]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - tools/perf/builtin-timechart.c
perf tools: No need to test against NULL before calling free()
[mirror_ubuntu-hirsute-kernel.git] / tools / perf / builtin-timechart.c
CommitLineData
10274989
AV
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
c85cffa5
JO
15#include <traceevent/event-parse.h>
16
10274989
AV
17#include "builtin.h"
18
19#include "util/util.h"
20
21#include "util/color.h"
22#include <linux/list.h>
23#include "util/cache.h"
5936678e 24#include "util/evlist.h"
e3f42609 25#include "util/evsel.h"
10274989
AV
26#include <linux/rbtree.h>
27#include "util/symbol.h"
10274989
AV
28#include "util/callchain.h"
29#include "util/strlist.h"
30
31#include "perf.h"
32#include "util/header.h"
33#include "util/parse-options.h"
34#include "util/parse-events.h"
5cbd0805 35#include "util/event.h"
301a0b02 36#include "util/session.h"
10274989 37#include "util/svghelper.h"
45694aa7 38#include "util/tool.h"
f5fc1412 39#include "util/data.h"
10274989 40
20c457b8
TR
41#define SUPPORT_OLD_POWER_EVENTS 1
42#define PWR_EVENT_EXIT -1
43
5e22f6d2 44struct per_pid;
66cc3ada 45struct power_event;
436b0da0 46struct wake_event;
5e22f6d2 47
985b12e6
ACM
48struct timechart {
49 struct perf_tool tool;
5e22f6d2 50 struct per_pid *all_data;
66cc3ada 51 struct power_event *power_events;
436b0da0 52 struct wake_event *wake_events;
985b12e6
ACM
53 int proc_num;
54 unsigned int numcpus;
55 u64 min_freq, /* Lowest CPU frequency seen */
56 max_freq, /* Highest CPU frequency seen */
57 turbo_frequency,
58 first_time, last_time;
59 bool power_only,
60 tasks_only,
c5079997
SF
61 with_backtrace,
62 topology;
985b12e6 63};
10274989 64
10274989 65struct per_pidcomm;
10274989 66struct cpu_sample;
10274989
AV
67
68/*
69 * Datastructure layout:
70 * We keep an list of "pid"s, matching the kernels notion of a task struct.
71 * Each "pid" entry, has a list of "comm"s.
72 * this is because we want to track different programs different, while
73 * exec will reuse the original pid (by design).
74 * Each comm has a list of samples that will be used to draw
75 * final graph.
76 */
77
78struct per_pid {
79 struct per_pid *next;
80
81 int pid;
82 int ppid;
83
84 u64 start_time;
85 u64 end_time;
86 u64 total_time;
87 int display;
88
89 struct per_pidcomm *all;
90 struct per_pidcomm *current;
10274989
AV
91};
92
93
94struct per_pidcomm {
95 struct per_pidcomm *next;
96
97 u64 start_time;
98 u64 end_time;
99 u64 total_time;
100
101 int Y;
102 int display;
103
104 long state;
105 u64 state_since;
106
107 char *comm;
108
109 struct cpu_sample *samples;
110};
111
112struct sample_wrapper {
113 struct sample_wrapper *next;
114
115 u64 timestamp;
116 unsigned char data[0];
117};
118
119#define TYPE_NONE 0
120#define TYPE_RUNNING 1
121#define TYPE_WAITING 2
122#define TYPE_BLOCKED 3
123
124struct cpu_sample {
125 struct cpu_sample *next;
126
127 u64 start_time;
128 u64 end_time;
129 int type;
130 int cpu;
6f8d67fa 131 const char *backtrace;
10274989
AV
132};
133
10274989
AV
134#define CSTATE 1
135#define PSTATE 2
136
137struct power_event {
138 struct power_event *next;
139 int type;
140 int state;
141 u64 start_time;
142 u64 end_time;
143 int cpu;
144};
145
146struct wake_event {
147 struct wake_event *next;
148 int waker;
149 int wakee;
150 u64 time;
6f8d67fa 151 const char *backtrace;
10274989
AV
152};
153
bbe2987b 154struct process_filter {
5cbd0805
LZ
155 char *name;
156 int pid;
157 struct process_filter *next;
bbe2987b
AV
158};
159
160static struct process_filter *process_filter;
161
162
5e22f6d2 163static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
10274989 164{
5e22f6d2 165 struct per_pid *cursor = tchart->all_data;
10274989
AV
166
167 while (cursor) {
168 if (cursor->pid == pid)
169 return cursor;
170 cursor = cursor->next;
171 }
e0dcd6fb 172 cursor = zalloc(sizeof(*cursor));
10274989 173 assert(cursor != NULL);
10274989 174 cursor->pid = pid;
5e22f6d2
ACM
175 cursor->next = tchart->all_data;
176 tchart->all_data = cursor;
10274989
AV
177 return cursor;
178}
179
5e22f6d2 180static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
10274989
AV
181{
182 struct per_pid *p;
183 struct per_pidcomm *c;
5e22f6d2 184 p = find_create_pid(tchart, pid);
10274989
AV
185 c = p->all;
186 while (c) {
187 if (c->comm && strcmp(c->comm, comm) == 0) {
188 p->current = c;
189 return;
190 }
191 if (!c->comm) {
192 c->comm = strdup(comm);
193 p->current = c;
194 return;
195 }
196 c = c->next;
197 }
e0dcd6fb 198 c = zalloc(sizeof(*c));
10274989 199 assert(c != NULL);
10274989
AV
200 c->comm = strdup(comm);
201 p->current = c;
202 c->next = p->all;
203 p->all = c;
204}
205
5e22f6d2 206static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
10274989
AV
207{
208 struct per_pid *p, *pp;
5e22f6d2
ACM
209 p = find_create_pid(tchart, pid);
210 pp = find_create_pid(tchart, ppid);
10274989
AV
211 p->ppid = ppid;
212 if (pp->current && pp->current->comm && !p->current)
5e22f6d2 213 pid_set_comm(tchart, pid, pp->current->comm);
10274989
AV
214
215 p->start_time = timestamp;
216 if (p->current) {
217 p->current->start_time = timestamp;
218 p->current->state_since = timestamp;
219 }
220}
221
5e22f6d2 222static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
10274989
AV
223{
224 struct per_pid *p;
5e22f6d2 225 p = find_create_pid(tchart, pid);
10274989
AV
226 p->end_time = timestamp;
227 if (p->current)
228 p->current->end_time = timestamp;
229}
230
5e22f6d2
ACM
231static void pid_put_sample(struct timechart *tchart, int pid, int type,
232 unsigned int cpu, u64 start, u64 end,
233 const char *backtrace)
10274989
AV
234{
235 struct per_pid *p;
236 struct per_pidcomm *c;
237 struct cpu_sample *sample;
238
5e22f6d2 239 p = find_create_pid(tchart, pid);
10274989
AV
240 c = p->current;
241 if (!c) {
e0dcd6fb 242 c = zalloc(sizeof(*c));
10274989 243 assert(c != NULL);
10274989
AV
244 p->current = c;
245 c->next = p->all;
246 p->all = c;
247 }
248
e0dcd6fb 249 sample = zalloc(sizeof(*sample));
10274989 250 assert(sample != NULL);
10274989
AV
251 sample->start_time = start;
252 sample->end_time = end;
253 sample->type = type;
254 sample->next = c->samples;
255 sample->cpu = cpu;
6f8d67fa 256 sample->backtrace = backtrace;
10274989
AV
257 c->samples = sample;
258
259 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
260 c->total_time += (end-start);
261 p->total_time += (end-start);
262 }
263
264 if (c->start_time == 0 || c->start_time > start)
265 c->start_time = start;
266 if (p->start_time == 0 || p->start_time > start)
267 p->start_time = start;
10274989
AV
268}
269
270#define MAX_CPUS 4096
271
272static u64 cpus_cstate_start_times[MAX_CPUS];
273static int cpus_cstate_state[MAX_CPUS];
274static u64 cpus_pstate_start_times[MAX_CPUS];
275static u64 cpus_pstate_state[MAX_CPUS];
276
5e22f6d2 277static int process_comm_event(struct perf_tool *tool,
d20deb64 278 union perf_event *event,
1d037ca1
IT
279 struct perf_sample *sample __maybe_unused,
280 struct machine *machine __maybe_unused)
10274989 281{
5e22f6d2
ACM
282 struct timechart *tchart = container_of(tool, struct timechart, tool);
283 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
10274989
AV
284 return 0;
285}
d8f66248 286
5e22f6d2 287static int process_fork_event(struct perf_tool *tool,
d20deb64 288 union perf_event *event,
1d037ca1
IT
289 struct perf_sample *sample __maybe_unused,
290 struct machine *machine __maybe_unused)
10274989 291{
5e22f6d2
ACM
292 struct timechart *tchart = container_of(tool, struct timechart, tool);
293 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
10274989
AV
294 return 0;
295}
296
5e22f6d2 297static int process_exit_event(struct perf_tool *tool,
d20deb64 298 union perf_event *event,
1d037ca1
IT
299 struct perf_sample *sample __maybe_unused,
300 struct machine *machine __maybe_unused)
10274989 301{
5e22f6d2
ACM
302 struct timechart *tchart = container_of(tool, struct timechart, tool);
303 pid_exit(tchart, event->fork.pid, event->fork.time);
10274989
AV
304 return 0;
305}
306
20c457b8
TR
307#ifdef SUPPORT_OLD_POWER_EVENTS
308static int use_old_power_events;
20c457b8
TR
309#endif
310
10274989
AV
311static void c_state_start(int cpu, u64 timestamp, int state)
312{
313 cpus_cstate_start_times[cpu] = timestamp;
314 cpus_cstate_state[cpu] = state;
315}
316
66cc3ada 317static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
10274989 318{
e0dcd6fb
ACM
319 struct power_event *pwr = zalloc(sizeof(*pwr));
320
10274989
AV
321 if (!pwr)
322 return;
10274989
AV
323
324 pwr->state = cpus_cstate_state[cpu];
325 pwr->start_time = cpus_cstate_start_times[cpu];
326 pwr->end_time = timestamp;
327 pwr->cpu = cpu;
328 pwr->type = CSTATE;
66cc3ada 329 pwr->next = tchart->power_events;
10274989 330
66cc3ada 331 tchart->power_events = pwr;
10274989
AV
332}
333
985b12e6 334static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
10274989
AV
335{
336 struct power_event *pwr;
10274989
AV
337
338 if (new_freq > 8000000) /* detect invalid data */
339 return;
340
e0dcd6fb 341 pwr = zalloc(sizeof(*pwr));
10274989
AV
342 if (!pwr)
343 return;
10274989
AV
344
345 pwr->state = cpus_pstate_state[cpu];
346 pwr->start_time = cpus_pstate_start_times[cpu];
347 pwr->end_time = timestamp;
348 pwr->cpu = cpu;
349 pwr->type = PSTATE;
66cc3ada 350 pwr->next = tchart->power_events;
10274989
AV
351
352 if (!pwr->start_time)
985b12e6 353 pwr->start_time = tchart->first_time;
10274989 354
66cc3ada 355 tchart->power_events = pwr;
10274989
AV
356
357 cpus_pstate_state[cpu] = new_freq;
358 cpus_pstate_start_times[cpu] = timestamp;
359
985b12e6
ACM
360 if ((u64)new_freq > tchart->max_freq)
361 tchart->max_freq = new_freq;
10274989 362
985b12e6
ACM
363 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
364 tchart->min_freq = new_freq;
10274989 365
985b12e6
ACM
366 if (new_freq == tchart->max_freq - 1000)
367 tchart->turbo_frequency = tchart->max_freq;
10274989
AV
368}
369
5e22f6d2
ACM
370static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
371 int waker, int wakee, u8 flags, const char *backtrace)
10274989 372{
10274989 373 struct per_pid *p;
e0dcd6fb 374 struct wake_event *we = zalloc(sizeof(*we));
10274989 375
10274989
AV
376 if (!we)
377 return;
378
10274989 379 we->time = timestamp;
3ed0d21e 380 we->waker = waker;
6f8d67fa 381 we->backtrace = backtrace;
10274989 382
3ed0d21e 383 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
10274989
AV
384 we->waker = -1;
385
3ed0d21e 386 we->wakee = wakee;
436b0da0
ACM
387 we->next = tchart->wake_events;
388 tchart->wake_events = we;
5e22f6d2 389 p = find_create_pid(tchart, we->wakee);
10274989
AV
390
391 if (p && p->current && p->current->state == TYPE_NONE) {
392 p->current->state_since = timestamp;
393 p->current->state = TYPE_WAITING;
394 }
395 if (p && p->current && p->current->state == TYPE_BLOCKED) {
5e22f6d2 396 pid_put_sample(tchart, p->pid, p->current->state, cpu,
6f8d67fa 397 p->current->state_since, timestamp, NULL);
10274989
AV
398 p->current->state_since = timestamp;
399 p->current->state = TYPE_WAITING;
400 }
401}
402
5e22f6d2
ACM
403static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
404 int prev_pid, int next_pid, u64 prev_state,
405 const char *backtrace)
10274989
AV
406{
407 struct per_pid *p = NULL, *prev_p;
10274989 408
5e22f6d2 409 prev_p = find_create_pid(tchart, prev_pid);
10274989 410
5e22f6d2 411 p = find_create_pid(tchart, next_pid);
10274989
AV
412
413 if (prev_p->current && prev_p->current->state != TYPE_NONE)
5e22f6d2 414 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
6f8d67fa
SF
415 prev_p->current->state_since, timestamp,
416 backtrace);
10274989
AV
417 if (p && p->current) {
418 if (p->current->state != TYPE_NONE)
5e22f6d2 419 pid_put_sample(tchart, next_pid, p->current->state, cpu,
6f8d67fa
SF
420 p->current->state_since, timestamp,
421 backtrace);
10274989 422
33e26a1b
JL
423 p->current->state_since = timestamp;
424 p->current->state = TYPE_RUNNING;
10274989
AV
425 }
426
427 if (prev_p->current) {
428 prev_p->current->state = TYPE_NONE;
429 prev_p->current->state_since = timestamp;
3ed0d21e 430 if (prev_state & 2)
10274989 431 prev_p->current->state = TYPE_BLOCKED;
3ed0d21e 432 if (prev_state == 0)
10274989
AV
433 prev_p->current->state = TYPE_WAITING;
434 }
435}
436
6f8d67fa
SF
437static const char *cat_backtrace(union perf_event *event,
438 struct perf_sample *sample,
439 struct machine *machine)
440{
441 struct addr_location al;
442 unsigned int i;
443 char *p = NULL;
444 size_t p_len;
445 u8 cpumode = PERF_RECORD_MISC_USER;
446 struct addr_location tal;
447 struct ip_callchain *chain = sample->callchain;
448 FILE *f = open_memstream(&p, &p_len);
449
450 if (!f) {
451 perror("open_memstream error");
452 return NULL;
453 }
454
455 if (!chain)
456 goto exit;
457
458 if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
459 fprintf(stderr, "problem processing %d event, skipping it.\n",
460 event->header.type);
461 goto exit;
462 }
463
464 for (i = 0; i < chain->nr; i++) {
465 u64 ip;
466
467 if (callchain_param.order == ORDER_CALLEE)
468 ip = chain->ips[i];
469 else
470 ip = chain->ips[chain->nr - i - 1];
471
472 if (ip >= PERF_CONTEXT_MAX) {
473 switch (ip) {
474 case PERF_CONTEXT_HV:
475 cpumode = PERF_RECORD_MISC_HYPERVISOR;
476 break;
477 case PERF_CONTEXT_KERNEL:
478 cpumode = PERF_RECORD_MISC_KERNEL;
479 break;
480 case PERF_CONTEXT_USER:
481 cpumode = PERF_RECORD_MISC_USER;
482 break;
483 default:
484 pr_debug("invalid callchain context: "
485 "%"PRId64"\n", (s64) ip);
486
487 /*
488 * It seems the callchain is corrupted.
489 * Discard all.
490 */
491 free(p);
492 p = NULL;
493 goto exit;
494 }
495 continue;
496 }
497
498 tal.filtered = false;
499 thread__find_addr_location(al.thread, machine, cpumode,
500 MAP__FUNCTION, ip, &tal);
501
502 if (tal.sym)
503 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
504 tal.sym->name);
505 else
506 fprintf(f, "..... %016" PRIx64 "\n", ip);
507 }
508
509exit:
510 fclose(f);
511
512 return p;
513}
514
985b12e6
ACM
515typedef int (*tracepoint_handler)(struct timechart *tchart,
516 struct perf_evsel *evsel,
6f8d67fa
SF
517 struct perf_sample *sample,
518 const char *backtrace);
10274989 519
985b12e6 520static int process_sample_event(struct perf_tool *tool,
972ec653 521 union perf_event *event,
8d50e5b4 522 struct perf_sample *sample,
e3f42609 523 struct perf_evsel *evsel,
985b12e6 524 struct machine *machine)
10274989 525{
985b12e6
ACM
526 struct timechart *tchart = container_of(tool, struct timechart, tool);
527
e3f42609 528 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
985b12e6
ACM
529 if (!tchart->first_time || tchart->first_time > sample->time)
530 tchart->first_time = sample->time;
531 if (tchart->last_time < sample->time)
532 tchart->last_time = sample->time;
10274989 533 }
180f95e2 534
744a9719
ACM
535 if (evsel->handler != NULL) {
536 tracepoint_handler f = evsel->handler;
58b9a18e
SF
537 return f(tchart, evsel, sample,
538 cat_backtrace(event, sample, machine));
5936678e
JO
539 }
540
541 return 0;
542}
543
544static int
985b12e6
ACM
545process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
546 struct perf_evsel *evsel,
6f8d67fa
SF
547 struct perf_sample *sample,
548 const char *backtrace __maybe_unused)
5936678e 549{
3ed0d21e
SF
550 u32 state = perf_evsel__intval(evsel, sample, "state");
551 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
5936678e 552
3ed0d21e 553 if (state == (u32)PWR_EVENT_EXIT)
66cc3ada 554 c_state_end(tchart, cpu_id, sample->time);
5936678e 555 else
3ed0d21e 556 c_state_start(cpu_id, sample->time, state);
5936678e
JO
557 return 0;
558}
559
560static int
985b12e6
ACM
561process_sample_cpu_frequency(struct timechart *tchart,
562 struct perf_evsel *evsel,
6f8d67fa
SF
563 struct perf_sample *sample,
564 const char *backtrace __maybe_unused)
5936678e 565{
3ed0d21e
SF
566 u32 state = perf_evsel__intval(evsel, sample, "state");
567 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
5936678e 568
985b12e6 569 p_state_change(tchart, cpu_id, sample->time, state);
5936678e
JO
570 return 0;
571}
572
573static int
5e22f6d2 574process_sample_sched_wakeup(struct timechart *tchart,
985b12e6 575 struct perf_evsel *evsel,
6f8d67fa
SF
576 struct perf_sample *sample,
577 const char *backtrace)
5936678e 578{
3ed0d21e
SF
579 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
580 int waker = perf_evsel__intval(evsel, sample, "common_pid");
581 int wakee = perf_evsel__intval(evsel, sample, "pid");
5936678e 582
5e22f6d2 583 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
5936678e
JO
584 return 0;
585}
10274989 586
5936678e 587static int
5e22f6d2 588process_sample_sched_switch(struct timechart *tchart,
985b12e6 589 struct perf_evsel *evsel,
6f8d67fa
SF
590 struct perf_sample *sample,
591 const char *backtrace)
5936678e 592{
3ed0d21e
SF
593 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
594 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
595 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
10274989 596
5e22f6d2
ACM
597 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
598 prev_state, backtrace);
5936678e
JO
599 return 0;
600}
20c457b8
TR
601
602#ifdef SUPPORT_OLD_POWER_EVENTS
5936678e 603static int
985b12e6
ACM
604process_sample_power_start(struct timechart *tchart __maybe_unused,
605 struct perf_evsel *evsel,
6f8d67fa
SF
606 struct perf_sample *sample,
607 const char *backtrace __maybe_unused)
5936678e 608{
3ed0d21e
SF
609 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
610 u64 value = perf_evsel__intval(evsel, sample, "value");
5936678e 611
3ed0d21e 612 c_state_start(cpu_id, sample->time, value);
5936678e
JO
613 return 0;
614}
615
616static int
66cc3ada 617process_sample_power_end(struct timechart *tchart,
985b12e6 618 struct perf_evsel *evsel __maybe_unused,
6f8d67fa
SF
619 struct perf_sample *sample,
620 const char *backtrace __maybe_unused)
5936678e 621{
66cc3ada 622 c_state_end(tchart, sample->cpu, sample->time);
5936678e
JO
623 return 0;
624}
625
626static int
985b12e6
ACM
627process_sample_power_frequency(struct timechart *tchart,
628 struct perf_evsel *evsel,
6f8d67fa
SF
629 struct perf_sample *sample,
630 const char *backtrace __maybe_unused)
5936678e 631{
3ed0d21e
SF
632 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
633 u64 value = perf_evsel__intval(evsel, sample, "value");
5936678e 634
985b12e6 635 p_state_change(tchart, cpu_id, sample->time, value);
10274989
AV
636 return 0;
637}
5936678e 638#endif /* SUPPORT_OLD_POWER_EVENTS */
10274989
AV
639
640/*
641 * After the last sample we need to wrap up the current C/P state
642 * and close out each CPU for these.
643 */
985b12e6 644static void end_sample_processing(struct timechart *tchart)
10274989
AV
645{
646 u64 cpu;
647 struct power_event *pwr;
648
985b12e6 649 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
e0dcd6fb
ACM
650 /* C state */
651#if 0
652 pwr = zalloc(sizeof(*pwr));
10274989
AV
653 if (!pwr)
654 return;
10274989 655
10274989
AV
656 pwr->state = cpus_cstate_state[cpu];
657 pwr->start_time = cpus_cstate_start_times[cpu];
985b12e6 658 pwr->end_time = tchart->last_time;
10274989
AV
659 pwr->cpu = cpu;
660 pwr->type = CSTATE;
66cc3ada 661 pwr->next = tchart->power_events;
10274989 662
66cc3ada 663 tchart->power_events = pwr;
10274989
AV
664#endif
665 /* P state */
666
e0dcd6fb 667 pwr = zalloc(sizeof(*pwr));
10274989
AV
668 if (!pwr)
669 return;
10274989
AV
670
671 pwr->state = cpus_pstate_state[cpu];
672 pwr->start_time = cpus_pstate_start_times[cpu];
985b12e6 673 pwr->end_time = tchart->last_time;
10274989
AV
674 pwr->cpu = cpu;
675 pwr->type = PSTATE;
66cc3ada 676 pwr->next = tchart->power_events;
10274989
AV
677
678 if (!pwr->start_time)
985b12e6 679 pwr->start_time = tchart->first_time;
10274989 680 if (!pwr->state)
985b12e6 681 pwr->state = tchart->min_freq;
66cc3ada 682 tchart->power_events = pwr;
10274989
AV
683 }
684}
685
10274989
AV
686/*
687 * Sort the pid datastructure
688 */
5e22f6d2 689static void sort_pids(struct timechart *tchart)
10274989
AV
690{
691 struct per_pid *new_list, *p, *cursor, *prev;
692 /* sort by ppid first, then by pid, lowest to highest */
693
694 new_list = NULL;
695
5e22f6d2
ACM
696 while (tchart->all_data) {
697 p = tchart->all_data;
698 tchart->all_data = p->next;
10274989
AV
699 p->next = NULL;
700
701 if (new_list == NULL) {
702 new_list = p;
703 p->next = NULL;
704 continue;
705 }
706 prev = NULL;
707 cursor = new_list;
708 while (cursor) {
709 if (cursor->ppid > p->ppid ||
710 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
711 /* must insert before */
712 if (prev) {
713 p->next = prev->next;
714 prev->next = p;
715 cursor = NULL;
716 continue;
717 } else {
718 p->next = new_list;
719 new_list = p;
720 cursor = NULL;
721 continue;
722 }
723 }
724
725 prev = cursor;
726 cursor = cursor->next;
727 if (!cursor)
728 prev->next = p;
729 }
730 }
5e22f6d2 731 tchart->all_data = new_list;
10274989
AV
732}
733
734
985b12e6 735static void draw_c_p_states(struct timechart *tchart)
10274989
AV
736{
737 struct power_event *pwr;
66cc3ada 738 pwr = tchart->power_events;
10274989
AV
739
740 /*
741 * two pass drawing so that the P state bars are on top of the C state blocks
742 */
743 while (pwr) {
744 if (pwr->type == CSTATE)
745 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
746 pwr = pwr->next;
747 }
748
66cc3ada 749 pwr = tchart->power_events;
10274989
AV
750 while (pwr) {
751 if (pwr->type == PSTATE) {
752 if (!pwr->state)
985b12e6 753 pwr->state = tchart->min_freq;
10274989
AV
754 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
755 }
756 pwr = pwr->next;
757 }
758}
759
5e22f6d2 760static void draw_wakeups(struct timechart *tchart)
10274989
AV
761{
762 struct wake_event *we;
763 struct per_pid *p;
764 struct per_pidcomm *c;
765
436b0da0 766 we = tchart->wake_events;
10274989
AV
767 while (we) {
768 int from = 0, to = 0;
4f1202c8 769 char *task_from = NULL, *task_to = NULL;
10274989
AV
770
771 /* locate the column of the waker and wakee */
5e22f6d2 772 p = tchart->all_data;
10274989
AV
773 while (p) {
774 if (p->pid == we->waker || p->pid == we->wakee) {
775 c = p->all;
776 while (c) {
777 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
bbe2987b 778 if (p->pid == we->waker && !from) {
10274989 779 from = c->Y;
3bc2a39c 780 task_from = strdup(c->comm);
4f1202c8 781 }
bbe2987b 782 if (p->pid == we->wakee && !to) {
10274989 783 to = c->Y;
3bc2a39c 784 task_to = strdup(c->comm);
4f1202c8 785 }
10274989
AV
786 }
787 c = c->next;
788 }
3bc2a39c
AV
789 c = p->all;
790 while (c) {
791 if (p->pid == we->waker && !from) {
792 from = c->Y;
793 task_from = strdup(c->comm);
794 }
795 if (p->pid == we->wakee && !to) {
796 to = c->Y;
797 task_to = strdup(c->comm);
798 }
799 c = c->next;
800 }
10274989
AV
801 }
802 p = p->next;
803 }
804
3bc2a39c
AV
805 if (!task_from) {
806 task_from = malloc(40);
807 sprintf(task_from, "[%i]", we->waker);
808 }
809 if (!task_to) {
810 task_to = malloc(40);
811 sprintf(task_to, "[%i]", we->wakee);
812 }
813
10274989 814 if (we->waker == -1)
6f8d67fa 815 svg_interrupt(we->time, to, we->backtrace);
10274989 816 else if (from && to && abs(from - to) == 1)
6f8d67fa 817 svg_wakeline(we->time, from, to, we->backtrace);
10274989 818 else
6f8d67fa
SF
819 svg_partial_wakeline(we->time, from, task_from, to,
820 task_to, we->backtrace);
10274989 821 we = we->next;
3bc2a39c
AV
822
823 free(task_from);
824 free(task_to);
10274989
AV
825 }
826}
827
5e22f6d2 828static void draw_cpu_usage(struct timechart *tchart)
10274989
AV
829{
830 struct per_pid *p;
831 struct per_pidcomm *c;
832 struct cpu_sample *sample;
5e22f6d2 833 p = tchart->all_data;
10274989
AV
834 while (p) {
835 c = p->all;
836 while (c) {
837 sample = c->samples;
838 while (sample) {
8b6dcca0
SF
839 if (sample->type == TYPE_RUNNING) {
840 svg_process(sample->cpu,
841 sample->start_time,
842 sample->end_time,
de996228 843 p->pid,
8b6dcca0
SF
844 c->comm,
845 sample->backtrace);
846 }
10274989
AV
847
848 sample = sample->next;
849 }
850 c = c->next;
851 }
852 p = p->next;
853 }
854}
855
985b12e6 856static void draw_process_bars(struct timechart *tchart)
10274989
AV
857{
858 struct per_pid *p;
859 struct per_pidcomm *c;
860 struct cpu_sample *sample;
861 int Y = 0;
862
985b12e6 863 Y = 2 * tchart->numcpus + 2;
10274989 864
5e22f6d2 865 p = tchart->all_data;
10274989
AV
866 while (p) {
867 c = p->all;
868 while (c) {
869 if (!c->display) {
870 c->Y = 0;
871 c = c->next;
872 continue;
873 }
874
a92fe7b3 875 svg_box(Y, c->start_time, c->end_time, "process");
10274989
AV
876 sample = c->samples;
877 while (sample) {
878 if (sample->type == TYPE_RUNNING)
6f8d67fa
SF
879 svg_running(Y, sample->cpu,
880 sample->start_time,
881 sample->end_time,
882 sample->backtrace);
10274989 883 if (sample->type == TYPE_BLOCKED)
6f8d67fa
SF
884 svg_blocked(Y, sample->cpu,
885 sample->start_time,
886 sample->end_time,
887 sample->backtrace);
10274989 888 if (sample->type == TYPE_WAITING)
6f8d67fa
SF
889 svg_waiting(Y, sample->cpu,
890 sample->start_time,
891 sample->end_time,
892 sample->backtrace);
10274989
AV
893 sample = sample->next;
894 }
895
896 if (c->comm) {
897 char comm[256];
898 if (c->total_time > 5000000000) /* 5 seconds */
899 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
900 else
901 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
902
903 svg_text(Y, c->start_time, comm);
904 }
905 c->Y = Y;
906 Y++;
907 c = c->next;
908 }
909 p = p->next;
910 }
911}
912
bbe2987b
AV
913static void add_process_filter(const char *string)
914{
e0dcd6fb
ACM
915 int pid = strtoull(string, NULL, 10);
916 struct process_filter *filt = malloc(sizeof(*filt));
bbe2987b 917
bbe2987b
AV
918 if (!filt)
919 return;
920
921 filt->name = strdup(string);
922 filt->pid = pid;
923 filt->next = process_filter;
924
925 process_filter = filt;
926}
927
928static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
929{
930 struct process_filter *filt;
931 if (!process_filter)
932 return 1;
933
934 filt = process_filter;
935 while (filt) {
936 if (filt->pid && p->pid == filt->pid)
937 return 1;
938 if (strcmp(filt->name, c->comm) == 0)
939 return 1;
940 filt = filt->next;
941 }
942 return 0;
943}
944
985b12e6 945static int determine_display_tasks_filtered(struct timechart *tchart)
bbe2987b
AV
946{
947 struct per_pid *p;
948 struct per_pidcomm *c;
949 int count = 0;
950
5e22f6d2 951 p = tchart->all_data;
bbe2987b
AV
952 while (p) {
953 p->display = 0;
954 if (p->start_time == 1)
985b12e6 955 p->start_time = tchart->first_time;
bbe2987b
AV
956
957 /* no exit marker, task kept running to the end */
958 if (p->end_time == 0)
985b12e6 959 p->end_time = tchart->last_time;
bbe2987b
AV
960
961 c = p->all;
962
963 while (c) {
964 c->display = 0;
965
966 if (c->start_time == 1)
985b12e6 967 c->start_time = tchart->first_time;
bbe2987b
AV
968
969 if (passes_filter(p, c)) {
970 c->display = 1;
971 p->display = 1;
972 count++;
973 }
974
975 if (c->end_time == 0)
985b12e6 976 c->end_time = tchart->last_time;
bbe2987b
AV
977
978 c = c->next;
979 }
980 p = p->next;
981 }
982 return count;
983}
984
985b12e6 985static int determine_display_tasks(struct timechart *tchart, u64 threshold)
10274989
AV
986{
987 struct per_pid *p;
988 struct per_pidcomm *c;
989 int count = 0;
990
bbe2987b 991 if (process_filter)
985b12e6 992 return determine_display_tasks_filtered(tchart);
bbe2987b 993
5e22f6d2 994 p = tchart->all_data;
10274989
AV
995 while (p) {
996 p->display = 0;
997 if (p->start_time == 1)
985b12e6 998 p->start_time = tchart->first_time;
10274989
AV
999
1000 /* no exit marker, task kept running to the end */
1001 if (p->end_time == 0)
985b12e6 1002 p->end_time = tchart->last_time;
753c505d 1003 if (p->total_time >= threshold)
10274989
AV
1004 p->display = 1;
1005
1006 c = p->all;
1007
1008 while (c) {
1009 c->display = 0;
1010
1011 if (c->start_time == 1)
985b12e6 1012 c->start_time = tchart->first_time;
10274989 1013
753c505d 1014 if (c->total_time >= threshold) {
10274989
AV
1015 c->display = 1;
1016 count++;
1017 }
1018
1019 if (c->end_time == 0)
985b12e6 1020 c->end_time = tchart->last_time;
10274989
AV
1021
1022 c = c->next;
1023 }
1024 p = p->next;
1025 }
1026 return count;
1027}
1028
1029
1030
1031#define TIME_THRESH 10000000
1032
985b12e6 1033static void write_svg_file(struct timechart *tchart, const char *filename)
10274989
AV
1034{
1035 u64 i;
1036 int count;
0a8eb275 1037 int thresh = TIME_THRESH;
10274989 1038
985b12e6
ACM
1039 if (tchart->power_only)
1040 tchart->proc_num = 0;
10274989 1041
0a8eb275
SF
1042 /* We'd like to show at least proc_num tasks;
1043 * be less picky if we have fewer */
1044 do {
985b12e6 1045 count = determine_display_tasks(tchart, thresh);
0a8eb275 1046 thresh /= 10;
985b12e6 1047 } while (!process_filter && thresh && count < tchart->proc_num);
10274989 1048
985b12e6 1049 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
10274989 1050
5094b655 1051 svg_time_grid();
10274989
AV
1052 svg_legenda();
1053
985b12e6
ACM
1054 for (i = 0; i < tchart->numcpus; i++)
1055 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
10274989 1056
5e22f6d2 1057 draw_cpu_usage(tchart);
985b12e6
ACM
1058 if (tchart->proc_num)
1059 draw_process_bars(tchart);
1060 if (!tchart->tasks_only)
1061 draw_c_p_states(tchart);
1062 if (tchart->proc_num)
5e22f6d2 1063 draw_wakeups(tchart);
10274989
AV
1064
1065 svg_close();
1066}
1067
58b9a18e
SF
1068static int process_header(struct perf_file_section *section __maybe_unused,
1069 struct perf_header *ph,
1070 int feat,
1071 int fd __maybe_unused,
1072 void *data)
1073{
1074 struct timechart *tchart = data;
1075
1076 switch (feat) {
1077 case HEADER_NRCPUS:
1078 tchart->numcpus = ph->env.nr_cpus_avail;
1079 break;
c5079997
SF
1080
1081 case HEADER_CPU_TOPOLOGY:
1082 if (!tchart->topology)
1083 break;
1084
1085 if (svg_build_topology_map(ph->env.sibling_cores,
1086 ph->env.nr_sibling_cores,
1087 ph->env.sibling_threads,
1088 ph->env.nr_sibling_threads))
1089 fprintf(stderr, "problem building topology\n");
1090 break;
1091
58b9a18e
SF
1092 default:
1093 break;
1094 }
1095
1096 return 0;
1097}
1098
985b12e6 1099static int __cmd_timechart(struct timechart *tchart, const char *output_name)
5cbd0805 1100{
5936678e
JO
1101 const struct perf_evsel_str_handler power_tracepoints[] = {
1102 { "power:cpu_idle", process_sample_cpu_idle },
1103 { "power:cpu_frequency", process_sample_cpu_frequency },
1104 { "sched:sched_wakeup", process_sample_sched_wakeup },
1105 { "sched:sched_switch", process_sample_sched_switch },
1106#ifdef SUPPORT_OLD_POWER_EVENTS
1107 { "power:power_start", process_sample_power_start },
1108 { "power:power_end", process_sample_power_end },
1109 { "power:power_frequency", process_sample_power_frequency },
1110#endif
1111 };
f5fc1412
JO
1112 struct perf_data_file file = {
1113 .path = input_name,
1114 .mode = PERF_DATA_MODE_READ,
1115 };
1116
1117 struct perf_session *session = perf_session__new(&file, false,
985b12e6 1118 &tchart->tool);
d549c769 1119 int ret = -EINVAL;
10274989 1120
94c744b6
ACM
1121 if (session == NULL)
1122 return -ENOMEM;
1123
58b9a18e
SF
1124 (void)perf_header__process_sections(&session->header,
1125 perf_data_file__fd(session->file),
1126 tchart,
1127 process_header);
1128
d549c769
ACM
1129 if (!perf_session__has_traces(session, "timechart record"))
1130 goto out_delete;
1131
5936678e
JO
1132 if (perf_session__set_tracepoints_handlers(session,
1133 power_tracepoints)) {
1134 pr_err("Initializing session tracepoint handlers failed\n");
1135 goto out_delete;
1136 }
1137
985b12e6 1138 ret = perf_session__process_events(session, &tchart->tool);
5cbd0805 1139 if (ret)
94c744b6 1140 goto out_delete;
10274989 1141
985b12e6 1142 end_sample_processing(tchart);
10274989 1143
5e22f6d2 1144 sort_pids(tchart);
10274989 1145
985b12e6 1146 write_svg_file(tchart, output_name);
10274989 1147
6beba7ad 1148 pr_info("Written %2.1f seconds of trace to %s.\n",
985b12e6 1149 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
94c744b6
ACM
1150out_delete:
1151 perf_session__delete(session);
1152 return ret;
10274989
AV
1153}
1154
985b12e6 1155static int timechart__record(struct timechart *tchart, int argc, const char **argv)
3c09eebd 1156{
367b3152
SF
1157 unsigned int rec_argc, i, j;
1158 const char **rec_argv;
1159 const char **p;
1160 unsigned int record_elems;
1161
1162 const char * const common_args[] = {
4a4d371a 1163 "record", "-a", "-R", "-c", "1",
367b3152
SF
1164 };
1165 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1166
6f8d67fa
SF
1167 const char * const backtrace_args[] = {
1168 "-g",
1169 };
1170 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1171
367b3152
SF
1172 const char * const power_args[] = {
1173 "-e", "power:cpu_frequency",
1174 "-e", "power:cpu_idle",
1175 };
1176 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1177
1178 const char * const old_power_args[] = {
1179#ifdef SUPPORT_OLD_POWER_EVENTS
73bdc715
ACM
1180 "-e", "power:power_start",
1181 "-e", "power:power_end",
1182 "-e", "power:power_frequency",
73bdc715 1183#endif
367b3152
SF
1184 };
1185 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1186
1187 const char * const tasks_args[] = {
73bdc715
ACM
1188 "-e", "sched:sched_wakeup",
1189 "-e", "sched:sched_switch",
1190 };
367b3152 1191 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
20c457b8
TR
1192
1193#ifdef SUPPORT_OLD_POWER_EVENTS
1194 if (!is_valid_tracepoint("power:cpu_idle") &&
1195 is_valid_tracepoint("power:power_start")) {
1196 use_old_power_events = 1;
367b3152
SF
1197 power_args_nr = 0;
1198 } else {
1199 old_power_args_nr = 0;
20c457b8
TR
1200 }
1201#endif
3c09eebd 1202
985b12e6 1203 if (tchart->power_only)
367b3152
SF
1204 tasks_args_nr = 0;
1205
985b12e6 1206 if (tchart->tasks_only) {
367b3152
SF
1207 power_args_nr = 0;
1208 old_power_args_nr = 0;
1209 }
1210
985b12e6 1211 if (!tchart->with_backtrace)
6f8d67fa
SF
1212 backtrace_args_no = 0;
1213
367b3152 1214 record_elems = common_args_nr + tasks_args_nr +
6f8d67fa 1215 power_args_nr + old_power_args_nr + backtrace_args_no;
367b3152
SF
1216
1217 rec_argc = record_elems + argc;
3c09eebd
AV
1218 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1219
ce47dc56
CS
1220 if (rec_argv == NULL)
1221 return -ENOMEM;
1222
367b3152
SF
1223 p = rec_argv;
1224 for (i = 0; i < common_args_nr; i++)
1225 *p++ = strdup(common_args[i]);
1226
6f8d67fa
SF
1227 for (i = 0; i < backtrace_args_no; i++)
1228 *p++ = strdup(backtrace_args[i]);
1229
367b3152
SF
1230 for (i = 0; i < tasks_args_nr; i++)
1231 *p++ = strdup(tasks_args[i]);
1232
1233 for (i = 0; i < power_args_nr; i++)
1234 *p++ = strdup(power_args[i]);
3c09eebd 1235
367b3152
SF
1236 for (i = 0; i < old_power_args_nr; i++)
1237 *p++ = strdup(old_power_args[i]);
3c09eebd 1238
367b3152
SF
1239 for (j = 1; j < (unsigned int)argc; j++)
1240 *p++ = argv[j];
1241
1242 return cmd_record(rec_argc, rec_argv, NULL);
3c09eebd
AV
1243}
1244
bbe2987b 1245static int
1d037ca1
IT
1246parse_process(const struct option *opt __maybe_unused, const char *arg,
1247 int __maybe_unused unset)
bbe2987b
AV
1248{
1249 if (arg)
1250 add_process_filter(arg);
1251 return 0;
1252}
1253
e57a2dff
SF
1254static int
1255parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1256 int __maybe_unused unset)
1257{
1258 unsigned long duration = strtoul(arg, NULL, 0);
1259
1260 if (svg_highlight || svg_highlight_name)
1261 return -1;
1262
1263 if (duration)
1264 svg_highlight = duration;
1265 else
1266 svg_highlight_name = strdup(arg);
1267
1268 return 0;
1269}
1270
73bdc715
ACM
1271int cmd_timechart(int argc, const char **argv,
1272 const char *prefix __maybe_unused)
1273{
985b12e6
ACM
1274 struct timechart tchart = {
1275 .tool = {
1276 .comm = process_comm_event,
1277 .fork = process_fork_event,
1278 .exit = process_exit_event,
1279 .sample = process_sample_event,
1280 .ordered_samples = true,
1281 },
1282 .proc_num = 15,
1283 };
73bdc715 1284 const char *output_name = "output.svg";
367b3152 1285 const struct option timechart_options[] = {
73bdc715
ACM
1286 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1287 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1288 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
e57a2dff
SF
1289 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1290 "highlight tasks. Pass duration in ns or process name.",
1291 parse_highlight),
985b12e6
ACM
1292 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1293 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
c87097d3 1294 "output processes data only"),
bbe2987b
AV
1295 OPT_CALLBACK('p', "process", NULL, "process",
1296 "process selector. Pass a pid or process name.",
1297 parse_process),
ec5761ea
DA
1298 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1299 "Look for files with symbols relative to this directory"),
985b12e6 1300 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
54874e32 1301 "min. number of tasks to print"),
c5079997
SF
1302 OPT_BOOLEAN('t', "topology", &tchart.topology,
1303 "sort CPUs according to topology"),
10274989 1304 OPT_END()
73bdc715
ACM
1305 };
1306 const char * const timechart_usage[] = {
1307 "perf timechart [<options>] {record}",
1308 NULL
1309 };
10274989 1310
367b3152 1311 const struct option record_options[] = {
985b12e6
ACM
1312 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1313 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
367b3152 1314 "output processes data only"),
985b12e6 1315 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
367b3152
SF
1316 OPT_END()
1317 };
1318 const char * const record_usage[] = {
1319 "perf timechart record [<options>]",
1320 NULL
1321 };
1322 argc = parse_options(argc, argv, timechart_options, timechart_usage,
3c09eebd 1323 PARSE_OPT_STOP_AT_NON_OPTION);
10274989 1324
985b12e6 1325 if (tchart.power_only && tchart.tasks_only) {
c87097d3
SF
1326 pr_err("-P and -T options cannot be used at the same time.\n");
1327 return -1;
1328 }
1329
655000e7
ACM
1330 symbol__init();
1331
367b3152
SF
1332 if (argc && !strncmp(argv[0], "rec", 3)) {
1333 argc = parse_options(argc, argv, record_options, record_usage,
1334 PARSE_OPT_STOP_AT_NON_OPTION);
1335
985b12e6 1336 if (tchart.power_only && tchart.tasks_only) {
367b3152
SF
1337 pr_err("-P and -T options cannot be used at the same time.\n");
1338 return -1;
1339 }
1340
985b12e6 1341 return timechart__record(&tchart, argc, argv);
367b3152
SF
1342 } else if (argc)
1343 usage_with_options(timechart_usage, timechart_options);
10274989
AV
1344
1345 setup_pager();
1346
985b12e6 1347 return __cmd_timechart(&tchart, output_name);
10274989 1348}