]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - tools/perf/builtin-timechart.c
perf probe: Fix to clear tev->nargs in clear_probe_trace_event()
[mirror_ubuntu-hirsute-kernel.git] / tools / perf / builtin-timechart.c
CommitLineData
b886d83c 1// SPDX-License-Identifier: GPL-2.0-only
10274989
AV
2/*
3 * builtin-timechart.c - make an svg timechart of system activity
4 *
5 * (C) Copyright 2009 Intel Corporation
6 *
7 * Authors:
8 * Arjan van de Ven <arjan@linux.intel.com>
10274989
AV
9 */
10
a43783ae 11#include <errno.h>
fd20e811 12#include <inttypes.h>
c85cffa5 13
10274989 14#include "builtin.h"
10274989
AV
15#include "util/color.h"
16#include <linux/list.h>
7ae811b1 17#include "util/evlist.h" // for struct evsel_str_handler
e3f42609 18#include "util/evsel.h"
877a7a11 19#include <linux/kernel.h>
10274989 20#include <linux/rbtree.h>
af4b2c97 21#include <linux/time64.h>
7f7c536f 22#include <linux/zalloc.h>
10274989 23#include "util/symbol.h"
e7ff8920 24#include "util/thread.h"
10274989 25#include "util/callchain.h"
10274989
AV
26
27#include "perf.h"
28#include "util/header.h"
fa0d9846 29#include <subcmd/pager.h>
4b6ab94e 30#include <subcmd/parse-options.h>
10274989 31#include "util/parse-events.h"
5cbd0805 32#include "util/event.h"
301a0b02 33#include "util/session.h"
10274989 34#include "util/svghelper.h"
45694aa7 35#include "util/tool.h"
f5fc1412 36#include "util/data.h"
84f5d36f 37#include "util/debug.h"
10274989 38
d7a8c4a6
ACM
39#ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
40FILE *open_memstream(char **ptr, size_t *sizeloc);
41#endif
42
20c457b8
TR
43#define SUPPORT_OLD_POWER_EVENTS 1
44#define PWR_EVENT_EXIT -1
45
5e22f6d2 46struct per_pid;
66cc3ada 47struct power_event;
436b0da0 48struct wake_event;
5e22f6d2 49
985b12e6
ACM
50struct timechart {
51 struct perf_tool tool;
5e22f6d2 52 struct per_pid *all_data;
66cc3ada 53 struct power_event *power_events;
436b0da0 54 struct wake_event *wake_events;
985b12e6
ACM
55 int proc_num;
56 unsigned int numcpus;
57 u64 min_freq, /* Lowest CPU frequency seen */
58 max_freq, /* Highest CPU frequency seen */
59 turbo_frequency,
60 first_time, last_time;
61 bool power_only,
62 tasks_only,
c5079997
SF
63 with_backtrace,
64 topology;
86066064 65 bool force;
b97b59b9 66 /* IO related settings */
d243144a
SF
67 bool io_only,
68 skip_eagain;
86066064 69 u64 io_events;
d243144a
SF
70 u64 min_time,
71 merge_dist;
985b12e6 72};
10274989 73
10274989 74struct per_pidcomm;
10274989 75struct cpu_sample;
b97b59b9 76struct io_sample;
10274989
AV
77
78/*
79 * Datastructure layout:
80 * We keep an list of "pid"s, matching the kernels notion of a task struct.
81 * Each "pid" entry, has a list of "comm"s.
82 * this is because we want to track different programs different, while
83 * exec will reuse the original pid (by design).
84 * Each comm has a list of samples that will be used to draw
85 * final graph.
86 */
87
88struct per_pid {
89 struct per_pid *next;
90
91 int pid;
92 int ppid;
93
94 u64 start_time;
95 u64 end_time;
96 u64 total_time;
b97b59b9 97 u64 total_bytes;
10274989
AV
98 int display;
99
100 struct per_pidcomm *all;
101 struct per_pidcomm *current;
10274989
AV
102};
103
104
105struct per_pidcomm {
106 struct per_pidcomm *next;
107
108 u64 start_time;
109 u64 end_time;
110 u64 total_time;
b97b59b9
SF
111 u64 max_bytes;
112 u64 total_bytes;
10274989
AV
113
114 int Y;
115 int display;
116
117 long state;
118 u64 state_since;
119
120 char *comm;
121
122 struct cpu_sample *samples;
b97b59b9 123 struct io_sample *io_samples;
10274989
AV
124};
125
126struct sample_wrapper {
127 struct sample_wrapper *next;
128
129 u64 timestamp;
130 unsigned char data[0];
131};
132
133#define TYPE_NONE 0
134#define TYPE_RUNNING 1
135#define TYPE_WAITING 2
136#define TYPE_BLOCKED 3
137
138struct cpu_sample {
139 struct cpu_sample *next;
140
141 u64 start_time;
142 u64 end_time;
143 int type;
144 int cpu;
6f8d67fa 145 const char *backtrace;
10274989
AV
146};
147
b97b59b9
SF
148enum {
149 IOTYPE_READ,
150 IOTYPE_WRITE,
151 IOTYPE_SYNC,
152 IOTYPE_TX,
153 IOTYPE_RX,
154 IOTYPE_POLL,
155};
156
157struct io_sample {
158 struct io_sample *next;
159
160 u64 start_time;
161 u64 end_time;
162 u64 bytes;
163 int type;
164 int fd;
165 int err;
166 int merges;
167};
168
10274989
AV
169#define CSTATE 1
170#define PSTATE 2
171
172struct power_event {
173 struct power_event *next;
174 int type;
175 int state;
176 u64 start_time;
177 u64 end_time;
178 int cpu;
179};
180
181struct wake_event {
182 struct wake_event *next;
183 int waker;
184 int wakee;
185 u64 time;
6f8d67fa 186 const char *backtrace;
10274989
AV
187};
188
bbe2987b 189struct process_filter {
5cbd0805
LZ
190 char *name;
191 int pid;
192 struct process_filter *next;
bbe2987b
AV
193};
194
195static struct process_filter *process_filter;
196
197
5e22f6d2 198static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
10274989 199{
5e22f6d2 200 struct per_pid *cursor = tchart->all_data;
10274989
AV
201
202 while (cursor) {
203 if (cursor->pid == pid)
204 return cursor;
205 cursor = cursor->next;
206 }
e0dcd6fb 207 cursor = zalloc(sizeof(*cursor));
10274989 208 assert(cursor != NULL);
10274989 209 cursor->pid = pid;
5e22f6d2
ACM
210 cursor->next = tchart->all_data;
211 tchart->all_data = cursor;
10274989
AV
212 return cursor;
213}
214
5e22f6d2 215static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
10274989
AV
216{
217 struct per_pid *p;
218 struct per_pidcomm *c;
5e22f6d2 219 p = find_create_pid(tchart, pid);
10274989
AV
220 c = p->all;
221 while (c) {
222 if (c->comm && strcmp(c->comm, comm) == 0) {
223 p->current = c;
224 return;
225 }
226 if (!c->comm) {
227 c->comm = strdup(comm);
228 p->current = c;
229 return;
230 }
231 c = c->next;
232 }
e0dcd6fb 233 c = zalloc(sizeof(*c));
10274989 234 assert(c != NULL);
10274989
AV
235 c->comm = strdup(comm);
236 p->current = c;
237 c->next = p->all;
238 p->all = c;
239}
240
5e22f6d2 241static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
10274989
AV
242{
243 struct per_pid *p, *pp;
5e22f6d2
ACM
244 p = find_create_pid(tchart, pid);
245 pp = find_create_pid(tchart, ppid);
10274989
AV
246 p->ppid = ppid;
247 if (pp->current && pp->current->comm && !p->current)
5e22f6d2 248 pid_set_comm(tchart, pid, pp->current->comm);
10274989
AV
249
250 p->start_time = timestamp;
962e310a 251 if (p->current && !p->current->start_time) {
10274989
AV
252 p->current->start_time = timestamp;
253 p->current->state_since = timestamp;
254 }
255}
256
5e22f6d2 257static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
10274989
AV
258{
259 struct per_pid *p;
5e22f6d2 260 p = find_create_pid(tchart, pid);
10274989
AV
261 p->end_time = timestamp;
262 if (p->current)
263 p->current->end_time = timestamp;
264}
265
5e22f6d2
ACM
266static void pid_put_sample(struct timechart *tchart, int pid, int type,
267 unsigned int cpu, u64 start, u64 end,
268 const char *backtrace)
10274989
AV
269{
270 struct per_pid *p;
271 struct per_pidcomm *c;
272 struct cpu_sample *sample;
273
5e22f6d2 274 p = find_create_pid(tchart, pid);
10274989
AV
275 c = p->current;
276 if (!c) {
e0dcd6fb 277 c = zalloc(sizeof(*c));
10274989 278 assert(c != NULL);
10274989
AV
279 p->current = c;
280 c->next = p->all;
281 p->all = c;
282 }
283
e0dcd6fb 284 sample = zalloc(sizeof(*sample));
10274989 285 assert(sample != NULL);
10274989
AV
286 sample->start_time = start;
287 sample->end_time = end;
288 sample->type = type;
289 sample->next = c->samples;
290 sample->cpu = cpu;
6f8d67fa 291 sample->backtrace = backtrace;
10274989
AV
292 c->samples = sample;
293
294 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
295 c->total_time += (end-start);
296 p->total_time += (end-start);
297 }
298
299 if (c->start_time == 0 || c->start_time > start)
300 c->start_time = start;
301 if (p->start_time == 0 || p->start_time > start)
302 p->start_time = start;
10274989
AV
303}
304
305#define MAX_CPUS 4096
306
307static u64 cpus_cstate_start_times[MAX_CPUS];
308static int cpus_cstate_state[MAX_CPUS];
309static u64 cpus_pstate_start_times[MAX_CPUS];
310static u64 cpus_pstate_state[MAX_CPUS];
311
5e22f6d2 312static int process_comm_event(struct perf_tool *tool,
d20deb64 313 union perf_event *event,
1d037ca1
IT
314 struct perf_sample *sample __maybe_unused,
315 struct machine *machine __maybe_unused)
10274989 316{
5e22f6d2
ACM
317 struct timechart *tchart = container_of(tool, struct timechart, tool);
318 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
10274989
AV
319 return 0;
320}
d8f66248 321
5e22f6d2 322static int process_fork_event(struct perf_tool *tool,
d20deb64 323 union perf_event *event,
1d037ca1
IT
324 struct perf_sample *sample __maybe_unused,
325 struct machine *machine __maybe_unused)
10274989 326{
5e22f6d2
ACM
327 struct timechart *tchart = container_of(tool, struct timechart, tool);
328 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
10274989
AV
329 return 0;
330}
331
5e22f6d2 332static int process_exit_event(struct perf_tool *tool,
d20deb64 333 union perf_event *event,
1d037ca1
IT
334 struct perf_sample *sample __maybe_unused,
335 struct machine *machine __maybe_unused)
10274989 336{
5e22f6d2
ACM
337 struct timechart *tchart = container_of(tool, struct timechart, tool);
338 pid_exit(tchart, event->fork.pid, event->fork.time);
10274989
AV
339 return 0;
340}
341
20c457b8
TR
342#ifdef SUPPORT_OLD_POWER_EVENTS
343static int use_old_power_events;
20c457b8
TR
344#endif
345
10274989
AV
346static void c_state_start(int cpu, u64 timestamp, int state)
347{
348 cpus_cstate_start_times[cpu] = timestamp;
349 cpus_cstate_state[cpu] = state;
350}
351
66cc3ada 352static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
10274989 353{
e0dcd6fb
ACM
354 struct power_event *pwr = zalloc(sizeof(*pwr));
355
10274989
AV
356 if (!pwr)
357 return;
10274989
AV
358
359 pwr->state = cpus_cstate_state[cpu];
360 pwr->start_time = cpus_cstate_start_times[cpu];
361 pwr->end_time = timestamp;
362 pwr->cpu = cpu;
363 pwr->type = CSTATE;
66cc3ada 364 pwr->next = tchart->power_events;
10274989 365
66cc3ada 366 tchart->power_events = pwr;
10274989
AV
367}
368
985b12e6 369static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
10274989
AV
370{
371 struct power_event *pwr;
10274989
AV
372
373 if (new_freq > 8000000) /* detect invalid data */
374 return;
375
e0dcd6fb 376 pwr = zalloc(sizeof(*pwr));
10274989
AV
377 if (!pwr)
378 return;
10274989
AV
379
380 pwr->state = cpus_pstate_state[cpu];
381 pwr->start_time = cpus_pstate_start_times[cpu];
382 pwr->end_time = timestamp;
383 pwr->cpu = cpu;
384 pwr->type = PSTATE;
66cc3ada 385 pwr->next = tchart->power_events;
10274989
AV
386
387 if (!pwr->start_time)
985b12e6 388 pwr->start_time = tchart->first_time;
10274989 389
66cc3ada 390 tchart->power_events = pwr;
10274989
AV
391
392 cpus_pstate_state[cpu] = new_freq;
393 cpus_pstate_start_times[cpu] = timestamp;
394
985b12e6
ACM
395 if ((u64)new_freq > tchart->max_freq)
396 tchart->max_freq = new_freq;
10274989 397
985b12e6
ACM
398 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
399 tchart->min_freq = new_freq;
10274989 400
985b12e6
ACM
401 if (new_freq == tchart->max_freq - 1000)
402 tchart->turbo_frequency = tchart->max_freq;
10274989
AV
403}
404
5e22f6d2
ACM
405static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
406 int waker, int wakee, u8 flags, const char *backtrace)
10274989 407{
10274989 408 struct per_pid *p;
e0dcd6fb 409 struct wake_event *we = zalloc(sizeof(*we));
10274989 410
10274989
AV
411 if (!we)
412 return;
413
10274989 414 we->time = timestamp;
3ed0d21e 415 we->waker = waker;
6f8d67fa 416 we->backtrace = backtrace;
10274989 417
3ed0d21e 418 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
10274989
AV
419 we->waker = -1;
420
3ed0d21e 421 we->wakee = wakee;
436b0da0
ACM
422 we->next = tchart->wake_events;
423 tchart->wake_events = we;
5e22f6d2 424 p = find_create_pid(tchart, we->wakee);
10274989
AV
425
426 if (p && p->current && p->current->state == TYPE_NONE) {
427 p->current->state_since = timestamp;
428 p->current->state = TYPE_WAITING;
429 }
430 if (p && p->current && p->current->state == TYPE_BLOCKED) {
5e22f6d2 431 pid_put_sample(tchart, p->pid, p->current->state, cpu,
6f8d67fa 432 p->current->state_since, timestamp, NULL);
10274989
AV
433 p->current->state_since = timestamp;
434 p->current->state = TYPE_WAITING;
435 }
436}
437
5e22f6d2
ACM
438static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
439 int prev_pid, int next_pid, u64 prev_state,
440 const char *backtrace)
10274989
AV
441{
442 struct per_pid *p = NULL, *prev_p;
10274989 443
5e22f6d2 444 prev_p = find_create_pid(tchart, prev_pid);
10274989 445
5e22f6d2 446 p = find_create_pid(tchart, next_pid);
10274989
AV
447
448 if (prev_p->current && prev_p->current->state != TYPE_NONE)
5e22f6d2 449 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
6f8d67fa
SF
450 prev_p->current->state_since, timestamp,
451 backtrace);
10274989
AV
452 if (p && p->current) {
453 if (p->current->state != TYPE_NONE)
5e22f6d2 454 pid_put_sample(tchart, next_pid, p->current->state, cpu,
6f8d67fa
SF
455 p->current->state_since, timestamp,
456 backtrace);
10274989 457
33e26a1b
JL
458 p->current->state_since = timestamp;
459 p->current->state = TYPE_RUNNING;
10274989
AV
460 }
461
462 if (prev_p->current) {
463 prev_p->current->state = TYPE_NONE;
464 prev_p->current->state_since = timestamp;
3ed0d21e 465 if (prev_state & 2)
10274989 466 prev_p->current->state = TYPE_BLOCKED;
3ed0d21e 467 if (prev_state == 0)
10274989
AV
468 prev_p->current->state = TYPE_WAITING;
469 }
470}
471
6f8d67fa
SF
472static const char *cat_backtrace(union perf_event *event,
473 struct perf_sample *sample,
474 struct machine *machine)
475{
476 struct addr_location al;
477 unsigned int i;
478 char *p = NULL;
479 size_t p_len;
480 u8 cpumode = PERF_RECORD_MISC_USER;
481 struct addr_location tal;
482 struct ip_callchain *chain = sample->callchain;
483 FILE *f = open_memstream(&p, &p_len);
484
485 if (!f) {
486 perror("open_memstream error");
487 return NULL;
488 }
489
490 if (!chain)
491 goto exit;
492
bb3eb566 493 if (machine__resolve(machine, &al, sample) < 0) {
6f8d67fa
SF
494 fprintf(stderr, "problem processing %d event, skipping it.\n",
495 event->header.type);
496 goto exit;
497 }
498
499 for (i = 0; i < chain->nr; i++) {
500 u64 ip;
501
502 if (callchain_param.order == ORDER_CALLEE)
503 ip = chain->ips[i];
504 else
505 ip = chain->ips[chain->nr - i - 1];
506
507 if (ip >= PERF_CONTEXT_MAX) {
508 switch (ip) {
509 case PERF_CONTEXT_HV:
510 cpumode = PERF_RECORD_MISC_HYPERVISOR;
511 break;
512 case PERF_CONTEXT_KERNEL:
513 cpumode = PERF_RECORD_MISC_KERNEL;
514 break;
515 case PERF_CONTEXT_USER:
516 cpumode = PERF_RECORD_MISC_USER;
517 break;
518 default:
519 pr_debug("invalid callchain context: "
520 "%"PRId64"\n", (s64) ip);
521
522 /*
523 * It seems the callchain is corrupted.
524 * Discard all.
525 */
04662523 526 zfree(&p);
b91fc39f 527 goto exit_put;
6f8d67fa
SF
528 }
529 continue;
530 }
531
b3cef7f6 532 tal.filtered = 0;
d9a5f274
ACM
533 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
534 fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
6f8d67fa
SF
535 else
536 fprintf(f, "..... %016" PRIx64 "\n", ip);
537 }
b91fc39f
ACM
538exit_put:
539 addr_location__put(&al);
6f8d67fa
SF
540exit:
541 fclose(f);
542
543 return p;
544}
545
985b12e6 546typedef int (*tracepoint_handler)(struct timechart *tchart,
32dcd021 547 struct evsel *evsel,
6f8d67fa
SF
548 struct perf_sample *sample,
549 const char *backtrace);
10274989 550
985b12e6 551static int process_sample_event(struct perf_tool *tool,
972ec653 552 union perf_event *event,
8d50e5b4 553 struct perf_sample *sample,
32dcd021 554 struct evsel *evsel,
985b12e6 555 struct machine *machine)
10274989 556{
985b12e6
ACM
557 struct timechart *tchart = container_of(tool, struct timechart, tool);
558
1fc632ce 559 if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
985b12e6
ACM
560 if (!tchart->first_time || tchart->first_time > sample->time)
561 tchart->first_time = sample->time;
562 if (tchart->last_time < sample->time)
563 tchart->last_time = sample->time;
10274989 564 }
180f95e2 565
744a9719
ACM
566 if (evsel->handler != NULL) {
567 tracepoint_handler f = evsel->handler;
58b9a18e
SF
568 return f(tchart, evsel, sample,
569 cat_backtrace(event, sample, machine));
5936678e
JO
570 }
571
572 return 0;
573}
574
575static int
985b12e6 576process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
32dcd021 577 struct evsel *evsel,
6f8d67fa
SF
578 struct perf_sample *sample,
579 const char *backtrace __maybe_unused)
5936678e 580{
3ed0d21e
SF
581 u32 state = perf_evsel__intval(evsel, sample, "state");
582 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
5936678e 583
3ed0d21e 584 if (state == (u32)PWR_EVENT_EXIT)
66cc3ada 585 c_state_end(tchart, cpu_id, sample->time);
5936678e 586 else
3ed0d21e 587 c_state_start(cpu_id, sample->time, state);
5936678e
JO
588 return 0;
589}
590
591static int
985b12e6 592process_sample_cpu_frequency(struct timechart *tchart,
32dcd021 593 struct evsel *evsel,
6f8d67fa
SF
594 struct perf_sample *sample,
595 const char *backtrace __maybe_unused)
5936678e 596{
3ed0d21e
SF
597 u32 state = perf_evsel__intval(evsel, sample, "state");
598 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
5936678e 599
985b12e6 600 p_state_change(tchart, cpu_id, sample->time, state);
5936678e
JO
601 return 0;
602}
603
604static int
5e22f6d2 605process_sample_sched_wakeup(struct timechart *tchart,
32dcd021 606 struct evsel *evsel,
6f8d67fa
SF
607 struct perf_sample *sample,
608 const char *backtrace)
5936678e 609{
3ed0d21e
SF
610 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
611 int waker = perf_evsel__intval(evsel, sample, "common_pid");
612 int wakee = perf_evsel__intval(evsel, sample, "pid");
5936678e 613
5e22f6d2 614 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
5936678e
JO
615 return 0;
616}
10274989 617
5936678e 618static int
5e22f6d2 619process_sample_sched_switch(struct timechart *tchart,
32dcd021 620 struct evsel *evsel,
6f8d67fa
SF
621 struct perf_sample *sample,
622 const char *backtrace)
5936678e 623{
3ed0d21e
SF
624 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
625 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
626 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
10274989 627
5e22f6d2
ACM
628 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
629 prev_state, backtrace);
5936678e
JO
630 return 0;
631}
20c457b8
TR
632
633#ifdef SUPPORT_OLD_POWER_EVENTS
5936678e 634static int
985b12e6 635process_sample_power_start(struct timechart *tchart __maybe_unused,
32dcd021 636 struct evsel *evsel,
6f8d67fa
SF
637 struct perf_sample *sample,
638 const char *backtrace __maybe_unused)
5936678e 639{
3ed0d21e
SF
640 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
641 u64 value = perf_evsel__intval(evsel, sample, "value");
5936678e 642
3ed0d21e 643 c_state_start(cpu_id, sample->time, value);
5936678e
JO
644 return 0;
645}
646
647static int
66cc3ada 648process_sample_power_end(struct timechart *tchart,
32dcd021 649 struct evsel *evsel __maybe_unused,
6f8d67fa
SF
650 struct perf_sample *sample,
651 const char *backtrace __maybe_unused)
5936678e 652{
66cc3ada 653 c_state_end(tchart, sample->cpu, sample->time);
5936678e
JO
654 return 0;
655}
656
657static int
985b12e6 658process_sample_power_frequency(struct timechart *tchart,
32dcd021 659 struct evsel *evsel,
6f8d67fa
SF
660 struct perf_sample *sample,
661 const char *backtrace __maybe_unused)
5936678e 662{
3ed0d21e
SF
663 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
664 u64 value = perf_evsel__intval(evsel, sample, "value");
5936678e 665
985b12e6 666 p_state_change(tchart, cpu_id, sample->time, value);
10274989
AV
667 return 0;
668}
5936678e 669#endif /* SUPPORT_OLD_POWER_EVENTS */
10274989
AV
670
671/*
672 * After the last sample we need to wrap up the current C/P state
673 * and close out each CPU for these.
674 */
985b12e6 675static void end_sample_processing(struct timechart *tchart)
10274989
AV
676{
677 u64 cpu;
678 struct power_event *pwr;
679
985b12e6 680 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
e0dcd6fb
ACM
681 /* C state */
682#if 0
683 pwr = zalloc(sizeof(*pwr));
10274989
AV
684 if (!pwr)
685 return;
10274989 686
10274989
AV
687 pwr->state = cpus_cstate_state[cpu];
688 pwr->start_time = cpus_cstate_start_times[cpu];
985b12e6 689 pwr->end_time = tchart->last_time;
10274989
AV
690 pwr->cpu = cpu;
691 pwr->type = CSTATE;
66cc3ada 692 pwr->next = tchart->power_events;
10274989 693
66cc3ada 694 tchart->power_events = pwr;
10274989
AV
695#endif
696 /* P state */
697
e0dcd6fb 698 pwr = zalloc(sizeof(*pwr));
10274989
AV
699 if (!pwr)
700 return;
10274989
AV
701
702 pwr->state = cpus_pstate_state[cpu];
703 pwr->start_time = cpus_pstate_start_times[cpu];
985b12e6 704 pwr->end_time = tchart->last_time;
10274989
AV
705 pwr->cpu = cpu;
706 pwr->type = PSTATE;
66cc3ada 707 pwr->next = tchart->power_events;
10274989
AV
708
709 if (!pwr->start_time)
985b12e6 710 pwr->start_time = tchart->first_time;
10274989 711 if (!pwr->state)
985b12e6 712 pwr->state = tchart->min_freq;
66cc3ada 713 tchart->power_events = pwr;
10274989
AV
714 }
715}
716
b97b59b9
SF
717static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
718 u64 start, int fd)
719{
720 struct per_pid *p = find_create_pid(tchart, pid);
721 struct per_pidcomm *c = p->current;
722 struct io_sample *sample;
723 struct io_sample *prev;
724
725 if (!c) {
726 c = zalloc(sizeof(*c));
727 if (!c)
728 return -ENOMEM;
729 p->current = c;
730 c->next = p->all;
731 p->all = c;
732 }
733
734 prev = c->io_samples;
735
736 if (prev && prev->start_time && !prev->end_time) {
737 pr_warning("Skip invalid start event: "
738 "previous event already started!\n");
739
740 /* remove previous event that has been started,
741 * we are not sure we will ever get an end for it */
742 c->io_samples = prev->next;
743 free(prev);
744 return 0;
745 }
746
747 sample = zalloc(sizeof(*sample));
748 if (!sample)
749 return -ENOMEM;
750 sample->start_time = start;
751 sample->type = type;
752 sample->fd = fd;
753 sample->next = c->io_samples;
754 c->io_samples = sample;
755
756 if (c->start_time == 0 || c->start_time > start)
757 c->start_time = start;
758
759 return 0;
760}
761
762static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
763 u64 end, long ret)
764{
765 struct per_pid *p = find_create_pid(tchart, pid);
766 struct per_pidcomm *c = p->current;
d243144a 767 struct io_sample *sample, *prev;
b97b59b9
SF
768
769 if (!c) {
770 pr_warning("Invalid pidcomm!\n");
771 return -1;
772 }
773
774 sample = c->io_samples;
775
776 if (!sample) /* skip partially captured events */
777 return 0;
778
779 if (sample->end_time) {
780 pr_warning("Skip invalid end event: "
781 "previous event already ended!\n");
782 return 0;
783 }
784
785 if (sample->type != type) {
786 pr_warning("Skip invalid end event: invalid event type!\n");
787 return 0;
788 }
789
790 sample->end_time = end;
d243144a
SF
791 prev = sample->next;
792
793 /* we want to be able to see small and fast transfers, so make them
794 * at least min_time long, but don't overlap them */
795 if (sample->end_time - sample->start_time < tchart->min_time)
796 sample->end_time = sample->start_time + tchart->min_time;
797 if (prev && sample->start_time < prev->end_time) {
798 if (prev->err) /* try to make errors more visible */
799 sample->start_time = prev->end_time;
800 else
801 prev->end_time = sample->start_time;
802 }
b97b59b9
SF
803
804 if (ret < 0) {
805 sample->err = ret;
806 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
807 type == IOTYPE_TX || type == IOTYPE_RX) {
808
809 if ((u64)ret > c->max_bytes)
810 c->max_bytes = ret;
811
812 c->total_bytes += ret;
813 p->total_bytes += ret;
814 sample->bytes = ret;
815 }
816
d243144a
SF
817 /* merge two requests to make svg smaller and render-friendly */
818 if (prev &&
819 prev->type == sample->type &&
820 prev->err == sample->err &&
821 prev->fd == sample->fd &&
822 prev->end_time + tchart->merge_dist >= sample->start_time) {
823
824 sample->bytes += prev->bytes;
825 sample->merges += prev->merges + 1;
826
827 sample->start_time = prev->start_time;
828 sample->next = prev->next;
829 free(prev);
830
831 if (!sample->err && sample->bytes > c->max_bytes)
832 c->max_bytes = sample->bytes;
833 }
834
b97b59b9
SF
835 tchart->io_events++;
836
837 return 0;
838}
839
840static int
841process_enter_read(struct timechart *tchart,
32dcd021 842 struct evsel *evsel,
b97b59b9
SF
843 struct perf_sample *sample)
844{
845 long fd = perf_evsel__intval(evsel, sample, "fd");
846 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
847 sample->time, fd);
848}
849
850static int
851process_exit_read(struct timechart *tchart,
32dcd021 852 struct evsel *evsel,
b97b59b9
SF
853 struct perf_sample *sample)
854{
855 long ret = perf_evsel__intval(evsel, sample, "ret");
856 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
857 sample->time, ret);
858}
859
860static int
861process_enter_write(struct timechart *tchart,
32dcd021 862 struct evsel *evsel,
b97b59b9
SF
863 struct perf_sample *sample)
864{
865 long fd = perf_evsel__intval(evsel, sample, "fd");
866 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
867 sample->time, fd);
868}
869
870static int
871process_exit_write(struct timechart *tchart,
32dcd021 872 struct evsel *evsel,
b97b59b9
SF
873 struct perf_sample *sample)
874{
875 long ret = perf_evsel__intval(evsel, sample, "ret");
876 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
877 sample->time, ret);
878}
879
880static int
881process_enter_sync(struct timechart *tchart,
32dcd021 882 struct evsel *evsel,
b97b59b9
SF
883 struct perf_sample *sample)
884{
885 long fd = perf_evsel__intval(evsel, sample, "fd");
886 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
887 sample->time, fd);
888}
889
890static int
891process_exit_sync(struct timechart *tchart,
32dcd021 892 struct evsel *evsel,
b97b59b9
SF
893 struct perf_sample *sample)
894{
895 long ret = perf_evsel__intval(evsel, sample, "ret");
896 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
897 sample->time, ret);
898}
899
900static int
901process_enter_tx(struct timechart *tchart,
32dcd021 902 struct evsel *evsel,
b97b59b9
SF
903 struct perf_sample *sample)
904{
905 long fd = perf_evsel__intval(evsel, sample, "fd");
906 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
907 sample->time, fd);
908}
909
910static int
911process_exit_tx(struct timechart *tchart,
32dcd021 912 struct evsel *evsel,
b97b59b9
SF
913 struct perf_sample *sample)
914{
915 long ret = perf_evsel__intval(evsel, sample, "ret");
916 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
917 sample->time, ret);
918}
919
920static int
921process_enter_rx(struct timechart *tchart,
32dcd021 922 struct evsel *evsel,
b97b59b9
SF
923 struct perf_sample *sample)
924{
925 long fd = perf_evsel__intval(evsel, sample, "fd");
926 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
927 sample->time, fd);
928}
929
930static int
931process_exit_rx(struct timechart *tchart,
32dcd021 932 struct evsel *evsel,
b97b59b9
SF
933 struct perf_sample *sample)
934{
935 long ret = perf_evsel__intval(evsel, sample, "ret");
936 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
937 sample->time, ret);
938}
939
940static int
941process_enter_poll(struct timechart *tchart,
32dcd021 942 struct evsel *evsel,
b97b59b9
SF
943 struct perf_sample *sample)
944{
945 long fd = perf_evsel__intval(evsel, sample, "fd");
946 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
947 sample->time, fd);
948}
949
950static int
951process_exit_poll(struct timechart *tchart,
32dcd021 952 struct evsel *evsel,
b97b59b9
SF
953 struct perf_sample *sample)
954{
955 long ret = perf_evsel__intval(evsel, sample, "ret");
956 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
957 sample->time, ret);
958}
959
10274989
AV
960/*
961 * Sort the pid datastructure
962 */
5e22f6d2 963static void sort_pids(struct timechart *tchart)
10274989
AV
964{
965 struct per_pid *new_list, *p, *cursor, *prev;
966 /* sort by ppid first, then by pid, lowest to highest */
967
968 new_list = NULL;
969
5e22f6d2
ACM
970 while (tchart->all_data) {
971 p = tchart->all_data;
972 tchart->all_data = p->next;
10274989
AV
973 p->next = NULL;
974
975 if (new_list == NULL) {
976 new_list = p;
977 p->next = NULL;
978 continue;
979 }
980 prev = NULL;
981 cursor = new_list;
982 while (cursor) {
983 if (cursor->ppid > p->ppid ||
984 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
985 /* must insert before */
986 if (prev) {
987 p->next = prev->next;
988 prev->next = p;
989 cursor = NULL;
990 continue;
991 } else {
992 p->next = new_list;
993 new_list = p;
994 cursor = NULL;
995 continue;
996 }
997 }
998
999 prev = cursor;
1000 cursor = cursor->next;
1001 if (!cursor)
1002 prev->next = p;
1003 }
1004 }
5e22f6d2 1005 tchart->all_data = new_list;
10274989
AV
1006}
1007
1008
985b12e6 1009static void draw_c_p_states(struct timechart *tchart)
10274989
AV
1010{
1011 struct power_event *pwr;
66cc3ada 1012 pwr = tchart->power_events;
10274989
AV
1013
1014 /*
1015 * two pass drawing so that the P state bars are on top of the C state blocks
1016 */
1017 while (pwr) {
1018 if (pwr->type == CSTATE)
1019 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1020 pwr = pwr->next;
1021 }
1022
66cc3ada 1023 pwr = tchart->power_events;
10274989
AV
1024 while (pwr) {
1025 if (pwr->type == PSTATE) {
1026 if (!pwr->state)
985b12e6 1027 pwr->state = tchart->min_freq;
10274989
AV
1028 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1029 }
1030 pwr = pwr->next;
1031 }
1032}
1033
5e22f6d2 1034static void draw_wakeups(struct timechart *tchart)
10274989
AV
1035{
1036 struct wake_event *we;
1037 struct per_pid *p;
1038 struct per_pidcomm *c;
1039
436b0da0 1040 we = tchart->wake_events;
10274989
AV
1041 while (we) {
1042 int from = 0, to = 0;
4f1202c8 1043 char *task_from = NULL, *task_to = NULL;
10274989
AV
1044
1045 /* locate the column of the waker and wakee */
5e22f6d2 1046 p = tchart->all_data;
10274989
AV
1047 while (p) {
1048 if (p->pid == we->waker || p->pid == we->wakee) {
1049 c = p->all;
1050 while (c) {
1051 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
bbe2987b 1052 if (p->pid == we->waker && !from) {
10274989 1053 from = c->Y;
3bc2a39c 1054 task_from = strdup(c->comm);
4f1202c8 1055 }
bbe2987b 1056 if (p->pid == we->wakee && !to) {
10274989 1057 to = c->Y;
3bc2a39c 1058 task_to = strdup(c->comm);
4f1202c8 1059 }
10274989
AV
1060 }
1061 c = c->next;
1062 }
3bc2a39c
AV
1063 c = p->all;
1064 while (c) {
1065 if (p->pid == we->waker && !from) {
1066 from = c->Y;
1067 task_from = strdup(c->comm);
1068 }
1069 if (p->pid == we->wakee && !to) {
1070 to = c->Y;
1071 task_to = strdup(c->comm);
1072 }
1073 c = c->next;
1074 }
10274989
AV
1075 }
1076 p = p->next;
1077 }
1078
3bc2a39c
AV
1079 if (!task_from) {
1080 task_from = malloc(40);
1081 sprintf(task_from, "[%i]", we->waker);
1082 }
1083 if (!task_to) {
1084 task_to = malloc(40);
1085 sprintf(task_to, "[%i]", we->wakee);
1086 }
1087
10274989 1088 if (we->waker == -1)
6f8d67fa 1089 svg_interrupt(we->time, to, we->backtrace);
10274989 1090 else if (from && to && abs(from - to) == 1)
6f8d67fa 1091 svg_wakeline(we->time, from, to, we->backtrace);
10274989 1092 else
6f8d67fa
SF
1093 svg_partial_wakeline(we->time, from, task_from, to,
1094 task_to, we->backtrace);
10274989 1095 we = we->next;
3bc2a39c
AV
1096
1097 free(task_from);
1098 free(task_to);
10274989
AV
1099 }
1100}
1101
5e22f6d2 1102static void draw_cpu_usage(struct timechart *tchart)
10274989
AV
1103{
1104 struct per_pid *p;
1105 struct per_pidcomm *c;
1106 struct cpu_sample *sample;
5e22f6d2 1107 p = tchart->all_data;
10274989
AV
1108 while (p) {
1109 c = p->all;
1110 while (c) {
1111 sample = c->samples;
1112 while (sample) {
8b6dcca0
SF
1113 if (sample->type == TYPE_RUNNING) {
1114 svg_process(sample->cpu,
1115 sample->start_time,
1116 sample->end_time,
de996228 1117 p->pid,
8b6dcca0
SF
1118 c->comm,
1119 sample->backtrace);
1120 }
10274989
AV
1121
1122 sample = sample->next;
1123 }
1124 c = c->next;
1125 }
1126 p = p->next;
1127 }
1128}
1129
b97b59b9
SF
1130static void draw_io_bars(struct timechart *tchart)
1131{
1132 const char *suf;
1133 double bytes;
1134 char comm[256];
1135 struct per_pid *p;
1136 struct per_pidcomm *c;
1137 struct io_sample *sample;
1138 int Y = 1;
1139
1140 p = tchart->all_data;
1141 while (p) {
1142 c = p->all;
1143 while (c) {
1144 if (!c->display) {
1145 c->Y = 0;
1146 c = c->next;
1147 continue;
1148 }
1149
1150 svg_box(Y, c->start_time, c->end_time, "process3");
1151 sample = c->io_samples;
1152 for (sample = c->io_samples; sample; sample = sample->next) {
1153 double h = (double)sample->bytes / c->max_bytes;
1154
d243144a
SF
1155 if (tchart->skip_eagain &&
1156 sample->err == -EAGAIN)
1157 continue;
1158
b97b59b9
SF
1159 if (sample->err)
1160 h = 1;
1161
1162 if (sample->type == IOTYPE_SYNC)
1163 svg_fbox(Y,
1164 sample->start_time,
1165 sample->end_time,
1166 1,
1167 sample->err ? "error" : "sync",
1168 sample->fd,
1169 sample->err,
1170 sample->merges);
1171 else if (sample->type == IOTYPE_POLL)
1172 svg_fbox(Y,
1173 sample->start_time,
1174 sample->end_time,
1175 1,
1176 sample->err ? "error" : "poll",
1177 sample->fd,
1178 sample->err,
1179 sample->merges);
1180 else if (sample->type == IOTYPE_READ)
1181 svg_ubox(Y,
1182 sample->start_time,
1183 sample->end_time,
1184 h,
1185 sample->err ? "error" : "disk",
1186 sample->fd,
1187 sample->err,
1188 sample->merges);
1189 else if (sample->type == IOTYPE_WRITE)
1190 svg_lbox(Y,
1191 sample->start_time,
1192 sample->end_time,
1193 h,
1194 sample->err ? "error" : "disk",
1195 sample->fd,
1196 sample->err,
1197 sample->merges);
1198 else if (sample->type == IOTYPE_RX)
1199 svg_ubox(Y,
1200 sample->start_time,
1201 sample->end_time,
1202 h,
1203 sample->err ? "error" : "net",
1204 sample->fd,
1205 sample->err,
1206 sample->merges);
1207 else if (sample->type == IOTYPE_TX)
1208 svg_lbox(Y,
1209 sample->start_time,
1210 sample->end_time,
1211 h,
1212 sample->err ? "error" : "net",
1213 sample->fd,
1214 sample->err,
1215 sample->merges);
1216 }
1217
1218 suf = "";
1219 bytes = c->total_bytes;
1220 if (bytes > 1024) {
1221 bytes = bytes / 1024;
1222 suf = "K";
1223 }
1224 if (bytes > 1024) {
1225 bytes = bytes / 1024;
1226 suf = "M";
1227 }
1228 if (bytes > 1024) {
1229 bytes = bytes / 1024;
1230 suf = "G";
1231 }
1232
1233
1234 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1235 svg_text(Y, c->start_time, comm);
1236
1237 c->Y = Y;
1238 Y++;
1239 c = c->next;
1240 }
1241 p = p->next;
1242 }
1243}
1244
985b12e6 1245static void draw_process_bars(struct timechart *tchart)
10274989
AV
1246{
1247 struct per_pid *p;
1248 struct per_pidcomm *c;
1249 struct cpu_sample *sample;
1250 int Y = 0;
1251
985b12e6 1252 Y = 2 * tchart->numcpus + 2;
10274989 1253
5e22f6d2 1254 p = tchart->all_data;
10274989
AV
1255 while (p) {
1256 c = p->all;
1257 while (c) {
1258 if (!c->display) {
1259 c->Y = 0;
1260 c = c->next;
1261 continue;
1262 }
1263
a92fe7b3 1264 svg_box(Y, c->start_time, c->end_time, "process");
10274989
AV
1265 sample = c->samples;
1266 while (sample) {
1267 if (sample->type == TYPE_RUNNING)
6f8d67fa
SF
1268 svg_running(Y, sample->cpu,
1269 sample->start_time,
1270 sample->end_time,
1271 sample->backtrace);
10274989 1272 if (sample->type == TYPE_BLOCKED)
6f8d67fa
SF
1273 svg_blocked(Y, sample->cpu,
1274 sample->start_time,
1275 sample->end_time,
1276 sample->backtrace);
10274989 1277 if (sample->type == TYPE_WAITING)
6f8d67fa
SF
1278 svg_waiting(Y, sample->cpu,
1279 sample->start_time,
1280 sample->end_time,
1281 sample->backtrace);
10274989
AV
1282 sample = sample->next;
1283 }
1284
1285 if (c->comm) {
1286 char comm[256];
1287 if (c->total_time > 5000000000) /* 5 seconds */
af4b2c97 1288 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
10274989 1289 else
af4b2c97 1290 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
10274989
AV
1291
1292 svg_text(Y, c->start_time, comm);
1293 }
1294 c->Y = Y;
1295 Y++;
1296 c = c->next;
1297 }
1298 p = p->next;
1299 }
1300}
1301
bbe2987b
AV
1302static void add_process_filter(const char *string)
1303{
e0dcd6fb
ACM
1304 int pid = strtoull(string, NULL, 10);
1305 struct process_filter *filt = malloc(sizeof(*filt));
bbe2987b 1306
bbe2987b
AV
1307 if (!filt)
1308 return;
1309
1310 filt->name = strdup(string);
1311 filt->pid = pid;
1312 filt->next = process_filter;
1313
1314 process_filter = filt;
1315}
1316
1317static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1318{
1319 struct process_filter *filt;
1320 if (!process_filter)
1321 return 1;
1322
1323 filt = process_filter;
1324 while (filt) {
1325 if (filt->pid && p->pid == filt->pid)
1326 return 1;
1327 if (strcmp(filt->name, c->comm) == 0)
1328 return 1;
1329 filt = filt->next;
1330 }
1331 return 0;
1332}
1333
985b12e6 1334static int determine_display_tasks_filtered(struct timechart *tchart)
bbe2987b
AV
1335{
1336 struct per_pid *p;
1337 struct per_pidcomm *c;
1338 int count = 0;
1339
5e22f6d2 1340 p = tchart->all_data;
bbe2987b
AV
1341 while (p) {
1342 p->display = 0;
1343 if (p->start_time == 1)
985b12e6 1344 p->start_time = tchart->first_time;
bbe2987b
AV
1345
1346 /* no exit marker, task kept running to the end */
1347 if (p->end_time == 0)
985b12e6 1348 p->end_time = tchart->last_time;
bbe2987b
AV
1349
1350 c = p->all;
1351
1352 while (c) {
1353 c->display = 0;
1354
1355 if (c->start_time == 1)
985b12e6 1356 c->start_time = tchart->first_time;
bbe2987b
AV
1357
1358 if (passes_filter(p, c)) {
1359 c->display = 1;
1360 p->display = 1;
1361 count++;
1362 }
1363
1364 if (c->end_time == 0)
985b12e6 1365 c->end_time = tchart->last_time;
bbe2987b
AV
1366
1367 c = c->next;
1368 }
1369 p = p->next;
1370 }
1371 return count;
1372}
1373
985b12e6 1374static int determine_display_tasks(struct timechart *tchart, u64 threshold)
10274989
AV
1375{
1376 struct per_pid *p;
1377 struct per_pidcomm *c;
1378 int count = 0;
1379
5e22f6d2 1380 p = tchart->all_data;
10274989
AV
1381 while (p) {
1382 p->display = 0;
1383 if (p->start_time == 1)
985b12e6 1384 p->start_time = tchart->first_time;
10274989
AV
1385
1386 /* no exit marker, task kept running to the end */
1387 if (p->end_time == 0)
985b12e6 1388 p->end_time = tchart->last_time;
753c505d 1389 if (p->total_time >= threshold)
10274989
AV
1390 p->display = 1;
1391
1392 c = p->all;
1393
1394 while (c) {
1395 c->display = 0;
1396
1397 if (c->start_time == 1)
985b12e6 1398 c->start_time = tchart->first_time;
10274989 1399
753c505d 1400 if (c->total_time >= threshold) {
10274989
AV
1401 c->display = 1;
1402 count++;
1403 }
1404
1405 if (c->end_time == 0)
985b12e6 1406 c->end_time = tchart->last_time;
10274989
AV
1407
1408 c = c->next;
1409 }
1410 p = p->next;
1411 }
1412 return count;
1413}
1414
b97b59b9
SF
1415static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1416{
1417 struct per_pid *p;
1418 struct per_pidcomm *c;
1419 int count = 0;
1420
1421 p = timechart->all_data;
1422 while (p) {
1423 /* no exit marker, task kept running to the end */
1424 if (p->end_time == 0)
1425 p->end_time = timechart->last_time;
1426
1427 c = p->all;
1428
1429 while (c) {
1430 c->display = 0;
1431
1432 if (c->total_bytes >= threshold) {
1433 c->display = 1;
1434 count++;
1435 }
10274989 1436
b97b59b9
SF
1437 if (c->end_time == 0)
1438 c->end_time = timechart->last_time;
1439
1440 c = c->next;
1441 }
1442 p = p->next;
1443 }
1444 return count;
1445}
10274989 1446
b97b59b9 1447#define BYTES_THRESH (1 * 1024 * 1024)
10274989
AV
1448#define TIME_THRESH 10000000
1449
985b12e6 1450static void write_svg_file(struct timechart *tchart, const char *filename)
10274989
AV
1451{
1452 u64 i;
1453 int count;
b97b59b9 1454 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
10274989 1455
985b12e6
ACM
1456 if (tchart->power_only)
1457 tchart->proc_num = 0;
10274989 1458
0a8eb275
SF
1459 /* We'd like to show at least proc_num tasks;
1460 * be less picky if we have fewer */
1461 do {
b97b59b9
SF
1462 if (process_filter)
1463 count = determine_display_tasks_filtered(tchart);
1464 else if (tchart->io_events)
1465 count = determine_display_io_tasks(tchart, thresh);
1466 else
1467 count = determine_display_tasks(tchart, thresh);
0a8eb275 1468 thresh /= 10;
985b12e6 1469 } while (!process_filter && thresh && count < tchart->proc_num);
10274989 1470
3415d8b8
SF
1471 if (!tchart->proc_num)
1472 count = 0;
1473
b97b59b9
SF
1474 if (tchart->io_events) {
1475 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
10274989 1476
b97b59b9
SF
1477 svg_time_grid(0.5);
1478 svg_io_legenda();
10274989 1479
b97b59b9
SF
1480 draw_io_bars(tchart);
1481 } else {
1482 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
10274989 1483
b97b59b9
SF
1484 svg_time_grid(0);
1485
1486 svg_legenda();
1487
1488 for (i = 0; i < tchart->numcpus; i++)
1489 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1490
1491 draw_cpu_usage(tchart);
1492 if (tchart->proc_num)
1493 draw_process_bars(tchart);
1494 if (!tchart->tasks_only)
1495 draw_c_p_states(tchart);
1496 if (tchart->proc_num)
1497 draw_wakeups(tchart);
1498 }
10274989
AV
1499
1500 svg_close();
1501}
1502
58b9a18e
SF
1503static int process_header(struct perf_file_section *section __maybe_unused,
1504 struct perf_header *ph,
1505 int feat,
1506 int fd __maybe_unused,
1507 void *data)
1508{
1509 struct timechart *tchart = data;
1510
1511 switch (feat) {
1512 case HEADER_NRCPUS:
1513 tchart->numcpus = ph->env.nr_cpus_avail;
1514 break;
c5079997
SF
1515
1516 case HEADER_CPU_TOPOLOGY:
1517 if (!tchart->topology)
1518 break;
1519
0ac1dd5b 1520 if (svg_build_topology_map(&ph->env))
c5079997
SF
1521 fprintf(stderr, "problem building topology\n");
1522 break;
1523
58b9a18e
SF
1524 default:
1525 break;
1526 }
1527
1528 return 0;
1529}
1530
985b12e6 1531static int __cmd_timechart(struct timechart *tchart, const char *output_name)
5cbd0805 1532{
32dcd021 1533 const struct evsel_str_handler power_tracepoints[] = {
5936678e
JO
1534 { "power:cpu_idle", process_sample_cpu_idle },
1535 { "power:cpu_frequency", process_sample_cpu_frequency },
1536 { "sched:sched_wakeup", process_sample_sched_wakeup },
1537 { "sched:sched_switch", process_sample_sched_switch },
1538#ifdef SUPPORT_OLD_POWER_EVENTS
1539 { "power:power_start", process_sample_power_start },
1540 { "power:power_end", process_sample_power_end },
1541 { "power:power_frequency", process_sample_power_frequency },
1542#endif
b97b59b9
SF
1543
1544 { "syscalls:sys_enter_read", process_enter_read },
1545 { "syscalls:sys_enter_pread64", process_enter_read },
1546 { "syscalls:sys_enter_readv", process_enter_read },
1547 { "syscalls:sys_enter_preadv", process_enter_read },
1548 { "syscalls:sys_enter_write", process_enter_write },
1549 { "syscalls:sys_enter_pwrite64", process_enter_write },
1550 { "syscalls:sys_enter_writev", process_enter_write },
1551 { "syscalls:sys_enter_pwritev", process_enter_write },
1552 { "syscalls:sys_enter_sync", process_enter_sync },
1553 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1554 { "syscalls:sys_enter_fsync", process_enter_sync },
1555 { "syscalls:sys_enter_msync", process_enter_sync },
1556 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1557 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1558 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1559 { "syscalls:sys_enter_sendto", process_enter_tx },
1560 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1561 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1562 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1563 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1564 { "syscalls:sys_enter_poll", process_enter_poll },
1565 { "syscalls:sys_enter_ppoll", process_enter_poll },
1566 { "syscalls:sys_enter_pselect6", process_enter_poll },
1567 { "syscalls:sys_enter_select", process_enter_poll },
1568
1569 { "syscalls:sys_exit_read", process_exit_read },
1570 { "syscalls:sys_exit_pread64", process_exit_read },
1571 { "syscalls:sys_exit_readv", process_exit_read },
1572 { "syscalls:sys_exit_preadv", process_exit_read },
1573 { "syscalls:sys_exit_write", process_exit_write },
1574 { "syscalls:sys_exit_pwrite64", process_exit_write },
1575 { "syscalls:sys_exit_writev", process_exit_write },
1576 { "syscalls:sys_exit_pwritev", process_exit_write },
1577 { "syscalls:sys_exit_sync", process_exit_sync },
1578 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1579 { "syscalls:sys_exit_fsync", process_exit_sync },
1580 { "syscalls:sys_exit_msync", process_exit_sync },
1581 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1582 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1583 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1584 { "syscalls:sys_exit_sendto", process_exit_tx },
1585 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1586 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1587 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1588 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1589 { "syscalls:sys_exit_poll", process_exit_poll },
1590 { "syscalls:sys_exit_ppoll", process_exit_poll },
1591 { "syscalls:sys_exit_pselect6", process_exit_poll },
1592 { "syscalls:sys_exit_select", process_exit_poll },
5936678e 1593 };
8ceb41d7 1594 struct perf_data data = {
2d4f2799
JO
1595 .path = input_name,
1596 .mode = PERF_DATA_MODE_READ,
1597 .force = tchart->force,
f5fc1412
JO
1598 };
1599
8ceb41d7 1600 struct perf_session *session = perf_session__new(&data, false,
985b12e6 1601 &tchart->tool);
d549c769 1602 int ret = -EINVAL;
10274989 1603
94c744b6 1604 if (session == NULL)
52e02834 1605 return -1;
94c744b6 1606
0a7e6d1b 1607 symbol__init(&session->header.env);
dc5c8190 1608
58b9a18e 1609 (void)perf_header__process_sections(&session->header,
8ceb41d7 1610 perf_data__fd(session->data),
58b9a18e
SF
1611 tchart,
1612 process_header);
1613
d549c769
ACM
1614 if (!perf_session__has_traces(session, "timechart record"))
1615 goto out_delete;
1616
5936678e
JO
1617 if (perf_session__set_tracepoints_handlers(session,
1618 power_tracepoints)) {
1619 pr_err("Initializing session tracepoint handlers failed\n");
1620 goto out_delete;
1621 }
1622
b7b61cbe 1623 ret = perf_session__process_events(session);
5cbd0805 1624 if (ret)
94c744b6 1625 goto out_delete;
10274989 1626
985b12e6 1627 end_sample_processing(tchart);
10274989 1628
5e22f6d2 1629 sort_pids(tchart);
10274989 1630
985b12e6 1631 write_svg_file(tchart, output_name);
10274989 1632
6beba7ad 1633 pr_info("Written %2.1f seconds of trace to %s.\n",
af4b2c97 1634 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
94c744b6
ACM
1635out_delete:
1636 perf_session__delete(session);
1637 return ret;
10274989
AV
1638}
1639
b97b59b9
SF
1640static int timechart__io_record(int argc, const char **argv)
1641{
1642 unsigned int rec_argc, i;
1643 const char **rec_argv;
1644 const char **p;
1645 char *filter = NULL;
1646
1647 const char * const common_args[] = {
1648 "record", "-a", "-R", "-c", "1",
1649 };
1650 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1651
1652 const char * const disk_events[] = {
1653 "syscalls:sys_enter_read",
1654 "syscalls:sys_enter_pread64",
1655 "syscalls:sys_enter_readv",
1656 "syscalls:sys_enter_preadv",
1657 "syscalls:sys_enter_write",
1658 "syscalls:sys_enter_pwrite64",
1659 "syscalls:sys_enter_writev",
1660 "syscalls:sys_enter_pwritev",
1661 "syscalls:sys_enter_sync",
1662 "syscalls:sys_enter_sync_file_range",
1663 "syscalls:sys_enter_fsync",
1664 "syscalls:sys_enter_msync",
1665
1666 "syscalls:sys_exit_read",
1667 "syscalls:sys_exit_pread64",
1668 "syscalls:sys_exit_readv",
1669 "syscalls:sys_exit_preadv",
1670 "syscalls:sys_exit_write",
1671 "syscalls:sys_exit_pwrite64",
1672 "syscalls:sys_exit_writev",
1673 "syscalls:sys_exit_pwritev",
1674 "syscalls:sys_exit_sync",
1675 "syscalls:sys_exit_sync_file_range",
1676 "syscalls:sys_exit_fsync",
1677 "syscalls:sys_exit_msync",
1678 };
1679 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1680
1681 const char * const net_events[] = {
1682 "syscalls:sys_enter_recvfrom",
1683 "syscalls:sys_enter_recvmmsg",
1684 "syscalls:sys_enter_recvmsg",
1685 "syscalls:sys_enter_sendto",
1686 "syscalls:sys_enter_sendmsg",
1687 "syscalls:sys_enter_sendmmsg",
1688
1689 "syscalls:sys_exit_recvfrom",
1690 "syscalls:sys_exit_recvmmsg",
1691 "syscalls:sys_exit_recvmsg",
1692 "syscalls:sys_exit_sendto",
1693 "syscalls:sys_exit_sendmsg",
1694 "syscalls:sys_exit_sendmmsg",
1695 };
1696 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1697
1698 const char * const poll_events[] = {
1699 "syscalls:sys_enter_epoll_pwait",
1700 "syscalls:sys_enter_epoll_wait",
1701 "syscalls:sys_enter_poll",
1702 "syscalls:sys_enter_ppoll",
1703 "syscalls:sys_enter_pselect6",
1704 "syscalls:sys_enter_select",
1705
1706 "syscalls:sys_exit_epoll_pwait",
1707 "syscalls:sys_exit_epoll_wait",
1708 "syscalls:sys_exit_poll",
1709 "syscalls:sys_exit_ppoll",
1710 "syscalls:sys_exit_pselect6",
1711 "syscalls:sys_exit_select",
1712 };
1713 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1714
1715 rec_argc = common_args_nr +
1716 disk_events_nr * 4 +
1717 net_events_nr * 4 +
1718 poll_events_nr * 4 +
1719 argc;
1720 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1721
1722 if (rec_argv == NULL)
1723 return -ENOMEM;
1724
c896f85a
MK
1725 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1726 free(rec_argv);
b97b59b9 1727 return -ENOMEM;
c896f85a 1728 }
b97b59b9
SF
1729
1730 p = rec_argv;
1731 for (i = 0; i < common_args_nr; i++)
1732 *p++ = strdup(common_args[i]);
1733
1734 for (i = 0; i < disk_events_nr; i++) {
1735 if (!is_valid_tracepoint(disk_events[i])) {
1736 rec_argc -= 4;
1737 continue;
1738 }
1739
1740 *p++ = "-e";
1741 *p++ = strdup(disk_events[i]);
1742 *p++ = "--filter";
1743 *p++ = filter;
1744 }
1745 for (i = 0; i < net_events_nr; i++) {
1746 if (!is_valid_tracepoint(net_events[i])) {
1747 rec_argc -= 4;
1748 continue;
1749 }
1750
1751 *p++ = "-e";
1752 *p++ = strdup(net_events[i]);
1753 *p++ = "--filter";
1754 *p++ = filter;
1755 }
1756 for (i = 0; i < poll_events_nr; i++) {
1757 if (!is_valid_tracepoint(poll_events[i])) {
1758 rec_argc -= 4;
1759 continue;
1760 }
1761
1762 *p++ = "-e";
1763 *p++ = strdup(poll_events[i]);
1764 *p++ = "--filter";
1765 *p++ = filter;
1766 }
1767
1768 for (i = 0; i < (unsigned int)argc; i++)
1769 *p++ = argv[i];
1770
b0ad8ea6 1771 return cmd_record(rec_argc, rec_argv);
b97b59b9
SF
1772}
1773
1774
985b12e6 1775static int timechart__record(struct timechart *tchart, int argc, const char **argv)
3c09eebd 1776{
367b3152
SF
1777 unsigned int rec_argc, i, j;
1778 const char **rec_argv;
1779 const char **p;
1780 unsigned int record_elems;
1781
1782 const char * const common_args[] = {
4a4d371a 1783 "record", "-a", "-R", "-c", "1",
367b3152
SF
1784 };
1785 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1786
6f8d67fa
SF
1787 const char * const backtrace_args[] = {
1788 "-g",
1789 };
1790 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1791
367b3152
SF
1792 const char * const power_args[] = {
1793 "-e", "power:cpu_frequency",
1794 "-e", "power:cpu_idle",
1795 };
1796 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1797
1798 const char * const old_power_args[] = {
1799#ifdef SUPPORT_OLD_POWER_EVENTS
73bdc715
ACM
1800 "-e", "power:power_start",
1801 "-e", "power:power_end",
1802 "-e", "power:power_frequency",
73bdc715 1803#endif
367b3152
SF
1804 };
1805 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1806
1807 const char * const tasks_args[] = {
73bdc715
ACM
1808 "-e", "sched:sched_wakeup",
1809 "-e", "sched:sched_switch",
1810 };
367b3152 1811 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
20c457b8
TR
1812
1813#ifdef SUPPORT_OLD_POWER_EVENTS
1814 if (!is_valid_tracepoint("power:cpu_idle") &&
1815 is_valid_tracepoint("power:power_start")) {
1816 use_old_power_events = 1;
367b3152
SF
1817 power_args_nr = 0;
1818 } else {
1819 old_power_args_nr = 0;
20c457b8
TR
1820 }
1821#endif
3c09eebd 1822
985b12e6 1823 if (tchart->power_only)
367b3152
SF
1824 tasks_args_nr = 0;
1825
985b12e6 1826 if (tchart->tasks_only) {
367b3152
SF
1827 power_args_nr = 0;
1828 old_power_args_nr = 0;
1829 }
1830
985b12e6 1831 if (!tchart->with_backtrace)
6f8d67fa
SF
1832 backtrace_args_no = 0;
1833
367b3152 1834 record_elems = common_args_nr + tasks_args_nr +
6f8d67fa 1835 power_args_nr + old_power_args_nr + backtrace_args_no;
367b3152
SF
1836
1837 rec_argc = record_elems + argc;
3c09eebd
AV
1838 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1839
ce47dc56
CS
1840 if (rec_argv == NULL)
1841 return -ENOMEM;
1842
367b3152
SF
1843 p = rec_argv;
1844 for (i = 0; i < common_args_nr; i++)
1845 *p++ = strdup(common_args[i]);
1846
6f8d67fa
SF
1847 for (i = 0; i < backtrace_args_no; i++)
1848 *p++ = strdup(backtrace_args[i]);
1849
367b3152
SF
1850 for (i = 0; i < tasks_args_nr; i++)
1851 *p++ = strdup(tasks_args[i]);
1852
1853 for (i = 0; i < power_args_nr; i++)
1854 *p++ = strdup(power_args[i]);
3c09eebd 1855
367b3152
SF
1856 for (i = 0; i < old_power_args_nr; i++)
1857 *p++ = strdup(old_power_args[i]);
3c09eebd 1858
263f89bf 1859 for (j = 0; j < (unsigned int)argc; j++)
367b3152
SF
1860 *p++ = argv[j];
1861
b0ad8ea6 1862 return cmd_record(rec_argc, rec_argv);
3c09eebd
AV
1863}
1864
bbe2987b 1865static int
1d037ca1
IT
1866parse_process(const struct option *opt __maybe_unused, const char *arg,
1867 int __maybe_unused unset)
bbe2987b
AV
1868{
1869 if (arg)
1870 add_process_filter(arg);
1871 return 0;
1872}
1873
e57a2dff
SF
1874static int
1875parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1876 int __maybe_unused unset)
1877{
1878 unsigned long duration = strtoul(arg, NULL, 0);
1879
1880 if (svg_highlight || svg_highlight_name)
1881 return -1;
1882
1883 if (duration)
1884 svg_highlight = duration;
1885 else
1886 svg_highlight_name = strdup(arg);
1887
1888 return 0;
1889}
1890
d243144a
SF
1891static int
1892parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1893{
1894 char unit = 'n';
1895 u64 *value = opt->value;
1896
1897 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1898 switch (unit) {
1899 case 'm':
af4b2c97 1900 *value *= NSEC_PER_MSEC;
d243144a
SF
1901 break;
1902 case 'u':
af4b2c97 1903 *value *= NSEC_PER_USEC;
d243144a
SF
1904 break;
1905 case 'n':
1906 break;
1907 default:
1908 return -1;
1909 }
1910 }
1911
1912 return 0;
1913}
1914
b0ad8ea6 1915int cmd_timechart(int argc, const char **argv)
73bdc715 1916{
985b12e6
ACM
1917 struct timechart tchart = {
1918 .tool = {
1919 .comm = process_comm_event,
1920 .fork = process_fork_event,
1921 .exit = process_exit_event,
1922 .sample = process_sample_event,
0a8cb85c 1923 .ordered_events = true,
985b12e6
ACM
1924 },
1925 .proc_num = 15,
af4b2c97 1926 .min_time = NSEC_PER_MSEC,
d243144a 1927 .merge_dist = 1000,
985b12e6 1928 };
73bdc715 1929 const char *output_name = "output.svg";
f371594a
ACM
1930 const struct option timechart_common_options[] = {
1931 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1932 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1933 OPT_END()
1934 };
367b3152 1935 const struct option timechart_options[] = {
73bdc715
ACM
1936 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1937 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1938 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
e57a2dff
SF
1939 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1940 "highlight tasks. Pass duration in ns or process name.",
1941 parse_highlight),
bbe2987b
AV
1942 OPT_CALLBACK('p', "process", NULL, "process",
1943 "process selector. Pass a pid or process name.",
1944 parse_process),
a7066709
HK
1945 OPT_CALLBACK(0, "symfs", NULL, "directory",
1946 "Look for files with symbols relative to this directory",
1947 symbol__config_symfs),
985b12e6 1948 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
54874e32 1949 "min. number of tasks to print"),
c5079997
SF
1950 OPT_BOOLEAN('t', "topology", &tchart.topology,
1951 "sort CPUs according to topology"),
d243144a
SF
1952 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1953 "skip EAGAIN errors"),
1954 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1955 "all IO faster than min-time will visually appear longer",
1956 parse_time),
1957 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1958 "merge events that are merge-dist us apart",
1959 parse_time),
44f7e432 1960 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
f371594a 1961 OPT_PARENT(timechart_common_options),
73bdc715 1962 };
33ec0caf
YS
1963 const char * const timechart_subcommands[] = { "record", NULL };
1964 const char *timechart_usage[] = {
73bdc715
ACM
1965 "perf timechart [<options>] {record}",
1966 NULL
1967 };
e5b2c207 1968 const struct option timechart_record_options[] = {
b97b59b9
SF
1969 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1970 "record only IO data"),
985b12e6 1971 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
f371594a 1972 OPT_PARENT(timechart_common_options),
367b3152 1973 };
e5b2c207 1974 const char * const timechart_record_usage[] = {
367b3152
SF
1975 "perf timechart record [<options>]",
1976 NULL
1977 };
33ec0caf
YS
1978 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1979 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
10274989 1980
985b12e6 1981 if (tchart.power_only && tchart.tasks_only) {
c87097d3
SF
1982 pr_err("-P and -T options cannot be used at the same time.\n");
1983 return -1;
1984 }
1985
367b3152 1986 if (argc && !strncmp(argv[0], "rec", 3)) {
e5b2c207
NK
1987 argc = parse_options(argc, argv, timechart_record_options,
1988 timechart_record_usage,
367b3152
SF
1989 PARSE_OPT_STOP_AT_NON_OPTION);
1990
985b12e6 1991 if (tchart.power_only && tchart.tasks_only) {
367b3152
SF
1992 pr_err("-P and -T options cannot be used at the same time.\n");
1993 return -1;
1994 }
1995
b97b59b9
SF
1996 if (tchart.io_only)
1997 return timechart__io_record(argc, argv);
1998 else
1999 return timechart__record(&tchart, argc, argv);
367b3152
SF
2000 } else if (argc)
2001 usage_with_options(timechart_usage, timechart_options);
10274989
AV
2002
2003 setup_pager();
2004
985b12e6 2005 return __cmd_timechart(&tchart, output_name);
10274989 2006}