]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - tools/perf/builtin-timechart.c
perf symbols: Clarify method to get DSO binary_type filename
[mirror_ubuntu-bionic-kernel.git] / tools / perf / builtin-timechart.c
CommitLineData
10274989
AV
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
c85cffa5
JO
15#include <traceevent/event-parse.h>
16
10274989
AV
17#include "builtin.h"
18
19#include "util/util.h"
20
21#include "util/color.h"
22#include <linux/list.h>
23#include "util/cache.h"
5936678e 24#include "util/evlist.h"
e3f42609 25#include "util/evsel.h"
10274989
AV
26#include <linux/rbtree.h>
27#include "util/symbol.h"
10274989
AV
28#include "util/callchain.h"
29#include "util/strlist.h"
30
31#include "perf.h"
32#include "util/header.h"
33#include "util/parse-options.h"
34#include "util/parse-events.h"
5cbd0805 35#include "util/event.h"
301a0b02 36#include "util/session.h"
10274989 37#include "util/svghelper.h"
45694aa7 38#include "util/tool.h"
f5fc1412 39#include "util/data.h"
10274989 40
20c457b8
TR
41#define SUPPORT_OLD_POWER_EVENTS 1
42#define PWR_EVENT_EXIT -1
43
5e22f6d2 44struct per_pid;
66cc3ada 45struct power_event;
436b0da0 46struct wake_event;
5e22f6d2 47
985b12e6
ACM
48struct timechart {
49 struct perf_tool tool;
5e22f6d2 50 struct per_pid *all_data;
66cc3ada 51 struct power_event *power_events;
436b0da0 52 struct wake_event *wake_events;
985b12e6
ACM
53 int proc_num;
54 unsigned int numcpus;
55 u64 min_freq, /* Lowest CPU frequency seen */
56 max_freq, /* Highest CPU frequency seen */
57 turbo_frequency,
58 first_time, last_time;
59 bool power_only,
60 tasks_only,
c5079997
SF
61 with_backtrace,
62 topology;
985b12e6 63};
10274989 64
10274989 65struct per_pidcomm;
10274989 66struct cpu_sample;
10274989
AV
67
68/*
69 * Datastructure layout:
70 * We keep an list of "pid"s, matching the kernels notion of a task struct.
71 * Each "pid" entry, has a list of "comm"s.
72 * this is because we want to track different programs different, while
73 * exec will reuse the original pid (by design).
74 * Each comm has a list of samples that will be used to draw
75 * final graph.
76 */
77
78struct per_pid {
79 struct per_pid *next;
80
81 int pid;
82 int ppid;
83
84 u64 start_time;
85 u64 end_time;
86 u64 total_time;
87 int display;
88
89 struct per_pidcomm *all;
90 struct per_pidcomm *current;
10274989
AV
91};
92
93
94struct per_pidcomm {
95 struct per_pidcomm *next;
96
97 u64 start_time;
98 u64 end_time;
99 u64 total_time;
100
101 int Y;
102 int display;
103
104 long state;
105 u64 state_since;
106
107 char *comm;
108
109 struct cpu_sample *samples;
110};
111
112struct sample_wrapper {
113 struct sample_wrapper *next;
114
115 u64 timestamp;
116 unsigned char data[0];
117};
118
119#define TYPE_NONE 0
120#define TYPE_RUNNING 1
121#define TYPE_WAITING 2
122#define TYPE_BLOCKED 3
123
124struct cpu_sample {
125 struct cpu_sample *next;
126
127 u64 start_time;
128 u64 end_time;
129 int type;
130 int cpu;
6f8d67fa 131 const char *backtrace;
10274989
AV
132};
133
10274989
AV
134#define CSTATE 1
135#define PSTATE 2
136
137struct power_event {
138 struct power_event *next;
139 int type;
140 int state;
141 u64 start_time;
142 u64 end_time;
143 int cpu;
144};
145
146struct wake_event {
147 struct wake_event *next;
148 int waker;
149 int wakee;
150 u64 time;
6f8d67fa 151 const char *backtrace;
10274989
AV
152};
153
bbe2987b 154struct process_filter {
5cbd0805
LZ
155 char *name;
156 int pid;
157 struct process_filter *next;
bbe2987b
AV
158};
159
160static struct process_filter *process_filter;
161
162
5e22f6d2 163static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
10274989 164{
5e22f6d2 165 struct per_pid *cursor = tchart->all_data;
10274989
AV
166
167 while (cursor) {
168 if (cursor->pid == pid)
169 return cursor;
170 cursor = cursor->next;
171 }
e0dcd6fb 172 cursor = zalloc(sizeof(*cursor));
10274989 173 assert(cursor != NULL);
10274989 174 cursor->pid = pid;
5e22f6d2
ACM
175 cursor->next = tchart->all_data;
176 tchart->all_data = cursor;
10274989
AV
177 return cursor;
178}
179
5e22f6d2 180static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
10274989
AV
181{
182 struct per_pid *p;
183 struct per_pidcomm *c;
5e22f6d2 184 p = find_create_pid(tchart, pid);
10274989
AV
185 c = p->all;
186 while (c) {
187 if (c->comm && strcmp(c->comm, comm) == 0) {
188 p->current = c;
189 return;
190 }
191 if (!c->comm) {
192 c->comm = strdup(comm);
193 p->current = c;
194 return;
195 }
196 c = c->next;
197 }
e0dcd6fb 198 c = zalloc(sizeof(*c));
10274989 199 assert(c != NULL);
10274989
AV
200 c->comm = strdup(comm);
201 p->current = c;
202 c->next = p->all;
203 p->all = c;
204}
205
5e22f6d2 206static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
10274989
AV
207{
208 struct per_pid *p, *pp;
5e22f6d2
ACM
209 p = find_create_pid(tchart, pid);
210 pp = find_create_pid(tchart, ppid);
10274989
AV
211 p->ppid = ppid;
212 if (pp->current && pp->current->comm && !p->current)
5e22f6d2 213 pid_set_comm(tchart, pid, pp->current->comm);
10274989
AV
214
215 p->start_time = timestamp;
216 if (p->current) {
217 p->current->start_time = timestamp;
218 p->current->state_since = timestamp;
219 }
220}
221
5e22f6d2 222static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
10274989
AV
223{
224 struct per_pid *p;
5e22f6d2 225 p = find_create_pid(tchart, pid);
10274989
AV
226 p->end_time = timestamp;
227 if (p->current)
228 p->current->end_time = timestamp;
229}
230
5e22f6d2
ACM
231static void pid_put_sample(struct timechart *tchart, int pid, int type,
232 unsigned int cpu, u64 start, u64 end,
233 const char *backtrace)
10274989
AV
234{
235 struct per_pid *p;
236 struct per_pidcomm *c;
237 struct cpu_sample *sample;
238
5e22f6d2 239 p = find_create_pid(tchart, pid);
10274989
AV
240 c = p->current;
241 if (!c) {
e0dcd6fb 242 c = zalloc(sizeof(*c));
10274989 243 assert(c != NULL);
10274989
AV
244 p->current = c;
245 c->next = p->all;
246 p->all = c;
247 }
248
e0dcd6fb 249 sample = zalloc(sizeof(*sample));
10274989 250 assert(sample != NULL);
10274989
AV
251 sample->start_time = start;
252 sample->end_time = end;
253 sample->type = type;
254 sample->next = c->samples;
255 sample->cpu = cpu;
6f8d67fa 256 sample->backtrace = backtrace;
10274989
AV
257 c->samples = sample;
258
259 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
260 c->total_time += (end-start);
261 p->total_time += (end-start);
262 }
263
264 if (c->start_time == 0 || c->start_time > start)
265 c->start_time = start;
266 if (p->start_time == 0 || p->start_time > start)
267 p->start_time = start;
10274989
AV
268}
269
270#define MAX_CPUS 4096
271
272static u64 cpus_cstate_start_times[MAX_CPUS];
273static int cpus_cstate_state[MAX_CPUS];
274static u64 cpus_pstate_start_times[MAX_CPUS];
275static u64 cpus_pstate_state[MAX_CPUS];
276
5e22f6d2 277static int process_comm_event(struct perf_tool *tool,
d20deb64 278 union perf_event *event,
1d037ca1
IT
279 struct perf_sample *sample __maybe_unused,
280 struct machine *machine __maybe_unused)
10274989 281{
5e22f6d2
ACM
282 struct timechart *tchart = container_of(tool, struct timechart, tool);
283 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
10274989
AV
284 return 0;
285}
d8f66248 286
5e22f6d2 287static int process_fork_event(struct perf_tool *tool,
d20deb64 288 union perf_event *event,
1d037ca1
IT
289 struct perf_sample *sample __maybe_unused,
290 struct machine *machine __maybe_unused)
10274989 291{
5e22f6d2
ACM
292 struct timechart *tchart = container_of(tool, struct timechart, tool);
293 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
10274989
AV
294 return 0;
295}
296
5e22f6d2 297static int process_exit_event(struct perf_tool *tool,
d20deb64 298 union perf_event *event,
1d037ca1
IT
299 struct perf_sample *sample __maybe_unused,
300 struct machine *machine __maybe_unused)
10274989 301{
5e22f6d2
ACM
302 struct timechart *tchart = container_of(tool, struct timechart, tool);
303 pid_exit(tchart, event->fork.pid, event->fork.time);
10274989
AV
304 return 0;
305}
306
20c457b8
TR
307#ifdef SUPPORT_OLD_POWER_EVENTS
308static int use_old_power_events;
20c457b8
TR
309#endif
310
10274989
AV
311static void c_state_start(int cpu, u64 timestamp, int state)
312{
313 cpus_cstate_start_times[cpu] = timestamp;
314 cpus_cstate_state[cpu] = state;
315}
316
66cc3ada 317static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
10274989 318{
e0dcd6fb
ACM
319 struct power_event *pwr = zalloc(sizeof(*pwr));
320
10274989
AV
321 if (!pwr)
322 return;
10274989
AV
323
324 pwr->state = cpus_cstate_state[cpu];
325 pwr->start_time = cpus_cstate_start_times[cpu];
326 pwr->end_time = timestamp;
327 pwr->cpu = cpu;
328 pwr->type = CSTATE;
66cc3ada 329 pwr->next = tchart->power_events;
10274989 330
66cc3ada 331 tchart->power_events = pwr;
10274989
AV
332}
333
985b12e6 334static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
10274989
AV
335{
336 struct power_event *pwr;
10274989
AV
337
338 if (new_freq > 8000000) /* detect invalid data */
339 return;
340
e0dcd6fb 341 pwr = zalloc(sizeof(*pwr));
10274989
AV
342 if (!pwr)
343 return;
10274989
AV
344
345 pwr->state = cpus_pstate_state[cpu];
346 pwr->start_time = cpus_pstate_start_times[cpu];
347 pwr->end_time = timestamp;
348 pwr->cpu = cpu;
349 pwr->type = PSTATE;
66cc3ada 350 pwr->next = tchart->power_events;
10274989
AV
351
352 if (!pwr->start_time)
985b12e6 353 pwr->start_time = tchart->first_time;
10274989 354
66cc3ada 355 tchart->power_events = pwr;
10274989
AV
356
357 cpus_pstate_state[cpu] = new_freq;
358 cpus_pstate_start_times[cpu] = timestamp;
359
985b12e6
ACM
360 if ((u64)new_freq > tchart->max_freq)
361 tchart->max_freq = new_freq;
10274989 362
985b12e6
ACM
363 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
364 tchart->min_freq = new_freq;
10274989 365
985b12e6
ACM
366 if (new_freq == tchart->max_freq - 1000)
367 tchart->turbo_frequency = tchart->max_freq;
10274989
AV
368}
369
5e22f6d2
ACM
370static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
371 int waker, int wakee, u8 flags, const char *backtrace)
10274989 372{
10274989 373 struct per_pid *p;
e0dcd6fb 374 struct wake_event *we = zalloc(sizeof(*we));
10274989 375
10274989
AV
376 if (!we)
377 return;
378
10274989 379 we->time = timestamp;
3ed0d21e 380 we->waker = waker;
6f8d67fa 381 we->backtrace = backtrace;
10274989 382
3ed0d21e 383 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
10274989
AV
384 we->waker = -1;
385
3ed0d21e 386 we->wakee = wakee;
436b0da0
ACM
387 we->next = tchart->wake_events;
388 tchart->wake_events = we;
5e22f6d2 389 p = find_create_pid(tchart, we->wakee);
10274989
AV
390
391 if (p && p->current && p->current->state == TYPE_NONE) {
392 p->current->state_since = timestamp;
393 p->current->state = TYPE_WAITING;
394 }
395 if (p && p->current && p->current->state == TYPE_BLOCKED) {
5e22f6d2 396 pid_put_sample(tchart, p->pid, p->current->state, cpu,
6f8d67fa 397 p->current->state_since, timestamp, NULL);
10274989
AV
398 p->current->state_since = timestamp;
399 p->current->state = TYPE_WAITING;
400 }
401}
402
5e22f6d2
ACM
403static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
404 int prev_pid, int next_pid, u64 prev_state,
405 const char *backtrace)
10274989
AV
406{
407 struct per_pid *p = NULL, *prev_p;
10274989 408
5e22f6d2 409 prev_p = find_create_pid(tchart, prev_pid);
10274989 410
5e22f6d2 411 p = find_create_pid(tchart, next_pid);
10274989
AV
412
413 if (prev_p->current && prev_p->current->state != TYPE_NONE)
5e22f6d2 414 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
6f8d67fa
SF
415 prev_p->current->state_since, timestamp,
416 backtrace);
10274989
AV
417 if (p && p->current) {
418 if (p->current->state != TYPE_NONE)
5e22f6d2 419 pid_put_sample(tchart, next_pid, p->current->state, cpu,
6f8d67fa
SF
420 p->current->state_since, timestamp,
421 backtrace);
10274989 422
33e26a1b
JL
423 p->current->state_since = timestamp;
424 p->current->state = TYPE_RUNNING;
10274989
AV
425 }
426
427 if (prev_p->current) {
428 prev_p->current->state = TYPE_NONE;
429 prev_p->current->state_since = timestamp;
3ed0d21e 430 if (prev_state & 2)
10274989 431 prev_p->current->state = TYPE_BLOCKED;
3ed0d21e 432 if (prev_state == 0)
10274989
AV
433 prev_p->current->state = TYPE_WAITING;
434 }
435}
436
6f8d67fa
SF
437static const char *cat_backtrace(union perf_event *event,
438 struct perf_sample *sample,
439 struct machine *machine)
440{
441 struct addr_location al;
442 unsigned int i;
443 char *p = NULL;
444 size_t p_len;
445 u8 cpumode = PERF_RECORD_MISC_USER;
446 struct addr_location tal;
447 struct ip_callchain *chain = sample->callchain;
448 FILE *f = open_memstream(&p, &p_len);
449
450 if (!f) {
451 perror("open_memstream error");
452 return NULL;
453 }
454
455 if (!chain)
456 goto exit;
457
458 if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
459 fprintf(stderr, "problem processing %d event, skipping it.\n",
460 event->header.type);
461 goto exit;
462 }
463
464 for (i = 0; i < chain->nr; i++) {
465 u64 ip;
466
467 if (callchain_param.order == ORDER_CALLEE)
468 ip = chain->ips[i];
469 else
470 ip = chain->ips[chain->nr - i - 1];
471
472 if (ip >= PERF_CONTEXT_MAX) {
473 switch (ip) {
474 case PERF_CONTEXT_HV:
475 cpumode = PERF_RECORD_MISC_HYPERVISOR;
476 break;
477 case PERF_CONTEXT_KERNEL:
478 cpumode = PERF_RECORD_MISC_KERNEL;
479 break;
480 case PERF_CONTEXT_USER:
481 cpumode = PERF_RECORD_MISC_USER;
482 break;
483 default:
484 pr_debug("invalid callchain context: "
485 "%"PRId64"\n", (s64) ip);
486
487 /*
488 * It seems the callchain is corrupted.
489 * Discard all.
490 */
491 free(p);
492 p = NULL;
493 goto exit;
494 }
495 continue;
496 }
497
498 tal.filtered = false;
499 thread__find_addr_location(al.thread, machine, cpumode,
500 MAP__FUNCTION, ip, &tal);
501
502 if (tal.sym)
503 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
504 tal.sym->name);
505 else
506 fprintf(f, "..... %016" PRIx64 "\n", ip);
507 }
508
509exit:
510 fclose(f);
511
512 return p;
513}
514
985b12e6
ACM
515typedef int (*tracepoint_handler)(struct timechart *tchart,
516 struct perf_evsel *evsel,
6f8d67fa
SF
517 struct perf_sample *sample,
518 const char *backtrace);
10274989 519
985b12e6 520static int process_sample_event(struct perf_tool *tool,
972ec653 521 union perf_event *event,
8d50e5b4 522 struct perf_sample *sample,
e3f42609 523 struct perf_evsel *evsel,
985b12e6 524 struct machine *machine)
10274989 525{
985b12e6
ACM
526 struct timechart *tchart = container_of(tool, struct timechart, tool);
527
e3f42609 528 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
985b12e6
ACM
529 if (!tchart->first_time || tchart->first_time > sample->time)
530 tchart->first_time = sample->time;
531 if (tchart->last_time < sample->time)
532 tchart->last_time = sample->time;
10274989 533 }
180f95e2 534
744a9719
ACM
535 if (evsel->handler != NULL) {
536 tracepoint_handler f = evsel->handler;
58b9a18e
SF
537 return f(tchart, evsel, sample,
538 cat_backtrace(event, sample, machine));
5936678e
JO
539 }
540
541 return 0;
542}
543
544static int
985b12e6
ACM
545process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
546 struct perf_evsel *evsel,
6f8d67fa
SF
547 struct perf_sample *sample,
548 const char *backtrace __maybe_unused)
5936678e 549{
3ed0d21e
SF
550 u32 state = perf_evsel__intval(evsel, sample, "state");
551 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
5936678e 552
3ed0d21e 553 if (state == (u32)PWR_EVENT_EXIT)
66cc3ada 554 c_state_end(tchart, cpu_id, sample->time);
5936678e 555 else
3ed0d21e 556 c_state_start(cpu_id, sample->time, state);
5936678e
JO
557 return 0;
558}
559
560static int
985b12e6
ACM
561process_sample_cpu_frequency(struct timechart *tchart,
562 struct perf_evsel *evsel,
6f8d67fa
SF
563 struct perf_sample *sample,
564 const char *backtrace __maybe_unused)
5936678e 565{
3ed0d21e
SF
566 u32 state = perf_evsel__intval(evsel, sample, "state");
567 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
5936678e 568
985b12e6 569 p_state_change(tchart, cpu_id, sample->time, state);
5936678e
JO
570 return 0;
571}
572
573static int
5e22f6d2 574process_sample_sched_wakeup(struct timechart *tchart,
985b12e6 575 struct perf_evsel *evsel,
6f8d67fa
SF
576 struct perf_sample *sample,
577 const char *backtrace)
5936678e 578{
3ed0d21e
SF
579 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
580 int waker = perf_evsel__intval(evsel, sample, "common_pid");
581 int wakee = perf_evsel__intval(evsel, sample, "pid");
5936678e 582
5e22f6d2 583 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
5936678e
JO
584 return 0;
585}
10274989 586
5936678e 587static int
5e22f6d2 588process_sample_sched_switch(struct timechart *tchart,
985b12e6 589 struct perf_evsel *evsel,
6f8d67fa
SF
590 struct perf_sample *sample,
591 const char *backtrace)
5936678e 592{
3ed0d21e
SF
593 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
594 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
595 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
10274989 596
5e22f6d2
ACM
597 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
598 prev_state, backtrace);
5936678e
JO
599 return 0;
600}
20c457b8
TR
601
602#ifdef SUPPORT_OLD_POWER_EVENTS
5936678e 603static int
985b12e6
ACM
604process_sample_power_start(struct timechart *tchart __maybe_unused,
605 struct perf_evsel *evsel,
6f8d67fa
SF
606 struct perf_sample *sample,
607 const char *backtrace __maybe_unused)
5936678e 608{
3ed0d21e
SF
609 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
610 u64 value = perf_evsel__intval(evsel, sample, "value");
5936678e 611
3ed0d21e 612 c_state_start(cpu_id, sample->time, value);
5936678e
JO
613 return 0;
614}
615
616static int
66cc3ada 617process_sample_power_end(struct timechart *tchart,
985b12e6 618 struct perf_evsel *evsel __maybe_unused,
6f8d67fa
SF
619 struct perf_sample *sample,
620 const char *backtrace __maybe_unused)
5936678e 621{
66cc3ada 622 c_state_end(tchart, sample->cpu, sample->time);
5936678e
JO
623 return 0;
624}
625
626static int
985b12e6
ACM
627process_sample_power_frequency(struct timechart *tchart,
628 struct perf_evsel *evsel,
6f8d67fa
SF
629 struct perf_sample *sample,
630 const char *backtrace __maybe_unused)
5936678e 631{
3ed0d21e
SF
632 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
633 u64 value = perf_evsel__intval(evsel, sample, "value");
5936678e 634
985b12e6 635 p_state_change(tchart, cpu_id, sample->time, value);
10274989
AV
636 return 0;
637}
5936678e 638#endif /* SUPPORT_OLD_POWER_EVENTS */
10274989
AV
639
640/*
641 * After the last sample we need to wrap up the current C/P state
642 * and close out each CPU for these.
643 */
985b12e6 644static void end_sample_processing(struct timechart *tchart)
10274989
AV
645{
646 u64 cpu;
647 struct power_event *pwr;
648
985b12e6 649 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
e0dcd6fb
ACM
650 /* C state */
651#if 0
652 pwr = zalloc(sizeof(*pwr));
10274989
AV
653 if (!pwr)
654 return;
10274989 655
10274989
AV
656 pwr->state = cpus_cstate_state[cpu];
657 pwr->start_time = cpus_cstate_start_times[cpu];
985b12e6 658 pwr->end_time = tchart->last_time;
10274989
AV
659 pwr->cpu = cpu;
660 pwr->type = CSTATE;
66cc3ada 661 pwr->next = tchart->power_events;
10274989 662
66cc3ada 663 tchart->power_events = pwr;
10274989
AV
664#endif
665 /* P state */
666
e0dcd6fb 667 pwr = zalloc(sizeof(*pwr));
10274989
AV
668 if (!pwr)
669 return;
10274989
AV
670
671 pwr->state = cpus_pstate_state[cpu];
672 pwr->start_time = cpus_pstate_start_times[cpu];
985b12e6 673 pwr->end_time = tchart->last_time;
10274989
AV
674 pwr->cpu = cpu;
675 pwr->type = PSTATE;
66cc3ada 676 pwr->next = tchart->power_events;
10274989
AV
677
678 if (!pwr->start_time)
985b12e6 679 pwr->start_time = tchart->first_time;
10274989 680 if (!pwr->state)
985b12e6 681 pwr->state = tchart->min_freq;
66cc3ada 682 tchart->power_events = pwr;
10274989
AV
683 }
684}
685
10274989
AV
686/*
687 * Sort the pid datastructure
688 */
5e22f6d2 689static void sort_pids(struct timechart *tchart)
10274989
AV
690{
691 struct per_pid *new_list, *p, *cursor, *prev;
692 /* sort by ppid first, then by pid, lowest to highest */
693
694 new_list = NULL;
695
5e22f6d2
ACM
696 while (tchart->all_data) {
697 p = tchart->all_data;
698 tchart->all_data = p->next;
10274989
AV
699 p->next = NULL;
700
701 if (new_list == NULL) {
702 new_list = p;
703 p->next = NULL;
704 continue;
705 }
706 prev = NULL;
707 cursor = new_list;
708 while (cursor) {
709 if (cursor->ppid > p->ppid ||
710 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
711 /* must insert before */
712 if (prev) {
713 p->next = prev->next;
714 prev->next = p;
715 cursor = NULL;
716 continue;
717 } else {
718 p->next = new_list;
719 new_list = p;
720 cursor = NULL;
721 continue;
722 }
723 }
724
725 prev = cursor;
726 cursor = cursor->next;
727 if (!cursor)
728 prev->next = p;
729 }
730 }
5e22f6d2 731 tchart->all_data = new_list;
10274989
AV
732}
733
734
985b12e6 735static void draw_c_p_states(struct timechart *tchart)
10274989
AV
736{
737 struct power_event *pwr;
66cc3ada 738 pwr = tchart->power_events;
10274989
AV
739
740 /*
741 * two pass drawing so that the P state bars are on top of the C state blocks
742 */
743 while (pwr) {
744 if (pwr->type == CSTATE)
745 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
746 pwr = pwr->next;
747 }
748
66cc3ada 749 pwr = tchart->power_events;
10274989
AV
750 while (pwr) {
751 if (pwr->type == PSTATE) {
752 if (!pwr->state)
985b12e6 753 pwr->state = tchart->min_freq;
10274989
AV
754 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
755 }
756 pwr = pwr->next;
757 }
758}
759
5e22f6d2 760static void draw_wakeups(struct timechart *tchart)
10274989
AV
761{
762 struct wake_event *we;
763 struct per_pid *p;
764 struct per_pidcomm *c;
765
436b0da0 766 we = tchart->wake_events;
10274989
AV
767 while (we) {
768 int from = 0, to = 0;
4f1202c8 769 char *task_from = NULL, *task_to = NULL;
10274989
AV
770
771 /* locate the column of the waker and wakee */
5e22f6d2 772 p = tchart->all_data;
10274989
AV
773 while (p) {
774 if (p->pid == we->waker || p->pid == we->wakee) {
775 c = p->all;
776 while (c) {
777 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
bbe2987b 778 if (p->pid == we->waker && !from) {
10274989 779 from = c->Y;
3bc2a39c 780 task_from = strdup(c->comm);
4f1202c8 781 }
bbe2987b 782 if (p->pid == we->wakee && !to) {
10274989 783 to = c->Y;
3bc2a39c 784 task_to = strdup(c->comm);
4f1202c8 785 }
10274989
AV
786 }
787 c = c->next;
788 }
3bc2a39c
AV
789 c = p->all;
790 while (c) {
791 if (p->pid == we->waker && !from) {
792 from = c->Y;
793 task_from = strdup(c->comm);
794 }
795 if (p->pid == we->wakee && !to) {
796 to = c->Y;
797 task_to = strdup(c->comm);
798 }
799 c = c->next;
800 }
10274989
AV
801 }
802 p = p->next;
803 }
804
3bc2a39c
AV
805 if (!task_from) {
806 task_from = malloc(40);
807 sprintf(task_from, "[%i]", we->waker);
808 }
809 if (!task_to) {
810 task_to = malloc(40);
811 sprintf(task_to, "[%i]", we->wakee);
812 }
813
10274989 814 if (we->waker == -1)
6f8d67fa 815 svg_interrupt(we->time, to, we->backtrace);
10274989 816 else if (from && to && abs(from - to) == 1)
6f8d67fa 817 svg_wakeline(we->time, from, to, we->backtrace);
10274989 818 else
6f8d67fa
SF
819 svg_partial_wakeline(we->time, from, task_from, to,
820 task_to, we->backtrace);
10274989 821 we = we->next;
3bc2a39c
AV
822
823 free(task_from);
824 free(task_to);
10274989
AV
825 }
826}
827
5e22f6d2 828static void draw_cpu_usage(struct timechart *tchart)
10274989
AV
829{
830 struct per_pid *p;
831 struct per_pidcomm *c;
832 struct cpu_sample *sample;
5e22f6d2 833 p = tchart->all_data;
10274989
AV
834 while (p) {
835 c = p->all;
836 while (c) {
837 sample = c->samples;
838 while (sample) {
8b6dcca0
SF
839 if (sample->type == TYPE_RUNNING) {
840 svg_process(sample->cpu,
841 sample->start_time,
842 sample->end_time,
de996228 843 p->pid,
8b6dcca0
SF
844 "sample",
845 c->comm,
846 sample->backtrace);
847 }
10274989
AV
848
849 sample = sample->next;
850 }
851 c = c->next;
852 }
853 p = p->next;
854 }
855}
856
985b12e6 857static void draw_process_bars(struct timechart *tchart)
10274989
AV
858{
859 struct per_pid *p;
860 struct per_pidcomm *c;
861 struct cpu_sample *sample;
862 int Y = 0;
863
985b12e6 864 Y = 2 * tchart->numcpus + 2;
10274989 865
5e22f6d2 866 p = tchart->all_data;
10274989
AV
867 while (p) {
868 c = p->all;
869 while (c) {
870 if (!c->display) {
871 c->Y = 0;
872 c = c->next;
873 continue;
874 }
875
a92fe7b3 876 svg_box(Y, c->start_time, c->end_time, "process");
10274989
AV
877 sample = c->samples;
878 while (sample) {
879 if (sample->type == TYPE_RUNNING)
6f8d67fa
SF
880 svg_running(Y, sample->cpu,
881 sample->start_time,
882 sample->end_time,
883 sample->backtrace);
10274989 884 if (sample->type == TYPE_BLOCKED)
6f8d67fa
SF
885 svg_blocked(Y, sample->cpu,
886 sample->start_time,
887 sample->end_time,
888 sample->backtrace);
10274989 889 if (sample->type == TYPE_WAITING)
6f8d67fa
SF
890 svg_waiting(Y, sample->cpu,
891 sample->start_time,
892 sample->end_time,
893 sample->backtrace);
10274989
AV
894 sample = sample->next;
895 }
896
897 if (c->comm) {
898 char comm[256];
899 if (c->total_time > 5000000000) /* 5 seconds */
900 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
901 else
902 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
903
904 svg_text(Y, c->start_time, comm);
905 }
906 c->Y = Y;
907 Y++;
908 c = c->next;
909 }
910 p = p->next;
911 }
912}
913
bbe2987b
AV
914static void add_process_filter(const char *string)
915{
e0dcd6fb
ACM
916 int pid = strtoull(string, NULL, 10);
917 struct process_filter *filt = malloc(sizeof(*filt));
bbe2987b 918
bbe2987b
AV
919 if (!filt)
920 return;
921
922 filt->name = strdup(string);
923 filt->pid = pid;
924 filt->next = process_filter;
925
926 process_filter = filt;
927}
928
929static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
930{
931 struct process_filter *filt;
932 if (!process_filter)
933 return 1;
934
935 filt = process_filter;
936 while (filt) {
937 if (filt->pid && p->pid == filt->pid)
938 return 1;
939 if (strcmp(filt->name, c->comm) == 0)
940 return 1;
941 filt = filt->next;
942 }
943 return 0;
944}
945
985b12e6 946static int determine_display_tasks_filtered(struct timechart *tchart)
bbe2987b
AV
947{
948 struct per_pid *p;
949 struct per_pidcomm *c;
950 int count = 0;
951
5e22f6d2 952 p = tchart->all_data;
bbe2987b
AV
953 while (p) {
954 p->display = 0;
955 if (p->start_time == 1)
985b12e6 956 p->start_time = tchart->first_time;
bbe2987b
AV
957
958 /* no exit marker, task kept running to the end */
959 if (p->end_time == 0)
985b12e6 960 p->end_time = tchart->last_time;
bbe2987b
AV
961
962 c = p->all;
963
964 while (c) {
965 c->display = 0;
966
967 if (c->start_time == 1)
985b12e6 968 c->start_time = tchart->first_time;
bbe2987b
AV
969
970 if (passes_filter(p, c)) {
971 c->display = 1;
972 p->display = 1;
973 count++;
974 }
975
976 if (c->end_time == 0)
985b12e6 977 c->end_time = tchart->last_time;
bbe2987b
AV
978
979 c = c->next;
980 }
981 p = p->next;
982 }
983 return count;
984}
985
985b12e6 986static int determine_display_tasks(struct timechart *tchart, u64 threshold)
10274989
AV
987{
988 struct per_pid *p;
989 struct per_pidcomm *c;
990 int count = 0;
991
bbe2987b 992 if (process_filter)
985b12e6 993 return determine_display_tasks_filtered(tchart);
bbe2987b 994
5e22f6d2 995 p = tchart->all_data;
10274989
AV
996 while (p) {
997 p->display = 0;
998 if (p->start_time == 1)
985b12e6 999 p->start_time = tchart->first_time;
10274989
AV
1000
1001 /* no exit marker, task kept running to the end */
1002 if (p->end_time == 0)
985b12e6 1003 p->end_time = tchart->last_time;
753c505d 1004 if (p->total_time >= threshold)
10274989
AV
1005 p->display = 1;
1006
1007 c = p->all;
1008
1009 while (c) {
1010 c->display = 0;
1011
1012 if (c->start_time == 1)
985b12e6 1013 c->start_time = tchart->first_time;
10274989 1014
753c505d 1015 if (c->total_time >= threshold) {
10274989
AV
1016 c->display = 1;
1017 count++;
1018 }
1019
1020 if (c->end_time == 0)
985b12e6 1021 c->end_time = tchart->last_time;
10274989
AV
1022
1023 c = c->next;
1024 }
1025 p = p->next;
1026 }
1027 return count;
1028}
1029
1030
1031
1032#define TIME_THRESH 10000000
1033
985b12e6 1034static void write_svg_file(struct timechart *tchart, const char *filename)
10274989
AV
1035{
1036 u64 i;
1037 int count;
0a8eb275 1038 int thresh = TIME_THRESH;
10274989 1039
985b12e6
ACM
1040 if (tchart->power_only)
1041 tchart->proc_num = 0;
10274989 1042
0a8eb275
SF
1043 /* We'd like to show at least proc_num tasks;
1044 * be less picky if we have fewer */
1045 do {
985b12e6 1046 count = determine_display_tasks(tchart, thresh);
0a8eb275 1047 thresh /= 10;
985b12e6 1048 } while (!process_filter && thresh && count < tchart->proc_num);
10274989 1049
985b12e6 1050 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
10274989 1051
5094b655 1052 svg_time_grid();
10274989
AV
1053 svg_legenda();
1054
985b12e6
ACM
1055 for (i = 0; i < tchart->numcpus; i++)
1056 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
10274989 1057
5e22f6d2 1058 draw_cpu_usage(tchart);
985b12e6
ACM
1059 if (tchart->proc_num)
1060 draw_process_bars(tchart);
1061 if (!tchart->tasks_only)
1062 draw_c_p_states(tchart);
1063 if (tchart->proc_num)
5e22f6d2 1064 draw_wakeups(tchart);
10274989
AV
1065
1066 svg_close();
1067}
1068
58b9a18e
SF
1069static int process_header(struct perf_file_section *section __maybe_unused,
1070 struct perf_header *ph,
1071 int feat,
1072 int fd __maybe_unused,
1073 void *data)
1074{
1075 struct timechart *tchart = data;
1076
1077 switch (feat) {
1078 case HEADER_NRCPUS:
1079 tchart->numcpus = ph->env.nr_cpus_avail;
1080 break;
c5079997
SF
1081
1082 case HEADER_CPU_TOPOLOGY:
1083 if (!tchart->topology)
1084 break;
1085
1086 if (svg_build_topology_map(ph->env.sibling_cores,
1087 ph->env.nr_sibling_cores,
1088 ph->env.sibling_threads,
1089 ph->env.nr_sibling_threads))
1090 fprintf(stderr, "problem building topology\n");
1091 break;
1092
58b9a18e
SF
1093 default:
1094 break;
1095 }
1096
1097 return 0;
1098}
1099
985b12e6 1100static int __cmd_timechart(struct timechart *tchart, const char *output_name)
5cbd0805 1101{
5936678e
JO
1102 const struct perf_evsel_str_handler power_tracepoints[] = {
1103 { "power:cpu_idle", process_sample_cpu_idle },
1104 { "power:cpu_frequency", process_sample_cpu_frequency },
1105 { "sched:sched_wakeup", process_sample_sched_wakeup },
1106 { "sched:sched_switch", process_sample_sched_switch },
1107#ifdef SUPPORT_OLD_POWER_EVENTS
1108 { "power:power_start", process_sample_power_start },
1109 { "power:power_end", process_sample_power_end },
1110 { "power:power_frequency", process_sample_power_frequency },
1111#endif
1112 };
f5fc1412
JO
1113 struct perf_data_file file = {
1114 .path = input_name,
1115 .mode = PERF_DATA_MODE_READ,
1116 };
1117
1118 struct perf_session *session = perf_session__new(&file, false,
985b12e6 1119 &tchart->tool);
d549c769 1120 int ret = -EINVAL;
10274989 1121
94c744b6
ACM
1122 if (session == NULL)
1123 return -ENOMEM;
1124
58b9a18e
SF
1125 (void)perf_header__process_sections(&session->header,
1126 perf_data_file__fd(session->file),
1127 tchart,
1128 process_header);
1129
d549c769
ACM
1130 if (!perf_session__has_traces(session, "timechart record"))
1131 goto out_delete;
1132
5936678e
JO
1133 if (perf_session__set_tracepoints_handlers(session,
1134 power_tracepoints)) {
1135 pr_err("Initializing session tracepoint handlers failed\n");
1136 goto out_delete;
1137 }
1138
985b12e6 1139 ret = perf_session__process_events(session, &tchart->tool);
5cbd0805 1140 if (ret)
94c744b6 1141 goto out_delete;
10274989 1142
985b12e6 1143 end_sample_processing(tchart);
10274989 1144
5e22f6d2 1145 sort_pids(tchart);
10274989 1146
985b12e6 1147 write_svg_file(tchart, output_name);
10274989 1148
6beba7ad 1149 pr_info("Written %2.1f seconds of trace to %s.\n",
985b12e6 1150 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
94c744b6
ACM
1151out_delete:
1152 perf_session__delete(session);
1153 return ret;
10274989
AV
1154}
1155
985b12e6 1156static int timechart__record(struct timechart *tchart, int argc, const char **argv)
3c09eebd 1157{
367b3152
SF
1158 unsigned int rec_argc, i, j;
1159 const char **rec_argv;
1160 const char **p;
1161 unsigned int record_elems;
1162
1163 const char * const common_args[] = {
4a4d371a 1164 "record", "-a", "-R", "-c", "1",
367b3152
SF
1165 };
1166 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1167
6f8d67fa
SF
1168 const char * const backtrace_args[] = {
1169 "-g",
1170 };
1171 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1172
367b3152
SF
1173 const char * const power_args[] = {
1174 "-e", "power:cpu_frequency",
1175 "-e", "power:cpu_idle",
1176 };
1177 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1178
1179 const char * const old_power_args[] = {
1180#ifdef SUPPORT_OLD_POWER_EVENTS
73bdc715
ACM
1181 "-e", "power:power_start",
1182 "-e", "power:power_end",
1183 "-e", "power:power_frequency",
73bdc715 1184#endif
367b3152
SF
1185 };
1186 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1187
1188 const char * const tasks_args[] = {
73bdc715
ACM
1189 "-e", "sched:sched_wakeup",
1190 "-e", "sched:sched_switch",
1191 };
367b3152 1192 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
20c457b8
TR
1193
1194#ifdef SUPPORT_OLD_POWER_EVENTS
1195 if (!is_valid_tracepoint("power:cpu_idle") &&
1196 is_valid_tracepoint("power:power_start")) {
1197 use_old_power_events = 1;
367b3152
SF
1198 power_args_nr = 0;
1199 } else {
1200 old_power_args_nr = 0;
20c457b8
TR
1201 }
1202#endif
3c09eebd 1203
985b12e6 1204 if (tchart->power_only)
367b3152
SF
1205 tasks_args_nr = 0;
1206
985b12e6 1207 if (tchart->tasks_only) {
367b3152
SF
1208 power_args_nr = 0;
1209 old_power_args_nr = 0;
1210 }
1211
985b12e6 1212 if (!tchart->with_backtrace)
6f8d67fa
SF
1213 backtrace_args_no = 0;
1214
367b3152 1215 record_elems = common_args_nr + tasks_args_nr +
6f8d67fa 1216 power_args_nr + old_power_args_nr + backtrace_args_no;
367b3152
SF
1217
1218 rec_argc = record_elems + argc;
3c09eebd
AV
1219 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1220
ce47dc56
CS
1221 if (rec_argv == NULL)
1222 return -ENOMEM;
1223
367b3152
SF
1224 p = rec_argv;
1225 for (i = 0; i < common_args_nr; i++)
1226 *p++ = strdup(common_args[i]);
1227
6f8d67fa
SF
1228 for (i = 0; i < backtrace_args_no; i++)
1229 *p++ = strdup(backtrace_args[i]);
1230
367b3152
SF
1231 for (i = 0; i < tasks_args_nr; i++)
1232 *p++ = strdup(tasks_args[i]);
1233
1234 for (i = 0; i < power_args_nr; i++)
1235 *p++ = strdup(power_args[i]);
3c09eebd 1236
367b3152
SF
1237 for (i = 0; i < old_power_args_nr; i++)
1238 *p++ = strdup(old_power_args[i]);
3c09eebd 1239
367b3152
SF
1240 for (j = 1; j < (unsigned int)argc; j++)
1241 *p++ = argv[j];
1242
1243 return cmd_record(rec_argc, rec_argv, NULL);
3c09eebd
AV
1244}
1245
bbe2987b 1246static int
1d037ca1
IT
1247parse_process(const struct option *opt __maybe_unused, const char *arg,
1248 int __maybe_unused unset)
bbe2987b
AV
1249{
1250 if (arg)
1251 add_process_filter(arg);
1252 return 0;
1253}
1254
73bdc715
ACM
1255int cmd_timechart(int argc, const char **argv,
1256 const char *prefix __maybe_unused)
1257{
985b12e6
ACM
1258 struct timechart tchart = {
1259 .tool = {
1260 .comm = process_comm_event,
1261 .fork = process_fork_event,
1262 .exit = process_exit_event,
1263 .sample = process_sample_event,
1264 .ordered_samples = true,
1265 },
1266 .proc_num = 15,
1267 };
73bdc715 1268 const char *output_name = "output.svg";
367b3152 1269 const struct option timechart_options[] = {
73bdc715
ACM
1270 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1271 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1272 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
985b12e6
ACM
1273 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1274 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
c87097d3 1275 "output processes data only"),
bbe2987b
AV
1276 OPT_CALLBACK('p', "process", NULL, "process",
1277 "process selector. Pass a pid or process name.",
1278 parse_process),
ec5761ea
DA
1279 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1280 "Look for files with symbols relative to this directory"),
985b12e6 1281 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
54874e32 1282 "min. number of tasks to print"),
c5079997
SF
1283 OPT_BOOLEAN('t', "topology", &tchart.topology,
1284 "sort CPUs according to topology"),
10274989 1285 OPT_END()
73bdc715
ACM
1286 };
1287 const char * const timechart_usage[] = {
1288 "perf timechart [<options>] {record}",
1289 NULL
1290 };
10274989 1291
367b3152 1292 const struct option record_options[] = {
985b12e6
ACM
1293 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1294 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
367b3152 1295 "output processes data only"),
985b12e6 1296 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
367b3152
SF
1297 OPT_END()
1298 };
1299 const char * const record_usage[] = {
1300 "perf timechart record [<options>]",
1301 NULL
1302 };
1303 argc = parse_options(argc, argv, timechart_options, timechart_usage,
3c09eebd 1304 PARSE_OPT_STOP_AT_NON_OPTION);
10274989 1305
985b12e6 1306 if (tchart.power_only && tchart.tasks_only) {
c87097d3
SF
1307 pr_err("-P and -T options cannot be used at the same time.\n");
1308 return -1;
1309 }
1310
655000e7
ACM
1311 symbol__init();
1312
367b3152
SF
1313 if (argc && !strncmp(argv[0], "rec", 3)) {
1314 argc = parse_options(argc, argv, record_options, record_usage,
1315 PARSE_OPT_STOP_AT_NON_OPTION);
1316
985b12e6 1317 if (tchart.power_only && tchart.tasks_only) {
367b3152
SF
1318 pr_err("-P and -T options cannot be used at the same time.\n");
1319 return -1;
1320 }
1321
985b12e6 1322 return timechart__record(&tchart, argc, argv);
367b3152
SF
1323 } else if (argc)
1324 usage_with_options(timechart_usage, timechart_options);
10274989
AV
1325
1326 setup_pager();
1327
985b12e6 1328 return __cmd_timechart(&tchart, output_name);
10274989 1329}