]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - tools/perf/builtin-timechart.c
perf tools: Update copy of libbpf's hashmap.c
[mirror_ubuntu-hirsute-kernel.git] / tools / perf / builtin-timechart.c
CommitLineData
b886d83c 1// SPDX-License-Identifier: GPL-2.0-only
10274989
AV
2/*
3 * builtin-timechart.c - make an svg timechart of system activity
4 *
5 * (C) Copyright 2009 Intel Corporation
6 *
7 * Authors:
8 * Arjan van de Ven <arjan@linux.intel.com>
10274989
AV
9 */
10
a43783ae 11#include <errno.h>
fd20e811 12#include <inttypes.h>
c85cffa5 13
10274989 14#include "builtin.h"
10274989
AV
15#include "util/color.h"
16#include <linux/list.h>
7ae811b1 17#include "util/evlist.h" // for struct evsel_str_handler
e3f42609 18#include "util/evsel.h"
877a7a11 19#include <linux/kernel.h>
10274989 20#include <linux/rbtree.h>
af4b2c97 21#include <linux/time64.h>
7f7c536f 22#include <linux/zalloc.h>
10274989 23#include "util/symbol.h"
e7ff8920 24#include "util/thread.h"
10274989 25#include "util/callchain.h"
10274989
AV
26
27#include "perf.h"
28#include "util/header.h"
fa0d9846 29#include <subcmd/pager.h>
4b6ab94e 30#include <subcmd/parse-options.h>
10274989 31#include "util/parse-events.h"
5cbd0805 32#include "util/event.h"
301a0b02 33#include "util/session.h"
10274989 34#include "util/svghelper.h"
45694aa7 35#include "util/tool.h"
f5fc1412 36#include "util/data.h"
84f5d36f 37#include "util/debug.h"
6ef81c55 38#include <linux/err.h>
10274989 39
d7a8c4a6
ACM
40#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
41FILE *open_memstream(char **ptr, size_t *sizeloc);
42#endif
43
20c457b8
TR
44#define SUPPORT_OLD_POWER_EVENTS 1
45#define PWR_EVENT_EXIT -1
46
5e22f6d2 47struct per_pid;
66cc3ada 48struct power_event;
436b0da0 49struct wake_event;
5e22f6d2 50
985b12e6
ACM
51struct timechart {
52 struct perf_tool tool;
5e22f6d2 53 struct per_pid *all_data;
66cc3ada 54 struct power_event *power_events;
436b0da0 55 struct wake_event *wake_events;
985b12e6
ACM
56 int proc_num;
57 unsigned int numcpus;
58 u64 min_freq, /* Lowest CPU frequency seen */
59 max_freq, /* Highest CPU frequency seen */
60 turbo_frequency,
61 first_time, last_time;
62 bool power_only,
63 tasks_only,
c5079997
SF
64 with_backtrace,
65 topology;
86066064 66 bool force;
b97b59b9 67 /* IO related settings */
d243144a
SF
68 bool io_only,
69 skip_eagain;
86066064 70 u64 io_events;
d243144a
SF
71 u64 min_time,
72 merge_dist;
985b12e6 73};
10274989 74
10274989 75struct per_pidcomm;
10274989 76struct cpu_sample;
b97b59b9 77struct io_sample;
10274989
AV
78
79/*
80 * Datastructure layout:
81 * We keep an list of "pid"s, matching the kernels notion of a task struct.
82 * Each "pid" entry, has a list of "comm"s.
83 * this is because we want to track different programs different, while
84 * exec will reuse the original pid (by design).
85 * Each comm has a list of samples that will be used to draw
86 * final graph.
87 */
88
89struct per_pid {
90 struct per_pid *next;
91
92 int pid;
93 int ppid;
94
95 u64 start_time;
96 u64 end_time;
97 u64 total_time;
b97b59b9 98 u64 total_bytes;
10274989
AV
99 int display;
100
101 struct per_pidcomm *all;
102 struct per_pidcomm *current;
10274989
AV
103};
104
105
106struct per_pidcomm {
107 struct per_pidcomm *next;
108
109 u64 start_time;
110 u64 end_time;
111 u64 total_time;
b97b59b9
SF
112 u64 max_bytes;
113 u64 total_bytes;
10274989
AV
114
115 int Y;
116 int display;
117
118 long state;
119 u64 state_since;
120
121 char *comm;
122
123 struct cpu_sample *samples;
b97b59b9 124 struct io_sample *io_samples;
10274989
AV
125};
126
127struct sample_wrapper {
128 struct sample_wrapper *next;
129
130 u64 timestamp;
6549a8c0 131 unsigned char data[];
10274989
AV
132};
133
134#define TYPE_NONE 0
135#define TYPE_RUNNING 1
136#define TYPE_WAITING 2
137#define TYPE_BLOCKED 3
138
139struct cpu_sample {
140 struct cpu_sample *next;
141
142 u64 start_time;
143 u64 end_time;
144 int type;
145 int cpu;
6f8d67fa 146 const char *backtrace;
10274989
AV
147};
148
b97b59b9
SF
149enum {
150 IOTYPE_READ,
151 IOTYPE_WRITE,
152 IOTYPE_SYNC,
153 IOTYPE_TX,
154 IOTYPE_RX,
155 IOTYPE_POLL,
156};
157
158struct io_sample {
159 struct io_sample *next;
160
161 u64 start_time;
162 u64 end_time;
163 u64 bytes;
164 int type;
165 int fd;
166 int err;
167 int merges;
168};
169
10274989
AV
170#define CSTATE 1
171#define PSTATE 2
172
173struct power_event {
174 struct power_event *next;
175 int type;
176 int state;
177 u64 start_time;
178 u64 end_time;
179 int cpu;
180};
181
182struct wake_event {
183 struct wake_event *next;
184 int waker;
185 int wakee;
186 u64 time;
6f8d67fa 187 const char *backtrace;
10274989
AV
188};
189
bbe2987b 190struct process_filter {
5cbd0805
LZ
191 char *name;
192 int pid;
193 struct process_filter *next;
bbe2987b
AV
194};
195
196static struct process_filter *process_filter;
197
198
5e22f6d2 199static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
10274989 200{
5e22f6d2 201 struct per_pid *cursor = tchart->all_data;
10274989
AV
202
203 while (cursor) {
204 if (cursor->pid == pid)
205 return cursor;
206 cursor = cursor->next;
207 }
e0dcd6fb 208 cursor = zalloc(sizeof(*cursor));
10274989 209 assert(cursor != NULL);
10274989 210 cursor->pid = pid;
5e22f6d2
ACM
211 cursor->next = tchart->all_data;
212 tchart->all_data = cursor;
10274989
AV
213 return cursor;
214}
215
5e22f6d2 216static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
10274989
AV
217{
218 struct per_pid *p;
219 struct per_pidcomm *c;
5e22f6d2 220 p = find_create_pid(tchart, pid);
10274989
AV
221 c = p->all;
222 while (c) {
223 if (c->comm && strcmp(c->comm, comm) == 0) {
224 p->current = c;
225 return;
226 }
227 if (!c->comm) {
228 c->comm = strdup(comm);
229 p->current = c;
230 return;
231 }
232 c = c->next;
233 }
e0dcd6fb 234 c = zalloc(sizeof(*c));
10274989 235 assert(c != NULL);
10274989
AV
236 c->comm = strdup(comm);
237 p->current = c;
238 c->next = p->all;
239 p->all = c;
240}
241
5e22f6d2 242static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
10274989
AV
243{
244 struct per_pid *p, *pp;
5e22f6d2
ACM
245 p = find_create_pid(tchart, pid);
246 pp = find_create_pid(tchart, ppid);
10274989
AV
247 p->ppid = ppid;
248 if (pp->current && pp->current->comm && !p->current)
5e22f6d2 249 pid_set_comm(tchart, pid, pp->current->comm);
10274989
AV
250
251 p->start_time = timestamp;
962e310a 252 if (p->current && !p->current->start_time) {
10274989
AV
253 p->current->start_time = timestamp;
254 p->current->state_since = timestamp;
255 }
256}
257
5e22f6d2 258static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
10274989
AV
259{
260 struct per_pid *p;
5e22f6d2 261 p = find_create_pid(tchart, pid);
10274989
AV
262 p->end_time = timestamp;
263 if (p->current)
264 p->current->end_time = timestamp;
265}
266
5e22f6d2
ACM
267static void pid_put_sample(struct timechart *tchart, int pid, int type,
268 unsigned int cpu, u64 start, u64 end,
269 const char *backtrace)
10274989
AV
270{
271 struct per_pid *p;
272 struct per_pidcomm *c;
273 struct cpu_sample *sample;
274
5e22f6d2 275 p = find_create_pid(tchart, pid);
10274989
AV
276 c = p->current;
277 if (!c) {
e0dcd6fb 278 c = zalloc(sizeof(*c));
10274989 279 assert(c != NULL);
10274989
AV
280 p->current = c;
281 c->next = p->all;
282 p->all = c;
283 }
284
e0dcd6fb 285 sample = zalloc(sizeof(*sample));
10274989 286 assert(sample != NULL);
10274989
AV
287 sample->start_time = start;
288 sample->end_time = end;
289 sample->type = type;
290 sample->next = c->samples;
291 sample->cpu = cpu;
6f8d67fa 292 sample->backtrace = backtrace;
10274989
AV
293 c->samples = sample;
294
295 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
296 c->total_time += (end-start);
297 p->total_time += (end-start);
298 }
299
300 if (c->start_time == 0 || c->start_time > start)
301 c->start_time = start;
302 if (p->start_time == 0 || p->start_time > start)
303 p->start_time = start;
10274989
AV
304}
305
306#define MAX_CPUS 4096
307
308static u64 cpus_cstate_start_times[MAX_CPUS];
309static int cpus_cstate_state[MAX_CPUS];
310static u64 cpus_pstate_start_times[MAX_CPUS];
311static u64 cpus_pstate_state[MAX_CPUS];
312
5e22f6d2 313static int process_comm_event(struct perf_tool *tool,
d20deb64 314 union perf_event *event,
1d037ca1
IT
315 struct perf_sample *sample __maybe_unused,
316 struct machine *machine __maybe_unused)
10274989 317{
5e22f6d2
ACM
318 struct timechart *tchart = container_of(tool, struct timechart, tool);
319 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
10274989
AV
320 return 0;
321}
d8f66248 322
5e22f6d2 323static int process_fork_event(struct perf_tool *tool,
d20deb64 324 union perf_event *event,
1d037ca1
IT
325 struct perf_sample *sample __maybe_unused,
326 struct machine *machine __maybe_unused)
10274989 327{
5e22f6d2
ACM
328 struct timechart *tchart = container_of(tool, struct timechart, tool);
329 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
10274989
AV
330 return 0;
331}
332
5e22f6d2 333static int process_exit_event(struct perf_tool *tool,
d20deb64 334 union perf_event *event,
1d037ca1
IT
335 struct perf_sample *sample __maybe_unused,
336 struct machine *machine __maybe_unused)
10274989 337{
5e22f6d2
ACM
338 struct timechart *tchart = container_of(tool, struct timechart, tool);
339 pid_exit(tchart, event->fork.pid, event->fork.time);
10274989
AV
340 return 0;
341}
342
20c457b8
TR
343#ifdef SUPPORT_OLD_POWER_EVENTS
344static int use_old_power_events;
20c457b8
TR
345#endif
346
10274989
AV
347static void c_state_start(int cpu, u64 timestamp, int state)
348{
349 cpus_cstate_start_times[cpu] = timestamp;
350 cpus_cstate_state[cpu] = state;
351}
352
66cc3ada 353static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
10274989 354{
e0dcd6fb
ACM
355 struct power_event *pwr = zalloc(sizeof(*pwr));
356
10274989
AV
357 if (!pwr)
358 return;
10274989
AV
359
360 pwr->state = cpus_cstate_state[cpu];
361 pwr->start_time = cpus_cstate_start_times[cpu];
362 pwr->end_time = timestamp;
363 pwr->cpu = cpu;
364 pwr->type = CSTATE;
66cc3ada 365 pwr->next = tchart->power_events;
10274989 366
66cc3ada 367 tchart->power_events = pwr;
10274989
AV
368}
369
985b12e6 370static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
10274989
AV
371{
372 struct power_event *pwr;
10274989
AV
373
374 if (new_freq > 8000000) /* detect invalid data */
375 return;
376
e0dcd6fb 377 pwr = zalloc(sizeof(*pwr));
10274989
AV
378 if (!pwr)
379 return;
10274989
AV
380
381 pwr->state = cpus_pstate_state[cpu];
382 pwr->start_time = cpus_pstate_start_times[cpu];
383 pwr->end_time = timestamp;
384 pwr->cpu = cpu;
385 pwr->type = PSTATE;
66cc3ada 386 pwr->next = tchart->power_events;
10274989
AV
387
388 if (!pwr->start_time)
985b12e6 389 pwr->start_time = tchart->first_time;
10274989 390
66cc3ada 391 tchart->power_events = pwr;
10274989
AV
392
393 cpus_pstate_state[cpu] = new_freq;
394 cpus_pstate_start_times[cpu] = timestamp;
395
985b12e6
ACM
396 if ((u64)new_freq > tchart->max_freq)
397 tchart->max_freq = new_freq;
10274989 398
985b12e6
ACM
399 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
400 tchart->min_freq = new_freq;
10274989 401
985b12e6
ACM
402 if (new_freq == tchart->max_freq - 1000)
403 tchart->turbo_frequency = tchart->max_freq;
10274989
AV
404}
405
5e22f6d2
ACM
406static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
407 int waker, int wakee, u8 flags, const char *backtrace)
10274989 408{
10274989 409 struct per_pid *p;
e0dcd6fb 410 struct wake_event *we = zalloc(sizeof(*we));
10274989 411
10274989
AV
412 if (!we)
413 return;
414
10274989 415 we->time = timestamp;
3ed0d21e 416 we->waker = waker;
6f8d67fa 417 we->backtrace = backtrace;
10274989 418
3ed0d21e 419 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
10274989
AV
420 we->waker = -1;
421
3ed0d21e 422 we->wakee = wakee;
436b0da0
ACM
423 we->next = tchart->wake_events;
424 tchart->wake_events = we;
5e22f6d2 425 p = find_create_pid(tchart, we->wakee);
10274989
AV
426
427 if (p && p->current && p->current->state == TYPE_NONE) {
428 p->current->state_since = timestamp;
429 p->current->state = TYPE_WAITING;
430 }
431 if (p && p->current && p->current->state == TYPE_BLOCKED) {
5e22f6d2 432 pid_put_sample(tchart, p->pid, p->current->state, cpu,
6f8d67fa 433 p->current->state_since, timestamp, NULL);
10274989
AV
434 p->current->state_since = timestamp;
435 p->current->state = TYPE_WAITING;
436 }
437}
438
5e22f6d2
ACM
439static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
440 int prev_pid, int next_pid, u64 prev_state,
441 const char *backtrace)
10274989
AV
442{
443 struct per_pid *p = NULL, *prev_p;
10274989 444
5e22f6d2 445 prev_p = find_create_pid(tchart, prev_pid);
10274989 446
5e22f6d2 447 p = find_create_pid(tchart, next_pid);
10274989
AV
448
449 if (prev_p->current && prev_p->current->state != TYPE_NONE)
5e22f6d2 450 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
6f8d67fa
SF
451 prev_p->current->state_since, timestamp,
452 backtrace);
10274989
AV
453 if (p && p->current) {
454 if (p->current->state != TYPE_NONE)
5e22f6d2 455 pid_put_sample(tchart, next_pid, p->current->state, cpu,
6f8d67fa
SF
456 p->current->state_since, timestamp,
457 backtrace);
10274989 458
33e26a1b
JL
459 p->current->state_since = timestamp;
460 p->current->state = TYPE_RUNNING;
10274989
AV
461 }
462
463 if (prev_p->current) {
464 prev_p->current->state = TYPE_NONE;
465 prev_p->current->state_since = timestamp;
3ed0d21e 466 if (prev_state & 2)
10274989 467 prev_p->current->state = TYPE_BLOCKED;
3ed0d21e 468 if (prev_state == 0)
10274989
AV
469 prev_p->current->state = TYPE_WAITING;
470 }
471}
472
6f8d67fa
SF
473static const char *cat_backtrace(union perf_event *event,
474 struct perf_sample *sample,
475 struct machine *machine)
476{
477 struct addr_location al;
478 unsigned int i;
479 char *p = NULL;
480 size_t p_len;
481 u8 cpumode = PERF_RECORD_MISC_USER;
482 struct addr_location tal;
483 struct ip_callchain *chain = sample->callchain;
484 FILE *f = open_memstream(&p, &p_len);
485
486 if (!f) {
487 perror("open_memstream error");
488 return NULL;
489 }
490
491 if (!chain)
492 goto exit;
493
bb3eb566 494 if (machine__resolve(machine, &al, sample) < 0) {
6f8d67fa
SF
495 fprintf(stderr, "problem processing %d event, skipping it.\n",
496 event->header.type);
497 goto exit;
498 }
499
500 for (i = 0; i < chain->nr; i++) {
501 u64 ip;
502
503 if (callchain_param.order == ORDER_CALLEE)
504 ip = chain->ips[i];
505 else
506 ip = chain->ips[chain->nr - i - 1];
507
508 if (ip >= PERF_CONTEXT_MAX) {
509 switch (ip) {
510 case PERF_CONTEXT_HV:
511 cpumode = PERF_RECORD_MISC_HYPERVISOR;
512 break;
513 case PERF_CONTEXT_KERNEL:
514 cpumode = PERF_RECORD_MISC_KERNEL;
515 break;
516 case PERF_CONTEXT_USER:
517 cpumode = PERF_RECORD_MISC_USER;
518 break;
519 default:
520 pr_debug("invalid callchain context: "
521 "%"PRId64"\n", (s64) ip);
522
523 /*
524 * It seems the callchain is corrupted.
525 * Discard all.
526 */
04662523 527 zfree(&p);
b91fc39f 528 goto exit_put;
6f8d67fa
SF
529 }
530 continue;
531 }
532
b3cef7f6 533 tal.filtered = 0;
d9a5f274
ACM
534 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
535 fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
6f8d67fa
SF
536 else
537 fprintf(f, "..... %016" PRIx64 "\n", ip);
538 }
b91fc39f
ACM
539exit_put:
540 addr_location__put(&al);
6f8d67fa
SF
541exit:
542 fclose(f);
543
544 return p;
545}
546
985b12e6 547typedef int (*tracepoint_handler)(struct timechart *tchart,
32dcd021 548 struct evsel *evsel,
6f8d67fa
SF
549 struct perf_sample *sample,
550 const char *backtrace);
10274989 551
985b12e6 552static int process_sample_event(struct perf_tool *tool,
972ec653 553 union perf_event *event,
8d50e5b4 554 struct perf_sample *sample,
32dcd021 555 struct evsel *evsel,
985b12e6 556 struct machine *machine)
10274989 557{
985b12e6
ACM
558 struct timechart *tchart = container_of(tool, struct timechart, tool);
559
1fc632ce 560 if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
985b12e6
ACM
561 if (!tchart->first_time || tchart->first_time > sample->time)
562 tchart->first_time = sample->time;
563 if (tchart->last_time < sample->time)
564 tchart->last_time = sample->time;
10274989 565 }
180f95e2 566
744a9719
ACM
567 if (evsel->handler != NULL) {
568 tracepoint_handler f = evsel->handler;
58b9a18e
SF
569 return f(tchart, evsel, sample,
570 cat_backtrace(event, sample, machine));
5936678e
JO
571 }
572
573 return 0;
574}
575
576static int
985b12e6 577process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
32dcd021 578 struct evsel *evsel,
6f8d67fa
SF
579 struct perf_sample *sample,
580 const char *backtrace __maybe_unused)
5936678e 581{
efc0cdc9
ACM
582 u32 state = evsel__intval(evsel, sample, "state");
583 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
5936678e 584
3ed0d21e 585 if (state == (u32)PWR_EVENT_EXIT)
66cc3ada 586 c_state_end(tchart, cpu_id, sample->time);
5936678e 587 else
3ed0d21e 588 c_state_start(cpu_id, sample->time, state);
5936678e
JO
589 return 0;
590}
591
592static int
985b12e6 593process_sample_cpu_frequency(struct timechart *tchart,
32dcd021 594 struct evsel *evsel,
6f8d67fa
SF
595 struct perf_sample *sample,
596 const char *backtrace __maybe_unused)
5936678e 597{
efc0cdc9
ACM
598 u32 state = evsel__intval(evsel, sample, "state");
599 u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
5936678e 600
985b12e6 601 p_state_change(tchart, cpu_id, sample->time, state);
5936678e
JO
602 return 0;
603}
604
605static int
5e22f6d2 606process_sample_sched_wakeup(struct timechart *tchart,
32dcd021 607 struct evsel *evsel,
6f8d67fa
SF
608 struct perf_sample *sample,
609 const char *backtrace)
5936678e 610{
efc0cdc9
ACM
611 u8 flags = evsel__intval(evsel, sample, "common_flags");
612 int waker = evsel__intval(evsel, sample, "common_pid");
613 int wakee = evsel__intval(evsel, sample, "pid");
5936678e 614
5e22f6d2 615 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
5936678e
JO
616 return 0;
617}
10274989 618
5936678e 619static int
5e22f6d2 620process_sample_sched_switch(struct timechart *tchart,
32dcd021 621 struct evsel *evsel,
6f8d67fa
SF
622 struct perf_sample *sample,
623 const char *backtrace)
5936678e 624{
efc0cdc9
ACM
625 int prev_pid = evsel__intval(evsel, sample, "prev_pid");
626 int next_pid = evsel__intval(evsel, sample, "next_pid");
627 u64 prev_state = evsel__intval(evsel, sample, "prev_state");
10274989 628
5e22f6d2
ACM
629 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
630 prev_state, backtrace);
5936678e
JO
631 return 0;
632}
20c457b8
TR
633
634#ifdef SUPPORT_OLD_POWER_EVENTS
5936678e 635static int
985b12e6 636process_sample_power_start(struct timechart *tchart __maybe_unused,
32dcd021 637 struct evsel *evsel,
6f8d67fa
SF
638 struct perf_sample *sample,
639 const char *backtrace __maybe_unused)
5936678e 640{
efc0cdc9
ACM
641 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
642 u64 value = evsel__intval(evsel, sample, "value");
5936678e 643
3ed0d21e 644 c_state_start(cpu_id, sample->time, value);
5936678e
JO
645 return 0;
646}
647
648static int
66cc3ada 649process_sample_power_end(struct timechart *tchart,
32dcd021 650 struct evsel *evsel __maybe_unused,
6f8d67fa
SF
651 struct perf_sample *sample,
652 const char *backtrace __maybe_unused)
5936678e 653{
66cc3ada 654 c_state_end(tchart, sample->cpu, sample->time);
5936678e
JO
655 return 0;
656}
657
658static int
985b12e6 659process_sample_power_frequency(struct timechart *tchart,
32dcd021 660 struct evsel *evsel,
6f8d67fa
SF
661 struct perf_sample *sample,
662 const char *backtrace __maybe_unused)
5936678e 663{
efc0cdc9
ACM
664 u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
665 u64 value = evsel__intval(evsel, sample, "value");
5936678e 666
985b12e6 667 p_state_change(tchart, cpu_id, sample->time, value);
10274989
AV
668 return 0;
669}
5936678e 670#endif /* SUPPORT_OLD_POWER_EVENTS */
10274989
AV
671
672/*
673 * After the last sample we need to wrap up the current C/P state
674 * and close out each CPU for these.
675 */
985b12e6 676static void end_sample_processing(struct timechart *tchart)
10274989
AV
677{
678 u64 cpu;
679 struct power_event *pwr;
680
985b12e6 681 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
e0dcd6fb
ACM
682 /* C state */
683#if 0
684 pwr = zalloc(sizeof(*pwr));
10274989
AV
685 if (!pwr)
686 return;
10274989 687
10274989
AV
688 pwr->state = cpus_cstate_state[cpu];
689 pwr->start_time = cpus_cstate_start_times[cpu];
985b12e6 690 pwr->end_time = tchart->last_time;
10274989
AV
691 pwr->cpu = cpu;
692 pwr->type = CSTATE;
66cc3ada 693 pwr->next = tchart->power_events;
10274989 694
66cc3ada 695 tchart->power_events = pwr;
10274989
AV
696#endif
697 /* P state */
698
e0dcd6fb 699 pwr = zalloc(sizeof(*pwr));
10274989
AV
700 if (!pwr)
701 return;
10274989
AV
702
703 pwr->state = cpus_pstate_state[cpu];
704 pwr->start_time = cpus_pstate_start_times[cpu];
985b12e6 705 pwr->end_time = tchart->last_time;
10274989
AV
706 pwr->cpu = cpu;
707 pwr->type = PSTATE;
66cc3ada 708 pwr->next = tchart->power_events;
10274989
AV
709
710 if (!pwr->start_time)
985b12e6 711 pwr->start_time = tchart->first_time;
10274989 712 if (!pwr->state)
985b12e6 713 pwr->state = tchart->min_freq;
66cc3ada 714 tchart->power_events = pwr;
10274989
AV
715 }
716}
717
b97b59b9
SF
718static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
719 u64 start, int fd)
720{
721 struct per_pid *p = find_create_pid(tchart, pid);
722 struct per_pidcomm *c = p->current;
723 struct io_sample *sample;
724 struct io_sample *prev;
725
726 if (!c) {
727 c = zalloc(sizeof(*c));
728 if (!c)
729 return -ENOMEM;
730 p->current = c;
731 c->next = p->all;
732 p->all = c;
733 }
734
735 prev = c->io_samples;
736
737 if (prev && prev->start_time && !prev->end_time) {
738 pr_warning("Skip invalid start event: "
739 "previous event already started!\n");
740
741 /* remove previous event that has been started,
742 * we are not sure we will ever get an end for it */
743 c->io_samples = prev->next;
744 free(prev);
745 return 0;
746 }
747
748 sample = zalloc(sizeof(*sample));
749 if (!sample)
750 return -ENOMEM;
751 sample->start_time = start;
752 sample->type = type;
753 sample->fd = fd;
754 sample->next = c->io_samples;
755 c->io_samples = sample;
756
757 if (c->start_time == 0 || c->start_time > start)
758 c->start_time = start;
759
760 return 0;
761}
762
763static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
764 u64 end, long ret)
765{
766 struct per_pid *p = find_create_pid(tchart, pid);
767 struct per_pidcomm *c = p->current;
d243144a 768 struct io_sample *sample, *prev;
b97b59b9
SF
769
770 if (!c) {
771 pr_warning("Invalid pidcomm!\n");
772 return -1;
773 }
774
775 sample = c->io_samples;
776
777 if (!sample) /* skip partially captured events */
778 return 0;
779
780 if (sample->end_time) {
781 pr_warning("Skip invalid end event: "
782 "previous event already ended!\n");
783 return 0;
784 }
785
786 if (sample->type != type) {
787 pr_warning("Skip invalid end event: invalid event type!\n");
788 return 0;
789 }
790
791 sample->end_time = end;
d243144a
SF
792 prev = sample->next;
793
794 /* we want to be able to see small and fast transfers, so make them
795 * at least min_time long, but don't overlap them */
796 if (sample->end_time - sample->start_time < tchart->min_time)
797 sample->end_time = sample->start_time + tchart->min_time;
798 if (prev && sample->start_time < prev->end_time) {
799 if (prev->err) /* try to make errors more visible */
800 sample->start_time = prev->end_time;
801 else
802 prev->end_time = sample->start_time;
803 }
b97b59b9
SF
804
805 if (ret < 0) {
806 sample->err = ret;
807 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
808 type == IOTYPE_TX || type == IOTYPE_RX) {
809
810 if ((u64)ret > c->max_bytes)
811 c->max_bytes = ret;
812
813 c->total_bytes += ret;
814 p->total_bytes += ret;
815 sample->bytes = ret;
816 }
817
d243144a
SF
818 /* merge two requests to make svg smaller and render-friendly */
819 if (prev &&
820 prev->type == sample->type &&
821 prev->err == sample->err &&
822 prev->fd == sample->fd &&
823 prev->end_time + tchart->merge_dist >= sample->start_time) {
824
825 sample->bytes += prev->bytes;
826 sample->merges += prev->merges + 1;
827
828 sample->start_time = prev->start_time;
829 sample->next = prev->next;
830 free(prev);
831
832 if (!sample->err && sample->bytes > c->max_bytes)
833 c->max_bytes = sample->bytes;
834 }
835
b97b59b9
SF
836 tchart->io_events++;
837
838 return 0;
839}
840
841static int
842process_enter_read(struct timechart *tchart,
32dcd021 843 struct evsel *evsel,
b97b59b9
SF
844 struct perf_sample *sample)
845{
efc0cdc9 846 long fd = evsel__intval(evsel, sample, "fd");
b97b59b9
SF
847 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
848 sample->time, fd);
849}
850
851static int
852process_exit_read(struct timechart *tchart,
32dcd021 853 struct evsel *evsel,
b97b59b9
SF
854 struct perf_sample *sample)
855{
efc0cdc9 856 long ret = evsel__intval(evsel, sample, "ret");
b97b59b9
SF
857 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
858 sample->time, ret);
859}
860
861static int
862process_enter_write(struct timechart *tchart,
32dcd021 863 struct evsel *evsel,
b97b59b9
SF
864 struct perf_sample *sample)
865{
efc0cdc9 866 long fd = evsel__intval(evsel, sample, "fd");
b97b59b9
SF
867 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
868 sample->time, fd);
869}
870
871static int
872process_exit_write(struct timechart *tchart,
32dcd021 873 struct evsel *evsel,
b97b59b9
SF
874 struct perf_sample *sample)
875{
efc0cdc9 876 long ret = evsel__intval(evsel, sample, "ret");
b97b59b9
SF
877 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
878 sample->time, ret);
879}
880
881static int
882process_enter_sync(struct timechart *tchart,
32dcd021 883 struct evsel *evsel,
b97b59b9
SF
884 struct perf_sample *sample)
885{
efc0cdc9 886 long fd = evsel__intval(evsel, sample, "fd");
b97b59b9
SF
887 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
888 sample->time, fd);
889}
890
891static int
892process_exit_sync(struct timechart *tchart,
32dcd021 893 struct evsel *evsel,
b97b59b9
SF
894 struct perf_sample *sample)
895{
efc0cdc9 896 long ret = evsel__intval(evsel, sample, "ret");
b97b59b9
SF
897 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
898 sample->time, ret);
899}
900
901static int
902process_enter_tx(struct timechart *tchart,
32dcd021 903 struct evsel *evsel,
b97b59b9
SF
904 struct perf_sample *sample)
905{
efc0cdc9 906 long fd = evsel__intval(evsel, sample, "fd");
b97b59b9
SF
907 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
908 sample->time, fd);
909}
910
911static int
912process_exit_tx(struct timechart *tchart,
32dcd021 913 struct evsel *evsel,
b97b59b9
SF
914 struct perf_sample *sample)
915{
efc0cdc9 916 long ret = evsel__intval(evsel, sample, "ret");
b97b59b9
SF
917 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
918 sample->time, ret);
919}
920
921static int
922process_enter_rx(struct timechart *tchart,
32dcd021 923 struct evsel *evsel,
b97b59b9
SF
924 struct perf_sample *sample)
925{
efc0cdc9 926 long fd = evsel__intval(evsel, sample, "fd");
b97b59b9
SF
927 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
928 sample->time, fd);
929}
930
931static int
932process_exit_rx(struct timechart *tchart,
32dcd021 933 struct evsel *evsel,
b97b59b9
SF
934 struct perf_sample *sample)
935{
efc0cdc9 936 long ret = evsel__intval(evsel, sample, "ret");
b97b59b9
SF
937 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
938 sample->time, ret);
939}
940
941static int
942process_enter_poll(struct timechart *tchart,
32dcd021 943 struct evsel *evsel,
b97b59b9
SF
944 struct perf_sample *sample)
945{
efc0cdc9 946 long fd = evsel__intval(evsel, sample, "fd");
b97b59b9
SF
947 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
948 sample->time, fd);
949}
950
951static int
952process_exit_poll(struct timechart *tchart,
32dcd021 953 struct evsel *evsel,
b97b59b9
SF
954 struct perf_sample *sample)
955{
efc0cdc9 956 long ret = evsel__intval(evsel, sample, "ret");
b97b59b9
SF
957 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
958 sample->time, ret);
959}
960
10274989
AV
961/*
962 * Sort the pid datastructure
963 */
5e22f6d2 964static void sort_pids(struct timechart *tchart)
10274989
AV
965{
966 struct per_pid *new_list, *p, *cursor, *prev;
967 /* sort by ppid first, then by pid, lowest to highest */
968
969 new_list = NULL;
970
5e22f6d2
ACM
971 while (tchart->all_data) {
972 p = tchart->all_data;
973 tchart->all_data = p->next;
10274989
AV
974 p->next = NULL;
975
976 if (new_list == NULL) {
977 new_list = p;
978 p->next = NULL;
979 continue;
980 }
981 prev = NULL;
982 cursor = new_list;
983 while (cursor) {
984 if (cursor->ppid > p->ppid ||
985 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
986 /* must insert before */
987 if (prev) {
988 p->next = prev->next;
989 prev->next = p;
990 cursor = NULL;
991 continue;
992 } else {
993 p->next = new_list;
994 new_list = p;
995 cursor = NULL;
996 continue;
997 }
998 }
999
1000 prev = cursor;
1001 cursor = cursor->next;
1002 if (!cursor)
1003 prev->next = p;
1004 }
1005 }
5e22f6d2 1006 tchart->all_data = new_list;
10274989
AV
1007}
1008
1009
985b12e6 1010static void draw_c_p_states(struct timechart *tchart)
10274989
AV
1011{
1012 struct power_event *pwr;
66cc3ada 1013 pwr = tchart->power_events;
10274989
AV
1014
1015 /*
1016 * two pass drawing so that the P state bars are on top of the C state blocks
1017 */
1018 while (pwr) {
1019 if (pwr->type == CSTATE)
1020 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1021 pwr = pwr->next;
1022 }
1023
66cc3ada 1024 pwr = tchart->power_events;
10274989
AV
1025 while (pwr) {
1026 if (pwr->type == PSTATE) {
1027 if (!pwr->state)
985b12e6 1028 pwr->state = tchart->min_freq;
10274989
AV
1029 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1030 }
1031 pwr = pwr->next;
1032 }
1033}
1034
5e22f6d2 1035static void draw_wakeups(struct timechart *tchart)
10274989
AV
1036{
1037 struct wake_event *we;
1038 struct per_pid *p;
1039 struct per_pidcomm *c;
1040
436b0da0 1041 we = tchart->wake_events;
10274989
AV
1042 while (we) {
1043 int from = 0, to = 0;
4f1202c8 1044 char *task_from = NULL, *task_to = NULL;
10274989
AV
1045
1046 /* locate the column of the waker and wakee */
5e22f6d2 1047 p = tchart->all_data;
10274989
AV
1048 while (p) {
1049 if (p->pid == we->waker || p->pid == we->wakee) {
1050 c = p->all;
1051 while (c) {
1052 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
bbe2987b 1053 if (p->pid == we->waker && !from) {
10274989 1054 from = c->Y;
3bc2a39c 1055 task_from = strdup(c->comm);
4f1202c8 1056 }
bbe2987b 1057 if (p->pid == we->wakee && !to) {
10274989 1058 to = c->Y;
3bc2a39c 1059 task_to = strdup(c->comm);
4f1202c8 1060 }
10274989
AV
1061 }
1062 c = c->next;
1063 }
3bc2a39c
AV
1064 c = p->all;
1065 while (c) {
1066 if (p->pid == we->waker && !from) {
1067 from = c->Y;
1068 task_from = strdup(c->comm);
1069 }
1070 if (p->pid == we->wakee && !to) {
1071 to = c->Y;
1072 task_to = strdup(c->comm);
1073 }
1074 c = c->next;
1075 }
10274989
AV
1076 }
1077 p = p->next;
1078 }
1079
3bc2a39c
AV
1080 if (!task_from) {
1081 task_from = malloc(40);
1082 sprintf(task_from, "[%i]", we->waker);
1083 }
1084 if (!task_to) {
1085 task_to = malloc(40);
1086 sprintf(task_to, "[%i]", we->wakee);
1087 }
1088
10274989 1089 if (we->waker == -1)
6f8d67fa 1090 svg_interrupt(we->time, to, we->backtrace);
10274989 1091 else if (from && to && abs(from - to) == 1)
6f8d67fa 1092 svg_wakeline(we->time, from, to, we->backtrace);
10274989 1093 else
6f8d67fa
SF
1094 svg_partial_wakeline(we->time, from, task_from, to,
1095 task_to, we->backtrace);
10274989 1096 we = we->next;
3bc2a39c
AV
1097
1098 free(task_from);
1099 free(task_to);
10274989
AV
1100 }
1101}
1102
5e22f6d2 1103static void draw_cpu_usage(struct timechart *tchart)
10274989
AV
1104{
1105 struct per_pid *p;
1106 struct per_pidcomm *c;
1107 struct cpu_sample *sample;
5e22f6d2 1108 p = tchart->all_data;
10274989
AV
1109 while (p) {
1110 c = p->all;
1111 while (c) {
1112 sample = c->samples;
1113 while (sample) {
8b6dcca0
SF
1114 if (sample->type == TYPE_RUNNING) {
1115 svg_process(sample->cpu,
1116 sample->start_time,
1117 sample->end_time,
de996228 1118 p->pid,
8b6dcca0
SF
1119 c->comm,
1120 sample->backtrace);
1121 }
10274989
AV
1122
1123 sample = sample->next;
1124 }
1125 c = c->next;
1126 }
1127 p = p->next;
1128 }
1129}
1130
b97b59b9
SF
1131static void draw_io_bars(struct timechart *tchart)
1132{
1133 const char *suf;
1134 double bytes;
1135 char comm[256];
1136 struct per_pid *p;
1137 struct per_pidcomm *c;
1138 struct io_sample *sample;
1139 int Y = 1;
1140
1141 p = tchart->all_data;
1142 while (p) {
1143 c = p->all;
1144 while (c) {
1145 if (!c->display) {
1146 c->Y = 0;
1147 c = c->next;
1148 continue;
1149 }
1150
1151 svg_box(Y, c->start_time, c->end_time, "process3");
1152 sample = c->io_samples;
1153 for (sample = c->io_samples; sample; sample = sample->next) {
1154 double h = (double)sample->bytes / c->max_bytes;
1155
d243144a
SF
1156 if (tchart->skip_eagain &&
1157 sample->err == -EAGAIN)
1158 continue;
1159
b97b59b9
SF
1160 if (sample->err)
1161 h = 1;
1162
1163 if (sample->type == IOTYPE_SYNC)
1164 svg_fbox(Y,
1165 sample->start_time,
1166 sample->end_time,
1167 1,
1168 sample->err ? "error" : "sync",
1169 sample->fd,
1170 sample->err,
1171 sample->merges);
1172 else if (sample->type == IOTYPE_POLL)
1173 svg_fbox(Y,
1174 sample->start_time,
1175 sample->end_time,
1176 1,
1177 sample->err ? "error" : "poll",
1178 sample->fd,
1179 sample->err,
1180 sample->merges);
1181 else if (sample->type == IOTYPE_READ)
1182 svg_ubox(Y,
1183 sample->start_time,
1184 sample->end_time,
1185 h,
1186 sample->err ? "error" : "disk",
1187 sample->fd,
1188 sample->err,
1189 sample->merges);
1190 else if (sample->type == IOTYPE_WRITE)
1191 svg_lbox(Y,
1192 sample->start_time,
1193 sample->end_time,
1194 h,
1195 sample->err ? "error" : "disk",
1196 sample->fd,
1197 sample->err,
1198 sample->merges);
1199 else if (sample->type == IOTYPE_RX)
1200 svg_ubox(Y,
1201 sample->start_time,
1202 sample->end_time,
1203 h,
1204 sample->err ? "error" : "net",
1205 sample->fd,
1206 sample->err,
1207 sample->merges);
1208 else if (sample->type == IOTYPE_TX)
1209 svg_lbox(Y,
1210 sample->start_time,
1211 sample->end_time,
1212 h,
1213 sample->err ? "error" : "net",
1214 sample->fd,
1215 sample->err,
1216 sample->merges);
1217 }
1218
1219 suf = "";
1220 bytes = c->total_bytes;
1221 if (bytes > 1024) {
1222 bytes = bytes / 1024;
1223 suf = "K";
1224 }
1225 if (bytes > 1024) {
1226 bytes = bytes / 1024;
1227 suf = "M";
1228 }
1229 if (bytes > 1024) {
1230 bytes = bytes / 1024;
1231 suf = "G";
1232 }
1233
1234
1235 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1236 svg_text(Y, c->start_time, comm);
1237
1238 c->Y = Y;
1239 Y++;
1240 c = c->next;
1241 }
1242 p = p->next;
1243 }
1244}
1245
985b12e6 1246static void draw_process_bars(struct timechart *tchart)
10274989
AV
1247{
1248 struct per_pid *p;
1249 struct per_pidcomm *c;
1250 struct cpu_sample *sample;
1251 int Y = 0;
1252
985b12e6 1253 Y = 2 * tchart->numcpus + 2;
10274989 1254
5e22f6d2 1255 p = tchart->all_data;
10274989
AV
1256 while (p) {
1257 c = p->all;
1258 while (c) {
1259 if (!c->display) {
1260 c->Y = 0;
1261 c = c->next;
1262 continue;
1263 }
1264
a92fe7b3 1265 svg_box(Y, c->start_time, c->end_time, "process");
10274989
AV
1266 sample = c->samples;
1267 while (sample) {
1268 if (sample->type == TYPE_RUNNING)
6f8d67fa
SF
1269 svg_running(Y, sample->cpu,
1270 sample->start_time,
1271 sample->end_time,
1272 sample->backtrace);
10274989 1273 if (sample->type == TYPE_BLOCKED)
6f8d67fa
SF
1274 svg_blocked(Y, sample->cpu,
1275 sample->start_time,
1276 sample->end_time,
1277 sample->backtrace);
10274989 1278 if (sample->type == TYPE_WAITING)
6f8d67fa
SF
1279 svg_waiting(Y, sample->cpu,
1280 sample->start_time,
1281 sample->end_time,
1282 sample->backtrace);
10274989
AV
1283 sample = sample->next;
1284 }
1285
1286 if (c->comm) {
1287 char comm[256];
1288 if (c->total_time > 5000000000) /* 5 seconds */
af4b2c97 1289 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
10274989 1290 else
af4b2c97 1291 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
10274989
AV
1292
1293 svg_text(Y, c->start_time, comm);
1294 }
1295 c->Y = Y;
1296 Y++;
1297 c = c->next;
1298 }
1299 p = p->next;
1300 }
1301}
1302
bbe2987b
AV
1303static void add_process_filter(const char *string)
1304{
e0dcd6fb
ACM
1305 int pid = strtoull(string, NULL, 10);
1306 struct process_filter *filt = malloc(sizeof(*filt));
bbe2987b 1307
bbe2987b
AV
1308 if (!filt)
1309 return;
1310
1311 filt->name = strdup(string);
1312 filt->pid = pid;
1313 filt->next = process_filter;
1314
1315 process_filter = filt;
1316}
1317
1318static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1319{
1320 struct process_filter *filt;
1321 if (!process_filter)
1322 return 1;
1323
1324 filt = process_filter;
1325 while (filt) {
1326 if (filt->pid && p->pid == filt->pid)
1327 return 1;
1328 if (strcmp(filt->name, c->comm) == 0)
1329 return 1;
1330 filt = filt->next;
1331 }
1332 return 0;
1333}
1334
985b12e6 1335static int determine_display_tasks_filtered(struct timechart *tchart)
bbe2987b
AV
1336{
1337 struct per_pid *p;
1338 struct per_pidcomm *c;
1339 int count = 0;
1340
5e22f6d2 1341 p = tchart->all_data;
bbe2987b
AV
1342 while (p) {
1343 p->display = 0;
1344 if (p->start_time == 1)
985b12e6 1345 p->start_time = tchart->first_time;
bbe2987b
AV
1346
1347 /* no exit marker, task kept running to the end */
1348 if (p->end_time == 0)
985b12e6 1349 p->end_time = tchart->last_time;
bbe2987b
AV
1350
1351 c = p->all;
1352
1353 while (c) {
1354 c->display = 0;
1355
1356 if (c->start_time == 1)
985b12e6 1357 c->start_time = tchart->first_time;
bbe2987b
AV
1358
1359 if (passes_filter(p, c)) {
1360 c->display = 1;
1361 p->display = 1;
1362 count++;
1363 }
1364
1365 if (c->end_time == 0)
985b12e6 1366 c->end_time = tchart->last_time;
bbe2987b
AV
1367
1368 c = c->next;
1369 }
1370 p = p->next;
1371 }
1372 return count;
1373}
1374
985b12e6 1375static int determine_display_tasks(struct timechart *tchart, u64 threshold)
10274989
AV
1376{
1377 struct per_pid *p;
1378 struct per_pidcomm *c;
1379 int count = 0;
1380
5e22f6d2 1381 p = tchart->all_data;
10274989
AV
1382 while (p) {
1383 p->display = 0;
1384 if (p->start_time == 1)
985b12e6 1385 p->start_time = tchart->first_time;
10274989
AV
1386
1387 /* no exit marker, task kept running to the end */
1388 if (p->end_time == 0)
985b12e6 1389 p->end_time = tchart->last_time;
753c505d 1390 if (p->total_time >= threshold)
10274989
AV
1391 p->display = 1;
1392
1393 c = p->all;
1394
1395 while (c) {
1396 c->display = 0;
1397
1398 if (c->start_time == 1)
985b12e6 1399 c->start_time = tchart->first_time;
10274989 1400
753c505d 1401 if (c->total_time >= threshold) {
10274989
AV
1402 c->display = 1;
1403 count++;
1404 }
1405
1406 if (c->end_time == 0)
985b12e6 1407 c->end_time = tchart->last_time;
10274989
AV
1408
1409 c = c->next;
1410 }
1411 p = p->next;
1412 }
1413 return count;
1414}
1415
b97b59b9
SF
1416static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1417{
1418 struct per_pid *p;
1419 struct per_pidcomm *c;
1420 int count = 0;
1421
1422 p = timechart->all_data;
1423 while (p) {
1424 /* no exit marker, task kept running to the end */
1425 if (p->end_time == 0)
1426 p->end_time = timechart->last_time;
1427
1428 c = p->all;
1429
1430 while (c) {
1431 c->display = 0;
1432
1433 if (c->total_bytes >= threshold) {
1434 c->display = 1;
1435 count++;
1436 }
10274989 1437
b97b59b9
SF
1438 if (c->end_time == 0)
1439 c->end_time = timechart->last_time;
1440
1441 c = c->next;
1442 }
1443 p = p->next;
1444 }
1445 return count;
1446}
10274989 1447
b97b59b9 1448#define BYTES_THRESH (1 * 1024 * 1024)
10274989
AV
1449#define TIME_THRESH 10000000
1450
985b12e6 1451static void write_svg_file(struct timechart *tchart, const char *filename)
10274989
AV
1452{
1453 u64 i;
1454 int count;
b97b59b9 1455 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
10274989 1456
985b12e6
ACM
1457 if (tchart->power_only)
1458 tchart->proc_num = 0;
10274989 1459
0a8eb275
SF
1460 /* We'd like to show at least proc_num tasks;
1461 * be less picky if we have fewer */
1462 do {
b97b59b9
SF
1463 if (process_filter)
1464 count = determine_display_tasks_filtered(tchart);
1465 else if (tchart->io_events)
1466 count = determine_display_io_tasks(tchart, thresh);
1467 else
1468 count = determine_display_tasks(tchart, thresh);
0a8eb275 1469 thresh /= 10;
985b12e6 1470 } while (!process_filter && thresh && count < tchart->proc_num);
10274989 1471
3415d8b8
SF
1472 if (!tchart->proc_num)
1473 count = 0;
1474
b97b59b9
SF
1475 if (tchart->io_events) {
1476 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
10274989 1477
b97b59b9
SF
1478 svg_time_grid(0.5);
1479 svg_io_legenda();
10274989 1480
b97b59b9
SF
1481 draw_io_bars(tchart);
1482 } else {
1483 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
10274989 1484
b97b59b9
SF
1485 svg_time_grid(0);
1486
1487 svg_legenda();
1488
1489 for (i = 0; i < tchart->numcpus; i++)
1490 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1491
1492 draw_cpu_usage(tchart);
1493 if (tchart->proc_num)
1494 draw_process_bars(tchart);
1495 if (!tchart->tasks_only)
1496 draw_c_p_states(tchart);
1497 if (tchart->proc_num)
1498 draw_wakeups(tchart);
1499 }
10274989
AV
1500
1501 svg_close();
1502}
1503
58b9a18e
SF
1504static int process_header(struct perf_file_section *section __maybe_unused,
1505 struct perf_header *ph,
1506 int feat,
1507 int fd __maybe_unused,
1508 void *data)
1509{
1510 struct timechart *tchart = data;
1511
1512 switch (feat) {
1513 case HEADER_NRCPUS:
1514 tchart->numcpus = ph->env.nr_cpus_avail;
1515 break;
c5079997
SF
1516
1517 case HEADER_CPU_TOPOLOGY:
1518 if (!tchart->topology)
1519 break;
1520
0ac1dd5b 1521 if (svg_build_topology_map(&ph->env))
c5079997
SF
1522 fprintf(stderr, "problem building topology\n");
1523 break;
1524
58b9a18e
SF
1525 default:
1526 break;
1527 }
1528
1529 return 0;
1530}
1531
985b12e6 1532static int __cmd_timechart(struct timechart *tchart, const char *output_name)
5cbd0805 1533{
32dcd021 1534 const struct evsel_str_handler power_tracepoints[] = {
5936678e
JO
1535 { "power:cpu_idle", process_sample_cpu_idle },
1536 { "power:cpu_frequency", process_sample_cpu_frequency },
1537 { "sched:sched_wakeup", process_sample_sched_wakeup },
1538 { "sched:sched_switch", process_sample_sched_switch },
1539#ifdef SUPPORT_OLD_POWER_EVENTS
1540 { "power:power_start", process_sample_power_start },
1541 { "power:power_end", process_sample_power_end },
1542 { "power:power_frequency", process_sample_power_frequency },
1543#endif
b97b59b9
SF
1544
1545 { "syscalls:sys_enter_read", process_enter_read },
1546 { "syscalls:sys_enter_pread64", process_enter_read },
1547 { "syscalls:sys_enter_readv", process_enter_read },
1548 { "syscalls:sys_enter_preadv", process_enter_read },
1549 { "syscalls:sys_enter_write", process_enter_write },
1550 { "syscalls:sys_enter_pwrite64", process_enter_write },
1551 { "syscalls:sys_enter_writev", process_enter_write },
1552 { "syscalls:sys_enter_pwritev", process_enter_write },
1553 { "syscalls:sys_enter_sync", process_enter_sync },
1554 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1555 { "syscalls:sys_enter_fsync", process_enter_sync },
1556 { "syscalls:sys_enter_msync", process_enter_sync },
1557 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1558 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1559 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1560 { "syscalls:sys_enter_sendto", process_enter_tx },
1561 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1562 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1563 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1564 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1565 { "syscalls:sys_enter_poll", process_enter_poll },
1566 { "syscalls:sys_enter_ppoll", process_enter_poll },
1567 { "syscalls:sys_enter_pselect6", process_enter_poll },
1568 { "syscalls:sys_enter_select", process_enter_poll },
1569
1570 { "syscalls:sys_exit_read", process_exit_read },
1571 { "syscalls:sys_exit_pread64", process_exit_read },
1572 { "syscalls:sys_exit_readv", process_exit_read },
1573 { "syscalls:sys_exit_preadv", process_exit_read },
1574 { "syscalls:sys_exit_write", process_exit_write },
1575 { "syscalls:sys_exit_pwrite64", process_exit_write },
1576 { "syscalls:sys_exit_writev", process_exit_write },
1577 { "syscalls:sys_exit_pwritev", process_exit_write },
1578 { "syscalls:sys_exit_sync", process_exit_sync },
1579 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1580 { "syscalls:sys_exit_fsync", process_exit_sync },
1581 { "syscalls:sys_exit_msync", process_exit_sync },
1582 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1583 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1584 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1585 { "syscalls:sys_exit_sendto", process_exit_tx },
1586 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1587 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1588 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1589 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1590 { "syscalls:sys_exit_poll", process_exit_poll },
1591 { "syscalls:sys_exit_ppoll", process_exit_poll },
1592 { "syscalls:sys_exit_pselect6", process_exit_poll },
1593 { "syscalls:sys_exit_select", process_exit_poll },
5936678e 1594 };
8ceb41d7 1595 struct perf_data data = {
2d4f2799
JO
1596 .path = input_name,
1597 .mode = PERF_DATA_MODE_READ,
1598 .force = tchart->force,
f5fc1412
JO
1599 };
1600
8ceb41d7 1601 struct perf_session *session = perf_session__new(&data, false,
985b12e6 1602 &tchart->tool);
d549c769 1603 int ret = -EINVAL;
10274989 1604
6ef81c55
MI
1605 if (IS_ERR(session))
1606 return PTR_ERR(session);
94c744b6 1607
0a7e6d1b 1608 symbol__init(&session->header.env);
dc5c8190 1609
58b9a18e 1610 (void)perf_header__process_sections(&session->header,
8ceb41d7 1611 perf_data__fd(session->data),
58b9a18e
SF
1612 tchart,
1613 process_header);
1614
d549c769
ACM
1615 if (!perf_session__has_traces(session, "timechart record"))
1616 goto out_delete;
1617
5936678e
JO
1618 if (perf_session__set_tracepoints_handlers(session,
1619 power_tracepoints)) {
1620 pr_err("Initializing session tracepoint handlers failed\n");
1621 goto out_delete;
1622 }
1623
b7b61cbe 1624 ret = perf_session__process_events(session);
5cbd0805 1625 if (ret)
94c744b6 1626 goto out_delete;
10274989 1627
985b12e6 1628 end_sample_processing(tchart);
10274989 1629
5e22f6d2 1630 sort_pids(tchart);
10274989 1631
985b12e6 1632 write_svg_file(tchart, output_name);
10274989 1633
6beba7ad 1634 pr_info("Written %2.1f seconds of trace to %s.\n",
af4b2c97 1635 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
94c744b6
ACM
1636out_delete:
1637 perf_session__delete(session);
1638 return ret;
10274989
AV
1639}
1640
b97b59b9
SF
1641static int timechart__io_record(int argc, const char **argv)
1642{
1643 unsigned int rec_argc, i;
1644 const char **rec_argv;
1645 const char **p;
1646 char *filter = NULL;
1647
1648 const char * const common_args[] = {
1649 "record", "-a", "-R", "-c", "1",
1650 };
1651 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1652
1653 const char * const disk_events[] = {
1654 "syscalls:sys_enter_read",
1655 "syscalls:sys_enter_pread64",
1656 "syscalls:sys_enter_readv",
1657 "syscalls:sys_enter_preadv",
1658 "syscalls:sys_enter_write",
1659 "syscalls:sys_enter_pwrite64",
1660 "syscalls:sys_enter_writev",
1661 "syscalls:sys_enter_pwritev",
1662 "syscalls:sys_enter_sync",
1663 "syscalls:sys_enter_sync_file_range",
1664 "syscalls:sys_enter_fsync",
1665 "syscalls:sys_enter_msync",
1666
1667 "syscalls:sys_exit_read",
1668 "syscalls:sys_exit_pread64",
1669 "syscalls:sys_exit_readv",
1670 "syscalls:sys_exit_preadv",
1671 "syscalls:sys_exit_write",
1672 "syscalls:sys_exit_pwrite64",
1673 "syscalls:sys_exit_writev",
1674 "syscalls:sys_exit_pwritev",
1675 "syscalls:sys_exit_sync",
1676 "syscalls:sys_exit_sync_file_range",
1677 "syscalls:sys_exit_fsync",
1678 "syscalls:sys_exit_msync",
1679 };
1680 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1681
1682 const char * const net_events[] = {
1683 "syscalls:sys_enter_recvfrom",
1684 "syscalls:sys_enter_recvmmsg",
1685 "syscalls:sys_enter_recvmsg",
1686 "syscalls:sys_enter_sendto",
1687 "syscalls:sys_enter_sendmsg",
1688 "syscalls:sys_enter_sendmmsg",
1689
1690 "syscalls:sys_exit_recvfrom",
1691 "syscalls:sys_exit_recvmmsg",
1692 "syscalls:sys_exit_recvmsg",
1693 "syscalls:sys_exit_sendto",
1694 "syscalls:sys_exit_sendmsg",
1695 "syscalls:sys_exit_sendmmsg",
1696 };
1697 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1698
1699 const char * const poll_events[] = {
1700 "syscalls:sys_enter_epoll_pwait",
1701 "syscalls:sys_enter_epoll_wait",
1702 "syscalls:sys_enter_poll",
1703 "syscalls:sys_enter_ppoll",
1704 "syscalls:sys_enter_pselect6",
1705 "syscalls:sys_enter_select",
1706
1707 "syscalls:sys_exit_epoll_pwait",
1708 "syscalls:sys_exit_epoll_wait",
1709 "syscalls:sys_exit_poll",
1710 "syscalls:sys_exit_ppoll",
1711 "syscalls:sys_exit_pselect6",
1712 "syscalls:sys_exit_select",
1713 };
1714 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1715
1716 rec_argc = common_args_nr +
1717 disk_events_nr * 4 +
1718 net_events_nr * 4 +
1719 poll_events_nr * 4 +
1720 argc;
1721 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1722
1723 if (rec_argv == NULL)
1724 return -ENOMEM;
1725
c896f85a
MK
1726 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1727 free(rec_argv);
b97b59b9 1728 return -ENOMEM;
c896f85a 1729 }
b97b59b9
SF
1730
1731 p = rec_argv;
1732 for (i = 0; i < common_args_nr; i++)
1733 *p++ = strdup(common_args[i]);
1734
1735 for (i = 0; i < disk_events_nr; i++) {
1736 if (!is_valid_tracepoint(disk_events[i])) {
1737 rec_argc -= 4;
1738 continue;
1739 }
1740
1741 *p++ = "-e";
1742 *p++ = strdup(disk_events[i]);
1743 *p++ = "--filter";
1744 *p++ = filter;
1745 }
1746 for (i = 0; i < net_events_nr; i++) {
1747 if (!is_valid_tracepoint(net_events[i])) {
1748 rec_argc -= 4;
1749 continue;
1750 }
1751
1752 *p++ = "-e";
1753 *p++ = strdup(net_events[i]);
1754 *p++ = "--filter";
1755 *p++ = filter;
1756 }
1757 for (i = 0; i < poll_events_nr; i++) {
1758 if (!is_valid_tracepoint(poll_events[i])) {
1759 rec_argc -= 4;
1760 continue;
1761 }
1762
1763 *p++ = "-e";
1764 *p++ = strdup(poll_events[i]);
1765 *p++ = "--filter";
1766 *p++ = filter;
1767 }
1768
1769 for (i = 0; i < (unsigned int)argc; i++)
1770 *p++ = argv[i];
1771
b0ad8ea6 1772 return cmd_record(rec_argc, rec_argv);
b97b59b9
SF
1773}
1774
1775
985b12e6 1776static int timechart__record(struct timechart *tchart, int argc, const char **argv)
3c09eebd 1777{
367b3152
SF
1778 unsigned int rec_argc, i, j;
1779 const char **rec_argv;
1780 const char **p;
1781 unsigned int record_elems;
1782
1783 const char * const common_args[] = {
4a4d371a 1784 "record", "-a", "-R", "-c", "1",
367b3152
SF
1785 };
1786 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1787
6f8d67fa
SF
1788 const char * const backtrace_args[] = {
1789 "-g",
1790 };
1791 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1792
367b3152
SF
1793 const char * const power_args[] = {
1794 "-e", "power:cpu_frequency",
1795 "-e", "power:cpu_idle",
1796 };
1797 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1798
1799 const char * const old_power_args[] = {
1800#ifdef SUPPORT_OLD_POWER_EVENTS
73bdc715
ACM
1801 "-e", "power:power_start",
1802 "-e", "power:power_end",
1803 "-e", "power:power_frequency",
73bdc715 1804#endif
367b3152
SF
1805 };
1806 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1807
1808 const char * const tasks_args[] = {
73bdc715
ACM
1809 "-e", "sched:sched_wakeup",
1810 "-e", "sched:sched_switch",
1811 };
367b3152 1812 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
20c457b8
TR
1813
1814#ifdef SUPPORT_OLD_POWER_EVENTS
1815 if (!is_valid_tracepoint("power:cpu_idle") &&
1816 is_valid_tracepoint("power:power_start")) {
1817 use_old_power_events = 1;
367b3152
SF
1818 power_args_nr = 0;
1819 } else {
1820 old_power_args_nr = 0;
20c457b8
TR
1821 }
1822#endif
3c09eebd 1823
985b12e6 1824 if (tchart->power_only)
367b3152
SF
1825 tasks_args_nr = 0;
1826
985b12e6 1827 if (tchart->tasks_only) {
367b3152
SF
1828 power_args_nr = 0;
1829 old_power_args_nr = 0;
1830 }
1831
985b12e6 1832 if (!tchart->with_backtrace)
6f8d67fa
SF
1833 backtrace_args_no = 0;
1834
367b3152 1835 record_elems = common_args_nr + tasks_args_nr +
6f8d67fa 1836 power_args_nr + old_power_args_nr + backtrace_args_no;
367b3152
SF
1837
1838 rec_argc = record_elems + argc;
3c09eebd
AV
1839 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1840
ce47dc56
CS
1841 if (rec_argv == NULL)
1842 return -ENOMEM;
1843
367b3152
SF
1844 p = rec_argv;
1845 for (i = 0; i < common_args_nr; i++)
1846 *p++ = strdup(common_args[i]);
1847
6f8d67fa
SF
1848 for (i = 0; i < backtrace_args_no; i++)
1849 *p++ = strdup(backtrace_args[i]);
1850
367b3152
SF
1851 for (i = 0; i < tasks_args_nr; i++)
1852 *p++ = strdup(tasks_args[i]);
1853
1854 for (i = 0; i < power_args_nr; i++)
1855 *p++ = strdup(power_args[i]);
3c09eebd 1856
367b3152
SF
1857 for (i = 0; i < old_power_args_nr; i++)
1858 *p++ = strdup(old_power_args[i]);
3c09eebd 1859
263f89bf 1860 for (j = 0; j < (unsigned int)argc; j++)
367b3152
SF
1861 *p++ = argv[j];
1862
b0ad8ea6 1863 return cmd_record(rec_argc, rec_argv);
3c09eebd
AV
1864}
1865
bbe2987b 1866static int
1d037ca1
IT
1867parse_process(const struct option *opt __maybe_unused, const char *arg,
1868 int __maybe_unused unset)
bbe2987b
AV
1869{
1870 if (arg)
1871 add_process_filter(arg);
1872 return 0;
1873}
1874
e57a2dff
SF
1875static int
1876parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1877 int __maybe_unused unset)
1878{
1879 unsigned long duration = strtoul(arg, NULL, 0);
1880
1881 if (svg_highlight || svg_highlight_name)
1882 return -1;
1883
1884 if (duration)
1885 svg_highlight = duration;
1886 else
1887 svg_highlight_name = strdup(arg);
1888
1889 return 0;
1890}
1891
d243144a
SF
1892static int
1893parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1894{
1895 char unit = 'n';
1896 u64 *value = opt->value;
1897
1898 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1899 switch (unit) {
1900 case 'm':
af4b2c97 1901 *value *= NSEC_PER_MSEC;
d243144a
SF
1902 break;
1903 case 'u':
af4b2c97 1904 *value *= NSEC_PER_USEC;
d243144a
SF
1905 break;
1906 case 'n':
1907 break;
1908 default:
1909 return -1;
1910 }
1911 }
1912
1913 return 0;
1914}
1915
b0ad8ea6 1916int cmd_timechart(int argc, const char **argv)
73bdc715 1917{
985b12e6
ACM
1918 struct timechart tchart = {
1919 .tool = {
1920 .comm = process_comm_event,
1921 .fork = process_fork_event,
1922 .exit = process_exit_event,
1923 .sample = process_sample_event,
0a8cb85c 1924 .ordered_events = true,
985b12e6
ACM
1925 },
1926 .proc_num = 15,
af4b2c97 1927 .min_time = NSEC_PER_MSEC,
d243144a 1928 .merge_dist = 1000,
985b12e6 1929 };
73bdc715 1930 const char *output_name = "output.svg";
f371594a
ACM
1931 const struct option timechart_common_options[] = {
1932 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1933 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1934 OPT_END()
1935 };
367b3152 1936 const struct option timechart_options[] = {
73bdc715
ACM
1937 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1938 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1939 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
e57a2dff
SF
1940 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1941 "highlight tasks. Pass duration in ns or process name.",
1942 parse_highlight),
bbe2987b
AV
1943 OPT_CALLBACK('p', "process", NULL, "process",
1944 "process selector. Pass a pid or process name.",
1945 parse_process),
a7066709
HK
1946 OPT_CALLBACK(0, "symfs", NULL, "directory",
1947 "Look for files with symbols relative to this directory",
1948 symbol__config_symfs),
985b12e6 1949 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
54874e32 1950 "min. number of tasks to print"),
c5079997
SF
1951 OPT_BOOLEAN('t', "topology", &tchart.topology,
1952 "sort CPUs according to topology"),
d243144a
SF
1953 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1954 "skip EAGAIN errors"),
1955 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1956 "all IO faster than min-time will visually appear longer",
1957 parse_time),
1958 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1959 "merge events that are merge-dist us apart",
1960 parse_time),
44f7e432 1961 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
f371594a 1962 OPT_PARENT(timechart_common_options),
73bdc715 1963 };
33ec0caf
YS
1964 const char * const timechart_subcommands[] = { "record", NULL };
1965 const char *timechart_usage[] = {
73bdc715
ACM
1966 "perf timechart [<options>] {record}",
1967 NULL
1968 };
e5b2c207 1969 const struct option timechart_record_options[] = {
b97b59b9
SF
1970 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1971 "record only IO data"),
985b12e6 1972 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
f371594a 1973 OPT_PARENT(timechart_common_options),
367b3152 1974 };
e5b2c207 1975 const char * const timechart_record_usage[] = {
367b3152
SF
1976 "perf timechart record [<options>]",
1977 NULL
1978 };
33ec0caf
YS
1979 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1980 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
10274989 1981
985b12e6 1982 if (tchart.power_only && tchart.tasks_only) {
c87097d3
SF
1983 pr_err("-P and -T options cannot be used at the same time.\n");
1984 return -1;
1985 }
1986
367b3152 1987 if (argc && !strncmp(argv[0], "rec", 3)) {
e5b2c207
NK
1988 argc = parse_options(argc, argv, timechart_record_options,
1989 timechart_record_usage,
367b3152
SF
1990 PARSE_OPT_STOP_AT_NON_OPTION);
1991
985b12e6 1992 if (tchart.power_only && tchart.tasks_only) {
367b3152
SF
1993 pr_err("-P and -T options cannot be used at the same time.\n");
1994 return -1;
1995 }
1996
b97b59b9
SF
1997 if (tchart.io_only)
1998 return timechart__io_record(argc, argv);
1999 else
2000 return timechart__record(&tchart, argc, argv);
367b3152
SF
2001 } else if (argc)
2002 usage_with_options(timechart_usage, timechart_options);
10274989
AV
2003
2004 setup_pager();
2005
985b12e6 2006 return __cmd_timechart(&tchart, output_name);
10274989 2007}