]>
Commit | Line | Data |
---|---|---|
d1aaf543 AL |
1 | /* |
2 | * QTest testcase for the MC146818 real-time clock | |
3 | * | |
4 | * Copyright IBM, Corp. 2012 | |
5 | * | |
6 | * Authors: | |
7 | * Anthony Liguori <aliguori@us.ibm.com> | |
8 | * | |
9 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
10 | * See the COPYING file in the top-level directory. | |
11 | * | |
12 | */ | |
d1aaf543 | 13 | |
681c28a3 | 14 | #include "qemu/osdep.h" |
d1aaf543 | 15 | |
91f32b0c SH |
16 | #include "libqtest.h" |
17 | #include "hw/timer/mc146818rtc_regs.h" | |
18 | ||
d1aaf543 AL |
19 | static uint8_t base = 0x70; |
20 | ||
21 | static int bcd2dec(int value) | |
22 | { | |
23 | return (((value >> 4) & 0x0F) * 10) + (value & 0x0F); | |
24 | } | |
25 | ||
d1aaf543 AL |
26 | static uint8_t cmos_read(uint8_t reg) |
27 | { | |
28 | outb(base + 0, reg); | |
29 | return inb(base + 1); | |
30 | } | |
31 | ||
32 | static void cmos_write(uint8_t reg, uint8_t val) | |
33 | { | |
34 | outb(base + 0, reg); | |
35 | outb(base + 1, val); | |
36 | } | |
37 | ||
38 | static int tm_cmp(struct tm *lhs, struct tm *rhs) | |
39 | { | |
40 | time_t a, b; | |
41 | struct tm d1, d2; | |
42 | ||
43 | memcpy(&d1, lhs, sizeof(d1)); | |
44 | memcpy(&d2, rhs, sizeof(d2)); | |
45 | ||
46 | a = mktime(&d1); | |
47 | b = mktime(&d2); | |
48 | ||
49 | if (a < b) { | |
50 | return -1; | |
51 | } else if (a > b) { | |
52 | return 1; | |
53 | } | |
54 | ||
55 | return 0; | |
56 | } | |
57 | ||
58 | #if 0 | |
59 | static void print_tm(struct tm *tm) | |
60 | { | |
61 | printf("%04d-%02d-%02d %02d:%02d:%02d\n", | |
62 | tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, | |
63 | tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff); | |
64 | } | |
65 | #endif | |
66 | ||
67 | static void cmos_get_date_time(struct tm *date) | |
68 | { | |
69 | int base_year = 2000, hour_offset; | |
70 | int sec, min, hour, mday, mon, year; | |
71 | time_t ts; | |
72 | struct tm dummy; | |
73 | ||
74 | sec = cmos_read(RTC_SECONDS); | |
75 | min = cmos_read(RTC_MINUTES); | |
76 | hour = cmos_read(RTC_HOURS); | |
77 | mday = cmos_read(RTC_DAY_OF_MONTH); | |
78 | mon = cmos_read(RTC_MONTH); | |
79 | year = cmos_read(RTC_YEAR); | |
80 | ||
81 | if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) { | |
82 | sec = bcd2dec(sec); | |
83 | min = bcd2dec(min); | |
84 | hour = bcd2dec(hour); | |
85 | mday = bcd2dec(mday); | |
86 | mon = bcd2dec(mon); | |
87 | year = bcd2dec(year); | |
88 | hour_offset = 80; | |
89 | } else { | |
90 | hour_offset = 0x80; | |
91 | } | |
92 | ||
93 | if ((cmos_read(0x0B) & REG_B_24H) == 0) { | |
94 | if (hour >= hour_offset) { | |
95 | hour -= hour_offset; | |
96 | hour += 12; | |
97 | } | |
98 | } | |
99 | ||
100 | ts = time(NULL); | |
101 | localtime_r(&ts, &dummy); | |
102 | ||
103 | date->tm_isdst = dummy.tm_isdst; | |
104 | date->tm_sec = sec; | |
105 | date->tm_min = min; | |
106 | date->tm_hour = hour; | |
107 | date->tm_mday = mday; | |
108 | date->tm_mon = mon - 1; | |
109 | date->tm_year = base_year + year - 1900; | |
a05ddd92 | 110 | #ifndef __sun__ |
d1aaf543 | 111 | date->tm_gmtoff = 0; |
a05ddd92 | 112 | #endif |
d1aaf543 AL |
113 | |
114 | ts = mktime(date); | |
115 | } | |
116 | ||
117 | static void check_time(int wiggle) | |
118 | { | |
119 | struct tm start, date[4], end; | |
120 | struct tm *datep; | |
121 | time_t ts; | |
122 | ||
123 | /* | |
124 | * This check assumes a few things. First, we cannot guarantee that we get | |
125 | * a consistent reading from the wall clock because we may hit an edge of | |
126 | * the clock while reading. To work around this, we read four clock readings | |
127 | * such that at least two of them should match. We need to assume that one | |
128 | * reading is corrupt so we need four readings to ensure that we have at | |
129 | * least two consecutive identical readings | |
130 | * | |
131 | * It's also possible that we'll cross an edge reading the host clock so | |
132 | * simply check to make sure that the clock reading is within the period of | |
133 | * when we expect it to be. | |
134 | */ | |
135 | ||
136 | ts = time(NULL); | |
137 | gmtime_r(&ts, &start); | |
138 | ||
139 | cmos_get_date_time(&date[0]); | |
140 | cmos_get_date_time(&date[1]); | |
141 | cmos_get_date_time(&date[2]); | |
142 | cmos_get_date_time(&date[3]); | |
143 | ||
144 | ts = time(NULL); | |
145 | gmtime_r(&ts, &end); | |
146 | ||
147 | if (tm_cmp(&date[0], &date[1]) == 0) { | |
148 | datep = &date[0]; | |
149 | } else if (tm_cmp(&date[1], &date[2]) == 0) { | |
150 | datep = &date[1]; | |
151 | } else if (tm_cmp(&date[2], &date[3]) == 0) { | |
152 | datep = &date[2]; | |
153 | } else { | |
154 | g_assert_not_reached(); | |
155 | } | |
156 | ||
157 | if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) { | |
02b3efcb | 158 | long t, s; |
d1aaf543 AL |
159 | |
160 | start.tm_isdst = datep->tm_isdst; | |
161 | ||
02b3efcb BS |
162 | t = (long)mktime(datep); |
163 | s = (long)mktime(&start); | |
d1aaf543 AL |
164 | if (t < s) { |
165 | g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t)); | |
166 | } else { | |
167 | g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s)); | |
168 | } | |
169 | ||
170 | g_assert_cmpint(ABS(t - s), <=, wiggle); | |
171 | } | |
172 | } | |
173 | ||
174 | static int wiggle = 2; | |
175 | ||
b8994faf | 176 | static void set_year_20xx(void) |
b6db4aca PB |
177 | { |
178 | /* Set BCD mode */ | |
f9b3ed40 | 179 | cmos_write(RTC_REG_B, REG_B_24H); |
b6db4aca PB |
180 | cmos_write(RTC_REG_A, 0x76); |
181 | cmos_write(RTC_YEAR, 0x11); | |
b8994faf | 182 | cmos_write(RTC_CENTURY, 0x20); |
b6db4aca PB |
183 | cmos_write(RTC_MONTH, 0x02); |
184 | cmos_write(RTC_DAY_OF_MONTH, 0x02); | |
185 | cmos_write(RTC_HOURS, 0x02); | |
186 | cmos_write(RTC_MINUTES, 0x04); | |
187 | cmos_write(RTC_SECONDS, 0x58); | |
188 | cmos_write(RTC_REG_A, 0x26); | |
189 | ||
190 | g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); | |
191 | g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); | |
192 | g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); | |
193 | g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); | |
194 | g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); | |
195 | g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); | |
b8994faf | 196 | g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); |
b6db4aca | 197 | |
4e45deed GH |
198 | if (sizeof(time_t) == 4) { |
199 | return; | |
200 | } | |
201 | ||
b6db4aca PB |
202 | /* Set a date in 2080 to ensure there is no year-2038 overflow. */ |
203 | cmos_write(RTC_REG_A, 0x76); | |
204 | cmos_write(RTC_YEAR, 0x80); | |
205 | cmos_write(RTC_REG_A, 0x26); | |
206 | ||
207 | g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); | |
208 | g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); | |
209 | g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); | |
210 | g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); | |
211 | g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); | |
212 | g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80); | |
b8994faf | 213 | g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); |
b6db4aca PB |
214 | |
215 | cmos_write(RTC_REG_A, 0x76); | |
216 | cmos_write(RTC_YEAR, 0x11); | |
217 | cmos_write(RTC_REG_A, 0x26); | |
218 | ||
219 | g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); | |
220 | g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); | |
221 | g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); | |
222 | g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); | |
223 | g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); | |
224 | g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); | |
b8994faf PB |
225 | g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); |
226 | } | |
227 | ||
228 | static void set_year_1980(void) | |
229 | { | |
230 | /* Set BCD mode */ | |
f9b3ed40 | 231 | cmos_write(RTC_REG_B, REG_B_24H); |
b8994faf PB |
232 | cmos_write(RTC_REG_A, 0x76); |
233 | cmos_write(RTC_YEAR, 0x80); | |
234 | cmos_write(RTC_CENTURY, 0x19); | |
235 | cmos_write(RTC_MONTH, 0x02); | |
236 | cmos_write(RTC_DAY_OF_MONTH, 0x02); | |
237 | cmos_write(RTC_HOURS, 0x02); | |
238 | cmos_write(RTC_MINUTES, 0x04); | |
239 | cmos_write(RTC_SECONDS, 0x58); | |
240 | cmos_write(RTC_REG_A, 0x26); | |
241 | ||
242 | g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); | |
243 | g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); | |
244 | g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); | |
245 | g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); | |
246 | g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); | |
247 | g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80); | |
248 | g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19); | |
b6db4aca PB |
249 | } |
250 | ||
d1aaf543 AL |
251 | static void bcd_check_time(void) |
252 | { | |
253 | /* Set BCD mode */ | |
f9b3ed40 | 254 | cmos_write(RTC_REG_B, REG_B_24H); |
d1aaf543 AL |
255 | check_time(wiggle); |
256 | } | |
257 | ||
258 | static void dec_check_time(void) | |
259 | { | |
260 | /* Set DEC mode */ | |
f9b3ed40 | 261 | cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM); |
d1aaf543 AL |
262 | check_time(wiggle); |
263 | } | |
264 | ||
d1aaf543 AL |
265 | static void alarm_time(void) |
266 | { | |
267 | struct tm now; | |
268 | time_t ts; | |
269 | int i; | |
270 | ||
271 | ts = time(NULL); | |
272 | gmtime_r(&ts, &now); | |
273 | ||
274 | /* set DEC mode */ | |
f9b3ed40 | 275 | cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM); |
d1aaf543 AL |
276 | |
277 | g_assert(!get_irq(RTC_ISA_IRQ)); | |
278 | cmos_read(RTC_REG_C); | |
279 | ||
280 | now.tm_sec = (now.tm_sec + 2) % 60; | |
f9b3ed40 PB |
281 | cmos_write(RTC_SECONDS_ALARM, now.tm_sec); |
282 | cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE); | |
283 | cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE); | |
d1aaf543 AL |
284 | cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE); |
285 | ||
286 | for (i = 0; i < 2 + wiggle; i++) { | |
287 | if (get_irq(RTC_ISA_IRQ)) { | |
288 | break; | |
289 | } | |
290 | ||
291 | clock_step(1000000000); | |
292 | } | |
293 | ||
294 | g_assert(get_irq(RTC_ISA_IRQ)); | |
295 | g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); | |
296 | g_assert(cmos_read(RTC_REG_C) == 0); | |
297 | } | |
298 | ||
cc2832a5 PB |
299 | static void set_time(int mode, int h, int m, int s) |
300 | { | |
301 | /* set BCD 12 hour mode */ | |
302 | cmos_write(RTC_REG_B, mode); | |
303 | ||
304 | cmos_write(RTC_REG_A, 0x76); | |
305 | cmos_write(RTC_HOURS, h); | |
306 | cmos_write(RTC_MINUTES, m); | |
307 | cmos_write(RTC_SECONDS, s); | |
308 | cmos_write(RTC_REG_A, 0x26); | |
309 | } | |
310 | ||
311 | #define assert_time(h, m, s) \ | |
312 | do { \ | |
313 | g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \ | |
314 | g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \ | |
315 | g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \ | |
316 | } while(0) | |
317 | ||
318 | static void basic_12h_bcd(void) | |
319 | { | |
320 | /* set BCD 12 hour mode */ | |
321 | set_time(0, 0x81, 0x59, 0x00); | |
322 | clock_step(1000000000LL); | |
323 | assert_time(0x81, 0x59, 0x01); | |
324 | clock_step(59000000000LL); | |
325 | assert_time(0x82, 0x00, 0x00); | |
326 | ||
327 | /* test BCD wraparound */ | |
328 | set_time(0, 0x09, 0x59, 0x59); | |
329 | clock_step(60000000000LL); | |
330 | assert_time(0x10, 0x00, 0x59); | |
331 | ||
332 | /* 12 AM -> 1 AM */ | |
333 | set_time(0, 0x12, 0x59, 0x59); | |
334 | clock_step(1000000000LL); | |
335 | assert_time(0x01, 0x00, 0x00); | |
336 | ||
337 | /* 12 PM -> 1 PM */ | |
338 | set_time(0, 0x92, 0x59, 0x59); | |
339 | clock_step(1000000000LL); | |
340 | assert_time(0x81, 0x00, 0x00); | |
341 | ||
342 | /* 11 AM -> 12 PM */ | |
343 | set_time(0, 0x11, 0x59, 0x59); | |
344 | clock_step(1000000000LL); | |
345 | assert_time(0x92, 0x00, 0x00); | |
346 | /* TODO: test day wraparound */ | |
347 | ||
348 | /* 11 PM -> 12 AM */ | |
349 | set_time(0, 0x91, 0x59, 0x59); | |
350 | clock_step(1000000000LL); | |
351 | assert_time(0x12, 0x00, 0x00); | |
352 | /* TODO: test day wraparound */ | |
353 | } | |
354 | ||
355 | static void basic_12h_dec(void) | |
356 | { | |
357 | /* set decimal 12 hour mode */ | |
358 | set_time(REG_B_DM, 0x81, 59, 0); | |
359 | clock_step(1000000000LL); | |
360 | assert_time(0x81, 59, 1); | |
361 | clock_step(59000000000LL); | |
362 | assert_time(0x82, 0, 0); | |
363 | ||
364 | /* 12 PM -> 1 PM */ | |
365 | set_time(REG_B_DM, 0x8c, 59, 59); | |
366 | clock_step(1000000000LL); | |
367 | assert_time(0x81, 0, 0); | |
368 | ||
369 | /* 12 AM -> 1 AM */ | |
370 | set_time(REG_B_DM, 0x0c, 59, 59); | |
371 | clock_step(1000000000LL); | |
372 | assert_time(0x01, 0, 0); | |
373 | ||
374 | /* 11 AM -> 12 PM */ | |
375 | set_time(REG_B_DM, 0x0b, 59, 59); | |
376 | clock_step(1000000000LL); | |
377 | assert_time(0x8c, 0, 0); | |
378 | ||
379 | /* 11 PM -> 12 AM */ | |
380 | set_time(REG_B_DM, 0x8b, 59, 59); | |
381 | clock_step(1000000000LL); | |
382 | assert_time(0x0c, 0, 0); | |
383 | /* TODO: test day wraparound */ | |
384 | } | |
385 | ||
386 | static void basic_24h_bcd(void) | |
387 | { | |
388 | /* set BCD 24 hour mode */ | |
389 | set_time(REG_B_24H, 0x09, 0x59, 0x00); | |
390 | clock_step(1000000000LL); | |
391 | assert_time(0x09, 0x59, 0x01); | |
392 | clock_step(59000000000LL); | |
393 | assert_time(0x10, 0x00, 0x00); | |
394 | ||
395 | /* test BCD wraparound */ | |
396 | set_time(REG_B_24H, 0x09, 0x59, 0x00); | |
397 | clock_step(60000000000LL); | |
398 | assert_time(0x10, 0x00, 0x00); | |
399 | ||
400 | /* TODO: test day wraparound */ | |
401 | set_time(REG_B_24H, 0x23, 0x59, 0x00); | |
402 | clock_step(60000000000LL); | |
403 | assert_time(0x00, 0x00, 0x00); | |
404 | } | |
405 | ||
406 | static void basic_24h_dec(void) | |
407 | { | |
408 | /* set decimal 24 hour mode */ | |
409 | set_time(REG_B_24H | REG_B_DM, 9, 59, 0); | |
410 | clock_step(1000000000LL); | |
411 | assert_time(9, 59, 1); | |
412 | clock_step(59000000000LL); | |
413 | assert_time(10, 0, 0); | |
414 | ||
415 | /* test BCD wraparound */ | |
416 | set_time(REG_B_24H | REG_B_DM, 9, 59, 0); | |
417 | clock_step(60000000000LL); | |
418 | assert_time(10, 0, 0); | |
419 | ||
420 | /* TODO: test day wraparound */ | |
421 | set_time(REG_B_24H | REG_B_DM, 23, 59, 0); | |
422 | clock_step(60000000000LL); | |
423 | assert_time(0, 0, 0); | |
424 | } | |
425 | ||
426 | static void am_pm_alarm(void) | |
427 | { | |
428 | cmos_write(RTC_MINUTES_ALARM, 0xC0); | |
429 | cmos_write(RTC_SECONDS_ALARM, 0xC0); | |
430 | ||
431 | /* set BCD 12 hour mode */ | |
432 | cmos_write(RTC_REG_B, 0); | |
433 | ||
434 | /* Set time and alarm hour. */ | |
435 | cmos_write(RTC_REG_A, 0x76); | |
436 | cmos_write(RTC_HOURS_ALARM, 0x82); | |
437 | cmos_write(RTC_HOURS, 0x81); | |
438 | cmos_write(RTC_MINUTES, 0x59); | |
439 | cmos_write(RTC_SECONDS, 0x00); | |
440 | cmos_read(RTC_REG_C); | |
441 | cmos_write(RTC_REG_A, 0x26); | |
442 | ||
443 | /* Check that alarm triggers when AM/PM is set. */ | |
444 | clock_step(60000000000LL); | |
445 | g_assert(cmos_read(RTC_HOURS) == 0x82); | |
446 | g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); | |
447 | ||
448 | /* | |
449 | * Each of the following two tests takes over 60 seconds due to the time | |
450 | * needed to report the PIT interrupts. Unfortunately, our PIT device | |
451 | * model keeps counting even when GATE=0, so we cannot simply disable | |
452 | * it in main(). | |
453 | */ | |
454 | if (g_test_quick()) { | |
455 | return; | |
456 | } | |
457 | ||
458 | /* set DEC 12 hour mode */ | |
459 | cmos_write(RTC_REG_B, REG_B_DM); | |
460 | ||
461 | /* Set time and alarm hour. */ | |
462 | cmos_write(RTC_REG_A, 0x76); | |
463 | cmos_write(RTC_HOURS_ALARM, 0x82); | |
464 | cmos_write(RTC_HOURS, 3); | |
465 | cmos_write(RTC_MINUTES, 0); | |
466 | cmos_write(RTC_SECONDS, 0); | |
467 | cmos_read(RTC_REG_C); | |
468 | cmos_write(RTC_REG_A, 0x26); | |
469 | ||
470 | /* Check that alarm triggers. */ | |
471 | clock_step(3600 * 11 * 1000000000LL); | |
472 | g_assert(cmos_read(RTC_HOURS) == 0x82); | |
473 | g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); | |
474 | ||
475 | /* Same as above, with inverted HOURS and HOURS_ALARM. */ | |
476 | cmos_write(RTC_REG_A, 0x76); | |
477 | cmos_write(RTC_HOURS_ALARM, 2); | |
478 | cmos_write(RTC_HOURS, 3); | |
479 | cmos_write(RTC_MINUTES, 0); | |
480 | cmos_write(RTC_SECONDS, 0); | |
481 | cmos_read(RTC_REG_C); | |
482 | cmos_write(RTC_REG_A, 0x26); | |
483 | ||
484 | /* Check that alarm does not trigger if hours differ only by AM/PM. */ | |
485 | clock_step(3600 * 11 * 1000000000LL); | |
486 | g_assert(cmos_read(RTC_HOURS) == 0x82); | |
487 | g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0); | |
488 | } | |
489 | ||
85215d41 BS |
490 | /* success if no crash or abort */ |
491 | static void fuzz_registers(void) | |
492 | { | |
493 | unsigned int i; | |
494 | ||
495 | for (i = 0; i < 1000; i++) { | |
496 | uint8_t reg, val; | |
497 | ||
498 | reg = (uint8_t)g_test_rand_int_range(0, 16); | |
499 | val = (uint8_t)g_test_rand_int_range(0, 256); | |
500 | ||
501 | cmos_write(reg, val); | |
502 | cmos_read(reg); | |
503 | } | |
504 | } | |
505 | ||
02c6ccc6 AH |
506 | static void register_b_set_flag(void) |
507 | { | |
508 | /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/ | |
f9b3ed40 | 509 | cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET); |
02c6ccc6 AH |
510 | |
511 | cmos_write(RTC_REG_A, 0x76); | |
512 | cmos_write(RTC_YEAR, 0x11); | |
513 | cmos_write(RTC_CENTURY, 0x20); | |
514 | cmos_write(RTC_MONTH, 0x02); | |
515 | cmos_write(RTC_DAY_OF_MONTH, 0x02); | |
516 | cmos_write(RTC_HOURS, 0x02); | |
517 | cmos_write(RTC_MINUTES, 0x04); | |
518 | cmos_write(RTC_SECONDS, 0x58); | |
519 | cmos_write(RTC_REG_A, 0x26); | |
520 | ||
521 | /* Since SET flag is still enabled, these are equality checks. */ | |
522 | g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); | |
523 | g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); | |
524 | g_assert_cmpint(cmos_read(RTC_SECONDS), ==, 0x58); | |
525 | g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); | |
526 | g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); | |
527 | g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); | |
528 | g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); | |
529 | ||
530 | /* Disable SET flag in Register B */ | |
531 | cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET); | |
532 | ||
533 | g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); | |
534 | g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); | |
535 | ||
536 | /* Since SET flag is disabled, this is an inequality check. | |
537 | * We (reasonably) assume that no (sexagesimal) overflow occurs. */ | |
538 | g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); | |
539 | g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); | |
540 | g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); | |
541 | g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); | |
542 | g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); | |
543 | } | |
544 | ||
d1aaf543 AL |
545 | int main(int argc, char **argv) |
546 | { | |
547 | QTestState *s = NULL; | |
548 | int ret; | |
549 | ||
550 | g_test_init(&argc, &argv, NULL); | |
551 | ||
2ad645d2 | 552 | s = qtest_start("-rtc clock=vm"); |
d1aaf543 AL |
553 | qtest_irq_intercept_in(s, "ioapic"); |
554 | ||
cc2832a5 PB |
555 | qtest_add_func("/rtc/check-time/bcd", bcd_check_time); |
556 | qtest_add_func("/rtc/check-time/dec", dec_check_time); | |
557 | qtest_add_func("/rtc/alarm/interrupt", alarm_time); | |
558 | qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm); | |
559 | qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec); | |
560 | qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd); | |
561 | qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec); | |
562 | qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd); | |
b8994faf PB |
563 | qtest_add_func("/rtc/set-year/20xx", set_year_20xx); |
564 | qtest_add_func("/rtc/set-year/1980", set_year_1980); | |
eeb29fb9 CR |
565 | qtest_add_func("/rtc/misc/register_b_set_flag", register_b_set_flag); |
566 | qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers); | |
d1aaf543 AL |
567 | ret = g_test_run(); |
568 | ||
569 | if (s) { | |
570 | qtest_quit(s); | |
571 | } | |
572 | ||
573 | return ret; | |
574 | } |