 d.VIS_B64(6) = d.VIS_B64(3);
400 d.VIS_B64(5) = s.VIS_B64(2);
401 d.VIS_B64(4) = d.VIS_B64(2);
402 d.VIS_B64(3) = s.VIS_B64(1);
403 d.VIS_B64(2) = d.VIS_B64(1);
404 d.VIS_B64(1) = s.VIS_B64(0);
405 //d.VIS_B64(0) = d.VIS_B64(0);
406
407 DT0 = d.d;
408}
409
410void helper_fmul8x16(void)
411{
412 vis64 s, d;
413 uint32_t tmp;
414
415 s.d = DT0;
416 d.d = DT1;
417
418#define PMUL(r) \
419 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
420 if ((tmp & 0xff) > 0x7f) \
421 tmp += 0x100; \
422 d.VIS_W64(r) = tmp >> 8;
423
424 PMUL(0);
425 PMUL(1);
426 PMUL(2);
427 PMUL(3);
428#undef PMUL
429
430 DT0 = d.d;
431}
432
433void helper_fmul8x16al(void)
434{
435 vis64 s, d;
436 uint32_t tmp;
437
438 s.d = DT0;
439 d.d = DT1;
440
441#define PMUL(r) \
442 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
443 if ((tmp & 0xff) > 0x7f) \
444 tmp += 0x100; \
445 d.VIS_W64(r) = tmp >> 8;
446
447 PMUL(0);
448 PMUL(1);
449 PMUL(2);
450 PMUL(3);
451#undef PMUL
452
453 DT0 = d.d;
454}
455
456void helper_fmul8x16au(void)
457{
458 vis64 s, d;
459 uint32_t tmp;
460
461 s.d = DT0;
462 d.d = DT1;
463
464#define PMUL(r) \
465 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
466 if ((tmp & 0xff) > 0x7f) \
467 tmp += 0x100; \
468 d.VIS_W64(r) = tmp >> 8;
469
470 PMUL(0);
471 PMUL(1);
472 PMUL(2);
473 PMUL(3);
474#undef PMUL
475
476 DT0 = d.d;
477}
478
479void helper_fmul8sux16(void)
480{
481 vis64 s, d;
482 uint32_t tmp;
483
484 s.d = DT0;
485 d.d = DT1;
486
487#define PMUL(r) \
488 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
489 if ((tmp & 0xff) > 0x7f) \
490 tmp += 0x100; \
491 d.VIS_W64(r) = tmp >> 8;
492
493 PMUL(0);
494 PMUL(1);
495 PMUL(2);
496 PMUL(3);
497#undef PMUL
498
499 DT0 = d.d;
500}
501
502void helper_fmul8ulx16(void)
503{
504 vis64 s, d;
505 uint32_t tmp;
506
507 s.d = DT0;
508 d.d = DT1;
509
510#define PMUL(r) \
511 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
512 if ((tmp & 0xff) > 0x7f) \
513 tmp += 0x100; \
514 d.VIS_W64(r) = tmp >> 8;
515
516 PMUL(0);
517 PMUL(1);
518 PMUL(2);
519 PMUL(3);
520#undef PMUL
521
522 DT0 = d.d;
523}
524
525void helper_fmuld8sux16(void)
526{
527 vis64 s, d;
528 uint32_t tmp;
529
530 s.d = DT0;
531 d.d = DT1;
532
533#define PMUL(r) \
534 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
535 if ((tmp & 0xff) > 0x7f) \
536 tmp += 0x100; \
537 d.VIS_L64(r) = tmp;
538
539 // Reverse calculation order to handle overlap
540 PMUL(1);
541 PMUL(0);
542#undef PMUL
543
544 DT0 = d.d;
545}
546
547void helper_fmuld8ulx16(void)
548{
549 vis64 s, d;
550 uint32_t tmp;
551
552 s.d = DT0;
553 d.d = DT1;
554
555#define PMUL(r) \
556 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
557 if ((tmp & 0xff) > 0x7f) \
558 tmp += 0x100; \
559 d.VIS_L64(r) = tmp;
560
561 // Reverse calculation order to handle overlap
562 PMUL(1);
563 PMUL(0);
564#undef PMUL
565
566 DT0 = d.d;
567}
568
569void helper_fexpand(void)
570{
571 vis32 s;
572 vis64 d;
573
574 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
575 d.d = DT1;
576 d.VIS_L64(0) = s.VIS_W32(0) << 4;
577 d.VIS_L64(1) = s.VIS_W32(1) << 4;
578 d.VIS_L64(2) = s.VIS_W32(2) << 4;
579 d.VIS_L64(3) = s.VIS_W32(3) << 4;
580
581 DT0 = d.d;
582}
583
584#define VIS_HELPER(name, F) \
585 void name##16(void) \
586 { \
587 vis64 s, d; \
588 \
589 s.d = DT0; \
590 d.d = DT1; \
591 \
592 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
593 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
594 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
595 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
596 \
597 DT0 = d.d; \
598 } \
599 \
600 void name##16s(void) \
601 { \
602 vis32 s, d; \
603 \
604 s.f = FT0; \
605 d.f = FT1; \
606 \
607 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
608 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
609 \
610 FT0 = d.f; \
611 } \
612 \
613 void name##32(void) \
614 { \
615 vis64 s, d; \
616 \
617 s.d = DT0; \
618 d.d = DT1; \
619 \
620 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
621 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
622 \
623 DT0 = d.d; \
624 } \
625 \
626 void name##32s(void) \
627 { \
628 vis32 s, d; \
629 \
630 s.f = FT0; \
631 d.f = FT1; \
632 \
633 d.l = F(d.l, s.l); \
634 \
635 FT0 = d.f; \
636 }
637
638#define FADD(a, b) ((a) + (b))
639#define FSUB(a, b) ((a) - (b))
640VIS_HELPER(helper_fpadd, FADD)
641VIS_HELPER(helper_fpsub, FSUB)
642
643#define VIS_CMPHELPER(name, F) \
644 void name##16(void) \
645 { \
646 vis64 s, d; \
647 \
648 s.d = DT0; \
649 d.d = DT1; \
650 \
651 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
652 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
653 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
654 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
655 \
656 DT0 = d.d; \
657 } \
658 \
659 void name##32(void) \
660 { \
661 vis64 s, d; \
662 \
663 s.d = DT0; \
664 d.d = DT1; \
665 \
666 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
667 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
668 \
669 DT0 = d.d; \
670 }
671
672#define FCMPGT(a, b) ((a) > (b))
673#define FCMPEQ(a, b) ((a) == (b))
674#define FCMPLE(a, b) ((a) <= (b))
675#define FCMPNE(a, b) ((a) != (b))
676
677VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
678VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
679VIS_CMPHELPER(helper_fcmple, FCMPLE)
680VIS_CMPHELPER(helper_fcmpne, FCMPNE)
681#endif
682
683void helper_check_ieee_exceptions(void)
684{
685 target_ulong status;
686
687 status = get_float_exception_flags(&env->fp_status);
688 if (status) {
689 /* Copy IEEE 754 flags into FSR */
690 if (status & float_flag_invalid)
691 env->fsr |= FSR_NVC;
692 if (status & float_flag_overflow)
693 env->fsr |= FSR_OFC;
694 if (status & float_flag_underflow)
695 env->fsr |= FSR_UFC;
696 if (status & float_flag_divbyzero)
697 env->fsr |= FSR_DZC;
698 if (status & float_flag_inexact)
699 env->fsr |= FSR_NXC;
700
701 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
702 /* Unmasked exception, generate a trap */
703 env->fsr |= FSR_FTT_IEEE_EXCP;
704 raise_exception(TT_FP_EXCP);
705 } else {
706 /* Accumulate exceptions */
707 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
708 }
709 }
710}
711
712void helper_clear_float_exceptions(void)
713{
714 set_float_exception_flags(0, &env->fp_status);
715}
716
7e8c2b6c 717void helper_fabss(void)
e8af50a3 718{
7a0e1f41 719 FT0 = float32_abs(FT1);
e8af50a3
FB
720}
721
3475187d 722#ifdef TARGET_SPARC64
7e8c2b6c 723void helper_fabsd(void)
3475187d
FB
724{
725 DT0 = float64_abs(DT1);
726}
4e14008f 727
4e14008f
BS
728void helper_fabsq(void)
729{
730 QT0 = float128_abs(QT1);
731}
732#endif
3475187d 733
7e8c2b6c 734void helper_fsqrts(void)
e8af50a3 735{
7a0e1f41 736 FT0 = float32_sqrt(FT1, &env->fp_status);
e8af50a3
FB
737}
738
7e8c2b6c 739void helper_fsqrtd(void)
e8af50a3 740{
7a0e1f41 741 DT0 = float64_sqrt(DT1, &env->fp_status);
e8af50a3
FB
742}
743
4e14008f
BS
744void helper_fsqrtq(void)
745{
746 QT0 = float128_sqrt(QT1, &env->fp_status);
747}
4e14008f 748
417454b0 749#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
7e8c2b6c 750 void glue(helper_, name) (void) \
65ce8c2f 751 { \
1a2fb1c0
BS
752 target_ulong new_fsr; \
753 \
65ce8c2f
FB
754 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
755 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
756 case float_relation_unordered: \
1a2fb1c0 757 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
417454b0 758 if ((env->fsr & FSR_NVM) || TRAP) { \
1a2fb1c0 759 env->fsr |= new_fsr; \
417454b0
BS
760 env->fsr |= FSR_NVC; \
761 env->fsr |= FSR_FTT_IEEE_EXCP; \
65ce8c2f
FB
762 raise_exception(TT_FP_EXCP); \
763 } else { \
764 env->fsr |= FSR_NVA; \
765 } \
766 break; \
767 case float_relation_less: \
1a2fb1c0 768 new_fsr = FSR_FCC0 << FS; \
65ce8c2f
FB
769 break; \
770 case float_relation_greater: \
1a2fb1c0 771 new_fsr = FSR_FCC1 << FS; \
65ce8c2f
FB
772 break; \
773 default: \
1a2fb1c0 774 new_fsr = 0; \
65ce8c2f
FB
775 break; \
776 } \
1a2fb1c0 777 env->fsr |= new_fsr; \
e8af50a3 778 }
e8af50a3 779
417454b0
BS
780GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
781GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
782
783GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
784GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
3475187d 785
4e14008f
BS
786GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
787GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
4e14008f 788
3475187d 789#ifdef TARGET_SPARC64
417454b0
BS
790GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
791GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
64a88d5d 792GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
417454b0
BS
793
794GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
795GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
64a88d5d 796GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
417454b0
BS
797
798GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
799GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
64a88d5d 800GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
417454b0
BS
801
802GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
803GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
64a88d5d 804GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
3475187d 805
417454b0
BS
806GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
807GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
64a88d5d 808GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
3475187d 809
417454b0
BS
810GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
811GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
4e14008f
BS
812GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
813#endif
3475187d 814
77f193da
BS
815#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
816 defined(DEBUG_MXCC)
952a328f
BS
817static void dump_mxcc(CPUState *env)
818{
819 printf("mxccdata: %016llx %016llx %016llx %016llx\n",
77f193da
BS
820 env->mxccdata[0], env->mxccdata[1],
821 env->mxccdata[2], env->mxccdata[3]);
952a328f
BS
822 printf("mxccregs: %016llx %016llx %016llx %016llx\n"
823 " %016llx %016llx %016llx %016llx\n",
77f193da
BS
824 env->mxccregs[0], env->mxccregs[1],
825 env->mxccregs[2], env->mxccregs[3],
826 env->mxccregs[4], env->mxccregs[5],
827 env->mxccregs[6], env->mxccregs[7]);
952a328f
BS
828}
829#endif
830
1a2fb1c0
BS
831#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
832 && defined(DEBUG_ASI)
833static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
834 uint64_t r1)
8543e2cf
BS
835{
836 switch (size)
837 {
838 case 1:
1a2fb1c0
BS
839 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
840 addr, asi, r1 & 0xff);
8543e2cf
BS
841 break;
842 case 2:
1a2fb1c0
BS
843 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
844 addr, asi, r1 & 0xffff);
8543e2cf
BS
845 break;
846 case 4:
1a2fb1c0
BS
847 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
848 addr, asi, r1 & 0xffffffff);
8543e2cf
BS
849 break;
850 case 8:
1a2fb1c0
BS
851 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
852 addr, asi, r1);
8543e2cf
BS
853 break;
854 }
855}
856#endif
857
1a2fb1c0
BS
858#ifndef TARGET_SPARC64
859#ifndef CONFIG_USER_ONLY
860uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
e8af50a3 861{
1a2fb1c0 862 uint64_t ret = 0;
8543e2cf 863#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1a2fb1c0 864 uint32_t last_addr = addr;
952a328f 865#endif
e80cfcfc 866
c2bc0e38 867 helper_check_align(addr, size - 1);
e80cfcfc 868 switch (asi) {
6c36d3fa 869 case 2: /* SuperSparc MXCC registers */
1a2fb1c0 870 switch (addr) {
952a328f 871 case 0x01c00a00: /* MXCC control register */
1a2fb1c0
BS
872 if (size == 8)
873 ret = env->mxccregs[3];
874 else
77f193da
BS
875 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
876 size);
952a328f
BS
877 break;
878 case 0x01c00a04: /* MXCC control register */
879 if (size == 4)
880 ret = env->mxccregs[3];
881 else
77f193da
BS
882 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
883 size);
952a328f 884 break;
295db113
BS
885 case 0x01c00c00: /* Module reset register */
886 if (size == 8) {
1a2fb1c0 887 ret = env->mxccregs[5];
295db113
BS
888 // should we do something here?
889 } else
77f193da
BS
890 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
891 size);
295db113 892 break;
952a328f 893 case 0x01c00f00: /* MBus port address register */
1a2fb1c0
BS
894 if (size == 8)
895 ret = env->mxccregs[7];
896 else
77f193da
BS
897 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
898 size);
952a328f
BS
899 break;
900 default:
77f193da
BS
901 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
902 size);
952a328f
BS
903 break;
904 }
77f193da
BS
905 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
906 "addr = %08x -> ret = %08x,"
1a2fb1c0 907 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
952a328f
BS
908#ifdef DEBUG_MXCC
909 dump_mxcc(env);
910#endif
6c36d3fa 911 break;
e8af50a3 912 case 3: /* MMU probe */
0f8a249a
BS
913 {
914 int mmulev;
915
1a2fb1c0 916 mmulev = (addr >> 8) & 15;
0f8a249a
BS
917 if (mmulev > 4)
918 ret = 0;
1a2fb1c0
BS
919 else
920 ret = mmu_probe(env, addr, mmulev);
921 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
922 addr, mmulev, ret);
0f8a249a
BS
923 }
924 break;
e8af50a3 925 case 4: /* read MMU regs */
0f8a249a 926 {
1a2fb1c0 927 int reg = (addr >> 8) & 0x1f;
3b46e624 928
0f8a249a
BS
929 ret = env->mmuregs[reg];
930 if (reg == 3) /* Fault status cleared on read */
3dd9a152
BS
931 env->mmuregs[3] = 0;
932 else if (reg == 0x13) /* Fault status read */
933 ret = env->mmuregs[3];
934 else if (reg == 0x14) /* Fault address read */
935 ret = env->mmuregs[4];
1a2fb1c0 936 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
0f8a249a
BS
937 }
938 break;
045380be
BS
939 case 5: // Turbosparc ITLB Diagnostic
940 case 6: // Turbosparc DTLB Diagnostic
941 case 7: // Turbosparc IOTLB Diagnostic
942 break;
6c36d3fa
BS
943 case 9: /* Supervisor code access */
944 switch(size) {
945 case 1:
1a2fb1c0 946 ret = ldub_code(addr);
6c36d3fa
BS
947 break;
948 case 2:
a4e7dd52 949 ret = lduw_code(addr);
6c36d3fa
BS
950 break;
951 default:
952 case 4:
a4e7dd52 953 ret = ldl_code(addr);
6c36d3fa
BS
954 break;
955 case 8:
a4e7dd52 956 ret = ldq_code(addr);
6c36d3fa
BS
957 break;
958 }
959 break;
81ad8ba2
BS
960 case 0xa: /* User data access */
961 switch(size) {
962 case 1:
1a2fb1c0 963 ret = ldub_user(addr);
81ad8ba2
BS
964 break;
965 case 2:
a4e7dd52 966 ret = lduw_user(addr);
81ad8ba2
BS
967 break;
968 default:
969 case 4:
a4e7dd52 970 ret = ldl_user(addr);
81ad8ba2
BS
971 break;
972 case 8:
a4e7dd52 973 ret = ldq_user(addr);
81ad8ba2
BS
974 break;
975 }
976 break;
977 case 0xb: /* Supervisor data access */
978 switch(size) {
979 case 1:
1a2fb1c0 980 ret = ldub_kernel(addr);
81ad8ba2
BS
981 break;
982 case 2:
a4e7dd52 983 ret = lduw_kernel(addr);
81ad8ba2
BS
984 break;
985 default:
986 case 4:
a4e7dd52 987 ret = ldl_kernel(addr);
81ad8ba2
BS
988 break;
989 case 8:
a4e7dd52 990 ret = ldq_kernel(addr);
81ad8ba2
BS
991 break;
992 }
993 break;
6c36d3fa
BS
994 case 0xc: /* I-cache tag */
995 case 0xd: /* I-cache data */
996 case 0xe: /* D-cache tag */
997 case 0xf: /* D-cache data */
998 break;
999 case 0x20: /* MMU passthrough */
02aab46a
FB
1000 switch(size) {
1001 case 1:
1a2fb1c0 1002 ret = ldub_phys(addr);
02aab46a
FB
1003 break;
1004 case 2:
a4e7dd52 1005 ret = lduw_phys(addr);
02aab46a
FB
1006 break;
1007 default:
1008 case 4:
a4e7dd52 1009 ret = ldl_phys(addr);
02aab46a 1010 break;
9e61bde5 1011 case 8:
a4e7dd52 1012 ret = ldq_phys(addr);
0f8a249a 1013 break;
02aab46a 1014 }
0f8a249a 1015 break;
7d85892b 1016 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
5dcb6b91
BS
1017 switch(size) {
1018 case 1:
1a2fb1c0 1019 ret = ldub_phys((target_phys_addr_t)addr
5dcb6b91
BS
1020 | ((target_phys_addr_t)(asi & 0xf) << 32));
1021 break;
1022 case 2:
a4e7dd52 1023 ret = lduw_phys((target_phys_addr_t)addr
5dcb6b91
BS
1024 | ((target_phys_addr_t)(asi & 0xf) << 32));
1025 break;
1026 default:
1027 case 4:
a4e7dd52 1028 ret = ldl_phys((target_phys_addr_t)addr
5dcb6b91
BS
1029 | ((target_phys_addr_t)(asi & 0xf) << 32));
1030 break;
1031 case 8:
a4e7dd52 1032 ret = ldq_phys((target_phys_addr_t)addr
5dcb6b91 1033 | ((target_phys_addr_t)(asi & 0xf) << 32));
0f8a249a 1034 break;
5dcb6b91 1035 }
0f8a249a 1036 break;
045380be
BS
1037 case 0x30: // Turbosparc secondary cache diagnostic
1038 case 0x31: // Turbosparc RAM snoop
1039 case 0x32: // Turbosparc page table descriptor diagnostic
666c87aa
BS
1040 case 0x39: /* data cache diagnostic register */
1041 ret = 0;
1042 break;
045380be 1043 case 8: /* User code access, XXX */
e8af50a3 1044 default:
1a2fb1c0 1045 do_unassigned_access(addr, 0, 0, asi);
0f8a249a
BS
1046 ret = 0;
1047 break;
e8af50a3 1048 }
81ad8ba2
BS
1049 if (sign) {
1050 switch(size) {
1051 case 1:
1a2fb1c0 1052 ret = (int8_t) ret;
e32664fb 1053 break;
81ad8ba2 1054 case 2:
1a2fb1c0
BS
1055 ret = (int16_t) ret;
1056 break;
1057 case 4:
1058 ret = (int32_t) ret;
e32664fb 1059 break;
81ad8ba2 1060 default:
81ad8ba2
BS
1061 break;
1062 }
1063 }
8543e2cf 1064#ifdef DEBUG_ASI
1a2fb1c0 1065 dump_asi("read ", last_addr, asi, size, ret);
8543e2cf 1066#endif
1a2fb1c0 1067 return ret;
e8af50a3
FB
1068}
1069
1a2fb1c0 1070void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
e8af50a3 1071{
c2bc0e38 1072 helper_check_align(addr, size - 1);
e8af50a3 1073 switch(asi) {
6c36d3fa 1074 case 2: /* SuperSparc MXCC registers */
1a2fb1c0 1075 switch (addr) {
952a328f
BS
1076 case 0x01c00000: /* MXCC stream data register 0 */
1077 if (size == 8)
1a2fb1c0 1078 env->mxccdata[0] = val;
952a328f 1079 else
77f193da
BS
1080 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1081 size);
952a328f
BS
1082 break;
1083 case 0x01c00008: /* MXCC stream data register 1 */
1084 if (size == 8)
1a2fb1c0 1085 env->mxccdata[1] = val;
952a328f 1086 else
77f193da
BS
1087 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1088 size);
952a328f
BS
1089 break;
1090 case 0x01c00010: /* MXCC stream data register 2 */
1091 if (size == 8)
1a2fb1c0 1092 env->mxccdata[2] = val;
952a328f 1093 else
77f193da
BS
1094 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1095 size);
952a328f
BS
1096 break;
1097 case 0x01c00018: /* MXCC stream data register 3 */
1098 if (size == 8)
1a2fb1c0 1099 env->mxccdata[3] = val;
952a328f 1100 else
77f193da
BS
1101 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1102 size);
952a328f
BS
1103 break;
1104 case 0x01c00100: /* MXCC stream source */
1105 if (size == 8)
1a2fb1c0 1106 env->mxccregs[0] = val;
952a328f 1107 else
77f193da
BS
1108 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1109 size);
1110 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1111 0);
1112 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1113 8);
1114 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1115 16);
1116 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1117 24);
952a328f
BS
1118 break;
1119 case 0x01c00200: /* MXCC stream destination */
1120 if (size == 8)
1a2fb1c0 1121 env->mxccregs[1] = val;
952a328f 1122 else
77f193da
BS
1123 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1124 size);
1125 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1126 env->mxccdata[0]);
1127 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1128 env->mxccdata[1]);
1129 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1130 env->mxccdata[2]);
1131 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1132 env->mxccdata[3]);
952a328f
BS
1133 break;
1134 case 0x01c00a00: /* MXCC control register */
1135 if (size == 8)
1a2fb1c0 1136 env->mxccregs[3] = val;
952a328f 1137 else
77f193da
BS
1138 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1139 size);
952a328f
BS
1140 break;
1141 case 0x01c00a04: /* MXCC control register */
1142 if (size == 4)
77f193da
BS
1143 env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL)
1144 | val;
952a328f 1145 else
77f193da
BS
1146 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1147 size);
952a328f
BS
1148 break;
1149 case 0x01c00e00: /* MXCC error register */
bbf7d96b 1150 // writing a 1 bit clears the error
952a328f 1151 if (size == 8)
1a2fb1c0 1152 env->mxccregs[6] &= ~val;
952a328f 1153 else
77f193da
BS
1154 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1155 size);
952a328f
BS
1156 break;
1157 case 0x01c00f00: /* MBus port address register */
1158 if (size == 8)
1a2fb1c0 1159 env->mxccregs[7] = val;
952a328f 1160 else
77f193da
BS
1161 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1162 size);
952a328f
BS
1163 break;
1164 default:
77f193da
BS
1165 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1166 size);
952a328f
BS
1167 break;
1168 }
77f193da
BS
1169 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi,
1170 size, addr, val);
952a328f
BS
1171#ifdef DEBUG_MXCC
1172 dump_mxcc(env);
1173#endif
6c36d3fa 1174 break;
e8af50a3 1175 case 3: /* MMU flush */
0f8a249a
BS
1176 {
1177 int mmulev;
e80cfcfc 1178
1a2fb1c0 1179 mmulev = (addr >> 8) & 15;
952a328f 1180 DPRINTF_MMU("mmu flush level %d\n", mmulev);
0f8a249a
BS
1181 switch (mmulev) {
1182 case 0: // flush page
1a2fb1c0 1183 tlb_flush_page(env, addr & 0xfffff000);
0f8a249a
BS
1184 break;
1185 case 1: // flush segment (256k)
1186 case 2: // flush region (16M)
1187 case 3: // flush context (4G)
1188 case 4: // flush entire
1189 tlb_flush(env, 1);
1190 break;
1191 default:
1192 break;
1193 }
55754d9e 1194#ifdef DEBUG_MMU
0f8a249a 1195 dump_mmu(env);
55754d9e 1196#endif
0f8a249a 1197 }
8543e2cf 1198 break;
e8af50a3 1199 case 4: /* write MMU regs */
0f8a249a 1200 {
1a2fb1c0 1201 int reg = (addr >> 8) & 0x1f;
0f8a249a 1202 uint32_t oldreg;
3b46e624 1203
0f8a249a 1204 oldreg = env->mmuregs[reg];
55754d9e 1205 switch(reg) {
3deaeab7 1206 case 0: // Control Register
3dd9a152 1207 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1a2fb1c0 1208 (val & 0x00ffffff);
0f8a249a
BS
1209 // Mappings generated during no-fault mode or MMU
1210 // disabled mode are invalid in normal mode
5578ceab
BS
1211 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1212 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
55754d9e
FB
1213 tlb_flush(env, 1);
1214 break;
3deaeab7 1215 case 1: // Context Table Pointer Register
5578ceab 1216 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
3deaeab7
BS
1217 break;
1218 case 2: // Context Register
5578ceab 1219 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
55754d9e
FB
1220 if (oldreg != env->mmuregs[reg]) {
1221 /* we flush when the MMU context changes because
1222 QEMU has no MMU context support */
1223 tlb_flush(env, 1);
1224 }
1225 break;
3deaeab7
BS
1226 case 3: // Synchronous Fault Status Register with Clear
1227 case 4: // Synchronous Fault Address Register
1228 break;
1229 case 0x10: // TLB Replacement Control Register
5578ceab 1230 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
55754d9e 1231 break;
3deaeab7 1232 case 0x13: // Synchronous Fault Status Register with Read and Clear
5578ceab 1233 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
3dd9a152 1234 break;
3deaeab7 1235 case 0x14: // Synchronous Fault Address Register
1a2fb1c0 1236 env->mmuregs[4] = val;
3dd9a152 1237 break;
55754d9e 1238 default:
1a2fb1c0 1239 env->mmuregs[reg] = val;
55754d9e
FB
1240 break;
1241 }
55754d9e 1242 if (oldreg != env->mmuregs[reg]) {
77f193da
BS
1243 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1244 reg, oldreg, env->mmuregs[reg]);
55754d9e 1245 }
952a328f 1246#ifdef DEBUG_MMU
0f8a249a 1247 dump_mmu(env);
55754d9e 1248#endif
0f8a249a 1249 }
8543e2cf 1250 break;
045380be
BS
1251 case 5: // Turbosparc ITLB Diagnostic
1252 case 6: // Turbosparc DTLB Diagnostic
1253 case 7: // Turbosparc IOTLB Diagnostic
1254 break;
81ad8ba2
BS
1255 case 0xa: /* User data access */
1256 switch(size) {
1257 case 1:
1a2fb1c0 1258 stb_user(addr, val);
81ad8ba2
BS
1259 break;
1260 case 2:
a4e7dd52 1261 stw_user(addr, val);
81ad8ba2
BS
1262 break;
1263 default:
1264 case 4:
a4e7dd52 1265 stl_user(addr, val);
81ad8ba2
BS
1266 break;
1267 case 8:
a4e7dd52 1268 stq_user(addr, val);
81ad8ba2
BS
1269 break;
1270 }
1271 break;
1272 case 0xb: /* Supervisor data access */
1273 switch(size) {
1274 case 1:
1a2fb1c0 1275 stb_kernel(addr, val);
81ad8ba2
BS
1276 break;
1277 case 2:
a4e7dd52 1278 stw_kernel(addr, val);
81ad8ba2
BS
1279 break;
1280 default:
1281 case 4:
a4e7dd52 1282 stl_kernel(addr, val);
81ad8ba2
BS
1283 break;
1284 case 8:
a4e7dd52 1285 stq_kernel(addr, val);
81ad8ba2
BS
1286 break;
1287 }
1288 break;
6c36d3fa
BS
1289 case 0xc: /* I-cache tag */
1290 case 0xd: /* I-cache data */
1291 case 0xe: /* D-cache tag */
1292 case 0xf: /* D-cache data */
1293 case 0x10: /* I/D-cache flush page */
1294 case 0x11: /* I/D-cache flush segment */
1295 case 0x12: /* I/D-cache flush region */
1296 case 0x13: /* I/D-cache flush context */
1297 case 0x14: /* I/D-cache flush user */
1298 break;
e80cfcfc 1299 case 0x17: /* Block copy, sta access */
0f8a249a 1300 {
1a2fb1c0
BS
1301 // val = src
1302 // addr = dst
0f8a249a 1303 // copy 32 bytes
6c36d3fa 1304 unsigned int i;
1a2fb1c0 1305 uint32_t src = val & ~3, dst = addr & ~3, temp;
3b46e624 1306
6c36d3fa
BS
1307 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1308 temp = ldl_kernel(src);
1309 stl_kernel(dst, temp);
1310 }
0f8a249a 1311 }
8543e2cf 1312 break;
e80cfcfc 1313 case 0x1f: /* Block fill, stda access */
0f8a249a 1314 {
1a2fb1c0
BS
1315 // addr = dst
1316 // fill 32 bytes with val
6c36d3fa 1317 unsigned int i;
1a2fb1c0 1318 uint32_t dst = addr & 7;
6c36d3fa
BS
1319
1320 for (i = 0; i < 32; i += 8, dst += 8)
1321 stq_kernel(dst, val);
0f8a249a 1322 }
8543e2cf 1323 break;
6c36d3fa 1324 case 0x20: /* MMU passthrough */
0f8a249a 1325 {
02aab46a
FB
1326 switch(size) {
1327 case 1:
1a2fb1c0 1328 stb_phys(addr, val);
02aab46a
FB
1329 break;
1330 case 2:
a4e7dd52 1331 stw_phys(addr, val);
02aab46a
FB
1332 break;
1333 case 4:
1334 default:
a4e7dd52 1335 stl_phys(addr, val);
02aab46a 1336 break;
9e61bde5 1337 case 8:
a4e7dd52 1338 stq_phys(addr, val);
9e61bde5 1339 break;
02aab46a 1340 }
0f8a249a 1341 }
8543e2cf 1342 break;
045380be 1343 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
0f8a249a 1344 {
5dcb6b91
BS
1345 switch(size) {
1346 case 1:
1a2fb1c0
BS
1347 stb_phys((target_phys_addr_t)addr
1348 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1349 break;
1350 case 2:
a4e7dd52 1351 stw_phys((target_phys_addr_t)addr
1a2fb1c0 1352 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1353 break;
1354 case 4:
1355 default:
a4e7dd52 1356 stl_phys((target_phys_addr_t)addr
1a2fb1c0 1357 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1358 break;
1359 case 8:
a4e7dd52 1360 stq_phys((target_phys_addr_t)addr
1a2fb1c0 1361 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1362 break;
1363 }
0f8a249a 1364 }
8543e2cf 1365 break;
045380be
BS
1366 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1367 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1368 // Turbosparc snoop RAM
77f193da
BS
1369 case 0x32: // store buffer control or Turbosparc page table
1370 // descriptor diagnostic
6c36d3fa
BS
1371 case 0x36: /* I-cache flash clear */
1372 case 0x37: /* D-cache flash clear */
666c87aa
BS
1373 case 0x38: /* breakpoint diagnostics */
1374 case 0x4c: /* breakpoint action */
6c36d3fa 1375 break;
045380be 1376 case 8: /* User code access, XXX */
6c36d3fa 1377 case 9: /* Supervisor code access, XXX */
e8af50a3 1378 default:
1a2fb1c0 1379 do_unassigned_access(addr, 1, 0, asi);
8543e2cf 1380 break;
e8af50a3 1381 }
8543e2cf 1382#ifdef DEBUG_ASI
1a2fb1c0 1383 dump_asi("write", addr, asi, size, val);
8543e2cf 1384#endif
e8af50a3
FB
1385}
1386
81ad8ba2
BS
1387#endif /* CONFIG_USER_ONLY */
1388#else /* TARGET_SPARC64 */
1389
1390#ifdef CONFIG_USER_ONLY
1a2fb1c0 1391uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
81ad8ba2
BS
1392{
1393 uint64_t ret = 0;
1a2fb1c0
BS
1394#if defined(DEBUG_ASI)
1395 target_ulong last_addr = addr;
1396#endif
81ad8ba2
BS
1397
1398 if (asi < 0x80)
1399 raise_exception(TT_PRIV_ACT);
1400
c2bc0e38 1401 helper_check_align(addr, size - 1);
2cade6a3 1402 address_mask(env, &addr);
c2bc0e38 1403
81ad8ba2
BS
1404 switch (asi) {
1405 case 0x80: // Primary
1406 case 0x82: // Primary no-fault
1407 case 0x88: // Primary LE
1408 case 0x8a: // Primary no-fault LE
1409 {
1410 switch(size) {
1411 case 1:
1a2fb1c0 1412 ret = ldub_raw(addr);
81ad8ba2
BS
1413 break;
1414 case 2:
a4e7dd52 1415 ret = lduw_raw(addr);
81ad8ba2
BS
1416 break;
1417 case 4:
a4e7dd52 1418 ret = ldl_raw(addr);
81ad8ba2
BS
1419 break;
1420 default:
1421 case 8:
a4e7dd52 1422 ret = ldq_raw(addr);
81ad8ba2
BS
1423 break;
1424 }
1425 }
1426 break;
1427 case 0x81: // Secondary
1428 case 0x83: // Secondary no-fault
1429 case 0x89: // Secondary LE
1430 case 0x8b: // Secondary no-fault LE
1431 // XXX
1432 break;
1433 default:
1434 break;
1435 }
1436
1437 /* Convert from little endian */
1438 switch (asi) {
1439 case 0x88: // Primary LE
1440 case 0x89: // Secondary LE
1441 case 0x8a: // Primary no-fault LE
1442 case 0x8b: // Secondary no-fault LE
1443 switch(size) {
1444 case 2:
1445 ret = bswap16(ret);
e32664fb 1446 break;
81ad8ba2
BS
1447 case 4:
1448 ret = bswap32(ret);
e32664fb 1449 break;
81ad8ba2
BS
1450 case 8:
1451 ret = bswap64(ret);
e32664fb 1452 break;
81ad8ba2
BS
1453 default:
1454 break;
1455 }
1456 default:
1457 break;
1458 }
1459
1460 /* Convert to signed number */
1461 if (sign) {
1462 switch(size) {
1463 case 1:
1464 ret = (int8_t) ret;
e32664fb 1465 break;
81ad8ba2
BS
1466 case 2:
1467 ret = (int16_t) ret;
e32664fb 1468 break;
81ad8ba2
BS
1469 case 4:
1470 ret = (int32_t) ret;
e32664fb 1471 break;
81ad8ba2
BS
1472 default:
1473 break;
1474 }
1475 }
1a2fb1c0
BS
1476#ifdef DEBUG_ASI
1477 dump_asi("read ", last_addr, asi, size, ret);
1478#endif
1479 return ret;
81ad8ba2
BS
1480}
1481
1a2fb1c0 1482void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
81ad8ba2 1483{
1a2fb1c0
BS
1484#ifdef DEBUG_ASI
1485 dump_asi("write", addr, asi, size, val);
1486#endif
81ad8ba2
BS
1487 if (asi < 0x80)
1488 raise_exception(TT_PRIV_ACT);
1489
c2bc0e38 1490 helper_check_align(addr, size - 1);
2cade6a3 1491 address_mask(env, &addr);
c2bc0e38 1492
81ad8ba2
BS
1493 /* Convert to little endian */
1494 switch (asi) {
1495 case 0x88: // Primary LE
1496 case 0x89: // Secondary LE
1497 switch(size) {
1498 case 2:
1a2fb1c0 1499 addr = bswap16(addr);
e32664fb 1500 break;
81ad8ba2 1501 case 4:
1a2fb1c0 1502 addr = bswap32(addr);
e32664fb 1503 break;
81ad8ba2 1504 case 8:
1a2fb1c0 1505 addr = bswap64(addr);
e32664fb 1506 break;
81ad8ba2
BS
1507 default:
1508 break;
1509 }
1510 default:
1511 break;
1512 }
1513
1514 switch(asi) {
1515 case 0x80: // Primary
1516 case 0x88: // Primary LE
1517 {
1518 switch(size) {
1519 case 1:
1a2fb1c0 1520 stb_raw(addr, val);
81ad8ba2
BS
1521 break;
1522 case 2:
a4e7dd52 1523 stw_raw(addr, val);
81ad8ba2
BS
1524 break;
1525 case 4:
a4e7dd52 1526 stl_raw(addr, val);
81ad8ba2
BS
1527 break;
1528 case 8:
1529 default:
a4e7dd52 1530 stq_raw(addr, val);
81ad8ba2
BS
1531 break;
1532 }
1533 }
1534 break;
1535 case 0x81: // Secondary
1536 case 0x89: // Secondary LE
1537 // XXX
1538 return;
1539
1540 case 0x82: // Primary no-fault, RO
1541 case 0x83: // Secondary no-fault, RO
1542 case 0x8a: // Primary no-fault LE, RO
1543 case 0x8b: // Secondary no-fault LE, RO
1544 default:
1a2fb1c0 1545 do_unassigned_access(addr, 1, 0, 1);
81ad8ba2
BS
1546 return;
1547 }
1548}
1549
1550#else /* CONFIG_USER_ONLY */
3475187d 1551
1a2fb1c0 1552uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
3475187d 1553{
83469015 1554 uint64_t ret = 0;
1a2fb1c0
BS
1555#if defined(DEBUG_ASI)
1556 target_ulong last_addr = addr;
1557#endif
3475187d 1558
6f27aba6 1559 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
5578ceab
BS
1560 || ((env->def->features & CPU_FEATURE_HYPV)
1561 && asi >= 0x30 && asi < 0x80
fb79ceb9 1562 && !(env->hpstate & HS_PRIV)))
0f8a249a 1563 raise_exception(TT_PRIV_ACT);
3475187d 1564
c2bc0e38 1565 helper_check_align(addr, size - 1);
3475187d 1566 switch (asi) {
81ad8ba2
BS
1567 case 0x10: // As if user primary
1568 case 0x18: // As if user primary LE
1569 case 0x80: // Primary
1570 case 0x82: // Primary no-fault
1571 case 0x88: // Primary LE
1572 case 0x8a: // Primary no-fault LE
1573 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
5578ceab
BS
1574 if ((env->def->features & CPU_FEATURE_HYPV)
1575 && env->hpstate & HS_PRIV) {
6f27aba6
BS
1576 switch(size) {
1577 case 1:
1a2fb1c0 1578 ret = ldub_hypv(addr);
6f27aba6
BS
1579 break;
1580 case 2:
a4e7dd52 1581 ret = lduw_hypv(addr);
6f27aba6
BS
1582 break;
1583 case 4:
a4e7dd52 1584 ret = ldl_hypv(addr);
6f27aba6
BS
1585 break;
1586 default:
1587 case 8:
a4e7dd52 1588 ret = ldq_hypv(addr);
6f27aba6
BS
1589 break;
1590 }
1591 } else {
1592 switch(size) {
1593 case 1:
1a2fb1c0 1594 ret = ldub_kernel(addr);
6f27aba6
BS
1595 break;
1596 case 2:
a4e7dd52 1597 ret = lduw_kernel(addr);
6f27aba6
BS
1598 break;
1599 case 4:
a4e7dd52 1600 ret = ldl_kernel(addr);
6f27aba6
BS
1601 break;
1602 default:
1603 case 8:
a4e7dd52 1604 ret = ldq_kernel(addr);
6f27aba6
BS
1605 break;
1606 }
81ad8ba2
BS
1607 }
1608 } else {
1609 switch(size) {
1610 case 1:
1a2fb1c0 1611 ret = ldub_user(addr);
81ad8ba2
BS
1612 break;
1613 case 2:
a4e7dd52 1614 ret = lduw_user(addr);
81ad8ba2
BS
1615 break;
1616 case 4:
a4e7dd52 1617 ret = ldl_user(addr);
81ad8ba2
BS
1618 break;
1619 default:
1620 case 8:
a4e7dd52 1621 ret = ldq_user(addr);
81ad8ba2
BS
1622 break;
1623 }
1624 }
1625 break;
3475187d
FB
1626 case 0x14: // Bypass
1627 case 0x15: // Bypass, non-cacheable
81ad8ba2
BS
1628 case 0x1c: // Bypass LE
1629 case 0x1d: // Bypass, non-cacheable LE
0f8a249a 1630 {
02aab46a
FB
1631 switch(size) {
1632 case 1:
1a2fb1c0 1633 ret = ldub_phys(addr);
02aab46a
FB
1634 break;
1635 case 2:
a4e7dd52 1636 ret = lduw_phys(addr);
02aab46a
FB
1637 break;
1638 case 4:
a4e7dd52 1639 ret = ldl_phys(addr);
02aab46a
FB
1640 break;
1641 default:
1642 case 8:
a4e7dd52 1643 ret = ldq_phys(addr);
02aab46a
FB
1644 break;
1645 }
0f8a249a
BS
1646 break;
1647 }
db166940
BS
1648 case 0x24: // Nucleus quad LDD 128 bit atomic
1649 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1650 // Only ldda allowed
1651 raise_exception(TT_ILL_INSN);
1652 return 0;
83469015
FB
1653 case 0x04: // Nucleus
1654 case 0x0c: // Nucleus Little Endian (LE)
83469015 1655 case 0x11: // As if user secondary
83469015 1656 case 0x19: // As if user secondary LE
83469015 1657 case 0x4a: // UPA config
81ad8ba2 1658 case 0x81: // Secondary
83469015 1659 case 0x83: // Secondary no-fault
83469015 1660 case 0x89: // Secondary LE
83469015 1661 case 0x8b: // Secondary no-fault LE
0f8a249a
BS
1662 // XXX
1663 break;
3475187d 1664 case 0x45: // LSU
0f8a249a
BS
1665 ret = env->lsu;
1666 break;
3475187d 1667 case 0x50: // I-MMU regs
0f8a249a 1668 {
1a2fb1c0 1669 int reg = (addr >> 3) & 0xf;
3475187d 1670
0f8a249a
BS
1671 ret = env->immuregs[reg];
1672 break;
1673 }
3475187d
FB
1674 case 0x51: // I-MMU 8k TSB pointer
1675 case 0x52: // I-MMU 64k TSB pointer
0f8a249a
BS
1676 // XXX
1677 break;
a5a52cf2
BS
1678 case 0x55: // I-MMU data access
1679 {
1680 int reg = (addr >> 3) & 0x3f;
1681
1682 ret = env->itlb_tte[reg];
1683 break;
1684 }
83469015 1685 case 0x56: // I-MMU tag read
0f8a249a 1686 {
43e9e742 1687 int reg = (addr >> 3) & 0x3f;
0f8a249a 1688
43e9e742 1689 ret = env->itlb_tag[reg];
0f8a249a
BS
1690 break;
1691 }
3475187d 1692 case 0x58: // D-MMU regs
0f8a249a 1693 {
1a2fb1c0 1694 int reg = (addr >> 3) & 0xf;
3475187d 1695
0f8a249a
BS
1696 ret = env->dmmuregs[reg];
1697 break;
1698 }
a5a52cf2
BS
1699 case 0x5d: // D-MMU data access
1700 {
1701 int reg = (addr >> 3) & 0x3f;
1702
1703 ret = env->dtlb_tte[reg];
1704 break;
1705 }
83469015 1706 case 0x5e: // D-MMU tag read
0f8a249a 1707 {
43e9e742 1708 int reg = (addr >> 3) & 0x3f;
0f8a249a 1709
43e9e742 1710 ret = env->dtlb_tag[reg];
0f8a249a
BS
1711 break;
1712 }
f7350b47
BS
1713 case 0x46: // D-cache data
1714 case 0x47: // D-cache tag access
a5a52cf2
BS
1715 case 0x4b: // E-cache error enable
1716 case 0x4c: // E-cache asynchronous fault status
1717 case 0x4d: // E-cache asynchronous fault address
f7350b47
BS
1718 case 0x4e: // E-cache tag data
1719 case 0x66: // I-cache instruction access
1720 case 0x67: // I-cache tag access
1721 case 0x6e: // I-cache predecode
1722 case 0x6f: // I-cache LRU etc.
1723 case 0x76: // E-cache tag
1724 case 0x7e: // E-cache tag
1725 break;
3475187d
FB
1726 case 0x59: // D-MMU 8k TSB pointer
1727 case 0x5a: // D-MMU 64k TSB pointer
1728 case 0x5b: // D-MMU data pointer
83469015
FB
1729 case 0x48: // Interrupt dispatch, RO
1730 case 0x49: // Interrupt data receive
1731 case 0x7f: // Incoming interrupt vector, RO
0f8a249a
BS
1732 // XXX
1733 break;
3475187d
FB
1734 case 0x54: // I-MMU data in, WO
1735 case 0x57: // I-MMU demap, WO
1736 case 0x5c: // D-MMU data in, WO
1737 case 0x5f: // D-MMU demap, WO
83469015 1738 case 0x77: // Interrupt vector, WO
3475187d 1739 default:
1a2fb1c0 1740 do_unassigned_access(addr, 0, 0, 1);
0f8a249a
BS
1741 ret = 0;
1742 break;
3475187d 1743 }
81ad8ba2
BS
1744
1745 /* Convert from little endian */
1746 switch (asi) {
1747 case 0x0c: // Nucleus Little Endian (LE)
1748 case 0x18: // As if user primary LE
1749 case 0x19: // As if user secondary LE
1750 case 0x1c: // Bypass LE
1751 case 0x1d: // Bypass, non-cacheable LE
1752 case 0x88: // Primary LE
1753 case 0x89: // Secondary LE
1754 case 0x8a: // Primary no-fault LE
1755 case 0x8b: // Secondary no-fault LE
1756 switch(size) {
1757 case 2:
1758 ret = bswap16(ret);
e32664fb 1759 break;
81ad8ba2
BS
1760 case 4:
1761 ret = bswap32(ret);
e32664fb 1762 break;
81ad8ba2
BS
1763 case 8:
1764 ret = bswap64(ret);
e32664fb 1765 break;
81ad8ba2
BS
1766 default:
1767 break;
1768 }
1769 default:
1770 break;
1771 }
1772
1773 /* Convert to signed number */
1774 if (sign) {
1775 switch(size) {
1776 case 1:
1777 ret = (int8_t) ret;
e32664fb 1778 break;
81ad8ba2
BS
1779 case 2:
1780 ret = (int16_t) ret;
e32664fb 1781 break;
81ad8ba2
BS
1782 case 4:
1783 ret = (int32_t) ret;
e32664fb 1784 break;
81ad8ba2
BS
1785 default:
1786 break;
1787 }
1788 }
1a2fb1c0
BS
1789#ifdef DEBUG_ASI
1790 dump_asi("read ", last_addr, asi, size, ret);
1791#endif
1792 return ret;
3475187d
FB
1793}
1794
1a2fb1c0 1795void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
3475187d 1796{
1a2fb1c0
BS
1797#ifdef DEBUG_ASI
1798 dump_asi("write", addr, asi, size, val);
1799#endif
6f27aba6 1800 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
5578ceab
BS
1801 || ((env->def->features & CPU_FEATURE_HYPV)
1802 && asi >= 0x30 && asi < 0x80
fb79ceb9 1803 && !(env->hpstate & HS_PRIV)))
0f8a249a 1804 raise_exception(TT_PRIV_ACT);
3475187d 1805
c2bc0e38 1806 helper_check_align(addr, size - 1);
81ad8ba2
BS
1807 /* Convert to little endian */
1808 switch (asi) {
1809 case 0x0c: // Nucleus Little Endian (LE)
1810 case 0x18: // As if user primary LE
1811 case 0x19: // As if user secondary LE
1812 case 0x1c: // Bypass LE
1813 case 0x1d: // Bypass, non-cacheable LE
81ad8ba2
BS
1814 case 0x88: // Primary LE
1815 case 0x89: // Secondary LE
1816 switch(size) {
1817 case 2:
1a2fb1c0 1818 addr = bswap16(addr);
e32664fb 1819 break;
81ad8ba2 1820 case 4:
1a2fb1c0 1821 addr = bswap32(addr);
e32664fb 1822 break;
81ad8ba2 1823 case 8:
1a2fb1c0 1824 addr = bswap64(addr);
e32664fb 1825 break;
81ad8ba2
BS
1826 default:
1827 break;
1828 }
1829 default:
1830 break;
1831 }
1832
3475187d 1833 switch(asi) {
81ad8ba2
BS
1834 case 0x10: // As if user primary
1835 case 0x18: // As if user primary LE
1836 case 0x80: // Primary
1837 case 0x88: // Primary LE
1838 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
5578ceab
BS
1839 if ((env->def->features & CPU_FEATURE_HYPV)
1840 && env->hpstate & HS_PRIV) {
6f27aba6
BS
1841 switch(size) {
1842 case 1:
1a2fb1c0 1843 stb_hypv(addr, val);
6f27aba6
BS
1844 break;
1845 case 2:
a4e7dd52 1846 stw_hypv(addr, val);
6f27aba6
BS
1847 break;
1848 case 4:
a4e7dd52 1849 stl_hypv(addr, val);
6f27aba6
BS
1850 break;
1851 case 8:
1852 default:
a4e7dd52 1853 stq_hypv(addr, val);
6f27aba6
BS
1854 break;
1855 }
1856 } else {
1857 switch(size) {
1858 case 1:
1a2fb1c0 1859 stb_kernel(addr, val);
6f27aba6
BS
1860 break;
1861 case 2:
a4e7dd52 1862 stw_kernel(addr, val);
6f27aba6
BS
1863 break;
1864 case 4:
a4e7dd52 1865 stl_kernel(addr, val);
6f27aba6
BS
1866 break;
1867 case 8:
1868 default:
a4e7dd52 1869 stq_kernel(addr, val);
6f27aba6
BS
1870 break;
1871 }
81ad8ba2
BS
1872 }
1873 } else {
1874 switch(size) {
1875 case 1:
1a2fb1c0 1876 stb_user(addr, val);
81ad8ba2
BS
1877 break;
1878 case 2:
a4e7dd52 1879 stw_user(addr, val);
81ad8ba2
BS
1880 break;
1881 case 4:
a4e7dd52 1882 stl_user(addr, val);
81ad8ba2
BS
1883 break;
1884 case 8:
1885 default:
a4e7dd52 1886 stq_user(addr, val);
81ad8ba2
BS
1887 break;
1888 }
1889 }
1890 break;
3475187d
FB
1891 case 0x14: // Bypass
1892 case 0x15: // Bypass, non-cacheable
81ad8ba2
BS
1893 case 0x1c: // Bypass LE
1894 case 0x1d: // Bypass, non-cacheable LE
0f8a249a 1895 {
02aab46a
FB
1896 switch(size) {
1897 case 1:
1a2fb1c0 1898 stb_phys(addr, val);
02aab46a
FB
1899 break;
1900 case 2:
a4e7dd52 1901 stw_phys(addr, val);
02aab46a
FB
1902 break;
1903 case 4:
a4e7dd52 1904 stl_phys(addr, val);
02aab46a
FB
1905 break;
1906 case 8:
1907 default:
a4e7dd52 1908 stq_phys(addr, val);
02aab46a
FB
1909 break;
1910 }
0f8a249a
BS
1911 }
1912 return;
db166940
BS
1913 case 0x24: // Nucleus quad LDD 128 bit atomic
1914 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
1915 // Only ldda allowed
1916 raise_exception(TT_ILL_INSN);
1917 return;
83469015
FB
1918 case 0x04: // Nucleus
1919 case 0x0c: // Nucleus Little Endian (LE)
83469015 1920 case 0x11: // As if user secondary
83469015 1921 case 0x19: // As if user secondary LE
83469015 1922 case 0x4a: // UPA config
51996525 1923 case 0x81: // Secondary
83469015 1924 case 0x89: // Secondary LE
0f8a249a
BS
1925 // XXX
1926 return;
3475187d 1927 case 0x45: // LSU
0f8a249a
BS
1928 {
1929 uint64_t oldreg;
1930
1931 oldreg = env->lsu;
1a2fb1c0 1932 env->lsu = val & (DMMU_E | IMMU_E);
0f8a249a
BS
1933 // Mappings generated during D/I MMU disabled mode are
1934 // invalid in normal mode
1935 if (oldreg != env->lsu) {
77f193da
BS
1936 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1937 oldreg, env->lsu);
83469015 1938#ifdef DEBUG_MMU
0f8a249a 1939 dump_mmu(env);
83469015 1940#endif
0f8a249a
BS
1941 tlb_flush(env, 1);
1942 }
1943 return;
1944 }
3475187d 1945 case 0x50: // I-MMU regs
0f8a249a 1946 {
1a2fb1c0 1947 int reg = (addr >> 3) & 0xf;
0f8a249a 1948 uint64_t oldreg;
3b46e624 1949
0f8a249a 1950 oldreg = env->immuregs[reg];
3475187d
FB
1951 switch(reg) {
1952 case 0: // RO
1953 case 4:
1954 return;
1955 case 1: // Not in I-MMU
1956 case 2:
1957 case 7:
1958 case 8:
1959 return;
1960 case 3: // SFSR
1a2fb1c0
BS
1961 if ((val & 1) == 0)
1962 val = 0; // Clear SFSR
3475187d
FB
1963 break;
1964 case 5: // TSB access
1965 case 6: // Tag access
1966 default:
1967 break;
1968 }
1a2fb1c0 1969 env->immuregs[reg] = val;
3475187d 1970 if (oldreg != env->immuregs[reg]) {
77f193da
BS
1971 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
1972 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
3475187d 1973 }
952a328f 1974#ifdef DEBUG_MMU
0f8a249a 1975 dump_mmu(env);
3475187d 1976#endif
0f8a249a
BS
1977 return;
1978 }
3475187d 1979 case 0x54: // I-MMU data in
0f8a249a
BS
1980 {
1981 unsigned int i;
1982
1983 // Try finding an invalid entry
1984 for (i = 0; i < 64; i++) {
1985 if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1986 env->itlb_tag[i] = env->immuregs[6];
1a2fb1c0 1987 env->itlb_tte[i] = val;
0f8a249a
BS
1988 return;
1989 }
1990 }
1991 // Try finding an unlocked entry
1992 for (i = 0; i < 64; i++) {
1993 if ((env->itlb_tte[i] & 0x40) == 0) {
1994 env->itlb_tag[i] = env->immuregs[6];
1a2fb1c0 1995 env->itlb_tte[i] = val;
0f8a249a
BS
1996 return;
1997 }
1998 }
1999 // error state?
2000 return;
2001 }
3475187d 2002 case 0x55: // I-MMU data access
0f8a249a 2003 {
1a2fb1c0 2004 unsigned int i = (addr >> 3) & 0x3f;
3475187d 2005
0f8a249a 2006 env->itlb_tag[i] = env->immuregs[6];
1a2fb1c0 2007 env->itlb_tte[i] = val;
0f8a249a
BS
2008 return;
2009 }
3475187d 2010 case 0x57: // I-MMU demap
0f8a249a
BS
2011 // XXX
2012 return;
3475187d 2013 case 0x58: // D-MMU regs
0f8a249a 2014 {
1a2fb1c0 2015 int reg = (addr >> 3) & 0xf;
0f8a249a 2016 uint64_t oldreg;
3b46e624 2017
0f8a249a 2018 oldreg = env->dmmuregs[reg];
3475187d
FB
2019 switch(reg) {
2020 case 0: // RO
2021 case 4:
2022 return;
2023 case 3: // SFSR
1a2fb1c0
BS
2024 if ((val & 1) == 0) {
2025 val = 0; // Clear SFSR, Fault address
0f8a249a
BS
2026 env->dmmuregs[4] = 0;
2027 }
1a2fb1c0 2028 env->dmmuregs[reg] = val;
3475187d
FB
2029 break;
2030 case 1: // Primary context
2031 case 2: // Secondary context
2032 case 5: // TSB access
2033 case 6: // Tag access
2034 case 7: // Virtual Watchpoint
2035 case 8: // Physical Watchpoint
2036 default:
2037 break;
2038 }
1a2fb1c0 2039 env->dmmuregs[reg] = val;
3475187d 2040 if (oldreg != env->dmmuregs[reg]) {
77f193da
BS
2041 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2042 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
3475187d 2043 }
952a328f 2044#ifdef DEBUG_MMU
0f8a249a 2045 dump_mmu(env);
3475187d 2046#endif
0f8a249a
BS
2047 return;
2048 }
3475187d 2049 case 0x5c: // D-MMU data in
0f8a249a
BS
2050 {
2051 unsigned int i;
2052
2053 // Try finding an invalid entry
2054 for (i = 0; i < 64; i++) {
2055 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2056 env->dtlb_tag[i] = env->dmmuregs[6];
1a2fb1c0 2057 env->dtlb_tte[i] = val;
0f8a249a
BS
2058 return;
2059 }
2060 }
2061 // Try finding an unlocked entry
2062 for (i = 0; i < 64; i++) {
2063 if ((env->dtlb_tte[i] & 0x40) == 0) {
2064 env->dtlb_tag[i] = env->dmmuregs[6];
1a2fb1c0 2065 env->dtlb_tte[i] = val;
0f8a249a
BS
2066 return;
2067 }
2068 }
2069 // error state?
2070 return;
2071 }
3475187d 2072 case 0x5d: // D-MMU data access
0f8a249a 2073 {
1a2fb1c0 2074 unsigned int i = (addr >> 3) & 0x3f;
3475187d 2075
0f8a249a 2076 env->dtlb_tag[i] = env->dmmuregs[6];
1a2fb1c0 2077 env->dtlb_tte[i] = val;
0f8a249a
BS
2078 return;
2079 }
3475187d 2080 case 0x5f: // D-MMU demap
83469015 2081 case 0x49: // Interrupt data receive
0f8a249a
BS
2082 // XXX
2083 return;
f7350b47
BS
2084 case 0x46: // D-cache data
2085 case 0x47: // D-cache tag access
a5a52cf2
BS
2086 case 0x4b: // E-cache error enable
2087 case 0x4c: // E-cache asynchronous fault status
2088 case 0x4d: // E-cache asynchronous fault address
f7350b47
BS
2089 case 0x4e: // E-cache tag data
2090 case 0x66: // I-cache instruction access
2091 case 0x67: // I-cache tag access
2092 case 0x6e: // I-cache predecode
2093 case 0x6f: // I-cache LRU etc.
2094 case 0x76: // E-cache tag
2095 case 0x7e: // E-cache tag
2096 return;
3475187d
FB
2097 case 0x51: // I-MMU 8k TSB pointer, RO
2098 case 0x52: // I-MMU 64k TSB pointer, RO
2099 case 0x56: // I-MMU tag read, RO
2100 case 0x59: // D-MMU 8k TSB pointer, RO
2101 case 0x5a: // D-MMU 64k TSB pointer, RO
2102 case 0x5b: // D-MMU data pointer, RO
2103 case 0x5e: // D-MMU tag read, RO
83469015
FB
2104 case 0x48: // Interrupt dispatch, RO
2105 case 0x7f: // Incoming interrupt vector, RO
2106 case 0x82: // Primary no-fault, RO
2107 case 0x83: // Secondary no-fault, RO
2108 case 0x8a: // Primary no-fault LE, RO
2109 case 0x8b: // Secondary no-fault LE, RO
3475187d 2110 default:
1a2fb1c0 2111 do_unassigned_access(addr, 1, 0, 1);
0f8a249a 2112 return;
3475187d
FB
2113 }
2114}
81ad8ba2 2115#endif /* CONFIG_USER_ONLY */
3391c818 2116
db166940
BS
2117void helper_ldda_asi(target_ulong addr, int asi, int rd)
2118{
db166940 2119 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
5578ceab
BS
2120 || ((env->def->features & CPU_FEATURE_HYPV)
2121 && asi >= 0x30 && asi < 0x80
fb79ceb9 2122 && !(env->hpstate & HS_PRIV)))
db166940
BS
2123 raise_exception(TT_PRIV_ACT);
2124
2125 switch (asi) {
2126 case 0x24: // Nucleus quad LDD 128 bit atomic
2127 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2128 helper_check_align(addr, 0xf);
2129 if (rd == 0) {
2130 env->gregs[1] = ldq_kernel(addr + 8);
2131 if (asi == 0x2c)
2132 bswap64s(&env->gregs[1]);
2133 } else if (rd < 8) {
2134 env->gregs[rd] = ldq_kernel(addr);
2135 env->gregs[rd + 1] = ldq_kernel(addr + 8);
2136 if (asi == 0x2c) {
2137 bswap64s(&env->gregs[rd]);
2138 bswap64s(&env->gregs[rd + 1]);
2139 }
2140 } else {
2141 env->regwptr[rd] = ldq_kernel(addr);
2142 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2143 if (asi == 0x2c) {
2144 bswap64s(&env->regwptr[rd]);
2145 bswap64s(&env->regwptr[rd + 1]);
2146 }
2147 }
2148 break;
2149 default:
2150 helper_check_align(addr, 0x3);
2151 if (rd == 0)
2152 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2153 else if (rd < 8) {
2154 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2155 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2156 } else {
2157 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2158 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2159 }
2160 break;
2161 }
2162}
2163
1a2fb1c0 2164void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3391c818 2165{
3391c818 2166 unsigned int i;
1a2fb1c0 2167 target_ulong val;
3391c818 2168
c2bc0e38 2169 helper_check_align(addr, 3);
3391c818
BS
2170 switch (asi) {
2171 case 0xf0: // Block load primary
2172 case 0xf1: // Block load secondary
2173 case 0xf8: // Block load primary LE
2174 case 0xf9: // Block load secondary LE
51996525
BS
2175 if (rd & 7) {
2176 raise_exception(TT_ILL_INSN);
2177 return;
2178 }
c2bc0e38 2179 helper_check_align(addr, 0x3f);
51996525 2180 for (i = 0; i < 16; i++) {
77f193da
BS
2181 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2182 0);
1a2fb1c0 2183 addr += 4;
3391c818 2184 }
3391c818
BS
2185
2186 return;
2187 default:
2188 break;
2189 }
2190
1a2fb1c0 2191 val = helper_ld_asi(addr, asi, size, 0);
3391c818
BS
2192 switch(size) {
2193 default:
2194 case 4:
1a2fb1c0 2195 *((uint32_t *)&FT0) = val;
3391c818
BS
2196 break;
2197 case 8:
1a2fb1c0 2198 *((int64_t *)&DT0) = val;
3391c818 2199 break;
1f587329
BS
2200 case 16:
2201 // XXX
2202 break;
3391c818 2203 }
3391c818
BS
2204}
2205
1a2fb1c0 2206void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3391c818 2207{
3391c818 2208 unsigned int i;
1a2fb1c0 2209 target_ulong val = 0;
3391c818 2210
c2bc0e38 2211 helper_check_align(addr, 3);
3391c818
BS
2212 switch (asi) {
2213 case 0xf0: // Block store primary
2214 case 0xf1: // Block store secondary
2215 case 0xf8: // Block store primary LE
2216 case 0xf9: // Block store secondary LE
51996525
BS
2217 if (rd & 7) {
2218 raise_exception(TT_ILL_INSN);
2219 return;
2220 }
c2bc0e38 2221 helper_check_align(addr, 0x3f);
51996525 2222 for (i = 0; i < 16; i++) {
1a2fb1c0
BS
2223 val = *(uint32_t *)&env->fpr[rd++];
2224 helper_st_asi(addr, val, asi & 0x8f, 4);
2225 addr += 4;
3391c818 2226 }
3391c818
BS
2227
2228 return;
2229 default:
2230 break;
2231 }
2232
2233 switch(size) {
2234 default:
2235 case 4:
1a2fb1c0 2236 val = *((uint32_t *)&FT0);
3391c818
BS
2237 break;
2238 case 8:
1a2fb1c0 2239 val = *((int64_t *)&DT0);
3391c818 2240 break;
1f587329
BS
2241 case 16:
2242 // XXX
2243 break;
3391c818 2244 }
1a2fb1c0
BS
2245 helper_st_asi(addr, val, asi, size);
2246}
2247
2248target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2249 target_ulong val2, uint32_t asi)
2250{
2251 target_ulong ret;
2252
2253 val1 &= 0xffffffffUL;
2254 ret = helper_ld_asi(addr, asi, 4, 0);
2255 ret &= 0xffffffffUL;
2256 if (val1 == ret)
2257 helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4);
2258 return ret;
3391c818
BS
2259}
2260
1a2fb1c0
BS
2261target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2262 target_ulong val2, uint32_t asi)
2263{
2264 target_ulong ret;
2265
2266 ret = helper_ld_asi(addr, asi, 8, 0);
2267 if (val1 == ret)
2268 helper_st_asi(addr, val2, asi, 8);
2269 return ret;
2270}
81ad8ba2 2271#endif /* TARGET_SPARC64 */
3475187d
FB
2272
2273#ifndef TARGET_SPARC64
1a2fb1c0 2274void helper_rett(void)
e8af50a3 2275{
af7bf89b
FB
2276 unsigned int cwp;
2277
d4218d99
BS
2278 if (env->psret == 1)
2279 raise_exception(TT_ILL_INSN);
2280
e8af50a3 2281 env->psret = 1;
1a14026e 2282 cwp = cpu_cwp_inc(env, env->cwp + 1) ;
e8af50a3
FB
2283 if (env->wim & (1 << cwp)) {
2284 raise_exception(TT_WIN_UNF);
2285 }
2286 set_cwp(cwp);
2287 env->psrs = env->psrps;
2288}
3475187d 2289#endif
e8af50a3 2290
3b89f26c
BS
2291target_ulong helper_udiv(target_ulong a, target_ulong b)
2292{
2293 uint64_t x0;
2294 uint32_t x1;
2295
7621a90d 2296 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3b89f26c
BS
2297 x1 = b;
2298
2299 if (x1 == 0) {
2300 raise_exception(TT_DIV_ZERO);
2301 }
2302
2303 x0 = x0 / x1;
2304 if (x0 > 0xffffffff) {
2305 env->cc_src2 = 1;
2306 return 0xffffffff;
2307 } else {
2308 env->cc_src2 = 0;
2309 return x0;
2310 }
2311}
2312
2313target_ulong helper_sdiv(target_ulong a, target_ulong b)
2314{
2315 int64_t x0;
2316 int32_t x1;
2317
7621a90d 2318 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3b89f26c
BS
2319 x1 = b;
2320
2321 if (x1 == 0) {
2322 raise_exception(TT_DIV_ZERO);
2323 }
2324
2325 x0 = x0 / x1;
2326 if ((int32_t) x0 != x0) {
2327 env->cc_src2 = 1;
2328 return x0 < 0? 0x80000000: 0x7fffffff;
2329 } else {
2330 env->cc_src2 = 0;
2331 return x0;
2332 }
2333}
2334
1a2fb1c0
BS
2335uint64_t helper_pack64(target_ulong high, target_ulong low)
2336{
2337 return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff);
2338}
2339
7fa76c0b
BS
2340void helper_stdf(target_ulong addr, int mem_idx)
2341{
c2bc0e38 2342 helper_check_align(addr, 7);
7fa76c0b
BS
2343#if !defined(CONFIG_USER_ONLY)
2344 switch (mem_idx) {
2345 case 0:
c2bc0e38 2346 stfq_user(addr, DT0);
7fa76c0b
BS
2347 break;
2348 case 1:
c2bc0e38 2349 stfq_kernel(addr, DT0);
7fa76c0b
BS
2350 break;
2351#ifdef TARGET_SPARC64
2352 case 2:
c2bc0e38 2353 stfq_hypv(addr, DT0);
7fa76c0b
BS
2354 break;
2355#endif
2356 default:
2357 break;
2358 }
2359#else
2cade6a3 2360 address_mask(env, &addr);
c2bc0e38 2361 stfq_raw(addr, DT0);
7fa76c0b
BS
2362#endif
2363}
2364
2365void helper_lddf(target_ulong addr, int mem_idx)
2366{
c2bc0e38 2367 helper_check_align(addr, 7);
7fa76c0b
BS
2368#if !defined(CONFIG_USER_ONLY)
2369 switch (mem_idx) {
2370 case 0:
c2bc0e38 2371 DT0 = ldfq_user(addr);
7fa76c0b
BS
2372 break;
2373 case 1:
c2bc0e38 2374 DT0 = ldfq_kernel(addr);
7fa76c0b
BS
2375 break;
2376#ifdef TARGET_SPARC64
2377 case 2:
c2bc0e38 2378 DT0 = ldfq_hypv(addr);
7fa76c0b
BS
2379 break;
2380#endif
2381 default:
2382 break;
2383 }
2384#else
2cade6a3 2385 address_mask(env, &addr);
c2bc0e38 2386 DT0 = ldfq_raw(addr);
7fa76c0b
BS
2387#endif
2388}
2389
64a88d5d 2390void helper_ldqf(target_ulong addr, int mem_idx)
7fa76c0b
BS
2391{
2392 // XXX add 128 bit load
2393 CPU_QuadU u;
2394
c2bc0e38 2395 helper_check_align(addr, 7);
64a88d5d
BS
2396#if !defined(CONFIG_USER_ONLY)
2397 switch (mem_idx) {
2398 case 0:
c2bc0e38
BS
2399 u.ll.upper = ldq_user(addr);
2400 u.ll.lower = ldq_user(addr + 8);
64a88d5d
BS
2401 QT0 = u.q;
2402 break;
2403 case 1:
c2bc0e38
BS
2404 u.ll.upper = ldq_kernel(addr);
2405 u.ll.lower = ldq_kernel(addr + 8);
64a88d5d
BS
2406 QT0 = u.q;
2407 break;
2408#ifdef TARGET_SPARC64
2409 case 2:
c2bc0e38
BS
2410 u.ll.upper = ldq_hypv(addr);
2411 u.ll.lower = ldq_hypv(addr + 8);
64a88d5d
BS
2412 QT0 = u.q;
2413 break;
2414#endif
2415 default:
2416 break;
2417 }
2418#else
2cade6a3 2419 address_mask(env, &addr);
c2bc0e38
BS
2420 u.ll.upper = ldq_raw(addr);
2421 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
7fa76c0b 2422 QT0 = u.q;
64a88d5d 2423#endif
7fa76c0b
BS
2424}
2425
64a88d5d 2426void helper_stqf(target_ulong addr, int mem_idx)
7fa76c0b
BS
2427{
2428 // XXX add 128 bit store
2429 CPU_QuadU u;
2430
c2bc0e38 2431 helper_check_align(addr, 7);
64a88d5d
BS
2432#if !defined(CONFIG_USER_ONLY)
2433 switch (mem_idx) {
2434 case 0:
2435 u.q = QT0;
c2bc0e38
BS
2436 stq_user(addr, u.ll.upper);
2437 stq_user(addr + 8, u.ll.lower);
64a88d5d
BS
2438 break;
2439 case 1:
2440 u.q = QT0;
c2bc0e38
BS
2441 stq_kernel(addr, u.ll.upper);
2442 stq_kernel(addr + 8, u.ll.lower);
64a88d5d
BS
2443 break;
2444#ifdef TARGET_SPARC64
2445 case 2:
2446 u.q = QT0;
c2bc0e38
BS
2447 stq_hypv(addr, u.ll.upper);
2448 stq_hypv(addr + 8, u.ll.lower);
64a88d5d
BS
2449 break;
2450#endif
2451 default:
2452 break;
2453 }
2454#else
7fa76c0b 2455 u.q = QT0;
2cade6a3 2456 address_mask(env, &addr);
c2bc0e38
BS
2457 stq_raw(addr, u.ll.upper);
2458 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
7fa76c0b 2459#endif
64a88d5d 2460}
7fa76c0b 2461
8d5f07fa 2462void helper_ldfsr(void)
e8af50a3 2463{
7a0e1f41 2464 int rnd_mode;
bb5529bb
BS
2465
2466 PUT_FSR32(env, *((uint32_t *) &FT0));
e8af50a3
FB
2467 switch (env->fsr & FSR_RD_MASK) {
2468 case FSR_RD_NEAREST:
7a0e1f41 2469 rnd_mode = float_round_nearest_even;
0f8a249a 2470 break;
ed910241 2471 default:
e8af50a3 2472 case FSR_RD_ZERO:
7a0e1f41 2473 rnd_mode = float_round_to_zero;
0f8a249a 2474 break;
e8af50a3 2475 case FSR_RD_POS:
7a0e1f41 2476 rnd_mode = float_round_up;
0f8a249a 2477 break;
e8af50a3 2478 case FSR_RD_NEG:
7a0e1f41 2479 rnd_mode = float_round_down;
0f8a249a 2480 break;
e8af50a3 2481 }
7a0e1f41 2482 set_float_rounding_mode(rnd_mode, &env->fp_status);
e8af50a3 2483}
e80cfcfc 2484
bb5529bb
BS
2485void helper_stfsr(void)
2486{
2487 *((uint32_t *) &FT0) = GET_FSR32(env);
2488}
2489
2490void helper_debug(void)
e80cfcfc
FB
2491{
2492 env->exception_index = EXCP_DEBUG;
2493 cpu_loop_exit();
2494}
af7bf89b 2495
3475187d 2496#ifndef TARGET_SPARC64
72a9747b
BS
2497/* XXX: use another pointer for %iN registers to avoid slow wrapping
2498 handling ? */
2499void helper_save(void)
2500{
2501 uint32_t cwp;
2502
1a14026e 2503 cwp = cpu_cwp_dec(env, env->cwp - 1);
72a9747b
BS
2504 if (env->wim & (1 << cwp)) {
2505 raise_exception(TT_WIN_OVF);
2506 }
2507 set_cwp(cwp);
2508}
2509
2510void helper_restore(void)
2511{
2512 uint32_t cwp;
2513
1a14026e 2514 cwp = cpu_cwp_inc(env, env->cwp + 1);
72a9747b
BS
2515 if (env->wim & (1 << cwp)) {
2516 raise_exception(TT_WIN_UNF);
2517 }
2518 set_cwp(cwp);
2519}
2520
1a2fb1c0 2521void helper_wrpsr(target_ulong new_psr)
af7bf89b 2522{
1a14026e 2523 if ((new_psr & PSR_CWP) >= env->nwindows)
d4218d99
BS
2524 raise_exception(TT_ILL_INSN);
2525 else
1a2fb1c0 2526 PUT_PSR(env, new_psr);
af7bf89b
FB
2527}
2528
1a2fb1c0 2529target_ulong helper_rdpsr(void)
af7bf89b 2530{
1a2fb1c0 2531 return GET_PSR(env);
af7bf89b 2532}
3475187d
FB
2533
2534#else
72a9747b
BS
2535/* XXX: use another pointer for %iN registers to avoid slow wrapping
2536 handling ? */
2537void helper_save(void)
2538{
2539 uint32_t cwp;
2540
1a14026e 2541 cwp = cpu_cwp_dec(env, env->cwp - 1);
72a9747b
BS
2542 if (env->cansave == 0) {
2543 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2544 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2545 ((env->wstate & 0x7) << 2)));
2546 } else {
2547 if (env->cleanwin - env->canrestore == 0) {
2548 // XXX Clean windows without trap
2549 raise_exception(TT_CLRWIN);
2550 } else {
2551 env->cansave--;
2552 env->canrestore++;
2553 set_cwp(cwp);
2554 }
2555 }
2556}
2557
2558void helper_restore(void)
2559{
2560 uint32_t cwp;
2561
1a14026e 2562 cwp = cpu_cwp_inc(env, env->cwp + 1);
72a9747b
BS
2563 if (env->canrestore == 0) {
2564 raise_exception(TT_FILL | (env->otherwin != 0 ?
2565 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2566 ((env->wstate & 0x7) << 2)));
2567 } else {
2568 env->cansave++;
2569 env->canrestore--;
2570 set_cwp(cwp);
2571 }
2572}
2573
2574void helper_flushw(void)
2575{
1a14026e 2576 if (env->cansave != env->nwindows - 2) {
72a9747b
BS
2577 raise_exception(TT_SPILL | (env->otherwin != 0 ?
2578 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
2579 ((env->wstate & 0x7) << 2)));
2580 }
2581}
2582
2583void helper_saved(void)
2584{
2585 env->cansave++;
2586 if (env->otherwin == 0)
2587 env->canrestore--;
2588 else
2589 env->otherwin--;
2590}
2591
2592void helper_restored(void)
2593{
2594 env->canrestore++;
1a14026e 2595 if (env->cleanwin < env->nwindows - 1)
72a9747b
BS
2596 env->cleanwin++;
2597 if (env->otherwin == 0)
2598 env->cansave--;
2599 else
2600 env->otherwin--;
2601}
2602
d35527d9
BS
2603target_ulong helper_rdccr(void)
2604{
2605 return GET_CCR(env);
2606}
2607
2608void helper_wrccr(target_ulong new_ccr)
2609{
2610 PUT_CCR(env, new_ccr);
2611}
2612
2613// CWP handling is reversed in V9, but we still use the V8 register
2614// order.
2615target_ulong helper_rdcwp(void)
2616{
2617 return GET_CWP64(env);
2618}
2619
2620void helper_wrcwp(target_ulong new_cwp)
2621{
2622 PUT_CWP64(env, new_cwp);
2623}
3475187d 2624
1f5063fb
BS
2625// This function uses non-native bit order
2626#define GET_FIELD(X, FROM, TO) \
2627 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
2628
2629// This function uses the order in the manuals, i.e. bit 0 is 2^0
2630#define GET_FIELD_SP(X, FROM, TO) \
2631 GET_FIELD(X, 63 - (TO), 63 - (FROM))
2632
2633target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
2634{
2635 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
2636 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
2637 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
2638 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
2639 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
2640 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
2641 (((pixel_addr >> 55) & 1) << 4) |
2642 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
2643 GET_FIELD_SP(pixel_addr, 11, 12);
2644}
2645
2646target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
2647{
2648 uint64_t tmp;
2649
2650 tmp = addr + offset;
2651 env->gsr &= ~7ULL;
2652 env->gsr |= tmp & 7ULL;
2653 return tmp & ~7ULL;
2654}
2655
1a2fb1c0 2656target_ulong helper_popc(target_ulong val)
3475187d 2657{
1a2fb1c0 2658 return ctpop64(val);
3475187d 2659}
83469015
FB
2660
2661static inline uint64_t *get_gregset(uint64_t pstate)
2662{
2663 switch (pstate) {
2664 default:
2665 case 0:
0f8a249a 2666 return env->bgregs;
83469015 2667 case PS_AG:
0f8a249a 2668 return env->agregs;
83469015 2669 case PS_MG:
0f8a249a 2670 return env->mgregs;
83469015 2671 case PS_IG:
0f8a249a 2672 return env->igregs;
83469015
FB
2673 }
2674}
2675
91736d37 2676static inline void change_pstate(uint64_t new_pstate)
83469015 2677{
8f1f22f6 2678 uint64_t pstate_regs, new_pstate_regs;
83469015
FB
2679 uint64_t *src, *dst;
2680
83469015
FB
2681 pstate_regs = env->pstate & 0xc01;
2682 new_pstate_regs = new_pstate & 0xc01;
2683 if (new_pstate_regs != pstate_regs) {
0f8a249a
BS
2684 // Switch global register bank
2685 src = get_gregset(new_pstate_regs);
2686 dst = get_gregset(pstate_regs);
2687 memcpy32(dst, env->gregs);
2688 memcpy32(env->gregs, src);
83469015
FB
2689 }
2690 env->pstate = new_pstate;
2691}
2692
1a2fb1c0 2693void helper_wrpstate(target_ulong new_state)
8f1f22f6 2694{
5578ceab 2695 if (!(env->def->features & CPU_FEATURE_GL))
fb79ceb9 2696 change_pstate(new_state & 0xf3f);
8f1f22f6
BS
2697}
2698
1a2fb1c0 2699void helper_done(void)
83469015 2700{
375ee38b
BS
2701 env->pc = env->tsptr->tpc;
2702 env->npc = env->tsptr->tnpc + 4;
2703 PUT_CCR(env, env->tsptr->tstate >> 32);
2704 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2705 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2706 PUT_CWP64(env, env->tsptr->tstate & 0xff);
e6bf7d70 2707 env->tl--;
c19148bd 2708 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
83469015
FB
2709}
2710
1a2fb1c0 2711void helper_retry(void)
83469015 2712{
375ee38b
BS
2713 env->pc = env->tsptr->tpc;
2714 env->npc = env->tsptr->tnpc;
2715 PUT_CCR(env, env->tsptr->tstate >> 32);
2716 env->asi = (env->tsptr->tstate >> 24) & 0xff;
2717 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
2718 PUT_CWP64(env, env->tsptr->tstate & 0xff);
e6bf7d70 2719 env->tl--;
c19148bd 2720 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
83469015 2721}
3475187d 2722#endif
ee5bbe38 2723
91736d37 2724void helper_flush(target_ulong addr)
ee5bbe38 2725{
91736d37
BS
2726 addr &= ~7;
2727 tb_invalidate_page_range(addr, addr + 8);
ee5bbe38
FB
2728}
2729
91736d37
BS
2730#ifdef TARGET_SPARC64
2731#ifdef DEBUG_PCALL
2732static const char * const excp_names[0x80] = {
2733 [TT_TFAULT] = "Instruction Access Fault",
2734 [TT_TMISS] = "Instruction Access MMU Miss",
2735 [TT_CODE_ACCESS] = "Instruction Access Error",
2736 [TT_ILL_INSN] = "Illegal Instruction",
2737 [TT_PRIV_INSN] = "Privileged Instruction",
2738 [TT_NFPU_INSN] = "FPU Disabled",
2739 [TT_FP_EXCP] = "FPU Exception",
2740 [TT_TOVF] = "Tag Overflow",
2741 [TT_CLRWIN] = "Clean Windows",
2742 [TT_DIV_ZERO] = "Division By Zero",
2743 [TT_DFAULT] = "Data Access Fault",
2744 [TT_DMISS] = "Data Access MMU Miss",
2745 [TT_DATA_ACCESS] = "Data Access Error",
2746 [TT_DPROT] = "Data Protection Error",
2747 [TT_UNALIGNED] = "Unaligned Memory Access",
2748 [TT_PRIV_ACT] = "Privileged Action",
2749 [TT_EXTINT | 0x1] = "External Interrupt 1",
2750 [TT_EXTINT | 0x2] = "External Interrupt 2",
2751 [TT_EXTINT | 0x3] = "External Interrupt 3",
2752 [TT_EXTINT | 0x4] = "External Interrupt 4",
2753 [TT_EXTINT | 0x5] = "External Interrupt 5",
2754 [TT_EXTINT | 0x6] = "External Interrupt 6",
2755 [TT_EXTINT | 0x7] = "External Interrupt 7",
2756 [TT_EXTINT | 0x8] = "External Interrupt 8",
2757 [TT_EXTINT | 0x9] = "External Interrupt 9",
2758 [TT_EXTINT | 0xa] = "External Interrupt 10",
2759 [TT_EXTINT | 0xb] = "External Interrupt 11",
2760 [TT_EXTINT | 0xc] = "External Interrupt 12",
2761 [TT_EXTINT | 0xd] = "External Interrupt 13",
2762 [TT_EXTINT | 0xe] = "External Interrupt 14",
2763 [TT_EXTINT | 0xf] = "External Interrupt 15",
2764};
2765#endif
2766
2767void do_interrupt(CPUState *env)
2768{
2769 int intno = env->exception_index;
2770
2771#ifdef DEBUG_PCALL
2772 if (loglevel & CPU_LOG_INT) {
2773 static int count;
2774 const char *name;
2775
2776 if (intno < 0 || intno >= 0x180)
2777 name = "Unknown";
2778 else if (intno >= 0x100)
2779 name = "Trap Instruction";
2780 else if (intno >= 0xc0)
2781 name = "Window Fill";
2782 else if (intno >= 0x80)
2783 name = "Window Spill";
2784 else {
2785 name = excp_names[intno];
2786 if (!name)
2787 name = "Unknown";
2788 }
2789
2790 fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
2791 " SP=%016" PRIx64 "\n",
2792 count, name, intno,
2793 env->pc,
2794 env->npc, env->regwptr[6]);
2795 cpu_dump_state(env, logfile, fprintf, 0);
2796#if 0
2797 {
2798 int i;
2799 uint8_t *ptr;
2800
2801 fprintf(logfile, " code=");
2802 ptr = (uint8_t *)env->pc;
2803 for(i = 0; i < 16; i++) {
2804 fprintf(logfile, " %02x", ldub(ptr + i));
2805 }
2806 fprintf(logfile, "\n");
2807 }
2808#endif
2809 count++;
2810 }
2811#endif
2812#if !defined(CONFIG_USER_ONLY)
2813 if (env->tl >= env->maxtl) {
2814 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
2815 " Error state", env->exception_index, env->tl, env->maxtl);
2816 return;
2817 }
2818#endif
2819 if (env->tl < env->maxtl - 1) {
2820 env->tl++;
2821 } else {
2822 env->pstate |= PS_RED;
2823 if (env->tl < env->maxtl)
2824 env->tl++;
2825 }
2826 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
2827 env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
2828 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
2829 GET_CWP64(env);
2830 env->tsptr->tpc = env->pc;
2831 env->tsptr->tnpc = env->npc;
2832 env->tsptr->tt = intno;
2833 if (!(env->def->features & CPU_FEATURE_GL)) {
2834 switch (intno) {
2835 case TT_IVEC:
2836 change_pstate(PS_PEF | PS_PRIV | PS_IG);
2837 break;
2838 case TT_TFAULT:
2839 case TT_TMISS:
2840 case TT_DFAULT:
2841 case TT_DMISS:
2842 case TT_DPROT:
2843 change_pstate(PS_PEF | PS_PRIV | PS_MG);
2844 break;
2845 default:
2846 change_pstate(PS_PEF | PS_PRIV | PS_AG);
2847 break;
2848 }
2849 }
2850 if (intno == TT_CLRWIN)
2851 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
2852 else if ((intno & 0x1c0) == TT_SPILL)
2853 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
2854 else if ((intno & 0x1c0) == TT_FILL)
2855 cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
2856 env->tbr &= ~0x7fffULL;
2857 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
2858 env->pc = env->tbr;
2859 env->npc = env->pc + 4;
2860 env->exception_index = 0;
ee5bbe38 2861}
91736d37
BS
2862#else
2863#ifdef DEBUG_PCALL
2864static const char * const excp_names[0x80] = {
2865 [TT_TFAULT] = "Instruction Access Fault",
2866 [TT_ILL_INSN] = "Illegal Instruction",
2867 [TT_PRIV_INSN] = "Privileged Instruction",
2868 [TT_NFPU_INSN] = "FPU Disabled",
2869 [TT_WIN_OVF] = "Window Overflow",
2870 [TT_WIN_UNF] = "Window Underflow",
2871 [TT_UNALIGNED] = "Unaligned Memory Access",
2872 [TT_FP_EXCP] = "FPU Exception",
2873 [TT_DFAULT] = "Data Access Fault",
2874 [TT_TOVF] = "Tag Overflow",
2875 [TT_EXTINT | 0x1] = "External Interrupt 1",
2876 [TT_EXTINT | 0x2] = "External Interrupt 2",
2877 [TT_EXTINT | 0x3] = "External Interrupt 3",
2878 [TT_EXTINT | 0x4] = "External Interrupt 4",
2879 [TT_EXTINT | 0x5] = "External Interrupt 5",
2880 [TT_EXTINT | 0x6] = "External Interrupt 6",
2881 [TT_EXTINT | 0x7] = "External Interrupt 7",
2882 [TT_EXTINT | 0x8] = "External Interrupt 8",
2883 [TT_EXTINT | 0x9] = "External Interrupt 9",
2884 [TT_EXTINT | 0xa] = "External Interrupt 10",
2885 [TT_EXTINT | 0xb] = "External Interrupt 11",
2886 [TT_EXTINT | 0xc] = "External Interrupt 12",
2887 [TT_EXTINT | 0xd] = "External Interrupt 13",
2888 [TT_EXTINT | 0xe] = "External Interrupt 14",
2889 [TT_EXTINT | 0xf] = "External Interrupt 15",
2890 [TT_TOVF] = "Tag Overflow",
2891 [TT_CODE_ACCESS] = "Instruction Access Error",
2892 [TT_DATA_ACCESS] = "Data Access Error",
2893 [TT_DIV_ZERO] = "Division By Zero",
2894 [TT_NCP_INSN] = "Coprocessor Disabled",
2895};
2896#endif
ee5bbe38 2897
91736d37 2898void do_interrupt(CPUState *env)
ee5bbe38 2899{
91736d37
BS
2900 int cwp, intno = env->exception_index;
2901
2902#ifdef DEBUG_PCALL
2903 if (loglevel & CPU_LOG_INT) {
2904 static int count;
2905 const char *name;
2906
2907 if (intno < 0 || intno >= 0x100)
2908 name = "Unknown";
2909 else if (intno >= 0x80)
2910 name = "Trap Instruction";
2911 else {
2912 name = excp_names[intno];
2913 if (!name)
2914 name = "Unknown";
2915 }
2916
2917 fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
2918 count, name, intno,
2919 env->pc,
2920 env->npc, env->regwptr[6]);
2921 cpu_dump_state(env, logfile, fprintf, 0);
2922#if 0
2923 {
2924 int i;
2925 uint8_t *ptr;
2926
2927 fprintf(logfile, " code=");
2928 ptr = (uint8_t *)env->pc;
2929 for(i = 0; i < 16; i++) {
2930 fprintf(logfile, " %02x", ldub(ptr + i));
2931 }
2932 fprintf(logfile, "\n");
2933 }
2934#endif
2935 count++;
2936 }
2937#endif
2938#if !defined(CONFIG_USER_ONLY)
2939 if (env->psret == 0) {
2940 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
2941 env->exception_index);
2942 return;
2943 }
2944#endif
2945 env->psret = 0;
2946 cwp = cpu_cwp_dec(env, env->cwp - 1);
2947 cpu_set_cwp(env, cwp);
2948 env->regwptr[9] = env->pc;
2949 env->regwptr[10] = env->npc;
2950 env->psrps = env->psrs;
2951 env->psrs = 1;
2952 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
2953 env->pc = env->tbr;
2954 env->npc = env->pc + 4;
2955 env->exception_index = 0;
ee5bbe38 2956}
91736d37 2957#endif
ee5bbe38 2958
5fafdf24 2959#if !defined(CONFIG_USER_ONLY)
ee5bbe38 2960
d2889a3e
BS
2961static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2962 void *retaddr);
2963
ee5bbe38 2964#define MMUSUFFIX _mmu
d2889a3e 2965#define ALIGNED_ONLY
ee5bbe38
FB
2966
2967#define SHIFT 0
2968#include "softmmu_template.h"
2969
2970#define SHIFT 1
2971#include "softmmu_template.h"
2972
2973#define SHIFT 2
2974#include "softmmu_template.h"
2975
2976#define SHIFT 3
2977#include "softmmu_template.h"
2978
c2bc0e38
BS
2979/* XXX: make it generic ? */
2980static void cpu_restore_state2(void *retaddr)
2981{
2982 TranslationBlock *tb;
2983 unsigned long pc;
2984
2985 if (retaddr) {
2986 /* now we have a real cpu fault */
2987 pc = (unsigned long)retaddr;
2988 tb = tb_find_pc(pc);
2989 if (tb) {
2990 /* the PC is inside the translated code. It means that we have
2991 a virtual CPU fault */
2992 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
2993 }
2994 }
2995}
2996
d2889a3e
BS
2997static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2998 void *retaddr)
2999{
94554550 3000#ifdef DEBUG_UNALIGNED
c2bc0e38
BS
3001 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3002 "\n", addr, env->pc);
94554550 3003#endif
c2bc0e38 3004 cpu_restore_state2(retaddr);
94554550 3005 raise_exception(TT_UNALIGNED);
d2889a3e 3006}
ee5bbe38
FB
3007
3008/* try to fill the TLB and return an exception if error. If retaddr is
3009 NULL, it means that the function was called in C code (i.e. not
3010 from generated code or from helper.c) */
3011/* XXX: fix it to restore all registers */
6ebbf390 3012void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
ee5bbe38 3013{
ee5bbe38 3014 int ret;
ee5bbe38
FB
3015 CPUState *saved_env;
3016
3017 /* XXX: hack to restore env in all cases, even if not called from
3018 generated code */
3019 saved_env = env;
3020 env = cpu_single_env;
3021
6ebbf390 3022 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
ee5bbe38 3023 if (ret) {
c2bc0e38 3024 cpu_restore_state2(retaddr);
ee5bbe38
FB
3025 cpu_loop_exit();
3026 }
3027 env = saved_env;
3028}
3029
3030#endif
6c36d3fa
BS
3031
3032#ifndef TARGET_SPARC64
5dcb6b91 3033void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
6c36d3fa
BS
3034 int is_asi)
3035{
3036 CPUState *saved_env;
3037
3038 /* XXX: hack to restore env in all cases, even if not called from
3039 generated code */
3040 saved_env = env;
3041 env = cpu_single_env;
8543e2cf
BS
3042#ifdef DEBUG_UNASSIGNED
3043 if (is_asi)
77f193da
BS
3044 printf("Unassigned mem %s access to " TARGET_FMT_plx
3045 " asi 0x%02x from " TARGET_FMT_lx "\n",
8543e2cf
BS
3046 is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
3047 env->pc);
3048 else
3049 printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
3050 TARGET_FMT_lx "\n",
3051 is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
3052#endif
6c36d3fa 3053 if (env->mmuregs[3]) /* Fault status register */
0f8a249a 3054 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
6c36d3fa
BS
3055 if (is_asi)
3056 env->mmuregs[3] |= 1 << 16;
3057 if (env->psrs)
3058 env->mmuregs[3] |= 1 << 5;
3059 if (is_exec)
3060 env->mmuregs[3] |= 1 << 6;
3061 if (is_write)
3062 env->mmuregs[3] |= 1 << 7;
3063 env->mmuregs[3] |= (5 << 2) | 2;
3064 env->mmuregs[4] = addr; /* Fault address register */
3065 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1b2e93c1
BS
3066 if (is_exec)
3067 raise_exception(TT_CODE_ACCESS);
3068 else
3069 raise_exception(TT_DATA_ACCESS);
6c36d3fa
BS
3070 }
3071 env = saved_env;
3072}
3073#else
5dcb6b91 3074void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
6c36d3fa
BS
3075 int is_asi)
3076{
3077#ifdef DEBUG_UNASSIGNED
3078 CPUState *saved_env;
3079
3080 /* XXX: hack to restore env in all cases, even if not called from
3081 generated code */
3082 saved_env = env;
3083 env = cpu_single_env;
77f193da
BS
3084 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3085 "\n", addr, env->pc);
6c36d3fa
BS
3086 env = saved_env;
3087#endif
1b2e93c1
BS
3088 if (is_exec)
3089 raise_exception(TT_CODE_ACCESS);
3090 else
3091 raise_exception(TT_DATA_ACCESS);
6c36d3fa
BS
3092}
3093#endif
20c9f095 3094