]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - tools/testing/selftests/kvm/lib/kvm_util.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / tools / testing / selftests / kvm / lib / kvm_util.c
CommitLineData
783e9e51
PB
1/*
2 * tools/testing/selftests/kvm/lib/kvm_util.c
3 *
4 * Copyright (C) 2018, Google LLC.
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2.
7 */
8
9#include "test_util.h"
10#include "kvm_util.h"
11#include "kvm_util_internal.h"
12
13#include <assert.h>
14#include <sys/mman.h>
15#include <sys/types.h>
16#include <sys/stat.h>
bc8eb2fe 17#include <linux/kernel.h>
783e9e51 18
783e9e51 19#define KVM_UTIL_PGS_PER_HUGEPG 512
81d1cca0 20#define KVM_UTIL_MIN_PFN 2
783e9e51
PB
21
22/* Aligns x up to the next multiple of size. Size must be a power of 2. */
23static void *align(void *x, size_t size)
24{
25 size_t mask = size - 1;
26 TEST_ASSERT(size != 0 && !(size & (size - 1)),
27 "size not a power of 2: %lu", size);
28 return (void *) (((size_t) x + mask) & ~mask);
29}
30
eabe7881
AJ
31/*
32 * Capability
783e9e51
PB
33 *
34 * Input Args:
35 * cap - Capability
36 *
37 * Output Args: None
38 *
39 * Return:
40 * On success, the Value corresponding to the capability (KVM_CAP_*)
41 * specified by the value of cap. On failure a TEST_ASSERT failure
42 * is produced.
43 *
44 * Looks up and returns the value corresponding to the capability
45 * (KVM_CAP_*) given by cap.
46 */
47int kvm_check_cap(long cap)
48{
49 int ret;
50 int kvm_fd;
51
52 kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
bcb2b94a
PB
53 if (kvm_fd < 0)
54 exit(KSFT_SKIP);
783e9e51
PB
55
56 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
57 TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
58 " rc: %i errno: %i", ret, errno);
59
60 close(kvm_fd);
61
62 return ret;
63}
64
8b56ee91
DS
65/* VM Enable Capability
66 *
67 * Input Args:
68 * vm - Virtual Machine
69 * cap - Capability
70 *
71 * Output Args: None
72 *
73 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
74 *
75 * Enables a capability (KVM_CAP_*) on the VM.
76 */
77int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
78{
79 int ret;
80
81 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
82 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
83 " rc: %i errno: %i", ret, errno);
84
85 return ret;
86}
87
8cee5816 88static void vm_open(struct kvm_vm *vm, int perm, unsigned long type)
fa3899ad
PB
89{
90 vm->kvm_fd = open(KVM_DEV_PATH, perm);
91 if (vm->kvm_fd < 0)
92 exit(KSFT_SKIP);
93
8cee5816 94 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, type);
fa3899ad
PB
95 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
96 "rc: %i errno: %i", vm->fd, errno);
97}
98
81d1cca0
AJ
99const char * const vm_guest_mode_string[] = {
100 "PA-bits:52, VA-bits:48, 4K pages",
101 "PA-bits:52, VA-bits:48, 64K pages",
cdbd2428
AJ
102 "PA-bits:48, VA-bits:48, 4K pages",
103 "PA-bits:48, VA-bits:48, 64K pages",
e28934e6
AJ
104 "PA-bits:40, VA-bits:48, 4K pages",
105 "PA-bits:40, VA-bits:48, 64K pages",
81d1cca0 106};
cdbd2428
AJ
107_Static_assert(sizeof(vm_guest_mode_string)/sizeof(char *) == NUM_VM_MODES,
108 "Missing new mode strings?");
81d1cca0 109
eabe7881
AJ
110/*
111 * VM Create
783e9e51
PB
112 *
113 * Input Args:
81d1cca0 114 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
783e9e51
PB
115 * phy_pages - Physical memory pages
116 * perm - permission
117 *
118 * Output Args: None
119 *
120 * Return:
121 * Pointer to opaque structure that describes the created VM.
122 *
81d1cca0 123 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
783e9e51
PB
124 * When phy_pages is non-zero, a memory region of phy_pages physical pages
125 * is created and mapped starting at guest physical address 0. The file
126 * descriptor to control the created VM is created with the permissions
127 * given by perm (e.g. O_RDWR).
128 */
8cee5816
AJ
129struct kvm_vm *_vm_create(enum vm_guest_mode mode, uint64_t phy_pages,
130 int perm, unsigned long type)
783e9e51
PB
131{
132 struct kvm_vm *vm;
133 int kvm_fd;
134
783e9e51 135 vm = calloc(1, sizeof(*vm));
717da97e 136 TEST_ASSERT(vm != NULL, "Insufficient Memory");
783e9e51
PB
137
138 vm->mode = mode;
8cee5816
AJ
139 vm->type = type;
140 vm_open(vm, perm, type);
783e9e51
PB
141
142 /* Setup mode specific traits. */
143 switch (vm->mode) {
81d1cca0 144 case VM_MODE_P52V48_4K:
7a6629ef 145 vm->pgtable_levels = 4;
cdbd2428
AJ
146 vm->pa_bits = 52;
147 vm->va_bits = 48;
783e9e51
PB
148 vm->page_size = 0x1000;
149 vm->page_shift = 12;
783e9e51 150 break;
81d1cca0
AJ
151 case VM_MODE_P52V48_64K:
152 vm->pgtable_levels = 3;
153 vm->pa_bits = 52;
cdbd2428 154 vm->va_bits = 48;
81d1cca0
AJ
155 vm->page_size = 0x10000;
156 vm->page_shift = 16;
cdbd2428
AJ
157 break;
158 case VM_MODE_P48V48_4K:
159 vm->pgtable_levels = 4;
160 vm->pa_bits = 48;
81d1cca0 161 vm->va_bits = 48;
cdbd2428
AJ
162 vm->page_size = 0x1000;
163 vm->page_shift = 12;
164 break;
165 case VM_MODE_P48V48_64K:
166 vm->pgtable_levels = 3;
167 vm->pa_bits = 48;
168 vm->va_bits = 48;
169 vm->page_size = 0x10000;
170 vm->page_shift = 16;
81d1cca0 171 break;
e28934e6
AJ
172 case VM_MODE_P40V48_4K:
173 vm->pgtable_levels = 4;
174 vm->pa_bits = 40;
175 vm->va_bits = 48;
176 vm->page_size = 0x1000;
177 vm->page_shift = 12;
178 break;
179 case VM_MODE_P40V48_64K:
180 vm->pgtable_levels = 3;
181 vm->pa_bits = 40;
182 vm->va_bits = 48;
183 vm->page_size = 0x10000;
184 vm->page_shift = 16;
185 break;
783e9e51
PB
186 default:
187 TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", mode);
188 }
189
81d1cca0
AJ
190 /* Limit to VA-bit canonical virtual addresses. */
191 vm->vpages_valid = sparsebit_alloc();
192 sparsebit_set_num(vm->vpages_valid,
193 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
194 sparsebit_set_num(vm->vpages_valid,
195 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
196 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
197
198 /* Limit physical addresses to PA-bits. */
199 vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
200
783e9e51
PB
201 /* Allocate and setup memory for guest. */
202 vm->vpages_mapped = sparsebit_alloc();
203 if (phy_pages != 0)
204 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
205 0, 0, phy_pages, 0);
206
207 return vm;
208}
209
8cee5816
AJ
210struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
211{
212 return _vm_create(mode, phy_pages, perm, 0);
213}
214
eabe7881
AJ
215/*
216 * VM Restart
fa3899ad
PB
217 *
218 * Input Args:
219 * vm - VM that has been released before
220 * perm - permission
221 *
222 * Output Args: None
223 *
224 * Reopens the file descriptors associated to the VM and reinstates the
225 * global state, such as the irqchip and the memory regions that are mapped
226 * into the guest.
227 */
228void kvm_vm_restart(struct kvm_vm *vmp, int perm)
229{
230 struct userspace_mem_region *region;
231
8cee5816 232 vm_open(vmp, perm, vmp->type);
fa3899ad
PB
233 if (vmp->has_irqchip)
234 vm_create_irqchip(vmp);
235
236 for (region = vmp->userspace_mem_region_head; region;
237 region = region->next) {
238 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
239 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
240 " rc: %i errno: %i\n"
241 " slot: %u flags: 0x%x\n"
242 " guest_phys_addr: 0x%lx size: 0x%lx",
eabe7881
AJ
243 ret, errno, region->region.slot,
244 region->region.flags,
fa3899ad
PB
245 region->region.guest_phys_addr,
246 region->region.memory_size);
247 }
248}
249
3b4cd0ff
PX
250void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
251{
252 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
253 int ret;
254
255 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
256 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
257 strerror(-ret));
258}
259
2a31b9db
PB
260void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
261 uint64_t first_page, uint32_t num_pages)
262{
263 struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
264 .first_page = first_page,
265 .num_pages = num_pages };
266 int ret;
267
268 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
269 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
270 strerror(-ret));
271}
272
eabe7881
AJ
273/*
274 * Userspace Memory Region Find
783e9e51
PB
275 *
276 * Input Args:
277 * vm - Virtual Machine
278 * start - Starting VM physical address
279 * end - Ending VM physical address, inclusive.
280 *
281 * Output Args: None
282 *
283 * Return:
284 * Pointer to overlapping region, NULL if no such region.
285 *
286 * Searches for a region with any physical memory that overlaps with
287 * any portion of the guest physical addresses from start to end
288 * inclusive. If multiple overlapping regions exist, a pointer to any
289 * of the regions is returned. Null is returned only when no overlapping
290 * region exists.
291 */
eabe7881
AJ
292static struct userspace_mem_region *
293userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
783e9e51
PB
294{
295 struct userspace_mem_region *region;
296
297 for (region = vm->userspace_mem_region_head; region;
298 region = region->next) {
299 uint64_t existing_start = region->region.guest_phys_addr;
300 uint64_t existing_end = region->region.guest_phys_addr
301 + region->region.memory_size - 1;
302 if (start <= existing_end && end >= existing_start)
303 return region;
304 }
305
306 return NULL;
307}
308
eabe7881
AJ
309/*
310 * KVM Userspace Memory Region Find
783e9e51
PB
311 *
312 * Input Args:
313 * vm - Virtual Machine
314 * start - Starting VM physical address
315 * end - Ending VM physical address, inclusive.
316 *
317 * Output Args: None
318 *
319 * Return:
320 * Pointer to overlapping region, NULL if no such region.
321 *
322 * Public interface to userspace_mem_region_find. Allows tests to look up
323 * the memslot datastructure for a given range of guest physical memory.
324 */
325struct kvm_userspace_memory_region *
326kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
327 uint64_t end)
328{
329 struct userspace_mem_region *region;
330
331 region = userspace_mem_region_find(vm, start, end);
332 if (!region)
333 return NULL;
334
335 return &region->region;
336}
337
eabe7881
AJ
338/*
339 * VCPU Find
783e9e51
PB
340 *
341 * Input Args:
342 * vm - Virtual Machine
343 * vcpuid - VCPU ID
344 *
345 * Output Args: None
346 *
347 * Return:
348 * Pointer to VCPU structure
349 *
350 * Locates a vcpu structure that describes the VCPU specified by vcpuid and
351 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU
352 * for the specified vcpuid.
353 */
eabe7881 354struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
783e9e51
PB
355{
356 struct vcpu *vcpup;
357
358 for (vcpup = vm->vcpu_head; vcpup; vcpup = vcpup->next) {
359 if (vcpup->id == vcpuid)
360 return vcpup;
361 }
362
363 return NULL;
364}
365
eabe7881
AJ
366/*
367 * VM VCPU Remove
783e9e51
PB
368 *
369 * Input Args:
370 * vm - Virtual Machine
371 * vcpuid - VCPU ID
372 *
373 * Output Args: None
374 *
375 * Return: None, TEST_ASSERT failures for all error conditions
376 *
377 * Within the VM specified by vm, removes the VCPU given by vcpuid.
378 */
379static void vm_vcpu_rm(struct kvm_vm *vm, uint32_t vcpuid)
380{
381 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
0a505fe6 382 int ret;
783e9e51 383
0a505fe6
PB
384 ret = munmap(vcpu->state, sizeof(*vcpu->state));
385 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
386 "errno: %i", ret, errno);
387 close(vcpu->fd);
783e9e51
PB
388 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
389 "errno: %i", ret, errno);
390
391 if (vcpu->next)
392 vcpu->next->prev = vcpu->prev;
393 if (vcpu->prev)
394 vcpu->prev->next = vcpu->next;
395 else
396 vm->vcpu_head = vcpu->next;
397 free(vcpu);
398}
399
fa3899ad
PB
400void kvm_vm_release(struct kvm_vm *vmp)
401{
402 int ret;
403
fa3899ad
PB
404 while (vmp->vcpu_head)
405 vm_vcpu_rm(vmp, vmp->vcpu_head->id);
406
fa3899ad
PB
407 ret = close(vmp->fd);
408 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
409 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
410
411 close(vmp->kvm_fd);
412 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
413 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
414}
783e9e51 415
eabe7881
AJ
416/*
417 * Destroys and frees the VM pointed to by vmp.
783e9e51
PB
418 */
419void kvm_vm_free(struct kvm_vm *vmp)
420{
421 int ret;
422
423 if (vmp == NULL)
424 return;
425
426 /* Free userspace_mem_regions. */
427 while (vmp->userspace_mem_region_head) {
428 struct userspace_mem_region *region
429 = vmp->userspace_mem_region_head;
430
431 region->region.memory_size = 0;
432 ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION,
433 &region->region);
434 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
435 "rc: %i errno: %i", ret, errno);
436
437 vmp->userspace_mem_region_head = region->next;
438 sparsebit_free(&region->unused_phy_pages);
439 ret = munmap(region->mmap_start, region->mmap_size);
440 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i",
441 ret, errno);
442
443 free(region);
444 }
445
783e9e51
PB
446 /* Free sparsebit arrays. */
447 sparsebit_free(&vmp->vpages_valid);
448 sparsebit_free(&vmp->vpages_mapped);
449
fa3899ad 450 kvm_vm_release(vmp);
783e9e51
PB
451
452 /* Free the structure describing the VM. */
453 free(vmp);
454}
455
eabe7881
AJ
456/*
457 * Memory Compare, host virtual to guest virtual
783e9e51
PB
458 *
459 * Input Args:
460 * hva - Starting host virtual address
461 * vm - Virtual Machine
462 * gva - Starting guest virtual address
463 * len - number of bytes to compare
464 *
465 * Output Args: None
466 *
467 * Input/Output Args: None
468 *
469 * Return:
470 * Returns 0 if the bytes starting at hva for a length of len
471 * are equal the guest virtual bytes starting at gva. Returns
472 * a value < 0, if bytes at hva are less than those at gva.
473 * Otherwise a value > 0 is returned.
474 *
475 * Compares the bytes starting at the host virtual address hva, for
476 * a length of len, to the guest bytes starting at the guest virtual
477 * address given by gva.
478 */
eabe7881 479int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
783e9e51
PB
480{
481 size_t amt;
482
eabe7881
AJ
483 /*
484 * Compare a batch of bytes until either a match is found
783e9e51
PB
485 * or all the bytes have been compared.
486 */
487 for (uintptr_t offset = 0; offset < len; offset += amt) {
488 uintptr_t ptr1 = (uintptr_t)hva + offset;
489
eabe7881
AJ
490 /*
491 * Determine host address for guest virtual address
783e9e51
PB
492 * at offset.
493 */
494 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
495
eabe7881
AJ
496 /*
497 * Determine amount to compare on this pass.
783e9e51
PB
498 * Don't allow the comparsion to cross a page boundary.
499 */
500 amt = len - offset;
501 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
502 amt = vm->page_size - (ptr1 % vm->page_size);
503 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
504 amt = vm->page_size - (ptr2 % vm->page_size);
505
506 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
507 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
508
eabe7881
AJ
509 /*
510 * Perform the comparison. If there is a difference
783e9e51
PB
511 * return that result to the caller, otherwise need
512 * to continue on looking for a mismatch.
513 */
514 int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
515 if (ret != 0)
516 return ret;
517 }
518
eabe7881
AJ
519 /*
520 * No mismatch found. Let the caller know the two memory
783e9e51
PB
521 * areas are equal.
522 */
523 return 0;
524}
525
eabe7881
AJ
526/*
527 * VM Userspace Memory Region Add
783e9e51
PB
528 *
529 * Input Args:
530 * vm - Virtual Machine
531 * backing_src - Storage source for this region.
532 * NULL to use anonymous memory.
533 * guest_paddr - Starting guest physical address
534 * slot - KVM region slot
535 * npages - Number of physical pages
536 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
537 *
538 * Output Args: None
539 *
540 * Return: None
541 *
542 * Allocates a memory area of the number of pages specified by npages
543 * and maps it to the VM specified by vm, at a starting physical address
544 * given by guest_paddr. The region is created with a KVM region slot
545 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
546 * region is created with the flags given by flags.
547 */
548void vm_userspace_mem_region_add(struct kvm_vm *vm,
549 enum vm_mem_backing_src_type src_type,
550 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
551 uint32_t flags)
552{
553 int ret;
554 unsigned long pmem_size = 0;
555 struct userspace_mem_region *region;
556 size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
557
558 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
559 "address not on a page boundary.\n"
560 " guest_paddr: 0x%lx vm->page_size: 0x%x",
561 guest_paddr, vm->page_size);
562 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
563 <= vm->max_gfn, "Physical range beyond maximum "
564 "supported physical address,\n"
565 " guest_paddr: 0x%lx npages: 0x%lx\n"
566 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
567 guest_paddr, npages, vm->max_gfn, vm->page_size);
568
eabe7881
AJ
569 /*
570 * Confirm a mem region with an overlapping address doesn't
783e9e51
PB
571 * already exist.
572 */
573 region = (struct userspace_mem_region *) userspace_mem_region_find(
94a980c3 574 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
783e9e51
PB
575 if (region != NULL)
576 TEST_ASSERT(false, "overlapping userspace_mem_region already "
577 "exists\n"
578 " requested guest_paddr: 0x%lx npages: 0x%lx "
579 "page_size: 0x%x\n"
580 " existing guest_paddr: 0x%lx size: 0x%lx",
581 guest_paddr, npages, vm->page_size,
582 (uint64_t) region->region.guest_phys_addr,
583 (uint64_t) region->region.memory_size);
584
585 /* Confirm no region with the requested slot already exists. */
586 for (region = vm->userspace_mem_region_head; region;
587 region = region->next) {
588 if (region->region.slot == slot)
589 break;
783e9e51
PB
590 }
591 if (region != NULL)
592 TEST_ASSERT(false, "A mem region with the requested slot "
94a980c3 593 "already exists.\n"
783e9e51
PB
594 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
595 " existing slot: %u paddr: 0x%lx size: 0x%lx",
596 slot, guest_paddr, npages,
597 region->region.slot,
598 (uint64_t) region->region.guest_phys_addr,
599 (uint64_t) region->region.memory_size);
600
601 /* Allocate and initialize new mem region structure. */
602 region = calloc(1, sizeof(*region));
603 TEST_ASSERT(region != NULL, "Insufficient Memory");
604 region->mmap_size = npages * vm->page_size;
605
606 /* Enough memory to align up to a huge page. */
607 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
608 region->mmap_size += huge_page_size;
609 region->mmap_start = mmap(NULL, region->mmap_size,
610 PROT_READ | PROT_WRITE,
611 MAP_PRIVATE | MAP_ANONYMOUS
612 | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
613 -1, 0);
614 TEST_ASSERT(region->mmap_start != MAP_FAILED,
615 "test_malloc failed, mmap_start: %p errno: %i",
616 region->mmap_start, errno);
617
618 /* Align THP allocation up to start of a huge page. */
619 region->host_mem = align(region->mmap_start,
620 src_type == VM_MEM_SRC_ANONYMOUS_THP ? huge_page_size : 1);
621
622 /* As needed perform madvise */
623 if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
624 ret = madvise(region->host_mem, npages * vm->page_size,
625 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
626 TEST_ASSERT(ret == 0, "madvise failed,\n"
627 " addr: %p\n"
628 " length: 0x%lx\n"
629 " src_type: %x",
630 region->host_mem, npages * vm->page_size, src_type);
631 }
632
633 region->unused_phy_pages = sparsebit_alloc();
634 sparsebit_set_num(region->unused_phy_pages,
635 guest_paddr >> vm->page_shift, npages);
636 region->region.slot = slot;
637 region->region.flags = flags;
638 region->region.guest_phys_addr = guest_paddr;
639 region->region.memory_size = npages * vm->page_size;
640 region->region.userspace_addr = (uintptr_t) region->host_mem;
641 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
642 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
643 " rc: %i errno: %i\n"
644 " slot: %u flags: 0x%x\n"
645 " guest_phys_addr: 0x%lx size: 0x%lx",
646 ret, errno, slot, flags,
647 guest_paddr, (uint64_t) region->region.memory_size);
648
649 /* Add to linked-list of memory regions. */
650 if (vm->userspace_mem_region_head)
651 vm->userspace_mem_region_head->prev = region;
652 region->next = vm->userspace_mem_region_head;
653 vm->userspace_mem_region_head = region;
654}
655
eabe7881
AJ
656/*
657 * Memslot to region
783e9e51
PB
658 *
659 * Input Args:
660 * vm - Virtual Machine
661 * memslot - KVM memory slot ID
662 *
663 * Output Args: None
664 *
665 * Return:
666 * Pointer to memory region structure that describe memory region
667 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
668 * on error (e.g. currently no memory region using memslot as a KVM
669 * memory slot ID).
670 */
eabe7881
AJ
671static struct userspace_mem_region *
672memslot2region(struct kvm_vm *vm, uint32_t memslot)
783e9e51
PB
673{
674 struct userspace_mem_region *region;
675
676 for (region = vm->userspace_mem_region_head; region;
677 region = region->next) {
678 if (region->region.slot == memslot)
679 break;
680 }
681 if (region == NULL) {
682 fprintf(stderr, "No mem region with the requested slot found,\n"
683 " requested slot: %u\n", memslot);
684 fputs("---- vm dump ----\n", stderr);
685 vm_dump(stderr, vm, 2);
686 TEST_ASSERT(false, "Mem region not found");
687 }
688
689 return region;
690}
691
eabe7881
AJ
692/*
693 * VM Memory Region Flags Set
783e9e51
PB
694 *
695 * Input Args:
696 * vm - Virtual Machine
697 * flags - Starting guest physical address
698 *
699 * Output Args: None
700 *
701 * Return: None
702 *
703 * Sets the flags of the memory region specified by the value of slot,
704 * to the values given by flags.
705 */
706void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
707{
708 int ret;
709 struct userspace_mem_region *region;
710
783e9e51
PB
711 region = memslot2region(vm, slot);
712
713 region->region.flags = flags;
714
715 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
716
717 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
718 " rc: %i errno: %i slot: %u flags: 0x%x",
719 ret, errno, slot, flags);
720}
721
eabe7881
AJ
722/*
723 * VCPU mmap Size
783e9e51
PB
724 *
725 * Input Args: None
726 *
727 * Output Args: None
728 *
729 * Return:
730 * Size of VCPU state
731 *
732 * Returns the size of the structure pointed to by the return value
733 * of vcpu_state().
734 */
735static int vcpu_mmap_sz(void)
736{
737 int dev_fd, ret;
738
739 dev_fd = open(KVM_DEV_PATH, O_RDONLY);
bcb2b94a
PB
740 if (dev_fd < 0)
741 exit(KSFT_SKIP);
783e9e51
PB
742
743 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
744 TEST_ASSERT(ret >= sizeof(struct kvm_run),
745 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
746 __func__, ret, errno);
747
748 close(dev_fd);
749
750 return ret;
751}
752
eabe7881
AJ
753/*
754 * VM VCPU Add
783e9e51
PB
755 *
756 * Input Args:
757 * vm - Virtual Machine
758 * vcpuid - VCPU ID
759 *
760 * Output Args: None
761 *
762 * Return: None
763 *
764 * Creates and adds to the VM specified by vm and virtual CPU with
765 * the ID given by vcpuid.
766 */
eabe7881
AJ
767void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid, int pgd_memslot,
768 int gdt_memslot)
783e9e51
PB
769{
770 struct vcpu *vcpu;
771
772 /* Confirm a vcpu with the specified id doesn't already exist. */
773 vcpu = vcpu_find(vm, vcpuid);
774 if (vcpu != NULL)
775 TEST_ASSERT(false, "vcpu with the specified id "
776 "already exists,\n"
777 " requested vcpuid: %u\n"
778 " existing vcpuid: %u state: %p",
779 vcpuid, vcpu->id, vcpu->state);
780
781 /* Allocate and initialize new vcpu structure. */
782 vcpu = calloc(1, sizeof(*vcpu));
783 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
784 vcpu->id = vcpuid;
785 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
786 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
787 vcpu->fd, errno);
788
789 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
790 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
791 vcpu_mmap_sz(), sizeof(*vcpu->state));
792 vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
793 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
794 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
795 "vcpu id: %u errno: %i", vcpuid, errno);
796
797 /* Add to linked-list of VCPUs. */
798 if (vm->vcpu_head)
799 vm->vcpu_head->prev = vcpu;
800 vcpu->next = vm->vcpu_head;
801 vm->vcpu_head = vcpu;
802
2305339e 803 vcpu_setup(vm, vcpuid, pgd_memslot, gdt_memslot);
783e9e51
PB
804}
805
eabe7881
AJ
806/*
807 * VM Virtual Address Unused Gap
783e9e51
PB
808 *
809 * Input Args:
810 * vm - Virtual Machine
811 * sz - Size (bytes)
812 * vaddr_min - Minimum Virtual Address
813 *
814 * Output Args: None
815 *
816 * Return:
817 * Lowest virtual address at or below vaddr_min, with at least
818 * sz unused bytes. TEST_ASSERT failure if no area of at least
819 * size sz is available.
820 *
821 * Within the VM specified by vm, locates the lowest starting virtual
822 * address >= vaddr_min, that has at least sz unallocated bytes. A
823 * TEST_ASSERT failure occurs for invalid input or no area of at least
824 * sz unallocated bytes >= vaddr_min is available.
825 */
826static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
eabe7881 827 vm_vaddr_t vaddr_min)
783e9e51
PB
828{
829 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
830
831 /* Determine lowest permitted virtual page index. */
832 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
833 if ((pgidx_start * vm->page_size) < vaddr_min)
eabe7881 834 goto no_va_found;
783e9e51
PB
835
836 /* Loop over section with enough valid virtual page indexes. */
837 if (!sparsebit_is_set_num(vm->vpages_valid,
838 pgidx_start, pages))
839 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
840 pgidx_start, pages);
841 do {
842 /*
843 * Are there enough unused virtual pages available at
844 * the currently proposed starting virtual page index.
845 * If not, adjust proposed starting index to next
846 * possible.
847 */
848 if (sparsebit_is_clear_num(vm->vpages_mapped,
849 pgidx_start, pages))
850 goto va_found;
851 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
852 pgidx_start, pages);
853 if (pgidx_start == 0)
854 goto no_va_found;
855
856 /*
857 * If needed, adjust proposed starting virtual address,
858 * to next range of valid virtual addresses.
859 */
860 if (!sparsebit_is_set_num(vm->vpages_valid,
861 pgidx_start, pages)) {
862 pgidx_start = sparsebit_next_set_num(
863 vm->vpages_valid, pgidx_start, pages);
864 if (pgidx_start == 0)
865 goto no_va_found;
866 }
867 } while (pgidx_start != 0);
868
869no_va_found:
870 TEST_ASSERT(false, "No vaddr of specified pages available, "
871 "pages: 0x%lx", pages);
872
873 /* NOT REACHED */
874 return -1;
875
876va_found:
877 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
878 pgidx_start, pages),
879 "Unexpected, invalid virtual page index range,\n"
880 " pgidx_start: 0x%lx\n"
881 " pages: 0x%lx",
882 pgidx_start, pages);
883 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
884 pgidx_start, pages),
885 "Unexpected, pages already mapped,\n"
886 " pgidx_start: 0x%lx\n"
887 " pages: 0x%lx",
888 pgidx_start, pages);
889
890 return pgidx_start * vm->page_size;
891}
892
eabe7881
AJ
893/*
894 * VM Virtual Address Allocate
783e9e51
PB
895 *
896 * Input Args:
897 * vm - Virtual Machine
898 * sz - Size in bytes
899 * vaddr_min - Minimum starting virtual address
900 * data_memslot - Memory region slot for data pages
901 * pgd_memslot - Memory region slot for new virtual translation tables
902 *
903 * Output Args: None
904 *
905 * Return:
906 * Starting guest virtual address
907 *
908 * Allocates at least sz bytes within the virtual address space of the vm
909 * given by vm. The allocated bytes are mapped to a virtual address >=
910 * the address given by vaddr_min. Note that each allocation uses a
911 * a unique set of pages, with the minimum real allocation being at least
912 * a page.
913 */
914vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
eabe7881 915 uint32_t data_memslot, uint32_t pgd_memslot)
783e9e51
PB
916{
917 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
918
919 virt_pgd_alloc(vm, pgd_memslot);
920
eabe7881
AJ
921 /*
922 * Find an unused range of virtual page addresses of at least
783e9e51
PB
923 * pages in length.
924 */
925 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
926
927 /* Map the virtual pages. */
928 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
929 pages--, vaddr += vm->page_size) {
930 vm_paddr_t paddr;
931
81d1cca0
AJ
932 paddr = vm_phy_page_alloc(vm,
933 KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
783e9e51
PB
934
935 virt_pg_map(vm, vaddr, paddr, pgd_memslot);
936
937 sparsebit_set(vm->vpages_mapped,
938 vaddr >> vm->page_shift);
939 }
940
941 return vaddr_start;
942}
943
3b4cd0ff
PX
944/*
945 * Map a range of VM virtual address to the VM's physical address
946 *
947 * Input Args:
948 * vm - Virtual Machine
949 * vaddr - Virtuall address to map
950 * paddr - VM Physical Address
951 * size - The size of the range to map
952 * pgd_memslot - Memory region slot for new virtual translation tables
953 *
954 * Output Args: None
955 *
956 * Return: None
957 *
958 * Within the VM given by vm, creates a virtual translation for the
959 * page range starting at vaddr to the page range starting at paddr.
960 */
961void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
962 size_t size, uint32_t pgd_memslot)
963{
964 size_t page_size = vm->page_size;
965 size_t npages = size / page_size;
966
967 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
968 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
969
970 while (npages--) {
971 virt_pg_map(vm, vaddr, paddr, pgd_memslot);
972 vaddr += page_size;
973 paddr += page_size;
974 }
975}
976
eabe7881
AJ
977/*
978 * Address VM Physical to Host Virtual
783e9e51
PB
979 *
980 * Input Args:
981 * vm - Virtual Machine
982 * gpa - VM physical address
983 *
984 * Output Args: None
985 *
986 * Return:
987 * Equivalent host virtual address
988 *
989 * Locates the memory region containing the VM physical address given
990 * by gpa, within the VM given by vm. When found, the host virtual
991 * address providing the memory to the vm physical address is returned.
992 * A TEST_ASSERT failure occurs if no region containing gpa exists.
993 */
994void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
995{
996 struct userspace_mem_region *region;
997 for (region = vm->userspace_mem_region_head; region;
998 region = region->next) {
999 if ((gpa >= region->region.guest_phys_addr)
1000 && (gpa <= (region->region.guest_phys_addr
1001 + region->region.memory_size - 1)))
1002 return (void *) ((uintptr_t) region->host_mem
1003 + (gpa - region->region.guest_phys_addr));
1004 }
1005
1006 TEST_ASSERT(false, "No vm physical memory at 0x%lx", gpa);
1007 return NULL;
1008}
1009
eabe7881
AJ
1010/*
1011 * Address Host Virtual to VM Physical
783e9e51
PB
1012 *
1013 * Input Args:
1014 * vm - Virtual Machine
1015 * hva - Host virtual address
1016 *
1017 * Output Args: None
1018 *
1019 * Return:
1020 * Equivalent VM physical address
1021 *
1022 * Locates the memory region containing the host virtual address given
1023 * by hva, within the VM given by vm. When found, the equivalent
1024 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1025 * region containing hva exists.
1026 */
1027vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1028{
1029 struct userspace_mem_region *region;
1030 for (region = vm->userspace_mem_region_head; region;
1031 region = region->next) {
1032 if ((hva >= region->host_mem)
1033 && (hva <= (region->host_mem
1034 + region->region.memory_size - 1)))
1035 return (vm_paddr_t) ((uintptr_t)
1036 region->region.guest_phys_addr
1037 + (hva - (uintptr_t) region->host_mem));
1038 }
1039
1040 TEST_ASSERT(false, "No mapping to a guest physical address, "
1041 "hva: %p", hva);
1042 return -1;
1043}
1044
eabe7881
AJ
1045/*
1046 * VM Create IRQ Chip
783e9e51
PB
1047 *
1048 * Input Args:
1049 * vm - Virtual Machine
1050 *
1051 * Output Args: None
1052 *
1053 * Return: None
1054 *
1055 * Creates an interrupt controller chip for the VM specified by vm.
1056 */
1057void vm_create_irqchip(struct kvm_vm *vm)
1058{
1059 int ret;
1060
1061 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1062 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1063 "rc: %i errno: %i", ret, errno);
fa3899ad
PB
1064
1065 vm->has_irqchip = true;
783e9e51
PB
1066}
1067
eabe7881
AJ
1068/*
1069 * VM VCPU State
783e9e51
PB
1070 *
1071 * Input Args:
1072 * vm - Virtual Machine
1073 * vcpuid - VCPU ID
1074 *
1075 * Output Args: None
1076 *
1077 * Return:
1078 * Pointer to structure that describes the state of the VCPU.
1079 *
1080 * Locates and returns a pointer to a structure that describes the
1081 * state of the VCPU with the given vcpuid.
1082 */
1083struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1084{
1085 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1086 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1087
1088 return vcpu->state;
1089}
1090
eabe7881
AJ
1091/*
1092 * VM VCPU Run
783e9e51
PB
1093 *
1094 * Input Args:
1095 * vm - Virtual Machine
1096 * vcpuid - VCPU ID
1097 *
1098 * Output Args: None
1099 *
1100 * Return: None
1101 *
1102 * Switch to executing the code for the VCPU given by vcpuid, within the VM
1103 * given by vm.
1104 */
1105void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1106{
1107 int ret = _vcpu_run(vm, vcpuid);
1108 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1109 "rc: %i errno: %i", ret, errno);
1110}
1111
1112int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1113{
1114 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1115 int rc;
1116
1117 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
eabe7881 1118 do {
783e9e51
PB
1119 rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1120 } while (rc == -1 && errno == EINTR);
1121 return rc;
1122}
1123
0f73bbc8
SC
1124void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1125{
1126 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1127 int ret;
1128
1129 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1130
1131 vcpu->state->immediate_exit = 1;
1132 ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1133 vcpu->state->immediate_exit = 0;
1134
1135 TEST_ASSERT(ret == -1 && errno == EINTR,
1136 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1137 ret, errno);
1138}
1139
eabe7881
AJ
1140/*
1141 * VM VCPU Set MP State
783e9e51
PB
1142 *
1143 * Input Args:
1144 * vm - Virtual Machine
1145 * vcpuid - VCPU ID
1146 * mp_state - mp_state to be set
1147 *
1148 * Output Args: None
1149 *
1150 * Return: None
1151 *
1152 * Sets the MP state of the VCPU given by vcpuid, to the state given
1153 * by mp_state.
1154 */
1155void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
eabe7881 1156 struct kvm_mp_state *mp_state)
783e9e51
PB
1157{
1158 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1159 int ret;
1160
1161 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1162
1163 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1164 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1165 "rc: %i errno: %i", ret, errno);
1166}
1167
eabe7881
AJ
1168/*
1169 * VM VCPU Regs Get
783e9e51
PB
1170 *
1171 * Input Args:
1172 * vm - Virtual Machine
1173 * vcpuid - VCPU ID
1174 *
1175 * Output Args:
1176 * regs - current state of VCPU regs
1177 *
1178 * Return: None
1179 *
1180 * Obtains the current register state for the VCPU specified by vcpuid
1181 * and stores it at the location given by regs.
1182 */
eabe7881 1183void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
783e9e51
PB
1184{
1185 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1186 int ret;
1187
1188 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1189
783e9e51
PB
1190 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1191 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1192 ret, errno);
1193}
1194
eabe7881
AJ
1195/*
1196 * VM VCPU Regs Set
783e9e51
PB
1197 *
1198 * Input Args:
1199 * vm - Virtual Machine
1200 * vcpuid - VCPU ID
1201 * regs - Values to set VCPU regs to
1202 *
1203 * Output Args: None
1204 *
1205 * Return: None
1206 *
1207 * Sets the regs of the VCPU specified by vcpuid to the values
1208 * given by regs.
1209 */
eabe7881 1210void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
783e9e51
PB
1211{
1212 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1213 int ret;
1214
1215 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1216
783e9e51
PB
1217 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1218 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1219 ret, errno);
1220}
1221
1222void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
eabe7881 1223 struct kvm_vcpu_events *events)
783e9e51
PB
1224{
1225 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1226 int ret;
1227
1228 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1229
783e9e51
PB
1230 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1231 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1232 ret, errno);
1233}
1234
1235void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
eabe7881 1236 struct kvm_vcpu_events *events)
783e9e51
PB
1237{
1238 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1239 int ret;
1240
1241 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1242
783e9e51
PB
1243 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1244 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1245 ret, errno);
1246}
1247
eabe7881
AJ
1248/*
1249 * VM VCPU System Regs Get
783e9e51
PB
1250 *
1251 * Input Args:
1252 * vm - Virtual Machine
1253 * vcpuid - VCPU ID
1254 *
1255 * Output Args:
1256 * sregs - current state of VCPU system regs
1257 *
1258 * Return: None
1259 *
1260 * Obtains the current system register state for the VCPU specified by
1261 * vcpuid and stores it at the location given by sregs.
1262 */
eabe7881 1263void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
783e9e51
PB
1264{
1265 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1266 int ret;
1267
1268 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1269
783e9e51
PB
1270 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1271 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1272 ret, errno);
1273}
1274
eabe7881
AJ
1275/*
1276 * VM VCPU System Regs Set
783e9e51
PB
1277 *
1278 * Input Args:
1279 * vm - Virtual Machine
1280 * vcpuid - VCPU ID
1281 * sregs - Values to set VCPU system regs to
1282 *
1283 * Output Args: None
1284 *
1285 * Return: None
1286 *
1287 * Sets the system regs of the VCPU specified by vcpuid to the values
1288 * given by sregs.
1289 */
eabe7881 1290void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
783e9e51
PB
1291{
1292 int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1293 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1294 "rc: %i errno: %i", ret, errno);
1295}
1296
eabe7881 1297int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
783e9e51
PB
1298{
1299 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1300 int ret;
1301
1302 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1303
783e9e51
PB
1304 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1305}
1306
eabe7881
AJ
1307/*
1308 * VCPU Ioctl
783e9e51
PB
1309 *
1310 * Input Args:
1311 * vm - Virtual Machine
1312 * vcpuid - VCPU ID
1313 * cmd - Ioctl number
1314 * arg - Argument to pass to the ioctl
1315 *
1316 * Return: None
1317 *
1318 * Issues an arbitrary ioctl on a VCPU fd.
1319 */
eabe7881
AJ
1320void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1321 unsigned long cmd, void *arg)
7e50c424
VK
1322{
1323 int ret;
1324
1325 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1326 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1327 cmd, ret, errno, strerror(errno));
1328}
1329
1330int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1331 unsigned long cmd, void *arg)
783e9e51
PB
1332{
1333 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1334 int ret;
1335
1336 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1337
1338 ret = ioctl(vcpu->fd, cmd, arg);
7e50c424
VK
1339
1340 return ret;
783e9e51
PB
1341}
1342
eabe7881
AJ
1343/*
1344 * VM Ioctl
783e9e51
PB
1345 *
1346 * Input Args:
1347 * vm - Virtual Machine
1348 * cmd - Ioctl number
1349 * arg - Argument to pass to the ioctl
1350 *
1351 * Return: None
1352 *
1353 * Issues an arbitrary ioctl on a VM fd.
1354 */
1355void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1356{
1357 int ret;
1358
1359 ret = ioctl(vm->fd, cmd, arg);
1360 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1361 cmd, ret, errno, strerror(errno));
1362}
1363
eabe7881
AJ
1364/*
1365 * VM Dump
783e9e51
PB
1366 *
1367 * Input Args:
1368 * vm - Virtual Machine
1369 * indent - Left margin indent amount
1370 *
1371 * Output Args:
1372 * stream - Output FILE stream
1373 *
1374 * Return: None
1375 *
1376 * Dumps the current state of the VM given by vm, to the FILE stream
1377 * given by stream.
1378 */
1379void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1380{
1381 struct userspace_mem_region *region;
1382 struct vcpu *vcpu;
1383
1384 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1385 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1386 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1387 fprintf(stream, "%*sMem Regions:\n", indent, "");
1388 for (region = vm->userspace_mem_region_head; region;
1389 region = region->next) {
1390 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1391 "host_virt: %p\n", indent + 2, "",
1392 (uint64_t) region->region.guest_phys_addr,
1393 (uint64_t) region->region.memory_size,
1394 region->host_mem);
1395 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1396 sparsebit_dump(stream, region->unused_phy_pages, 0);
1397 }
1398 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1399 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1400 fprintf(stream, "%*spgd_created: %u\n", indent, "",
1401 vm->pgd_created);
1402 if (vm->pgd_created) {
1403 fprintf(stream, "%*sVirtual Translation Tables:\n",
1404 indent + 2, "");
1405 virt_dump(stream, vm, indent + 4);
1406 }
1407 fprintf(stream, "%*sVCPUs:\n", indent, "");
1408 for (vcpu = vm->vcpu_head; vcpu; vcpu = vcpu->next)
1409 vcpu_dump(stream, vm, vcpu->id, indent + 2);
1410}
1411
783e9e51
PB
1412/* Known KVM exit reasons */
1413static struct exit_reason {
1414 unsigned int reason;
1415 const char *name;
1416} exit_reasons_known[] = {
1417 {KVM_EXIT_UNKNOWN, "UNKNOWN"},
1418 {KVM_EXIT_EXCEPTION, "EXCEPTION"},
1419 {KVM_EXIT_IO, "IO"},
1420 {KVM_EXIT_HYPERCALL, "HYPERCALL"},
1421 {KVM_EXIT_DEBUG, "DEBUG"},
1422 {KVM_EXIT_HLT, "HLT"},
1423 {KVM_EXIT_MMIO, "MMIO"},
1424 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1425 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1426 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1427 {KVM_EXIT_INTR, "INTR"},
1428 {KVM_EXIT_SET_TPR, "SET_TPR"},
1429 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1430 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1431 {KVM_EXIT_S390_RESET, "S390_RESET"},
1432 {KVM_EXIT_DCR, "DCR"},
1433 {KVM_EXIT_NMI, "NMI"},
1434 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1435 {KVM_EXIT_OSI, "OSI"},
1436 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1437#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1438 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1439#endif
1440};
1441
eabe7881
AJ
1442/*
1443 * Exit Reason String
783e9e51
PB
1444 *
1445 * Input Args:
1446 * exit_reason - Exit reason
1447 *
1448 * Output Args: None
1449 *
1450 * Return:
1451 * Constant string pointer describing the exit reason.
1452 *
1453 * Locates and returns a constant string that describes the KVM exit
1454 * reason given by exit_reason. If no such string is found, a constant
1455 * string of "Unknown" is returned.
1456 */
1457const char *exit_reason_str(unsigned int exit_reason)
1458{
1459 unsigned int n1;
1460
1461 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1462 if (exit_reason == exit_reasons_known[n1].reason)
1463 return exit_reasons_known[n1].name;
1464 }
1465
1466 return "Unknown";
1467}
1468
eabe7881 1469/*
d5106539 1470 * Physical Contiguous Page Allocator
783e9e51
PB
1471 *
1472 * Input Args:
1473 * vm - Virtual Machine
d5106539 1474 * num - number of pages
783e9e51
PB
1475 * paddr_min - Physical address minimum
1476 * memslot - Memory region to allocate page from
1477 *
1478 * Output Args: None
1479 *
1480 * Return:
1481 * Starting physical address
1482 *
d5106539
AJ
1483 * Within the VM specified by vm, locates a range of available physical
1484 * pages at or above paddr_min. If found, the pages are marked as in use
cdbd2428 1485 * and their base address is returned. A TEST_ASSERT failure occurs if
d5106539 1486 * not enough pages are available at or above paddr_min.
783e9e51 1487 */
d5106539
AJ
1488vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1489 vm_paddr_t paddr_min, uint32_t memslot)
783e9e51
PB
1490{
1491 struct userspace_mem_region *region;
d5106539
AJ
1492 sparsebit_idx_t pg, base;
1493
1494 TEST_ASSERT(num > 0, "Must allocate at least one page");
783e9e51
PB
1495
1496 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
4d5f26ee 1497 "not divisible by page size.\n"
783e9e51
PB
1498 " paddr_min: 0x%lx page_size: 0x%x",
1499 paddr_min, vm->page_size);
1500
783e9e51 1501 region = memslot2region(vm, memslot);
d5106539
AJ
1502 base = pg = paddr_min >> vm->page_shift;
1503
1504 do {
1505 for (; pg < base + num; ++pg) {
1506 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1507 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1508 break;
1509 }
783e9e51 1510 }
d5106539
AJ
1511 } while (pg && pg != base + num);
1512
1513 if (pg == 0) {
1514 fprintf(stderr, "No guest physical page available, "
1515 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1516 paddr_min, vm->page_size, memslot);
1517 fputs("---- vm dump ----\n", stderr);
1518 vm_dump(stderr, vm, 2);
1519 abort();
783e9e51
PB
1520 }
1521
d5106539
AJ
1522 for (pg = base; pg < base + num; ++pg)
1523 sparsebit_clear(region->unused_phy_pages, pg);
1524
1525 return base * vm->page_size;
1526}
783e9e51 1527
d5106539
AJ
1528vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1529 uint32_t memslot)
1530{
1531 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
783e9e51
PB
1532}
1533
eabe7881
AJ
1534/*
1535 * Address Guest Virtual to Host Virtual
783e9e51
PB
1536 *
1537 * Input Args:
1538 * vm - Virtual Machine
1539 * gva - VM virtual address
1540 *
1541 * Output Args: None
1542 *
1543 * Return:
1544 * Equivalent host virtual address
1545 */
1546void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1547{
1548 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1549}