]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - tools/testing/selftests/kvm/lib/kvm_util.c
kvm: selftests: add basic test for state save and restore
[mirror_ubuntu-focal-kernel.git] / tools / testing / selftests / kvm / lib / kvm_util.c
CommitLineData
783e9e51
PB
1/*
2 * tools/testing/selftests/kvm/lib/kvm_util.c
3 *
4 * Copyright (C) 2018, Google LLC.
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2.
7 */
8
9#include "test_util.h"
10#include "kvm_util.h"
11#include "kvm_util_internal.h"
12
13#include <assert.h>
14#include <sys/mman.h>
15#include <sys/types.h>
16#include <sys/stat.h>
17
18#define KVM_DEV_PATH "/dev/kvm"
19
20#define KVM_UTIL_PGS_PER_HUGEPG 512
21#define KVM_UTIL_MIN_PADDR 0x2000
22
23/* Aligns x up to the next multiple of size. Size must be a power of 2. */
24static void *align(void *x, size_t size)
25{
26 size_t mask = size - 1;
27 TEST_ASSERT(size != 0 && !(size & (size - 1)),
28 "size not a power of 2: %lu", size);
29 return (void *) (((size_t) x + mask) & ~mask);
30}
31
32/* Capability
33 *
34 * Input Args:
35 * cap - Capability
36 *
37 * Output Args: None
38 *
39 * Return:
40 * On success, the Value corresponding to the capability (KVM_CAP_*)
41 * specified by the value of cap. On failure a TEST_ASSERT failure
42 * is produced.
43 *
44 * Looks up and returns the value corresponding to the capability
45 * (KVM_CAP_*) given by cap.
46 */
47int kvm_check_cap(long cap)
48{
49 int ret;
50 int kvm_fd;
51
52 kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
bcb2b94a
PB
53 if (kvm_fd < 0)
54 exit(KSFT_SKIP);
783e9e51
PB
55
56 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
57 TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
58 " rc: %i errno: %i", ret, errno);
59
60 close(kvm_fd);
61
62 return ret;
63}
64
fa3899ad
PB
65static void vm_open(struct kvm_vm *vm, int perm)
66{
67 vm->kvm_fd = open(KVM_DEV_PATH, perm);
68 if (vm->kvm_fd < 0)
69 exit(KSFT_SKIP);
70
71 /* Create VM. */
72 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, NULL);
73 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
74 "rc: %i errno: %i", vm->fd, errno);
75}
76
783e9e51
PB
77/* VM Create
78 *
79 * Input Args:
80 * mode - VM Mode (e.g. VM_MODE_FLAT48PG)
81 * phy_pages - Physical memory pages
82 * perm - permission
83 *
84 * Output Args: None
85 *
86 * Return:
87 * Pointer to opaque structure that describes the created VM.
88 *
89 * Creates a VM with the mode specified by mode (e.g. VM_MODE_FLAT48PG).
90 * When phy_pages is non-zero, a memory region of phy_pages physical pages
91 * is created and mapped starting at guest physical address 0. The file
92 * descriptor to control the created VM is created with the permissions
93 * given by perm (e.g. O_RDWR).
94 */
95struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
96{
97 struct kvm_vm *vm;
98 int kvm_fd;
99
100 /* Allocate memory. */
101 vm = calloc(1, sizeof(*vm));
102 TEST_ASSERT(vm != NULL, "Insufficent Memory");
103
104 vm->mode = mode;
fa3899ad 105 vm_open(vm, perm);
783e9e51
PB
106
107 /* Setup mode specific traits. */
108 switch (vm->mode) {
109 case VM_MODE_FLAT48PG:
110 vm->page_size = 0x1000;
111 vm->page_shift = 12;
112
113 /* Limit to 48-bit canonical virtual addresses. */
114 vm->vpages_valid = sparsebit_alloc();
115 sparsebit_set_num(vm->vpages_valid,
116 0, (1ULL << (48 - 1)) >> vm->page_shift);
117 sparsebit_set_num(vm->vpages_valid,
118 (~((1ULL << (48 - 1)) - 1)) >> vm->page_shift,
119 (1ULL << (48 - 1)) >> vm->page_shift);
120
121 /* Limit physical addresses to 52-bits. */
122 vm->max_gfn = ((1ULL << 52) >> vm->page_shift) - 1;
123 break;
124
125 default:
126 TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", mode);
127 }
128
129 /* Allocate and setup memory for guest. */
130 vm->vpages_mapped = sparsebit_alloc();
131 if (phy_pages != 0)
132 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
133 0, 0, phy_pages, 0);
134
135 return vm;
136}
137
fa3899ad
PB
138/* VM Restart
139 *
140 * Input Args:
141 * vm - VM that has been released before
142 * perm - permission
143 *
144 * Output Args: None
145 *
146 * Reopens the file descriptors associated to the VM and reinstates the
147 * global state, such as the irqchip and the memory regions that are mapped
148 * into the guest.
149 */
150void kvm_vm_restart(struct kvm_vm *vmp, int perm)
151{
152 struct userspace_mem_region *region;
153
154 vm_open(vmp, perm);
155 if (vmp->has_irqchip)
156 vm_create_irqchip(vmp);
157
158 for (region = vmp->userspace_mem_region_head; region;
159 region = region->next) {
160 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
161 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
162 " rc: %i errno: %i\n"
163 " slot: %u flags: 0x%x\n"
164 " guest_phys_addr: 0x%lx size: 0x%lx",
165 ret, errno, region->region.slot, region->region.flags,
166 region->region.guest_phys_addr,
167 region->region.memory_size);
168 }
169}
170
783e9e51
PB
171/* Userspace Memory Region Find
172 *
173 * Input Args:
174 * vm - Virtual Machine
175 * start - Starting VM physical address
176 * end - Ending VM physical address, inclusive.
177 *
178 * Output Args: None
179 *
180 * Return:
181 * Pointer to overlapping region, NULL if no such region.
182 *
183 * Searches for a region with any physical memory that overlaps with
184 * any portion of the guest physical addresses from start to end
185 * inclusive. If multiple overlapping regions exist, a pointer to any
186 * of the regions is returned. Null is returned only when no overlapping
187 * region exists.
188 */
189static struct userspace_mem_region *userspace_mem_region_find(
190 struct kvm_vm *vm, uint64_t start, uint64_t end)
191{
192 struct userspace_mem_region *region;
193
194 for (region = vm->userspace_mem_region_head; region;
195 region = region->next) {
196 uint64_t existing_start = region->region.guest_phys_addr;
197 uint64_t existing_end = region->region.guest_phys_addr
198 + region->region.memory_size - 1;
199 if (start <= existing_end && end >= existing_start)
200 return region;
201 }
202
203 return NULL;
204}
205
206/* KVM Userspace Memory Region Find
207 *
208 * Input Args:
209 * vm - Virtual Machine
210 * start - Starting VM physical address
211 * end - Ending VM physical address, inclusive.
212 *
213 * Output Args: None
214 *
215 * Return:
216 * Pointer to overlapping region, NULL if no such region.
217 *
218 * Public interface to userspace_mem_region_find. Allows tests to look up
219 * the memslot datastructure for a given range of guest physical memory.
220 */
221struct kvm_userspace_memory_region *
222kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
223 uint64_t end)
224{
225 struct userspace_mem_region *region;
226
227 region = userspace_mem_region_find(vm, start, end);
228 if (!region)
229 return NULL;
230
231 return &region->region;
232}
233
234/* VCPU Find
235 *
236 * Input Args:
237 * vm - Virtual Machine
238 * vcpuid - VCPU ID
239 *
240 * Output Args: None
241 *
242 * Return:
243 * Pointer to VCPU structure
244 *
245 * Locates a vcpu structure that describes the VCPU specified by vcpuid and
246 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU
247 * for the specified vcpuid.
248 */
249struct vcpu *vcpu_find(struct kvm_vm *vm,
250 uint32_t vcpuid)
251{
252 struct vcpu *vcpup;
253
254 for (vcpup = vm->vcpu_head; vcpup; vcpup = vcpup->next) {
255 if (vcpup->id == vcpuid)
256 return vcpup;
257 }
258
259 return NULL;
260}
261
262/* VM VCPU Remove
263 *
264 * Input Args:
265 * vm - Virtual Machine
266 * vcpuid - VCPU ID
267 *
268 * Output Args: None
269 *
270 * Return: None, TEST_ASSERT failures for all error conditions
271 *
272 * Within the VM specified by vm, removes the VCPU given by vcpuid.
273 */
274static void vm_vcpu_rm(struct kvm_vm *vm, uint32_t vcpuid)
275{
276 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
0a505fe6 277 int ret;
783e9e51 278
0a505fe6
PB
279 ret = munmap(vcpu->state, sizeof(*vcpu->state));
280 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
281 "errno: %i", ret, errno);
282 close(vcpu->fd);
783e9e51
PB
283 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
284 "errno: %i", ret, errno);
285
286 if (vcpu->next)
287 vcpu->next->prev = vcpu->prev;
288 if (vcpu->prev)
289 vcpu->prev->next = vcpu->next;
290 else
291 vm->vcpu_head = vcpu->next;
292 free(vcpu);
293}
294
fa3899ad
PB
295void kvm_vm_release(struct kvm_vm *vmp)
296{
297 int ret;
298
299 /* Free VCPUs. */
300 while (vmp->vcpu_head)
301 vm_vcpu_rm(vmp, vmp->vcpu_head->id);
302
303 /* Close file descriptor for the VM. */
304 ret = close(vmp->fd);
305 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
306 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
307
308 close(vmp->kvm_fd);
309 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
310 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
311}
783e9e51
PB
312
313/* Destroys and frees the VM pointed to by vmp.
314 */
315void kvm_vm_free(struct kvm_vm *vmp)
316{
317 int ret;
318
319 if (vmp == NULL)
320 return;
321
322 /* Free userspace_mem_regions. */
323 while (vmp->userspace_mem_region_head) {
324 struct userspace_mem_region *region
325 = vmp->userspace_mem_region_head;
326
327 region->region.memory_size = 0;
328 ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION,
329 &region->region);
330 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
331 "rc: %i errno: %i", ret, errno);
332
333 vmp->userspace_mem_region_head = region->next;
334 sparsebit_free(&region->unused_phy_pages);
335 ret = munmap(region->mmap_start, region->mmap_size);
336 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i",
337 ret, errno);
338
339 free(region);
340 }
341
783e9e51
PB
342 /* Free sparsebit arrays. */
343 sparsebit_free(&vmp->vpages_valid);
344 sparsebit_free(&vmp->vpages_mapped);
345
fa3899ad 346 kvm_vm_release(vmp);
783e9e51
PB
347
348 /* Free the structure describing the VM. */
349 free(vmp);
350}
351
352/* Memory Compare, host virtual to guest virtual
353 *
354 * Input Args:
355 * hva - Starting host virtual address
356 * vm - Virtual Machine
357 * gva - Starting guest virtual address
358 * len - number of bytes to compare
359 *
360 * Output Args: None
361 *
362 * Input/Output Args: None
363 *
364 * Return:
365 * Returns 0 if the bytes starting at hva for a length of len
366 * are equal the guest virtual bytes starting at gva. Returns
367 * a value < 0, if bytes at hva are less than those at gva.
368 * Otherwise a value > 0 is returned.
369 *
370 * Compares the bytes starting at the host virtual address hva, for
371 * a length of len, to the guest bytes starting at the guest virtual
372 * address given by gva.
373 */
374int kvm_memcmp_hva_gva(void *hva,
375 struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
376{
377 size_t amt;
378
379 /* Compare a batch of bytes until either a match is found
380 * or all the bytes have been compared.
381 */
382 for (uintptr_t offset = 0; offset < len; offset += amt) {
383 uintptr_t ptr1 = (uintptr_t)hva + offset;
384
385 /* Determine host address for guest virtual address
386 * at offset.
387 */
388 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
389
390 /* Determine amount to compare on this pass.
391 * Don't allow the comparsion to cross a page boundary.
392 */
393 amt = len - offset;
394 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
395 amt = vm->page_size - (ptr1 % vm->page_size);
396 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
397 amt = vm->page_size - (ptr2 % vm->page_size);
398
399 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
400 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
401
402 /* Perform the comparison. If there is a difference
403 * return that result to the caller, otherwise need
404 * to continue on looking for a mismatch.
405 */
406 int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
407 if (ret != 0)
408 return ret;
409 }
410
411 /* No mismatch found. Let the caller know the two memory
412 * areas are equal.
413 */
414 return 0;
415}
416
417/* Allocate an instance of struct kvm_cpuid2
418 *
419 * Input Args: None
420 *
421 * Output Args: None
422 *
423 * Return: A pointer to the allocated struct. The caller is responsible
424 * for freeing this struct.
425 *
426 * Since kvm_cpuid2 uses a 0-length array to allow a the size of the
427 * array to be decided at allocation time, allocation is slightly
428 * complicated. This function uses a reasonable default length for
429 * the array and performs the appropriate allocation.
430 */
d5edb7f8 431static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
783e9e51
PB
432{
433 struct kvm_cpuid2 *cpuid;
434 int nent = 100;
435 size_t size;
436
437 size = sizeof(*cpuid);
438 size += nent * sizeof(struct kvm_cpuid_entry2);
439 cpuid = malloc(size);
440 if (!cpuid) {
441 perror("malloc");
442 abort();
443 }
444
445 cpuid->nent = nent;
446
447 return cpuid;
448}
449
450/* KVM Supported CPUID Get
451 *
452 * Input Args: None
453 *
454 * Output Args:
783e9e51 455 *
d5edb7f8 456 * Return: The supported KVM CPUID
783e9e51
PB
457 *
458 * Get the guest CPUID supported by KVM.
459 */
d5edb7f8 460struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
783e9e51 461{
d5edb7f8 462 static struct kvm_cpuid2 *cpuid;
783e9e51
PB
463 int ret;
464 int kvm_fd;
465
d5edb7f8
PB
466 if (cpuid)
467 return cpuid;
468
469 cpuid = allocate_kvm_cpuid2();
783e9e51 470 kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
bcb2b94a
PB
471 if (kvm_fd < 0)
472 exit(KSFT_SKIP);
783e9e51
PB
473
474 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
475 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
476 ret, errno);
477
478 close(kvm_fd);
d5edb7f8 479 return cpuid;
783e9e51
PB
480}
481
482/* Locate a cpuid entry.
483 *
484 * Input Args:
485 * cpuid: The cpuid.
486 * function: The function of the cpuid entry to find.
487 *
488 * Output Args: None
489 *
490 * Return: A pointer to the cpuid entry. Never returns NULL.
491 */
492struct kvm_cpuid_entry2 *
d5edb7f8 493kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
783e9e51 494{
d5edb7f8 495 struct kvm_cpuid2 *cpuid;
783e9e51
PB
496 struct kvm_cpuid_entry2 *entry = NULL;
497 int i;
498
d5edb7f8 499 cpuid = kvm_get_supported_cpuid();
783e9e51
PB
500 for (i = 0; i < cpuid->nent; i++) {
501 if (cpuid->entries[i].function == function &&
502 cpuid->entries[i].index == index) {
503 entry = &cpuid->entries[i];
504 break;
505 }
506 }
507
508 TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
509 function, index);
510 return entry;
511}
512
513/* VM Userspace Memory Region Add
514 *
515 * Input Args:
516 * vm - Virtual Machine
517 * backing_src - Storage source for this region.
518 * NULL to use anonymous memory.
519 * guest_paddr - Starting guest physical address
520 * slot - KVM region slot
521 * npages - Number of physical pages
522 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
523 *
524 * Output Args: None
525 *
526 * Return: None
527 *
528 * Allocates a memory area of the number of pages specified by npages
529 * and maps it to the VM specified by vm, at a starting physical address
530 * given by guest_paddr. The region is created with a KVM region slot
531 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
532 * region is created with the flags given by flags.
533 */
534void vm_userspace_mem_region_add(struct kvm_vm *vm,
535 enum vm_mem_backing_src_type src_type,
536 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
537 uint32_t flags)
538{
539 int ret;
540 unsigned long pmem_size = 0;
541 struct userspace_mem_region *region;
542 size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
543
544 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
545 "address not on a page boundary.\n"
546 " guest_paddr: 0x%lx vm->page_size: 0x%x",
547 guest_paddr, vm->page_size);
548 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
549 <= vm->max_gfn, "Physical range beyond maximum "
550 "supported physical address,\n"
551 " guest_paddr: 0x%lx npages: 0x%lx\n"
552 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
553 guest_paddr, npages, vm->max_gfn, vm->page_size);
554
555 /* Confirm a mem region with an overlapping address doesn't
556 * already exist.
557 */
558 region = (struct userspace_mem_region *) userspace_mem_region_find(
559 vm, guest_paddr, guest_paddr + npages * vm->page_size);
560 if (region != NULL)
561 TEST_ASSERT(false, "overlapping userspace_mem_region already "
562 "exists\n"
563 " requested guest_paddr: 0x%lx npages: 0x%lx "
564 "page_size: 0x%x\n"
565 " existing guest_paddr: 0x%lx size: 0x%lx",
566 guest_paddr, npages, vm->page_size,
567 (uint64_t) region->region.guest_phys_addr,
568 (uint64_t) region->region.memory_size);
569
570 /* Confirm no region with the requested slot already exists. */
571 for (region = vm->userspace_mem_region_head; region;
572 region = region->next) {
573 if (region->region.slot == slot)
574 break;
575 if ((guest_paddr <= (region->region.guest_phys_addr
576 + region->region.memory_size))
577 && ((guest_paddr + npages * vm->page_size)
578 >= region->region.guest_phys_addr))
579 break;
580 }
581 if (region != NULL)
582 TEST_ASSERT(false, "A mem region with the requested slot "
583 "or overlapping physical memory range already exists.\n"
584 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
585 " existing slot: %u paddr: 0x%lx size: 0x%lx",
586 slot, guest_paddr, npages,
587 region->region.slot,
588 (uint64_t) region->region.guest_phys_addr,
589 (uint64_t) region->region.memory_size);
590
591 /* Allocate and initialize new mem region structure. */
592 region = calloc(1, sizeof(*region));
593 TEST_ASSERT(region != NULL, "Insufficient Memory");
594 region->mmap_size = npages * vm->page_size;
595
596 /* Enough memory to align up to a huge page. */
597 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
598 region->mmap_size += huge_page_size;
599 region->mmap_start = mmap(NULL, region->mmap_size,
600 PROT_READ | PROT_WRITE,
601 MAP_PRIVATE | MAP_ANONYMOUS
602 | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
603 -1, 0);
604 TEST_ASSERT(region->mmap_start != MAP_FAILED,
605 "test_malloc failed, mmap_start: %p errno: %i",
606 region->mmap_start, errno);
607
608 /* Align THP allocation up to start of a huge page. */
609 region->host_mem = align(region->mmap_start,
610 src_type == VM_MEM_SRC_ANONYMOUS_THP ? huge_page_size : 1);
611
612 /* As needed perform madvise */
613 if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
614 ret = madvise(region->host_mem, npages * vm->page_size,
615 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
616 TEST_ASSERT(ret == 0, "madvise failed,\n"
617 " addr: %p\n"
618 " length: 0x%lx\n"
619 " src_type: %x",
620 region->host_mem, npages * vm->page_size, src_type);
621 }
622
623 region->unused_phy_pages = sparsebit_alloc();
624 sparsebit_set_num(region->unused_phy_pages,
625 guest_paddr >> vm->page_shift, npages);
626 region->region.slot = slot;
627 region->region.flags = flags;
628 region->region.guest_phys_addr = guest_paddr;
629 region->region.memory_size = npages * vm->page_size;
630 region->region.userspace_addr = (uintptr_t) region->host_mem;
631 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
632 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
633 " rc: %i errno: %i\n"
634 " slot: %u flags: 0x%x\n"
635 " guest_phys_addr: 0x%lx size: 0x%lx",
636 ret, errno, slot, flags,
637 guest_paddr, (uint64_t) region->region.memory_size);
638
639 /* Add to linked-list of memory regions. */
640 if (vm->userspace_mem_region_head)
641 vm->userspace_mem_region_head->prev = region;
642 region->next = vm->userspace_mem_region_head;
643 vm->userspace_mem_region_head = region;
644}
645
646/* Memslot to region
647 *
648 * Input Args:
649 * vm - Virtual Machine
650 * memslot - KVM memory slot ID
651 *
652 * Output Args: None
653 *
654 * Return:
655 * Pointer to memory region structure that describe memory region
656 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
657 * on error (e.g. currently no memory region using memslot as a KVM
658 * memory slot ID).
659 */
660static struct userspace_mem_region *memslot2region(struct kvm_vm *vm,
661 uint32_t memslot)
662{
663 struct userspace_mem_region *region;
664
665 for (region = vm->userspace_mem_region_head; region;
666 region = region->next) {
667 if (region->region.slot == memslot)
668 break;
669 }
670 if (region == NULL) {
671 fprintf(stderr, "No mem region with the requested slot found,\n"
672 " requested slot: %u\n", memslot);
673 fputs("---- vm dump ----\n", stderr);
674 vm_dump(stderr, vm, 2);
675 TEST_ASSERT(false, "Mem region not found");
676 }
677
678 return region;
679}
680
681/* VM Memory Region Flags Set
682 *
683 * Input Args:
684 * vm - Virtual Machine
685 * flags - Starting guest physical address
686 *
687 * Output Args: None
688 *
689 * Return: None
690 *
691 * Sets the flags of the memory region specified by the value of slot,
692 * to the values given by flags.
693 */
694void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
695{
696 int ret;
697 struct userspace_mem_region *region;
698
699 /* Locate memory region. */
700 region = memslot2region(vm, slot);
701
702 region->region.flags = flags;
703
704 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
705
706 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
707 " rc: %i errno: %i slot: %u flags: 0x%x",
708 ret, errno, slot, flags);
709}
710
711/* VCPU mmap Size
712 *
713 * Input Args: None
714 *
715 * Output Args: None
716 *
717 * Return:
718 * Size of VCPU state
719 *
720 * Returns the size of the structure pointed to by the return value
721 * of vcpu_state().
722 */
723static int vcpu_mmap_sz(void)
724{
725 int dev_fd, ret;
726
727 dev_fd = open(KVM_DEV_PATH, O_RDONLY);
bcb2b94a
PB
728 if (dev_fd < 0)
729 exit(KSFT_SKIP);
783e9e51
PB
730
731 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
732 TEST_ASSERT(ret >= sizeof(struct kvm_run),
733 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
734 __func__, ret, errno);
735
736 close(dev_fd);
737
738 return ret;
739}
740
741/* VM VCPU Add
742 *
743 * Input Args:
744 * vm - Virtual Machine
745 * vcpuid - VCPU ID
746 *
747 * Output Args: None
748 *
749 * Return: None
750 *
751 * Creates and adds to the VM specified by vm and virtual CPU with
752 * the ID given by vcpuid.
753 */
2305339e 754void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid, int pgd_memslot, int gdt_memslot)
783e9e51
PB
755{
756 struct vcpu *vcpu;
757
758 /* Confirm a vcpu with the specified id doesn't already exist. */
759 vcpu = vcpu_find(vm, vcpuid);
760 if (vcpu != NULL)
761 TEST_ASSERT(false, "vcpu with the specified id "
762 "already exists,\n"
763 " requested vcpuid: %u\n"
764 " existing vcpuid: %u state: %p",
765 vcpuid, vcpu->id, vcpu->state);
766
767 /* Allocate and initialize new vcpu structure. */
768 vcpu = calloc(1, sizeof(*vcpu));
769 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
770 vcpu->id = vcpuid;
771 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
772 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
773 vcpu->fd, errno);
774
775 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
776 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
777 vcpu_mmap_sz(), sizeof(*vcpu->state));
778 vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
779 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
780 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
781 "vcpu id: %u errno: %i", vcpuid, errno);
782
783 /* Add to linked-list of VCPUs. */
784 if (vm->vcpu_head)
785 vm->vcpu_head->prev = vcpu;
786 vcpu->next = vm->vcpu_head;
787 vm->vcpu_head = vcpu;
788
2305339e 789 vcpu_setup(vm, vcpuid, pgd_memslot, gdt_memslot);
783e9e51
PB
790}
791
792/* VM Virtual Address Unused Gap
793 *
794 * Input Args:
795 * vm - Virtual Machine
796 * sz - Size (bytes)
797 * vaddr_min - Minimum Virtual Address
798 *
799 * Output Args: None
800 *
801 * Return:
802 * Lowest virtual address at or below vaddr_min, with at least
803 * sz unused bytes. TEST_ASSERT failure if no area of at least
804 * size sz is available.
805 *
806 * Within the VM specified by vm, locates the lowest starting virtual
807 * address >= vaddr_min, that has at least sz unallocated bytes. A
808 * TEST_ASSERT failure occurs for invalid input or no area of at least
809 * sz unallocated bytes >= vaddr_min is available.
810 */
811static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
812 vm_vaddr_t vaddr_min)
813{
814 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
815
816 /* Determine lowest permitted virtual page index. */
817 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
818 if ((pgidx_start * vm->page_size) < vaddr_min)
819 goto no_va_found;
820
821 /* Loop over section with enough valid virtual page indexes. */
822 if (!sparsebit_is_set_num(vm->vpages_valid,
823 pgidx_start, pages))
824 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
825 pgidx_start, pages);
826 do {
827 /*
828 * Are there enough unused virtual pages available at
829 * the currently proposed starting virtual page index.
830 * If not, adjust proposed starting index to next
831 * possible.
832 */
833 if (sparsebit_is_clear_num(vm->vpages_mapped,
834 pgidx_start, pages))
835 goto va_found;
836 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
837 pgidx_start, pages);
838 if (pgidx_start == 0)
839 goto no_va_found;
840
841 /*
842 * If needed, adjust proposed starting virtual address,
843 * to next range of valid virtual addresses.
844 */
845 if (!sparsebit_is_set_num(vm->vpages_valid,
846 pgidx_start, pages)) {
847 pgidx_start = sparsebit_next_set_num(
848 vm->vpages_valid, pgidx_start, pages);
849 if (pgidx_start == 0)
850 goto no_va_found;
851 }
852 } while (pgidx_start != 0);
853
854no_va_found:
855 TEST_ASSERT(false, "No vaddr of specified pages available, "
856 "pages: 0x%lx", pages);
857
858 /* NOT REACHED */
859 return -1;
860
861va_found:
862 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
863 pgidx_start, pages),
864 "Unexpected, invalid virtual page index range,\n"
865 " pgidx_start: 0x%lx\n"
866 " pages: 0x%lx",
867 pgidx_start, pages);
868 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
869 pgidx_start, pages),
870 "Unexpected, pages already mapped,\n"
871 " pgidx_start: 0x%lx\n"
872 " pages: 0x%lx",
873 pgidx_start, pages);
874
875 return pgidx_start * vm->page_size;
876}
877
878/* VM Virtual Address Allocate
879 *
880 * Input Args:
881 * vm - Virtual Machine
882 * sz - Size in bytes
883 * vaddr_min - Minimum starting virtual address
884 * data_memslot - Memory region slot for data pages
885 * pgd_memslot - Memory region slot for new virtual translation tables
886 *
887 * Output Args: None
888 *
889 * Return:
890 * Starting guest virtual address
891 *
892 * Allocates at least sz bytes within the virtual address space of the vm
893 * given by vm. The allocated bytes are mapped to a virtual address >=
894 * the address given by vaddr_min. Note that each allocation uses a
895 * a unique set of pages, with the minimum real allocation being at least
896 * a page.
897 */
898vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
899 uint32_t data_memslot, uint32_t pgd_memslot)
900{
901 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
902
903 virt_pgd_alloc(vm, pgd_memslot);
904
905 /* Find an unused range of virtual page addresses of at least
906 * pages in length.
907 */
908 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
909
910 /* Map the virtual pages. */
911 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
912 pages--, vaddr += vm->page_size) {
913 vm_paddr_t paddr;
914
915 paddr = vm_phy_page_alloc(vm, KVM_UTIL_MIN_PADDR, data_memslot);
916
917 virt_pg_map(vm, vaddr, paddr, pgd_memslot);
918
919 sparsebit_set(vm->vpages_mapped,
920 vaddr >> vm->page_shift);
921 }
922
923 return vaddr_start;
924}
925
926/* Address VM Physical to Host Virtual
927 *
928 * Input Args:
929 * vm - Virtual Machine
930 * gpa - VM physical address
931 *
932 * Output Args: None
933 *
934 * Return:
935 * Equivalent host virtual address
936 *
937 * Locates the memory region containing the VM physical address given
938 * by gpa, within the VM given by vm. When found, the host virtual
939 * address providing the memory to the vm physical address is returned.
940 * A TEST_ASSERT failure occurs if no region containing gpa exists.
941 */
942void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
943{
944 struct userspace_mem_region *region;
945 for (region = vm->userspace_mem_region_head; region;
946 region = region->next) {
947 if ((gpa >= region->region.guest_phys_addr)
948 && (gpa <= (region->region.guest_phys_addr
949 + region->region.memory_size - 1)))
950 return (void *) ((uintptr_t) region->host_mem
951 + (gpa - region->region.guest_phys_addr));
952 }
953
954 TEST_ASSERT(false, "No vm physical memory at 0x%lx", gpa);
955 return NULL;
956}
957
958/* Address Host Virtual to VM Physical
959 *
960 * Input Args:
961 * vm - Virtual Machine
962 * hva - Host virtual address
963 *
964 * Output Args: None
965 *
966 * Return:
967 * Equivalent VM physical address
968 *
969 * Locates the memory region containing the host virtual address given
970 * by hva, within the VM given by vm. When found, the equivalent
971 * VM physical address is returned. A TEST_ASSERT failure occurs if no
972 * region containing hva exists.
973 */
974vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
975{
976 struct userspace_mem_region *region;
977 for (region = vm->userspace_mem_region_head; region;
978 region = region->next) {
979 if ((hva >= region->host_mem)
980 && (hva <= (region->host_mem
981 + region->region.memory_size - 1)))
982 return (vm_paddr_t) ((uintptr_t)
983 region->region.guest_phys_addr
984 + (hva - (uintptr_t) region->host_mem));
985 }
986
987 TEST_ASSERT(false, "No mapping to a guest physical address, "
988 "hva: %p", hva);
989 return -1;
990}
991
992/* VM Create IRQ Chip
993 *
994 * Input Args:
995 * vm - Virtual Machine
996 *
997 * Output Args: None
998 *
999 * Return: None
1000 *
1001 * Creates an interrupt controller chip for the VM specified by vm.
1002 */
1003void vm_create_irqchip(struct kvm_vm *vm)
1004{
1005 int ret;
1006
1007 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1008 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1009 "rc: %i errno: %i", ret, errno);
fa3899ad
PB
1010
1011 vm->has_irqchip = true;
783e9e51
PB
1012}
1013
1014/* VM VCPU State
1015 *
1016 * Input Args:
1017 * vm - Virtual Machine
1018 * vcpuid - VCPU ID
1019 *
1020 * Output Args: None
1021 *
1022 * Return:
1023 * Pointer to structure that describes the state of the VCPU.
1024 *
1025 * Locates and returns a pointer to a structure that describes the
1026 * state of the VCPU with the given vcpuid.
1027 */
1028struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1029{
1030 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1031 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1032
1033 return vcpu->state;
1034}
1035
1036/* VM VCPU Run
1037 *
1038 * Input Args:
1039 * vm - Virtual Machine
1040 * vcpuid - VCPU ID
1041 *
1042 * Output Args: None
1043 *
1044 * Return: None
1045 *
1046 * Switch to executing the code for the VCPU given by vcpuid, within the VM
1047 * given by vm.
1048 */
1049void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1050{
1051 int ret = _vcpu_run(vm, vcpuid);
1052 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1053 "rc: %i errno: %i", ret, errno);
1054}
1055
1056int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1057{
1058 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1059 int rc;
1060
1061 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1062 do {
1063 rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1064 } while (rc == -1 && errno == EINTR);
1065 return rc;
1066}
1067
1068/* VM VCPU Set MP State
1069 *
1070 * Input Args:
1071 * vm - Virtual Machine
1072 * vcpuid - VCPU ID
1073 * mp_state - mp_state to be set
1074 *
1075 * Output Args: None
1076 *
1077 * Return: None
1078 *
1079 * Sets the MP state of the VCPU given by vcpuid, to the state given
1080 * by mp_state.
1081 */
1082void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1083 struct kvm_mp_state *mp_state)
1084{
1085 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1086 int ret;
1087
1088 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1089
1090 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1091 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1092 "rc: %i errno: %i", ret, errno);
1093}
1094
1095/* VM VCPU Regs Get
1096 *
1097 * Input Args:
1098 * vm - Virtual Machine
1099 * vcpuid - VCPU ID
1100 *
1101 * Output Args:
1102 * regs - current state of VCPU regs
1103 *
1104 * Return: None
1105 *
1106 * Obtains the current register state for the VCPU specified by vcpuid
1107 * and stores it at the location given by regs.
1108 */
1109void vcpu_regs_get(struct kvm_vm *vm,
1110 uint32_t vcpuid, struct kvm_regs *regs)
1111{
1112 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1113 int ret;
1114
1115 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1116
1117 /* Get the regs. */
1118 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1119 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1120 ret, errno);
1121}
1122
1123/* VM VCPU Regs Set
1124 *
1125 * Input Args:
1126 * vm - Virtual Machine
1127 * vcpuid - VCPU ID
1128 * regs - Values to set VCPU regs to
1129 *
1130 * Output Args: None
1131 *
1132 * Return: None
1133 *
1134 * Sets the regs of the VCPU specified by vcpuid to the values
1135 * given by regs.
1136 */
1137void vcpu_regs_set(struct kvm_vm *vm,
1138 uint32_t vcpuid, struct kvm_regs *regs)
1139{
1140 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1141 int ret;
1142
1143 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1144
1145 /* Set the regs. */
1146 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1147 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1148 ret, errno);
1149}
1150
1151void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1152 struct kvm_vcpu_events *events)
1153{
1154 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1155 int ret;
1156
1157 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1158
1159 /* Get the regs. */
1160 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1161 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1162 ret, errno);
1163}
1164
1165void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1166 struct kvm_vcpu_events *events)
1167{
1168 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1169 int ret;
1170
1171 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1172
1173 /* Set the regs. */
1174 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1175 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1176 ret, errno);
1177}
1178
1179/* VM VCPU Args Set
1180 *
1181 * Input Args:
1182 * vm - Virtual Machine
1183 * vcpuid - VCPU ID
1184 * num - number of arguments
1185 * ... - arguments, each of type uint64_t
1186 *
1187 * Output Args: None
1188 *
1189 * Return: None
1190 *
1191 * Sets the first num function input arguments to the values
1192 * given as variable args. Each of the variable args is expected to
1193 * be of type uint64_t.
1194 */
1195void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
1196{
1197 va_list ap;
1198 struct kvm_regs regs;
1199
1200 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
1201 " num: %u\n",
1202 num);
1203
1204 va_start(ap, num);
1205 vcpu_regs_get(vm, vcpuid, &regs);
1206
1207 if (num >= 1)
1208 regs.rdi = va_arg(ap, uint64_t);
1209
1210 if (num >= 2)
1211 regs.rsi = va_arg(ap, uint64_t);
1212
1213 if (num >= 3)
1214 regs.rdx = va_arg(ap, uint64_t);
1215
1216 if (num >= 4)
1217 regs.rcx = va_arg(ap, uint64_t);
1218
1219 if (num >= 5)
1220 regs.r8 = va_arg(ap, uint64_t);
1221
1222 if (num >= 6)
1223 regs.r9 = va_arg(ap, uint64_t);
1224
1225 vcpu_regs_set(vm, vcpuid, &regs);
1226 va_end(ap);
1227}
1228
1229/* VM VCPU System Regs Get
1230 *
1231 * Input Args:
1232 * vm - Virtual Machine
1233 * vcpuid - VCPU ID
1234 *
1235 * Output Args:
1236 * sregs - current state of VCPU system regs
1237 *
1238 * Return: None
1239 *
1240 * Obtains the current system register state for the VCPU specified by
1241 * vcpuid and stores it at the location given by sregs.
1242 */
1243void vcpu_sregs_get(struct kvm_vm *vm,
1244 uint32_t vcpuid, struct kvm_sregs *sregs)
1245{
1246 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1247 int ret;
1248
1249 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1250
1251 /* Get the regs. */
1252 /* Get the regs. */
1253 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1254 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1255 ret, errno);
1256}
1257
1258/* VM VCPU System Regs Set
1259 *
1260 * Input Args:
1261 * vm - Virtual Machine
1262 * vcpuid - VCPU ID
1263 * sregs - Values to set VCPU system regs to
1264 *
1265 * Output Args: None
1266 *
1267 * Return: None
1268 *
1269 * Sets the system regs of the VCPU specified by vcpuid to the values
1270 * given by sregs.
1271 */
1272void vcpu_sregs_set(struct kvm_vm *vm,
1273 uint32_t vcpuid, struct kvm_sregs *sregs)
1274{
1275 int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1276 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1277 "rc: %i errno: %i", ret, errno);
1278}
1279
1280int _vcpu_sregs_set(struct kvm_vm *vm,
1281 uint32_t vcpuid, struct kvm_sregs *sregs)
1282{
1283 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1284 int ret;
1285
1286 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1287
1288 /* Get the regs. */
1289 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1290}
1291
1292/* VCPU Ioctl
1293 *
1294 * Input Args:
1295 * vm - Virtual Machine
1296 * vcpuid - VCPU ID
1297 * cmd - Ioctl number
1298 * arg - Argument to pass to the ioctl
1299 *
1300 * Return: None
1301 *
1302 * Issues an arbitrary ioctl on a VCPU fd.
1303 */
1304void vcpu_ioctl(struct kvm_vm *vm,
1305 uint32_t vcpuid, unsigned long cmd, void *arg)
1306{
1307 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1308 int ret;
1309
1310 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1311
1312 ret = ioctl(vcpu->fd, cmd, arg);
1313 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1314 cmd, ret, errno, strerror(errno));
1315}
1316
1317/* VM Ioctl
1318 *
1319 * Input Args:
1320 * vm - Virtual Machine
1321 * cmd - Ioctl number
1322 * arg - Argument to pass to the ioctl
1323 *
1324 * Return: None
1325 *
1326 * Issues an arbitrary ioctl on a VM fd.
1327 */
1328void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1329{
1330 int ret;
1331
1332 ret = ioctl(vm->fd, cmd, arg);
1333 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1334 cmd, ret, errno, strerror(errno));
1335}
1336
1337/* VM Dump
1338 *
1339 * Input Args:
1340 * vm - Virtual Machine
1341 * indent - Left margin indent amount
1342 *
1343 * Output Args:
1344 * stream - Output FILE stream
1345 *
1346 * Return: None
1347 *
1348 * Dumps the current state of the VM given by vm, to the FILE stream
1349 * given by stream.
1350 */
1351void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1352{
1353 struct userspace_mem_region *region;
1354 struct vcpu *vcpu;
1355
1356 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1357 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1358 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1359 fprintf(stream, "%*sMem Regions:\n", indent, "");
1360 for (region = vm->userspace_mem_region_head; region;
1361 region = region->next) {
1362 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1363 "host_virt: %p\n", indent + 2, "",
1364 (uint64_t) region->region.guest_phys_addr,
1365 (uint64_t) region->region.memory_size,
1366 region->host_mem);
1367 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1368 sparsebit_dump(stream, region->unused_phy_pages, 0);
1369 }
1370 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1371 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1372 fprintf(stream, "%*spgd_created: %u\n", indent, "",
1373 vm->pgd_created);
1374 if (vm->pgd_created) {
1375 fprintf(stream, "%*sVirtual Translation Tables:\n",
1376 indent + 2, "");
1377 virt_dump(stream, vm, indent + 4);
1378 }
1379 fprintf(stream, "%*sVCPUs:\n", indent, "");
1380 for (vcpu = vm->vcpu_head; vcpu; vcpu = vcpu->next)
1381 vcpu_dump(stream, vm, vcpu->id, indent + 2);
1382}
1383
1384/* VM VCPU Dump
1385 *
1386 * Input Args:
1387 * vm - Virtual Machine
1388 * vcpuid - VCPU ID
1389 * indent - Left margin indent amount
1390 *
1391 * Output Args:
1392 * stream - Output FILE stream
1393 *
1394 * Return: None
1395 *
1396 * Dumps the current state of the VCPU specified by vcpuid, within the VM
1397 * given by vm, to the FILE stream given by stream.
1398 */
1399void vcpu_dump(FILE *stream, struct kvm_vm *vm,
1400 uint32_t vcpuid, uint8_t indent)
1401{
1402 struct kvm_regs regs;
1403 struct kvm_sregs sregs;
1404
1405 fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
1406
1407 fprintf(stream, "%*sregs:\n", indent + 2, "");
1408 vcpu_regs_get(vm, vcpuid, &regs);
1409 regs_dump(stream, &regs, indent + 4);
1410
1411 fprintf(stream, "%*ssregs:\n", indent + 2, "");
1412 vcpu_sregs_get(vm, vcpuid, &sregs);
1413 sregs_dump(stream, &sregs, indent + 4);
1414}
1415
1416/* Known KVM exit reasons */
1417static struct exit_reason {
1418 unsigned int reason;
1419 const char *name;
1420} exit_reasons_known[] = {
1421 {KVM_EXIT_UNKNOWN, "UNKNOWN"},
1422 {KVM_EXIT_EXCEPTION, "EXCEPTION"},
1423 {KVM_EXIT_IO, "IO"},
1424 {KVM_EXIT_HYPERCALL, "HYPERCALL"},
1425 {KVM_EXIT_DEBUG, "DEBUG"},
1426 {KVM_EXIT_HLT, "HLT"},
1427 {KVM_EXIT_MMIO, "MMIO"},
1428 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1429 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1430 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1431 {KVM_EXIT_INTR, "INTR"},
1432 {KVM_EXIT_SET_TPR, "SET_TPR"},
1433 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1434 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1435 {KVM_EXIT_S390_RESET, "S390_RESET"},
1436 {KVM_EXIT_DCR, "DCR"},
1437 {KVM_EXIT_NMI, "NMI"},
1438 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1439 {KVM_EXIT_OSI, "OSI"},
1440 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1441#ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1442 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1443#endif
1444};
1445
1446/* Exit Reason String
1447 *
1448 * Input Args:
1449 * exit_reason - Exit reason
1450 *
1451 * Output Args: None
1452 *
1453 * Return:
1454 * Constant string pointer describing the exit reason.
1455 *
1456 * Locates and returns a constant string that describes the KVM exit
1457 * reason given by exit_reason. If no such string is found, a constant
1458 * string of "Unknown" is returned.
1459 */
1460const char *exit_reason_str(unsigned int exit_reason)
1461{
1462 unsigned int n1;
1463
1464 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1465 if (exit_reason == exit_reasons_known[n1].reason)
1466 return exit_reasons_known[n1].name;
1467 }
1468
1469 return "Unknown";
1470}
1471
1472/* Physical Page Allocate
1473 *
1474 * Input Args:
1475 * vm - Virtual Machine
1476 * paddr_min - Physical address minimum
1477 * memslot - Memory region to allocate page from
1478 *
1479 * Output Args: None
1480 *
1481 * Return:
1482 * Starting physical address
1483 *
1484 * Within the VM specified by vm, locates an available physical page
1485 * at or above paddr_min. If found, the page is marked as in use
1486 * and its address is returned. A TEST_ASSERT failure occurs if no
1487 * page is available at or above paddr_min.
1488 */
1489vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm,
1490 vm_paddr_t paddr_min, uint32_t memslot)
1491{
1492 struct userspace_mem_region *region;
1493 sparsebit_idx_t pg;
1494
1495 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
4d5f26ee 1496 "not divisible by page size.\n"
783e9e51
PB
1497 " paddr_min: 0x%lx page_size: 0x%x",
1498 paddr_min, vm->page_size);
1499
1500 /* Locate memory region. */
1501 region = memslot2region(vm, memslot);
1502
1503 /* Locate next available physical page at or above paddr_min. */
1504 pg = paddr_min >> vm->page_shift;
1505
1506 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1507 pg = sparsebit_next_set(region->unused_phy_pages, pg);
1508 if (pg == 0) {
1509 fprintf(stderr, "No guest physical page available, "
1510 "paddr_min: 0x%lx page_size: 0x%x memslot: %u",
1511 paddr_min, vm->page_size, memslot);
1512 fputs("---- vm dump ----\n", stderr);
1513 vm_dump(stderr, vm, 2);
1514 abort();
1515 }
1516 }
1517
1518 /* Specify page as in use and return its address. */
1519 sparsebit_clear(region->unused_phy_pages, pg);
1520
1521 return pg * vm->page_size;
1522}
1523
1524/* Address Guest Virtual to Host Virtual
1525 *
1526 * Input Args:
1527 * vm - Virtual Machine
1528 * gva - VM virtual address
1529 *
1530 * Output Args: None
1531 *
1532 * Return:
1533 * Equivalent host virtual address
1534 */
1535void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1536{
1537 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1538}