]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - tools/testing/selftests/x86/protection_keys.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / tools / testing / selftests / x86 / protection_keys.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
5f23f6d0
DH
2/*
3 * Tests x86 Memory Protection Keys (see Documentation/x86/protection-keys.txt)
4 *
5 * There are examples in here of:
6 * * how to set protection keys on memory
7 * * how to set/clear bits in PKRU (the rights register)
8 * * how to handle SEGV_PKRU signals and extract pkey-relevant
9 * information from the siginfo
10 *
11 * Things to add:
12 * make sure KSM and KSM COW breaking works
13 * prefault pages in at malloc, or not
14 * protect MPX bounds tables with protection keys?
15 * make sure VMA splitting/merging is working correctly
16 * OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
17 * look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
18 * do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
19 *
20 * Compile like this:
21 * gcc -o protection_keys -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
22 * gcc -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
23 */
24#define _GNU_SOURCE
25#include <errno.h>
26#include <linux/futex.h>
27#include <sys/time.h>
28#include <sys/syscall.h>
29#include <string.h>
30#include <stdio.h>
31#include <stdint.h>
32#include <stdbool.h>
33#include <signal.h>
34#include <assert.h>
35#include <stdlib.h>
36#include <ucontext.h>
37#include <sys/mman.h>
38#include <sys/types.h>
39#include <sys/wait.h>
40#include <sys/stat.h>
41#include <fcntl.h>
42#include <unistd.h>
43#include <sys/ptrace.h>
44#include <setjmp.h>
45
46#include "pkey-helpers.h"
47
48int iteration_nr = 1;
49int test_nr;
50
51unsigned int shadow_pkru;
52
53#define HPAGE_SIZE (1UL<<21)
54#define ARRAY_SIZE(x) (sizeof(x) / sizeof(*(x)))
55#define ALIGN_UP(x, align_to) (((x) + ((align_to)-1)) & ~((align_to)-1))
56#define ALIGN_DOWN(x, align_to) ((x) & ~((align_to)-1))
57#define ALIGN_PTR_UP(p, ptr_align_to) ((typeof(p))ALIGN_UP((unsigned long)(p), ptr_align_to))
58#define ALIGN_PTR_DOWN(p, ptr_align_to) ((typeof(p))ALIGN_DOWN((unsigned long)(p), ptr_align_to))
59#define __stringify_1(x...) #x
60#define __stringify(x...) __stringify_1(x)
61
62#define PTR_ERR_ENOTSUP ((void *)-ENOTSUP)
63
64int dprint_in_signal;
65char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE];
66
67extern void abort_hooks(void);
68#define pkey_assert(condition) do { \
69 if (!(condition)) { \
70 dprintf0("assert() at %s::%d test_nr: %d iteration: %d\n", \
71 __FILE__, __LINE__, \
72 test_nr, iteration_nr); \
73 dprintf0("errno at assert: %d", errno); \
74 abort_hooks(); \
75 assert(condition); \
76 } \
77} while (0)
78#define raw_assert(cond) assert(cond)
79
80void cat_into_file(char *str, char *file)
81{
82 int fd = open(file, O_RDWR);
83 int ret;
84
85 dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
86 /*
87 * these need to be raw because they are called under
88 * pkey_assert()
89 */
90 raw_assert(fd >= 0);
91 ret = write(fd, str, strlen(str));
92 if (ret != strlen(str)) {
93 perror("write to file failed");
94 fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
95 raw_assert(0);
96 }
97 close(fd);
98}
99
100#if CONTROL_TRACING > 0
101static int warned_tracing;
102int tracing_root_ok(void)
103{
104 if (geteuid() != 0) {
105 if (!warned_tracing)
106 fprintf(stderr, "WARNING: not run as root, "
107 "can not do tracing control\n");
108 warned_tracing = 1;
109 return 0;
110 }
111 return 1;
112}
113#endif
114
115void tracing_on(void)
116{
117#if CONTROL_TRACING > 0
118#define TRACEDIR "/sys/kernel/debug/tracing"
119 char pidstr[32];
120
121 if (!tracing_root_ok())
122 return;
123
124 sprintf(pidstr, "%d", getpid());
125 cat_into_file("0", TRACEDIR "/tracing_on");
126 cat_into_file("\n", TRACEDIR "/trace");
127 if (1) {
128 cat_into_file("function_graph", TRACEDIR "/current_tracer");
129 cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
130 } else {
131 cat_into_file("nop", TRACEDIR "/current_tracer");
132 }
133 cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
134 cat_into_file("1", TRACEDIR "/tracing_on");
135 dprintf1("enabled tracing\n");
136#endif
137}
138
139void tracing_off(void)
140{
141#if CONTROL_TRACING > 0
142 if (!tracing_root_ok())
143 return;
144 cat_into_file("0", "/sys/kernel/debug/tracing/tracing_on");
145#endif
146}
147
148void abort_hooks(void)
149{
150 fprintf(stderr, "running %s()...\n", __func__);
151 tracing_off();
152#ifdef SLEEP_ON_ABORT
153 sleep(SLEEP_ON_ABORT);
154#endif
155}
156
157static inline void __page_o_noops(void)
158{
159 /* 8-bytes of instruction * 512 bytes = 1 page */
160 asm(".rept 512 ; nopl 0x7eeeeeee(%eax) ; .endr");
161}
162
163/*
164 * This attempts to have roughly a page of instructions followed by a few
165 * instructions that do a write, and another page of instructions. That
166 * way, we are pretty sure that the write is in the second page of
167 * instructions and has at least a page of padding behind it.
168 *
169 * *That* lets us be sure to madvise() away the write instruction, which
170 * will then fault, which makes sure that the fault code handles
171 * execute-only memory properly.
172 */
173__attribute__((__aligned__(PAGE_SIZE)))
174void lots_o_noops_around_write(int *write_to_me)
175{
176 dprintf3("running %s()\n", __func__);
177 __page_o_noops();
178 /* Assume this happens in the second page of instructions: */
179 *write_to_me = __LINE__;
180 /* pad out by another page: */
181 __page_o_noops();
182 dprintf3("%s() done\n", __func__);
183}
184
185/* Define some kernel-like types */
186#define u8 uint8_t
187#define u16 uint16_t
188#define u32 uint32_t
189#define u64 uint64_t
190
191#ifdef __i386__
693cb558
AL
192
193#ifndef SYS_mprotect_key
194# define SYS_mprotect_key 380
195#endif
196#ifndef SYS_pkey_alloc
197# define SYS_pkey_alloc 381
198# define SYS_pkey_free 382
199#endif
5f23f6d0 200#define REG_IP_IDX REG_EIP
2195bff0 201#define si_pkey_offset 0x14
693cb558 202
5f23f6d0 203#else
693cb558
AL
204
205#ifndef SYS_mprotect_key
206# define SYS_mprotect_key 329
207#endif
208#ifndef SYS_pkey_alloc
209# define SYS_pkey_alloc 330
210# define SYS_pkey_free 331
211#endif
5f23f6d0
DH
212#define REG_IP_IDX REG_RIP
213#define si_pkey_offset 0x20
693cb558 214
5f23f6d0
DH
215#endif
216
217void dump_mem(void *dumpme, int len_bytes)
218{
219 char *c = (void *)dumpme;
220 int i;
221
222 for (i = 0; i < len_bytes; i += sizeof(u64)) {
223 u64 *ptr = (u64 *)(c + i);
224 dprintf1("dump[%03d][@%p]: %016jx\n", i, ptr, *ptr);
225 }
226}
227
d12fe87e
EB
228#define SEGV_BNDERR 3 /* failed address bound checks */
229#define SEGV_PKUERR 4
5f23f6d0
DH
230
231static char *si_code_str(int si_code)
232{
d12fe87e 233 if (si_code == SEGV_MAPERR)
5f23f6d0 234 return "SEGV_MAPERR";
d12fe87e 235 if (si_code == SEGV_ACCERR)
5f23f6d0 236 return "SEGV_ACCERR";
d12fe87e 237 if (si_code == SEGV_BNDERR)
5f23f6d0 238 return "SEGV_BNDERR";
d12fe87e 239 if (si_code == SEGV_PKUERR)
5f23f6d0
DH
240 return "SEGV_PKUERR";
241 return "UNKNOWN";
242}
243
244int pkru_faults;
245int last_si_pkey = -1;
246void signal_handler(int signum, siginfo_t *si, void *vucontext)
247{
248 ucontext_t *uctxt = vucontext;
249 int trapno;
250 unsigned long ip;
251 char *fpregs;
252 u32 *pkru_ptr;
91c49c2d 253 u64 siginfo_pkey;
5f23f6d0
DH
254 u32 *si_pkey_ptr;
255 int pkru_offset;
256 fpregset_t fpregset;
257
258 dprint_in_signal = 1;
259 dprintf1(">>>>===============SIGSEGV============================\n");
260 dprintf1("%s()::%d, pkru: 0x%x shadow: %x\n", __func__, __LINE__,
261 __rdpkru(), shadow_pkru);
262
263 trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
264 ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
265 fpregset = uctxt->uc_mcontext.fpregs;
266 fpregs = (void *)fpregset;
267
268 dprintf2("%s() trapno: %d ip: 0x%lx info->si_code: %s/%d\n", __func__,
269 trapno, ip, si_code_str(si->si_code), si->si_code);
270#ifdef __i386__
271 /*
272 * 32-bit has some extra padding so that userspace can tell whether
273 * the XSTATE header is present in addition to the "legacy" FPU
274 * state. We just assume that it is here.
275 */
276 fpregs += 0x70;
277#endif
278 pkru_offset = pkru_xstate_offset();
279 pkru_ptr = (void *)(&fpregs[pkru_offset]);
280
281 dprintf1("siginfo: %p\n", si);
282 dprintf1(" fpregs: %p\n", fpregs);
283 /*
284 * If we got a PKRU fault, we *HAVE* to have at least one bit set in
285 * here.
286 */
287 dprintf1("pkru_xstate_offset: %d\n", pkru_xstate_offset());
288 if (DEBUG_LEVEL > 4)
289 dump_mem(pkru_ptr - 128, 256);
290 pkey_assert(*pkru_ptr);
291
292 si_pkey_ptr = (u32 *)(((u8 *)si) + si_pkey_offset);
293 dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
294 dump_mem(si_pkey_ptr - 8, 24);
91c49c2d
DH
295 siginfo_pkey = *si_pkey_ptr;
296 pkey_assert(siginfo_pkey < NR_PKEYS);
297 last_si_pkey = siginfo_pkey;
5f23f6d0
DH
298
299 if ((si->si_code == SEGV_MAPERR) ||
300 (si->si_code == SEGV_ACCERR) ||
301 (si->si_code == SEGV_BNDERR)) {
302 printf("non-PK si_code, exiting...\n");
303 exit(4);
304 }
305
306 dprintf1("signal pkru from xsave: %08x\n", *pkru_ptr);
307 /* need __rdpkru() version so we do not do shadow_pkru checking */
308 dprintf1("signal pkru from pkru: %08x\n", __rdpkru());
91c49c2d 309 dprintf1("pkey from siginfo: %jx\n", siginfo_pkey);
5f23f6d0
DH
310 *(u64 *)pkru_ptr = 0x00000000;
311 dprintf1("WARNING: set PRKU=0 to allow faulting instruction to continue\n");
312 pkru_faults++;
313 dprintf1("<<<<==================================================\n");
314 return;
315 if (trapno == 14) {
316 fprintf(stderr,
317 "ERROR: In signal handler, page fault, trapno = %d, ip = %016lx\n",
318 trapno, ip);
319 fprintf(stderr, "si_addr %p\n", si->si_addr);
320 fprintf(stderr, "REG_ERR: %lx\n",
321 (unsigned long)uctxt->uc_mcontext.gregs[REG_ERR]);
322 exit(1);
323 } else {
324 fprintf(stderr, "unexpected trap %d! at 0x%lx\n", trapno, ip);
325 fprintf(stderr, "si_addr %p\n", si->si_addr);
326 fprintf(stderr, "REG_ERR: %lx\n",
327 (unsigned long)uctxt->uc_mcontext.gregs[REG_ERR]);
328 exit(2);
329 }
330 dprint_in_signal = 0;
331}
332
333int wait_all_children(void)
334{
335 int status;
336 return waitpid(-1, &status, 0);
337}
338
339void sig_chld(int x)
340{
341 dprint_in_signal = 1;
342 dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
343 dprint_in_signal = 0;
344}
345
346void setup_sigsegv_handler(void)
347{
348 int r, rs;
349 struct sigaction newact;
350 struct sigaction oldact;
351
352 /* #PF is mapped to sigsegv */
353 int signum = SIGSEGV;
354
355 newact.sa_handler = 0;
356 newact.sa_sigaction = signal_handler;
357
358 /*sigset_t - signals to block while in the handler */
359 /* get the old signal mask. */
360 rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
361 pkey_assert(rs == 0);
362
363 /* call sa_sigaction, not sa_handler*/
364 newact.sa_flags = SA_SIGINFO;
365
366 newact.sa_restorer = 0; /* void(*)(), obsolete */
367 r = sigaction(signum, &newact, &oldact);
368 r = sigaction(SIGALRM, &newact, &oldact);
369 pkey_assert(r == 0);
370}
371
372void setup_handlers(void)
373{
374 signal(SIGCHLD, &sig_chld);
375 setup_sigsegv_handler();
376}
377
378pid_t fork_lazy_child(void)
379{
380 pid_t forkret;
381
382 forkret = fork();
383 pkey_assert(forkret >= 0);
384 dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
385
386 if (!forkret) {
387 /* in the child */
388 while (1) {
389 dprintf1("child sleeping...\n");
390 sleep(30);
391 }
392 }
393 return forkret;
394}
395
396void davecmp(void *_a, void *_b, int len)
397{
398 int i;
399 unsigned long *a = _a;
400 unsigned long *b = _b;
401
402 for (i = 0; i < len / sizeof(*a); i++) {
403 if (a[i] == b[i])
404 continue;
405
406 dprintf3("[%3d]: a: %016lx b: %016lx\n", i, a[i], b[i]);
407 }
408}
409
410void dumpit(char *f)
411{
412 int fd = open(f, O_RDONLY);
413 char buf[100];
414 int nr_read;
415
416 dprintf2("maps fd: %d\n", fd);
417 do {
418 nr_read = read(fd, &buf[0], sizeof(buf));
419 write(1, buf, nr_read);
420 } while (nr_read > 0);
421 close(fd);
422}
423
424#define PKEY_DISABLE_ACCESS 0x1
425#define PKEY_DISABLE_WRITE 0x2
426
427u32 pkey_get(int pkey, unsigned long flags)
428{
429 u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
430 u32 pkru = __rdpkru();
431 u32 shifted_pkru;
432 u32 masked_pkru;
433
434 dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
435 __func__, pkey, flags, 0, 0);
436 dprintf2("%s() raw pkru: %x\n", __func__, pkru);
437
438 shifted_pkru = (pkru >> (pkey * PKRU_BITS_PER_PKEY));
439 dprintf2("%s() shifted_pkru: %x\n", __func__, shifted_pkru);
440 masked_pkru = shifted_pkru & mask;
441 dprintf2("%s() masked pkru: %x\n", __func__, masked_pkru);
442 /*
443 * shift down the relevant bits to the lowest two, then
444 * mask off all the other high bits.
445 */
446 return masked_pkru;
447}
448
449int pkey_set(int pkey, unsigned long rights, unsigned long flags)
450{
451 u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
452 u32 old_pkru = __rdpkru();
453 u32 new_pkru;
454
455 /* make sure that 'rights' only contains the bits we expect: */
456 assert(!(rights & ~mask));
457
458 /* copy old pkru */
459 new_pkru = old_pkru;
460 /* mask out bits from pkey in old value: */
461 new_pkru &= ~(mask << (pkey * PKRU_BITS_PER_PKEY));
462 /* OR in new bits for pkey: */
463 new_pkru |= (rights << (pkey * PKRU_BITS_PER_PKEY));
464
465 __wrpkru(new_pkru);
466
467 dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x pkru now: %x old_pkru: %x\n",
468 __func__, pkey, rights, flags, 0, __rdpkru(), old_pkru);
469 return 0;
470}
471
472void pkey_disable_set(int pkey, int flags)
473{
474 unsigned long syscall_flags = 0;
475 int ret;
476 int pkey_rights;
16846c2d 477 u32 orig_pkru = rdpkru();
5f23f6d0
DH
478
479 dprintf1("START->%s(%d, 0x%x)\n", __func__,
480 pkey, flags);
481 pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
482
483 pkey_rights = pkey_get(pkey, syscall_flags);
484
485 dprintf1("%s(%d) pkey_get(%d): %x\n", __func__,
486 pkey, pkey, pkey_rights);
487 pkey_assert(pkey_rights >= 0);
488
489 pkey_rights |= flags;
490
491 ret = pkey_set(pkey, pkey_rights, syscall_flags);
492 assert(!ret);
493 /*pkru and flags have the same format */
494 shadow_pkru |= flags << (pkey * 2);
495 dprintf1("%s(%d) shadow: 0x%x\n", __func__, pkey, shadow_pkru);
496
497 pkey_assert(ret >= 0);
498
499 pkey_rights = pkey_get(pkey, syscall_flags);
500 dprintf1("%s(%d) pkey_get(%d): %x\n", __func__,
501 pkey, pkey, pkey_rights);
502
503 dprintf1("%s(%d) pkru: 0x%x\n", __func__, pkey, rdpkru());
504 if (flags)
505 pkey_assert(rdpkru() > orig_pkru);
506 dprintf1("END<---%s(%d, 0x%x)\n", __func__,
507 pkey, flags);
508}
509
510void pkey_disable_clear(int pkey, int flags)
511{
512 unsigned long syscall_flags = 0;
513 int ret;
514 int pkey_rights = pkey_get(pkey, syscall_flags);
515 u32 orig_pkru = rdpkru();
516
517 pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
518
519 dprintf1("%s(%d) pkey_get(%d): %x\n", __func__,
520 pkey, pkey, pkey_rights);
521 pkey_assert(pkey_rights >= 0);
522
523 pkey_rights |= flags;
524
525 ret = pkey_set(pkey, pkey_rights, 0);
526 /* pkru and flags have the same format */
527 shadow_pkru &= ~(flags << (pkey * 2));
528 pkey_assert(ret >= 0);
529
530 pkey_rights = pkey_get(pkey, syscall_flags);
531 dprintf1("%s(%d) pkey_get(%d): %x\n", __func__,
532 pkey, pkey, pkey_rights);
533
534 dprintf1("%s(%d) pkru: 0x%x\n", __func__, pkey, rdpkru());
535 if (flags)
536 assert(rdpkru() > orig_pkru);
537}
538
539void pkey_write_allow(int pkey)
540{
541 pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
542}
543void pkey_write_deny(int pkey)
544{
545 pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
546}
547void pkey_access_allow(int pkey)
548{
549 pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
550}
551void pkey_access_deny(int pkey)
552{
553 pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
554}
555
556int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
557 unsigned long pkey)
558{
559 int sret;
560
561 dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__,
562 ptr, size, orig_prot, pkey);
563
564 errno = 0;
565 sret = syscall(SYS_mprotect_key, ptr, size, orig_prot, pkey);
566 if (errno) {
567 dprintf2("SYS_mprotect_key sret: %d\n", sret);
568 dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot);
569 dprintf2("SYS_mprotect_key failed, errno: %d\n", errno);
570 if (DEBUG_LEVEL >= 2)
571 perror("SYS_mprotect_pkey");
572 }
573 return sret;
574}
575
576int sys_pkey_alloc(unsigned long flags, unsigned long init_val)
577{
578 int ret = syscall(SYS_pkey_alloc, flags, init_val);
579 dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n",
580 __func__, flags, init_val, ret, errno);
581 return ret;
582}
583
584int alloc_pkey(void)
585{
586 int ret;
587 unsigned long init_val = 0x0;
588
589 dprintf1("alloc_pkey()::%d, pkru: 0x%x shadow: %x\n",
590 __LINE__, __rdpkru(), shadow_pkru);
591 ret = sys_pkey_alloc(0, init_val);
592 /*
593 * pkey_alloc() sets PKRU, so we need to reflect it in
594 * shadow_pkru:
595 */
596 dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n",
597 __LINE__, ret, __rdpkru(), shadow_pkru);
598 if (ret) {
599 /* clear both the bits: */
600 shadow_pkru &= ~(0x3 << (ret * 2));
601 dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n",
602 __LINE__, ret, __rdpkru(), shadow_pkru);
603 /*
604 * move the new state in from init_val
605 * (remember, we cheated and init_val == pkru format)
606 */
607 shadow_pkru |= (init_val << (ret * 2));
608 }
609 dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n",
610 __LINE__, ret, __rdpkru(), shadow_pkru);
611 dprintf1("alloc_pkey()::%d errno: %d\n", __LINE__, errno);
612 /* for shadow checking: */
613 rdpkru();
614 dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n",
615 __LINE__, ret, __rdpkru(), shadow_pkru);
616 return ret;
617}
618
619int sys_pkey_free(unsigned long pkey)
620{
621 int ret = syscall(SYS_pkey_free, pkey);
622 dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret);
623 return ret;
624}
625
626/*
627 * I had a bug where pkey bits could be set by mprotect() but
628 * not cleared. This ensures we get lots of random bit sets
629 * and clears on the vma and pte pkey bits.
630 */
631int alloc_random_pkey(void)
632{
633 int max_nr_pkey_allocs;
634 int ret;
635 int i;
636 int alloced_pkeys[NR_PKEYS];
637 int nr_alloced = 0;
638 int random_index;
639 memset(alloced_pkeys, 0, sizeof(alloced_pkeys));
640
641 /* allocate every possible key and make a note of which ones we got */
642 max_nr_pkey_allocs = NR_PKEYS;
643 max_nr_pkey_allocs = 1;
644 for (i = 0; i < max_nr_pkey_allocs; i++) {
645 int new_pkey = alloc_pkey();
646 if (new_pkey < 0)
647 break;
648 alloced_pkeys[nr_alloced++] = new_pkey;
649 }
650
651 pkey_assert(nr_alloced > 0);
652 /* select a random one out of the allocated ones */
653 random_index = rand() % nr_alloced;
654 ret = alloced_pkeys[random_index];
655 /* now zero it out so we don't free it next */
656 alloced_pkeys[random_index] = 0;
657
658 /* go through the allocated ones that we did not want and free them */
659 for (i = 0; i < nr_alloced; i++) {
660 int free_ret;
661 if (!alloced_pkeys[i])
662 continue;
663 free_ret = sys_pkey_free(alloced_pkeys[i]);
664 pkey_assert(!free_ret);
665 }
666 dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__,
667 __LINE__, ret, __rdpkru(), shadow_pkru);
668 return ret;
669}
670
671int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
672 unsigned long pkey)
673{
674 int nr_iterations = random() % 100;
675 int ret;
676
677 while (0) {
678 int rpkey = alloc_random_pkey();
679 ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
680 dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
681 ptr, size, orig_prot, pkey, ret);
682 if (nr_iterations-- < 0)
683 break;
684
685 dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__,
686 __LINE__, ret, __rdpkru(), shadow_pkru);
687 sys_pkey_free(rpkey);
688 dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__,
689 __LINE__, ret, __rdpkru(), shadow_pkru);
690 }
691 pkey_assert(pkey < NR_PKEYS);
692
693 ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
694 dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
695 ptr, size, orig_prot, pkey, ret);
696 pkey_assert(!ret);
697 dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__,
698 __LINE__, ret, __rdpkru(), shadow_pkru);
699 return ret;
700}
701
702struct pkey_malloc_record {
703 void *ptr;
704 long size;
705};
706struct pkey_malloc_record *pkey_malloc_records;
707long nr_pkey_malloc_records;
708void record_pkey_malloc(void *ptr, long size)
709{
710 long i;
711 struct pkey_malloc_record *rec = NULL;
712
713 for (i = 0; i < nr_pkey_malloc_records; i++) {
714 rec = &pkey_malloc_records[i];
715 /* find a free record */
716 if (rec)
717 break;
718 }
719 if (!rec) {
720 /* every record is full */
721 size_t old_nr_records = nr_pkey_malloc_records;
722 size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
723 size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
724 dprintf2("new_nr_records: %zd\n", new_nr_records);
725 dprintf2("new_size: %zd\n", new_size);
726 pkey_malloc_records = realloc(pkey_malloc_records, new_size);
727 pkey_assert(pkey_malloc_records != NULL);
728 rec = &pkey_malloc_records[nr_pkey_malloc_records];
729 /*
730 * realloc() does not initialize memory, so zero it from
731 * the first new record all the way to the end.
732 */
733 for (i = 0; i < new_nr_records - old_nr_records; i++)
734 memset(rec + i, 0, sizeof(*rec));
735 }
736 dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
737 (int)(rec - pkey_malloc_records), rec, ptr, size);
738 rec->ptr = ptr;
739 rec->size = size;
740 nr_pkey_malloc_records++;
741}
742
743void free_pkey_malloc(void *ptr)
744{
745 long i;
746 int ret;
747 dprintf3("%s(%p)\n", __func__, ptr);
748 for (i = 0; i < nr_pkey_malloc_records; i++) {
749 struct pkey_malloc_record *rec = &pkey_malloc_records[i];
750 dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
751 ptr, i, rec, rec->ptr, rec->size);
752 if ((ptr < rec->ptr) ||
753 (ptr >= rec->ptr + rec->size))
754 continue;
755
756 dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
757 ptr, i, rec, rec->ptr, rec->size);
758 nr_pkey_malloc_records--;
759 ret = munmap(rec->ptr, rec->size);
760 dprintf3("munmap ret: %d\n", ret);
761 pkey_assert(!ret);
762 dprintf3("clearing rec->ptr, rec: %p\n", rec);
763 rec->ptr = NULL;
764 dprintf3("done clearing rec->ptr, rec: %p\n", rec);
765 return;
766 }
767 pkey_assert(false);
768}
769
770
771void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
772{
773 void *ptr;
774 int ret;
775
776 rdpkru();
777 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
778 size, prot, pkey);
779 pkey_assert(pkey < NR_PKEYS);
780 ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
781 pkey_assert(ptr != (void *)-1);
782 ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
783 pkey_assert(!ret);
784 record_pkey_malloc(ptr, size);
785 rdpkru();
786
787 dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
788 return ptr;
789}
790
791void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
792{
793 int ret;
794 void *ptr;
795
796 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
797 size, prot, pkey);
798 /*
799 * Guarantee we can fit at least one huge page in the resulting
800 * allocation by allocating space for 2:
801 */
802 size = ALIGN_UP(size, HPAGE_SIZE * 2);
803 ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
804 pkey_assert(ptr != (void *)-1);
805 record_pkey_malloc(ptr, size);
806 mprotect_pkey(ptr, size, prot, pkey);
807
808 dprintf1("unaligned ptr: %p\n", ptr);
809 ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
810 dprintf1(" aligned ptr: %p\n", ptr);
811 ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
812 dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
813 ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
814 dprintf1("MADV_WILLNEED ret: %d\n", ret);
815 memset(ptr, 0, HPAGE_SIZE);
816
817 dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
818 return ptr;
819}
820
821int hugetlb_setup_ok;
822#define GET_NR_HUGE_PAGES 10
823void setup_hugetlbfs(void)
824{
825 int err;
826 int fd;
5f23f6d0
DH
827 char buf[] = "123";
828
829 if (geteuid() != 0) {
830 fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
831 return;
832 }
833
834 cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");
835
836 /*
837 * Now go make sure that we got the pages and that they
838 * are 2M pages. Someone might have made 1G the default.
839 */
840 fd = open("/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages", O_RDONLY);
841 if (fd < 0) {
842 perror("opening sysfs 2M hugetlb config");
843 return;
844 }
845
846 /* -1 to guarantee leaving the trailing \0 */
847 err = read(fd, buf, sizeof(buf)-1);
848 close(fd);
849 if (err <= 0) {
850 perror("reading sysfs 2M hugetlb config");
851 return;
852 }
853
854 if (atoi(buf) != GET_NR_HUGE_PAGES) {
855 fprintf(stderr, "could not confirm 2M pages, got: '%s' expected %d\n",
856 buf, GET_NR_HUGE_PAGES);
857 return;
858 }
859
860 hugetlb_setup_ok = 1;
861}
862
863void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
864{
865 void *ptr;
866 int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;
867
868 if (!hugetlb_setup_ok)
869 return PTR_ERR_ENOTSUP;
870
871 dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
872 size = ALIGN_UP(size, HPAGE_SIZE * 2);
873 pkey_assert(pkey < NR_PKEYS);
874 ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
875 pkey_assert(ptr != (void *)-1);
876 mprotect_pkey(ptr, size, prot, pkey);
877
878 record_pkey_malloc(ptr, size);
879
880 dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
881 return ptr;
882}
883
884void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey)
885{
886 void *ptr;
887 int fd;
888
889 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
890 size, prot, pkey);
891 pkey_assert(pkey < NR_PKEYS);
892 fd = open("/dax/foo", O_RDWR);
893 pkey_assert(fd >= 0);
894
895 ptr = mmap(0, size, prot, MAP_SHARED, fd, 0);
896 pkey_assert(ptr != (void *)-1);
897
898 mprotect_pkey(ptr, size, prot, pkey);
899
900 record_pkey_malloc(ptr, size);
901
902 dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr);
903 close(fd);
904 return ptr;
905}
906
907void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {
908
909 malloc_pkey_with_mprotect,
910 malloc_pkey_anon_huge,
911 malloc_pkey_hugetlb
912/* can not do direct with the pkey_mprotect() API:
913 malloc_pkey_mmap_direct,
914 malloc_pkey_mmap_dax,
915*/
916};
917
918void *malloc_pkey(long size, int prot, u16 pkey)
919{
920 void *ret;
921 static int malloc_type;
922 int nr_malloc_types = ARRAY_SIZE(pkey_malloc);
923
924 pkey_assert(pkey < NR_PKEYS);
925
926 while (1) {
927 pkey_assert(malloc_type < nr_malloc_types);
928
929 ret = pkey_malloc[malloc_type](size, prot, pkey);
930 pkey_assert(ret != (void *)-1);
931
932 malloc_type++;
933 if (malloc_type >= nr_malloc_types)
934 malloc_type = (random()%nr_malloc_types);
935
936 /* try again if the malloc_type we tried is unsupported */
937 if (ret == PTR_ERR_ENOTSUP)
938 continue;
939
940 break;
941 }
942
943 dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
944 size, prot, pkey, ret);
945 return ret;
946}
947
948int last_pkru_faults;
949void expected_pk_fault(int pkey)
950{
951 dprintf2("%s(): last_pkru_faults: %d pkru_faults: %d\n",
952 __func__, last_pkru_faults, pkru_faults);
953 dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
954 pkey_assert(last_pkru_faults + 1 == pkru_faults);
955 pkey_assert(last_si_pkey == pkey);
956 /*
957 * The signal handler shold have cleared out PKRU to let the
958 * test program continue. We now have to restore it.
959 */
960 if (__rdpkru() != 0)
961 pkey_assert(0);
962
963 __wrpkru(shadow_pkru);
964 dprintf1("%s() set PKRU=%x to restore state after signal nuked it\n",
965 __func__, shadow_pkru);
966 last_pkru_faults = pkru_faults;
967 last_si_pkey = -1;
968}
969
970void do_not_expect_pk_fault(void)
971{
972 pkey_assert(last_pkru_faults == pkru_faults);
973}
974
975int test_fds[10] = { -1 };
976int nr_test_fds;
977void __save_test_fd(int fd)
978{
979 pkey_assert(fd >= 0);
980 pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
981 test_fds[nr_test_fds] = fd;
982 nr_test_fds++;
983}
984
985int get_test_read_fd(void)
986{
987 int test_fd = open("/etc/passwd", O_RDONLY);
988 __save_test_fd(test_fd);
989 return test_fd;
990}
991
992void close_test_fds(void)
993{
994 int i;
995
996 for (i = 0; i < nr_test_fds; i++) {
997 if (test_fds[i] < 0)
998 continue;
999 close(test_fds[i]);
1000 test_fds[i] = -1;
1001 }
1002 nr_test_fds = 0;
1003}
1004
1005#define barrier() __asm__ __volatile__("": : :"memory")
1006__attribute__((noinline)) int read_ptr(int *ptr)
1007{
1008 /*
1009 * Keep GCC from optimizing this away somehow
1010 */
1011 barrier();
1012 return *ptr;
1013}
1014
1015void test_read_of_write_disabled_region(int *ptr, u16 pkey)
1016{
1017 int ptr_contents;
1018
1019 dprintf1("disabling write access to PKEY[1], doing read\n");
1020 pkey_write_deny(pkey);
1021 ptr_contents = read_ptr(ptr);
1022 dprintf1("*ptr: %d\n", ptr_contents);
1023 dprintf1("\n");
1024}
1025void test_read_of_access_disabled_region(int *ptr, u16 pkey)
1026{
1027 int ptr_contents;
1028
1029 dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
1030 rdpkru();
1031 pkey_access_deny(pkey);
1032 ptr_contents = read_ptr(ptr);
1033 dprintf1("*ptr: %d\n", ptr_contents);
1034 expected_pk_fault(pkey);
1035}
1036void test_write_of_write_disabled_region(int *ptr, u16 pkey)
1037{
1038 dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
1039 pkey_write_deny(pkey);
1040 *ptr = __LINE__;
1041 expected_pk_fault(pkey);
1042}
1043void test_write_of_access_disabled_region(int *ptr, u16 pkey)
1044{
1045 dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
1046 pkey_access_deny(pkey);
1047 *ptr = __LINE__;
1048 expected_pk_fault(pkey);
1049}
1050void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
1051{
1052 int ret;
1053 int test_fd = get_test_read_fd();
1054
1055 dprintf1("disabling access to PKEY[%02d], "
1056 "having kernel read() to buffer\n", pkey);
1057 pkey_access_deny(pkey);
1058 ret = read(test_fd, ptr, 1);
1059 dprintf1("read ret: %d\n", ret);
1060 pkey_assert(ret);
1061}
1062void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
1063{
1064 int ret;
1065 int test_fd = get_test_read_fd();
1066
1067 pkey_write_deny(pkey);
1068 ret = read(test_fd, ptr, 100);
1069 dprintf1("read ret: %d\n", ret);
1070 if (ret < 0 && (DEBUG_LEVEL > 0))
1071 perror("verbose read result (OK for this to be bad)");
1072 pkey_assert(ret);
1073}
1074
1075void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
1076{
1077 int pipe_ret, vmsplice_ret;
1078 struct iovec iov;
1079 int pipe_fds[2];
1080
1081 pipe_ret = pipe(pipe_fds);
1082
1083 pkey_assert(pipe_ret == 0);
1084 dprintf1("disabling access to PKEY[%02d], "
1085 "having kernel vmsplice from buffer\n", pkey);
1086 pkey_access_deny(pkey);
1087 iov.iov_base = ptr;
1088 iov.iov_len = PAGE_SIZE;
1089 vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
1090 dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
1091 pkey_assert(vmsplice_ret == -1);
1092
1093 close(pipe_fds[0]);
1094 close(pipe_fds[1]);
1095}
1096
1097void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
1098{
1099 int ignored = 0xdada;
1100 int futex_ret;
1101 int some_int = __LINE__;
1102
1103 dprintf1("disabling write to PKEY[%02d], "
1104 "doing futex gunk in buffer\n", pkey);
1105 *ptr = some_int;
1106 pkey_write_deny(pkey);
1107 futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
1108 &ignored, ignored);
1109 if (DEBUG_LEVEL > 0)
1110 perror("futex");
1111 dprintf1("futex() ret: %d\n", futex_ret);
1112}
1113
1114/* Assumes that all pkeys other than 'pkey' are unallocated */
1115void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
1116{
1117 int err;
1118 int i;
1119
1120 /* Note: 0 is the default pkey, so don't mess with it */
1121 for (i = 1; i < NR_PKEYS; i++) {
1122 if (pkey == i)
1123 continue;
1124
1125 dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
1126 err = sys_pkey_free(i);
1127 pkey_assert(err);
1128
5f23f6d0
DH
1129 err = sys_pkey_free(i);
1130 pkey_assert(err);
1131
1132 err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
1133 pkey_assert(err);
1134 }
1135}
1136
1137/* Assumes that all pkeys other than 'pkey' are unallocated */
1138void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
1139{
1140 int err;
5f23f6d0
DH
1141 int bad_pkey = NR_PKEYS+99;
1142
5f23f6d0
DH
1143 /* pass a known-invalid pkey in: */
1144 err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
1145 pkey_assert(err);
1146}
1147
1148/* Assumes that all pkeys other than 'pkey' are unallocated */
1149void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
1150{
5f23f6d0
DH
1151 int err;
1152 int allocated_pkeys[NR_PKEYS] = {0};
1153 int nr_allocated_pkeys = 0;
1154 int i;
1155
1156 for (i = 0; i < NR_PKEYS*2; i++) {
1157 int new_pkey;
1158 dprintf1("%s() alloc loop: %d\n", __func__, i);
1159 new_pkey = alloc_pkey();
1160 dprintf4("%s()::%d, err: %d pkru: 0x%x shadow: 0x%x\n", __func__,
1161 __LINE__, err, __rdpkru(), shadow_pkru);
1162 rdpkru(); /* for shadow checking */
1163 dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
1164 if ((new_pkey == -1) && (errno == ENOSPC)) {
1165 dprintf2("%s() failed to allocate pkey after %d tries\n",
1166 __func__, nr_allocated_pkeys);
1167 break;
1168 }
1169 pkey_assert(nr_allocated_pkeys < NR_PKEYS);
1170 allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1171 }
1172
1173 dprintf3("%s()::%d\n", __func__, __LINE__);
1174
1175 /*
1176 * ensure it did not reach the end of the loop without
1177 * failure:
1178 */
1179 pkey_assert(i < NR_PKEYS*2);
1180
1181 /*
1182 * There are 16 pkeys supported in hardware. One is taken
1183 * up for the default (0) and another can be taken up by
1184 * an execute-only mapping. Ensure that we can allocate
1185 * at least 14 (16-2).
1186 */
1187 pkey_assert(i >= NR_PKEYS-2);
1188
1189 for (i = 0; i < nr_allocated_pkeys; i++) {
1190 err = sys_pkey_free(allocated_pkeys[i]);
1191 pkey_assert(!err);
1192 rdpkru(); /* for shadow checking */
1193 }
1194}
1195
1196void test_ptrace_of_child(int *ptr, u16 pkey)
1197{
1198 __attribute__((__unused__)) int peek_result;
1199 pid_t child_pid;
1200 void *ignored = 0;
1201 long ret;
1202 int status;
1203 /*
1204 * This is the "control" for our little expermient. Make sure
1205 * we can always access it when ptracing.
1206 */
1207 int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
1208 int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);
1209
1210 /*
1211 * Fork a child which is an exact copy of this process, of course.
1212 * That means we can do all of our tests via ptrace() and then plain
1213 * memory access and ensure they work differently.
1214 */
1215 child_pid = fork_lazy_child();
1216 dprintf1("[%d] child pid: %d\n", getpid(), child_pid);
1217
1218 ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
1219 if (ret)
1220 perror("attach");
1221 dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
1222 pkey_assert(ret != -1);
1223 ret = waitpid(child_pid, &status, WUNTRACED);
1224 if ((ret != child_pid) || !(WIFSTOPPED(status))) {
1225 fprintf(stderr, "weird waitpid result %ld stat %x\n",
1226 ret, status);
1227 pkey_assert(0);
1228 }
1229 dprintf2("waitpid ret: %ld\n", ret);
1230 dprintf2("waitpid status: %d\n", status);
1231
1232 pkey_access_deny(pkey);
1233 pkey_write_deny(pkey);
1234
1235 /* Write access, untested for now:
1236 ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
1237 pkey_assert(ret != -1);
1238 dprintf1("poke at %p: %ld\n", peek_at, ret);
1239 */
1240
1241 /*
1242 * Try to access the pkey-protected "ptr" via ptrace:
1243 */
1244 ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
1245 /* expect it to work, without an error: */
1246 pkey_assert(ret != -1);
1247 /* Now access from the current task, and expect an exception: */
1248 peek_result = read_ptr(ptr);
1249 expected_pk_fault(pkey);
1250
1251 /*
1252 * Try to access the NON-pkey-protected "plain_ptr" via ptrace:
1253 */
1254 ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
1255 /* expect it to work, without an error: */
1256 pkey_assert(ret != -1);
1257 /* Now access from the current task, and expect NO exception: */
1258 peek_result = read_ptr(plain_ptr);
1259 do_not_expect_pk_fault();
1260
1261 ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
1262 pkey_assert(ret != -1);
1263
1264 ret = kill(child_pid, SIGKILL);
1265 pkey_assert(ret != -1);
1266
1267 wait(&status);
1268
1269 free(plain_ptr_unaligned);
1270}
1271
1272void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
1273{
1274 void *p1;
1275 int scratch;
1276 int ptr_contents;
1277 int ret;
1278
1279 p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
1280 dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
1281 /* lots_o_noops_around_write should be page-aligned already */
1282 assert(p1 == &lots_o_noops_around_write);
1283
1284 /* Point 'p1' at the *second* page of the function: */
1285 p1 += PAGE_SIZE;
1286
1287 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1288 lots_o_noops_around_write(&scratch);
1289 ptr_contents = read_ptr(p1);
1290 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1291
1292 ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
1293 pkey_assert(!ret);
1294 pkey_access_deny(pkey);
1295
1296 dprintf2("pkru: %x\n", rdpkru());
1297
1298 /*
1299 * Make sure this is an *instruction* fault
1300 */
1301 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1302 lots_o_noops_around_write(&scratch);
1303 do_not_expect_pk_fault();
1304 ptr_contents = read_ptr(p1);
1305 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1306 expected_pk_fault(pkey);
1307}
1308
1309void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
1310{
1311 int size = PAGE_SIZE;
1312 int sret;
1313
1314 if (cpu_has_pku()) {
1315 dprintf1("SKIP: %s: no CPU support\n", __func__);
1316 return;
1317 }
1318
1319 sret = syscall(SYS_mprotect_key, ptr, size, PROT_READ, pkey);
1320 pkey_assert(sret < 0);
1321}
1322
1323void (*pkey_tests[])(int *ptr, u16 pkey) = {
1324 test_read_of_write_disabled_region,
1325 test_read_of_access_disabled_region,
1326 test_write_of_write_disabled_region,
1327 test_write_of_access_disabled_region,
1328 test_kernel_write_of_access_disabled_region,
1329 test_kernel_write_of_write_disabled_region,
1330 test_kernel_gup_of_access_disabled_region,
1331 test_kernel_gup_write_to_write_disabled_region,
1332 test_executing_on_unreadable_memory,
1333 test_ptrace_of_child,
1334 test_pkey_syscalls_on_non_allocated_pkey,
1335 test_pkey_syscalls_bad_args,
1336 test_pkey_alloc_exhaust,
1337};
1338
1339void run_tests_once(void)
1340{
1341 int *ptr;
1342 int prot = PROT_READ|PROT_WRITE;
1343
1344 for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
1345 int pkey;
1346 int orig_pkru_faults = pkru_faults;
1347
1348 dprintf1("======================\n");
1349 dprintf1("test %d preparing...\n", test_nr);
1350
1351 tracing_on();
1352 pkey = alloc_random_pkey();
1353 dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
1354 ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
1355 dprintf1("test %d starting...\n", test_nr);
1356 pkey_tests[test_nr](ptr, pkey);
1357 dprintf1("freeing test memory: %p\n", ptr);
1358 free_pkey_malloc(ptr);
1359 sys_pkey_free(pkey);
1360
1361 dprintf1("pkru_faults: %d\n", pkru_faults);
1362 dprintf1("orig_pkru_faults: %d\n", orig_pkru_faults);
1363
1364 tracing_off();
1365 close_test_fds();
1366
7738789f 1367 printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
5f23f6d0
DH
1368 dprintf1("======================\n\n");
1369 }
1370 iteration_nr++;
1371}
1372
1373void pkey_setup_shadow(void)
1374{
1375 shadow_pkru = __rdpkru();
1376}
1377
1378int main(void)
1379{
1380 int nr_iterations = 22;
1381
1382 setup_handlers();
1383
1384 printf("has pku: %d\n", cpu_has_pku());
1385
1386 if (!cpu_has_pku()) {
1387 int size = PAGE_SIZE;
1388 int *ptr;
1389
1390 printf("running PKEY tests for unsupported CPU/OS\n");
1391
1392 ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1393 assert(ptr != (void *)-1);
1394 test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
1395 exit(0);
1396 }
1397
1398 pkey_setup_shadow();
1399 printf("startup pkru: %x\n", rdpkru());
1400 setup_hugetlbfs();
1401
1402 while (nr_iterations-- > 0)
1403 run_tests_once();
1404
1405 printf("done (all tests OK)\n");
1406 return 0;
1407}