]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
block: Allow bdrv_unref_child(bs, NULL)
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
22#include <sys/types.h>
23#include <sys/mman.h>
24#endif
d19893da
FB
25#include <stdarg.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <inttypes.h>
30
31#include "config.h"
2054396a 32
5b6dd868 33#include "qemu-common.h"
af5ad107 34#define NO_CPU_IO_DEFS
d3eead2e 35#include "cpu.h"
6db8b538 36#include "trace.h"
76cad711 37#include "disas/disas.h"
57fec1fe 38#include "tcg.h"
5b6dd868
BS
39#if defined(CONFIG_USER_ONLY)
40#include "qemu.h"
41#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42#include <sys/param.h>
43#if __FreeBSD_version >= 700104
44#define HAVE_KINFO_GETVMMAP
45#define sigqueue sigqueue_freebsd /* avoid redefinition */
46#include <sys/time.h>
47#include <sys/proc.h>
48#include <machine/profile.h>
49#define _KERNEL
50#include <sys/user.h>
51#undef _KERNEL
52#undef sigqueue
53#include <libutil.h>
54#endif
55#endif
0bc3cd62
PB
56#else
57#include "exec/address-spaces.h"
5b6dd868
BS
58#endif
59
022c62cb 60#include "exec/cputlb.h"
e1b89321 61#include "exec/tb-hash.h"
5b6dd868 62#include "translate-all.h"
510a647f 63#include "qemu/bitmap.h"
0aa09897 64#include "qemu/timer.h"
5b6dd868
BS
65
66//#define DEBUG_TB_INVALIDATE
67//#define DEBUG_FLUSH
68/* make various TB consistency checks */
69//#define DEBUG_TB_CHECK
70
71#if !defined(CONFIG_USER_ONLY)
72/* TB consistency checks only implemented for usermode emulation. */
73#undef DEBUG_TB_CHECK
74#endif
75
76#define SMC_BITMAP_USE_THRESHOLD 10
77
5b6dd868
BS
78typedef struct PageDesc {
79 /* list of TBs intersecting this ram page */
80 TranslationBlock *first_tb;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count;
510a647f 84 unsigned long *code_bitmap;
5b6dd868
BS
85#if defined(CONFIG_USER_ONLY)
86 unsigned long flags;
87#endif
88} PageDesc;
89
90/* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92#if !defined(CONFIG_USER_ONLY)
93#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
95#else
96# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
97#endif
98#else
99# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
100#endif
101
03f49957
PB
102/* Size of the L2 (and L3, etc) page tables. */
103#define V_L2_BITS 10
104#define V_L2_SIZE (1 << V_L2_BITS)
105
5b6dd868
BS
106/* The bits remaining after N lower levels of page tables. */
107#define V_L1_BITS_REM \
03f49957 108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
109
110#if V_L1_BITS_REM < 4
03f49957 111#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
112#else
113#define V_L1_BITS V_L1_BITS_REM
114#endif
115
116#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
117
118#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
119
5b6dd868
BS
120uintptr_t qemu_host_page_size;
121uintptr_t qemu_host_page_mask;
122
d1142fb8 123/* The bottom level has pointers to PageDesc */
5b6dd868
BS
124static void *l1_map[V_L1_SIZE];
125
57fec1fe
FB
126/* code generation context */
127TCGContext tcg_ctx;
d19893da 128
677ef623
FK
129/* translation block context */
130#ifdef CONFIG_USER_ONLY
131__thread int have_tb_lock;
132#endif
133
134void tb_lock(void)
135{
136#ifdef CONFIG_USER_ONLY
137 assert(!have_tb_lock);
138 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
139 have_tb_lock++;
140#endif
141}
142
143void tb_unlock(void)
144{
145#ifdef CONFIG_USER_ONLY
146 assert(have_tb_lock);
147 have_tb_lock--;
148 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
149#endif
150}
151
152void tb_lock_reset(void)
153{
154#ifdef CONFIG_USER_ONLY
155 if (have_tb_lock) {
156 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
157 have_tb_lock = 0;
158 }
159#endif
160}
161
5b6dd868
BS
162static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
163 tb_page_addr_t phys_page2);
a8a826a3 164static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 165
57fec1fe
FB
166void cpu_gen_init(void)
167{
168 tcg_context_init(&tcg_ctx);
57fec1fe
FB
169}
170
fca8a500
RH
171/* Encode VAL as a signed leb128 sequence at P.
172 Return P incremented past the encoded value. */
173static uint8_t *encode_sleb128(uint8_t *p, target_long val)
174{
175 int more, byte;
176
177 do {
178 byte = val & 0x7f;
179 val >>= 7;
180 more = !((val == 0 && (byte & 0x40) == 0)
181 || (val == -1 && (byte & 0x40) != 0));
182 if (more) {
183 byte |= 0x80;
184 }
185 *p++ = byte;
186 } while (more);
187
188 return p;
189}
190
191/* Decode a signed leb128 sequence at *PP; increment *PP past the
192 decoded value. Return the decoded value. */
193static target_long decode_sleb128(uint8_t **pp)
194{
195 uint8_t *p = *pp;
196 target_long val = 0;
197 int byte, shift = 0;
198
199 do {
200 byte = *p++;
201 val |= (target_ulong)(byte & 0x7f) << shift;
202 shift += 7;
203 } while (byte & 0x80);
204 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
205 val |= -(target_ulong)1 << shift;
206 }
207
208 *pp = p;
209 return val;
210}
211
212/* Encode the data collected about the instructions while compiling TB.
213 Place the data at BLOCK, and return the number of bytes consumed.
214
215 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
216 which come from the target's insn_start data, followed by a uintptr_t
217 which comes from the host pc of the end of the code implementing the insn.
218
219 Each line of the table is encoded as sleb128 deltas from the previous
220 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
221 That is, the first column is seeded with the guest pc, the last column
222 with the host pc, and the middle columns with zeros. */
223
224static int encode_search(TranslationBlock *tb, uint8_t *block)
225{
b125f9dc 226 uint8_t *highwater = tcg_ctx.code_gen_highwater;
fca8a500
RH
227 uint8_t *p = block;
228 int i, j, n;
229
230 tb->tc_search = block;
231
232 for (i = 0, n = tb->icount; i < n; ++i) {
233 target_ulong prev;
234
235 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
236 if (i == 0) {
237 prev = (j == 0 ? tb->pc : 0);
238 } else {
239 prev = tcg_ctx.gen_insn_data[i - 1][j];
240 }
241 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
242 }
243 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
244 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
b125f9dc
RH
245
246 /* Test for (pending) buffer overflow. The assumption is that any
247 one row beginning below the high water mark cannot overrun
248 the buffer completely. Thus we can test for overflow after
249 encoding a row without having to check during encoding. */
250 if (unlikely(p > highwater)) {
251 return -1;
252 }
fca8a500
RH
253 }
254
255 return p - block;
256}
257
fec88f64 258/* The cpu state corresponding to 'searched_pc' is restored. */
74f10515 259static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 260 uintptr_t searched_pc)
d19893da 261{
fca8a500
RH
262 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
263 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
74f10515 264 CPUArchState *env = cpu->env_ptr;
fca8a500
RH
265 uint8_t *p = tb->tc_search;
266 int i, j, num_insns = tb->icount;
57fec1fe 267#ifdef CONFIG_PROFILER
fca8a500 268 int64_t ti = profile_getclock();
57fec1fe
FB
269#endif
270
fca8a500
RH
271 if (searched_pc < host_pc) {
272 return -1;
273 }
d19893da 274
fca8a500
RH
275 /* Reconstruct the stored insn data while looking for the point at
276 which the end of the insn exceeds the searched_pc. */
277 for (i = 0; i < num_insns; ++i) {
278 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
279 data[j] += decode_sleb128(&p);
280 }
281 host_pc += decode_sleb128(&p);
282 if (host_pc > searched_pc) {
283 goto found;
284 }
285 }
286 return -1;
3b46e624 287
fca8a500 288 found:
bd79255d 289 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 290 assert(use_icount);
2e70f6ef 291 /* Reset the cycle counter to the start of the block. */
fca8a500 292 cpu->icount_decr.u16.low += num_insns;
2e70f6ef 293 /* Clear the IO flag. */
99df7dce 294 cpu->can_do_io = 0;
2e70f6ef 295 }
fca8a500
RH
296 cpu->icount_decr.u16.low -= i;
297 restore_state_to_opc(env, tb, data);
57fec1fe
FB
298
299#ifdef CONFIG_PROFILER
fca8a500
RH
300 tcg_ctx.restore_time += profile_getclock() - ti;
301 tcg_ctx.restore_count++;
57fec1fe 302#endif
d19893da
FB
303 return 0;
304}
5b6dd868 305
3f38f309 306bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
307{
308 TranslationBlock *tb;
309
310 tb = tb_find_pc(retaddr);
311 if (tb) {
74f10515 312 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
313 if (tb->cflags & CF_NOCACHE) {
314 /* one-shot translation, invalidate it immediately */
315 cpu->current_tb = NULL;
316 tb_phys_invalidate(tb, -1);
317 tb_free(tb);
318 }
a8a826a3
BS
319 return true;
320 }
321 return false;
322}
323
47c16ed5 324void page_size_init(void)
5b6dd868
BS
325{
326 /* NOTE: we can always suppose that qemu_host_page_size >=
327 TARGET_PAGE_SIZE */
5b6dd868 328 qemu_real_host_page_size = getpagesize();
4e51361d 329 qemu_real_host_page_mask = ~(qemu_real_host_page_size - 1);
5b6dd868
BS
330 if (qemu_host_page_size == 0) {
331 qemu_host_page_size = qemu_real_host_page_size;
332 }
333 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
334 qemu_host_page_size = TARGET_PAGE_SIZE;
335 }
336 qemu_host_page_mask = ~(qemu_host_page_size - 1);
47c16ed5 337}
5b6dd868 338
47c16ed5
AK
339static void page_init(void)
340{
341 page_size_init();
5b6dd868
BS
342#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
343 {
344#ifdef HAVE_KINFO_GETVMMAP
345 struct kinfo_vmentry *freep;
346 int i, cnt;
347
348 freep = kinfo_getvmmap(getpid(), &cnt);
349 if (freep) {
350 mmap_lock();
351 for (i = 0; i < cnt; i++) {
352 unsigned long startaddr, endaddr;
353
354 startaddr = freep[i].kve_start;
355 endaddr = freep[i].kve_end;
356 if (h2g_valid(startaddr)) {
357 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
358
359 if (h2g_valid(endaddr)) {
360 endaddr = h2g(endaddr);
361 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
362 } else {
363#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
364 endaddr = ~0ul;
365 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
366#endif
367 }
368 }
369 }
370 free(freep);
371 mmap_unlock();
372 }
373#else
374 FILE *f;
375
376 last_brk = (unsigned long)sbrk(0);
377
378 f = fopen("/compat/linux/proc/self/maps", "r");
379 if (f) {
380 mmap_lock();
381
382 do {
383 unsigned long startaddr, endaddr;
384 int n;
385
386 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
387
388 if (n == 2 && h2g_valid(startaddr)) {
389 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
390
391 if (h2g_valid(endaddr)) {
392 endaddr = h2g(endaddr);
393 } else {
394 endaddr = ~0ul;
395 }
396 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
397 }
398 } while (!feof(f));
399
400 fclose(f);
401 mmap_unlock();
402 }
403#endif
404 }
405#endif
406}
407
75692087
PB
408/* If alloc=1:
409 * Called with mmap_lock held for user-mode emulation.
410 */
5b6dd868
BS
411static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
412{
413 PageDesc *pd;
414 void **lp;
415 int i;
416
5b6dd868
BS
417 /* Level 1. Always allocated. */
418 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
419
420 /* Level 2..N-1. */
03f49957 421 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
6940fab8 422 void **p = atomic_rcu_read(lp);
5b6dd868
BS
423
424 if (p == NULL) {
425 if (!alloc) {
426 return NULL;
427 }
e3a0abfd 428 p = g_new0(void *, V_L2_SIZE);
6940fab8 429 atomic_rcu_set(lp, p);
5b6dd868
BS
430 }
431
03f49957 432 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
433 }
434
6940fab8 435 pd = atomic_rcu_read(lp);
5b6dd868
BS
436 if (pd == NULL) {
437 if (!alloc) {
438 return NULL;
439 }
e3a0abfd 440 pd = g_new0(PageDesc, V_L2_SIZE);
6940fab8 441 atomic_rcu_set(lp, pd);
5b6dd868
BS
442 }
443
03f49957 444 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
445}
446
447static inline PageDesc *page_find(tb_page_addr_t index)
448{
449 return page_find_alloc(index, 0);
450}
451
5b6dd868
BS
452#if defined(CONFIG_USER_ONLY)
453/* Currently it is not recommended to allocate big chunks of data in
454 user mode. It will change when a dedicated libc will be used. */
455/* ??? 64-bit hosts ought to have no problem mmaping data outside the
456 region in which the guest needs to run. Revisit this. */
457#define USE_STATIC_CODE_GEN_BUFFER
458#endif
459
5b6dd868
BS
460/* Minimum size of the code gen buffer. This number is randomly chosen,
461 but not so small that we can't have a fair number of TB's live. */
462#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
463
464/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
465 indicated, this is constrained by the range of direct branches on the
466 host cpu, as used by the TCG implementation of goto_tb. */
467#if defined(__x86_64__)
468# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
469#elif defined(__sparc__)
470# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
4a136e0a
CF
471#elif defined(__aarch64__)
472# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
473#elif defined(__arm__)
474# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
475#elif defined(__s390x__)
476 /* We have a +- 4GB range on the branches; leave some slop. */
477# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
478#elif defined(__mips__)
479 /* We have a 256MB branch region, but leave room to make sure the
480 main executable is also within that region. */
481# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
482#else
483# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
484#endif
485
486#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
487
488#define DEFAULT_CODE_GEN_BUFFER_SIZE \
489 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
490 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
491
492static inline size_t size_code_gen_buffer(size_t tb_size)
493{
494 /* Size the buffer. */
495 if (tb_size == 0) {
496#ifdef USE_STATIC_CODE_GEN_BUFFER
497 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
498#else
499 /* ??? Needs adjustments. */
500 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
501 static buffer, we could size this on RESERVED_VA, on the text
502 segment size of the executable, or continue to use the default. */
503 tb_size = (unsigned long)(ram_size / 4);
504#endif
505 }
506 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
507 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
508 }
509 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
510 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
511 }
0b0d3320 512 tcg_ctx.code_gen_buffer_size = tb_size;
5b6dd868
BS
513 return tb_size;
514}
515
483c76e1
RH
516#ifdef __mips__
517/* In order to use J and JAL within the code_gen_buffer, we require
518 that the buffer not cross a 256MB boundary. */
519static inline bool cross_256mb(void *addr, size_t size)
520{
521 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
522}
523
524/* We weren't able to allocate a buffer without crossing that boundary,
525 so make do with the larger portion of the buffer that doesn't cross.
526 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
527static inline void *split_cross_256mb(void *buf1, size_t size1)
528{
529 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
530 size_t size2 = buf1 + size1 - buf2;
531
532 size1 = buf2 - buf1;
533 if (size1 < size2) {
534 size1 = size2;
535 buf1 = buf2;
536 }
537
538 tcg_ctx.code_gen_buffer_size = size1;
539 return buf1;
540}
541#endif
542
5b6dd868
BS
543#ifdef USE_STATIC_CODE_GEN_BUFFER
544static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
545 __attribute__((aligned(CODE_GEN_ALIGN)));
546
f293709c
RH
547# ifdef _WIN32
548static inline void do_protect(void *addr, long size, int prot)
549{
550 DWORD old_protect;
551 VirtualProtect(addr, size, prot, &old_protect);
552}
553
554static inline void map_exec(void *addr, long size)
555{
556 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
557}
558
559static inline void map_none(void *addr, long size)
560{
561 do_protect(addr, size, PAGE_NOACCESS);
562}
563# else
564static inline void do_protect(void *addr, long size, int prot)
565{
566 uintptr_t start, end;
567
568 start = (uintptr_t)addr;
569 start &= qemu_real_host_page_mask;
570
571 end = (uintptr_t)addr + size;
572 end = ROUND_UP(end, qemu_real_host_page_size);
573
574 mprotect((void *)start, end - start, prot);
575}
576
577static inline void map_exec(void *addr, long size)
578{
579 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
580}
581
582static inline void map_none(void *addr, long size)
583{
584 do_protect(addr, size, PROT_NONE);
585}
586# endif /* WIN32 */
587
5b6dd868
BS
588static inline void *alloc_code_gen_buffer(void)
589{
483c76e1 590 void *buf = static_code_gen_buffer;
f293709c
RH
591 size_t full_size, size;
592
593 /* The size of the buffer, rounded down to end on a page boundary. */
594 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
595 & qemu_real_host_page_mask) - (uintptr_t)buf;
596
597 /* Reserve a guard page. */
598 size = full_size - qemu_real_host_page_size;
599
600 /* Honor a command-line option limiting the size of the buffer. */
601 if (size > tcg_ctx.code_gen_buffer_size) {
602 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
603 & qemu_real_host_page_mask) - (uintptr_t)buf;
604 }
605 tcg_ctx.code_gen_buffer_size = size;
606
483c76e1 607#ifdef __mips__
f293709c
RH
608 if (cross_256mb(buf, size)) {
609 buf = split_cross_256mb(buf, size);
610 size = tcg_ctx.code_gen_buffer_size;
483c76e1
RH
611 }
612#endif
f293709c
RH
613
614 map_exec(buf, size);
615 map_none(buf + size, qemu_real_host_page_size);
616 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
617
483c76e1 618 return buf;
5b6dd868 619}
f293709c
RH
620#elif defined(_WIN32)
621static inline void *alloc_code_gen_buffer(void)
622{
623 size_t size = tcg_ctx.code_gen_buffer_size;
624 void *buf1, *buf2;
625
626 /* Perform the allocation in two steps, so that the guard page
627 is reserved but uncommitted. */
628 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
629 MEM_RESERVE, PAGE_NOACCESS);
630 if (buf1 != NULL) {
631 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
632 assert(buf1 == buf2);
633 }
634
635 return buf1;
636}
637#else
5b6dd868
BS
638static inline void *alloc_code_gen_buffer(void)
639{
640 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
641 uintptr_t start = 0;
f293709c 642 size_t size = tcg_ctx.code_gen_buffer_size;
5b6dd868
BS
643 void *buf;
644
645 /* Constrain the position of the buffer based on the host cpu.
646 Note that these addresses are chosen in concert with the
647 addresses assigned in the relevant linker script file. */
648# if defined(__PIE__) || defined(__PIC__)
649 /* Don't bother setting a preferred location if we're building
650 a position-independent executable. We're more likely to get
651 an address near the main executable if we let the kernel
652 choose the address. */
653# elif defined(__x86_64__) && defined(MAP_32BIT)
654 /* Force the memory down into low memory with the executable.
655 Leave the choice of exact location with the kernel. */
656 flags |= MAP_32BIT;
657 /* Cannot expect to map more than 800MB in low memory. */
f293709c
RH
658 if (size > 800u * 1024 * 1024) {
659 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
5b6dd868
BS
660 }
661# elif defined(__sparc__)
662 start = 0x40000000ul;
663# elif defined(__s390x__)
664 start = 0x90000000ul;
479eb121 665# elif defined(__mips__)
f293709c 666# if _MIPS_SIM == _ABI64
479eb121
RH
667 start = 0x128000000ul;
668# else
669 start = 0x08000000ul;
670# endif
5b6dd868
BS
671# endif
672
f293709c
RH
673 buf = mmap((void *)start, size + qemu_real_host_page_size,
674 PROT_NONE, flags, -1, 0);
483c76e1
RH
675 if (buf == MAP_FAILED) {
676 return NULL;
677 }
678
679#ifdef __mips__
f293709c 680 if (cross_256mb(buf, size)) {
5d831be2 681 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1 682 that 256mb crossing. This time don't specify an address. */
f293709c
RH
683 size_t size2;
684 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
685 PROT_NONE, flags, -1, 0);
686 switch (buf2 != MAP_FAILED) {
687 case 1:
688 if (!cross_256mb(buf2, size)) {
483c76e1 689 /* Success! Use the new buffer. */
f293709c
RH
690 munmap(buf, size);
691 break;
483c76e1
RH
692 }
693 /* Failure. Work with what we had. */
f293709c
RH
694 munmap(buf2, size);
695 /* fallthru */
696 default:
697 /* Split the original buffer. Free the smaller half. */
698 buf2 = split_cross_256mb(buf, size);
699 size2 = tcg_ctx.code_gen_buffer_size;
700 if (buf == buf2) {
701 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
702 } else {
703 munmap(buf, size - size2);
704 }
705 size = size2;
706 break;
483c76e1 707 }
f293709c 708 buf = buf2;
483c76e1
RH
709 }
710#endif
711
f293709c
RH
712 /* Make the final buffer accessible. The guard page at the end
713 will remain inaccessible with PROT_NONE. */
714 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
483c76e1 715
f293709c
RH
716 /* Request large pages for the buffer. */
717 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
483c76e1 718
5b6dd868
BS
719 return buf;
720}
f293709c 721#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
5b6dd868
BS
722
723static inline void code_gen_alloc(size_t tb_size)
724{
0b0d3320
EV
725 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
726 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
727 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
728 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
729 exit(1);
730 }
731
8163b749
RH
732 /* Estimate a good size for the number of TBs we can support. We
733 still haven't deducted the prologue from the buffer size here,
734 but that's minimal and won't affect the estimate much. */
735 tcg_ctx.code_gen_max_blocks
736 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
737 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
738
677ef623 739 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
5b6dd868
BS
740}
741
742/* Must be called before using the QEMU cpus. 'tb_size' is the size
743 (in bytes) allocated to the translation buffer. Zero means default
744 size. */
745void tcg_exec_init(unsigned long tb_size)
746{
747 cpu_gen_init();
5b6dd868 748 page_init();
f293709c 749 code_gen_alloc(tb_size);
4cbea598 750#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
751 /* There's no guest base to take into account, so go ahead and
752 initialize the prologue now. */
753 tcg_prologue_init(&tcg_ctx);
754#endif
755}
756
757bool tcg_enabled(void)
758{
0b0d3320 759 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
760}
761
762/* Allocate a new translation block. Flush the translation buffer if
763 too many translation blocks or too much generated code. */
764static TranslationBlock *tb_alloc(target_ulong pc)
765{
766 TranslationBlock *tb;
767
b125f9dc 768 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
5b6dd868
BS
769 return NULL;
770 }
5e5f07e0 771 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
772 tb->pc = pc;
773 tb->cflags = 0;
774 return tb;
775}
776
777void tb_free(TranslationBlock *tb)
778{
779 /* In practice this is mostly used for single use temporary TB
780 Ignore the hard cases and just back up if this TB happens to
781 be the last one generated. */
5e5f07e0
EV
782 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
783 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 784 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 785 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
786 }
787}
788
789static inline void invalidate_page_bitmap(PageDesc *p)
790{
012aef07
MA
791 g_free(p->code_bitmap);
792 p->code_bitmap = NULL;
5b6dd868
BS
793 p->code_write_count = 0;
794}
795
796/* Set to NULL all the 'first_tb' fields in all PageDescs. */
797static void page_flush_tb_1(int level, void **lp)
798{
799 int i;
800
801 if (*lp == NULL) {
802 return;
803 }
804 if (level == 0) {
805 PageDesc *pd = *lp;
806
03f49957 807 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
808 pd[i].first_tb = NULL;
809 invalidate_page_bitmap(pd + i);
810 }
811 } else {
812 void **pp = *lp;
813
03f49957 814 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
815 page_flush_tb_1(level - 1, pp + i);
816 }
817 }
818}
819
820static void page_flush_tb(void)
821{
822 int i;
823
824 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 825 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
826 }
827}
828
829/* flush all the translation blocks */
830/* XXX: tb_flush is currently not thread safe */
bbd77c18 831void tb_flush(CPUState *cpu)
5b6dd868 832{
5b6dd868
BS
833#if defined(DEBUG_FLUSH)
834 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 835 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 836 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 837 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 838 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 839#endif
0b0d3320
EV
840 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
841 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 842 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 843 }
5e5f07e0 844 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 845
bdc44640 846 CPU_FOREACH(cpu) {
8cd70437 847 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
848 }
849
eb2535f4 850 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
851 page_flush_tb();
852
0b0d3320 853 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
854 /* XXX: flush processor icache at this point if cache flush is
855 expensive */
5e5f07e0 856 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
857}
858
859#ifdef DEBUG_TB_CHECK
860
861static void tb_invalidate_check(target_ulong address)
862{
863 TranslationBlock *tb;
864 int i;
865
866 address &= TARGET_PAGE_MASK;
867 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0 868 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
5b6dd868
BS
869 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
870 address >= tb->pc + tb->size)) {
871 printf("ERROR invalidate: address=" TARGET_FMT_lx
872 " PC=%08lx size=%04x\n",
873 address, (long)tb->pc, tb->size);
874 }
875 }
876 }
877}
878
879/* verify that all the pages have correct rights for code */
880static void tb_page_check(void)
881{
882 TranslationBlock *tb;
883 int i, flags1, flags2;
884
885 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
886 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
887 tb = tb->phys_hash_next) {
5b6dd868
BS
888 flags1 = page_get_flags(tb->pc);
889 flags2 = page_get_flags(tb->pc + tb->size - 1);
890 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
891 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
892 (long)tb->pc, tb->size, flags1, flags2);
893 }
894 }
895 }
896}
897
898#endif
899
0c884d16 900static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
901{
902 TranslationBlock *tb1;
903
904 for (;;) {
905 tb1 = *ptb;
906 if (tb1 == tb) {
0c884d16 907 *ptb = tb1->phys_hash_next;
5b6dd868
BS
908 break;
909 }
0c884d16 910 ptb = &tb1->phys_hash_next;
5b6dd868
BS
911 }
912}
913
914static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
915{
916 TranslationBlock *tb1;
917 unsigned int n1;
918
919 for (;;) {
920 tb1 = *ptb;
921 n1 = (uintptr_t)tb1 & 3;
922 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
923 if (tb1 == tb) {
924 *ptb = tb1->page_next[n1];
925 break;
926 }
927 ptb = &tb1->page_next[n1];
928 }
929}
930
931static inline void tb_jmp_remove(TranslationBlock *tb, int n)
932{
933 TranslationBlock *tb1, **ptb;
934 unsigned int n1;
935
936 ptb = &tb->jmp_next[n];
937 tb1 = *ptb;
938 if (tb1) {
939 /* find tb(n) in circular list */
940 for (;;) {
941 tb1 = *ptb;
942 n1 = (uintptr_t)tb1 & 3;
943 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
944 if (n1 == n && tb1 == tb) {
945 break;
946 }
947 if (n1 == 2) {
948 ptb = &tb1->jmp_first;
949 } else {
950 ptb = &tb1->jmp_next[n1];
951 }
952 }
953 /* now we can suppress tb(n) from the list */
954 *ptb = tb->jmp_next[n];
955
956 tb->jmp_next[n] = NULL;
957 }
958}
959
960/* reset the jump entry 'n' of a TB so that it is not chained to
961 another TB */
962static inline void tb_reset_jump(TranslationBlock *tb, int n)
963{
964 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
965}
966
0c884d16 967/* invalidate one TB */
5b6dd868
BS
968void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
969{
182735ef 970 CPUState *cpu;
5b6dd868
BS
971 PageDesc *p;
972 unsigned int h, n1;
973 tb_page_addr_t phys_pc;
974 TranslationBlock *tb1, *tb2;
975
976 /* remove the TB from the hash list */
977 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
978 h = tb_phys_hash_func(phys_pc);
5e5f07e0 979 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
980
981 /* remove the TB from the page list */
982 if (tb->page_addr[0] != page_addr) {
983 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
984 tb_page_remove(&p->first_tb, tb);
985 invalidate_page_bitmap(p);
986 }
987 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
988 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
989 tb_page_remove(&p->first_tb, tb);
990 invalidate_page_bitmap(p);
991 }
992
5e5f07e0 993 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
994
995 /* remove the TB from the hash list */
996 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 997 CPU_FOREACH(cpu) {
8cd70437
AF
998 if (cpu->tb_jmp_cache[h] == tb) {
999 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
1000 }
1001 }
1002
1003 /* suppress this TB from the two jump lists */
1004 tb_jmp_remove(tb, 0);
1005 tb_jmp_remove(tb, 1);
1006
1007 /* suppress any remaining jumps to this TB */
1008 tb1 = tb->jmp_first;
1009 for (;;) {
1010 n1 = (uintptr_t)tb1 & 3;
1011 if (n1 == 2) {
1012 break;
1013 }
1014 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1015 tb2 = tb1->jmp_next[n1];
1016 tb_reset_jump(tb1, n1);
1017 tb1->jmp_next[n1] = NULL;
1018 tb1 = tb2;
1019 }
1020 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
1021
5e5f07e0 1022 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
1023}
1024
5b6dd868
BS
1025static void build_page_bitmap(PageDesc *p)
1026{
1027 int n, tb_start, tb_end;
1028 TranslationBlock *tb;
1029
510a647f 1030 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
1031
1032 tb = p->first_tb;
1033 while (tb != NULL) {
1034 n = (uintptr_t)tb & 3;
1035 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1036 /* NOTE: this is subtle as a TB may span two physical pages */
1037 if (n == 0) {
1038 /* NOTE: tb_end may be after the end of the page, but
1039 it is not a problem */
1040 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1041 tb_end = tb_start + tb->size;
1042 if (tb_end > TARGET_PAGE_SIZE) {
1043 tb_end = TARGET_PAGE_SIZE;
1044 }
1045 } else {
1046 tb_start = 0;
1047 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1048 }
510a647f 1049 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
1050 tb = tb->page_next[n];
1051 }
1052}
1053
75692087 1054/* Called with mmap_lock held for user mode emulation. */
648f034c 1055TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868
BS
1056 target_ulong pc, target_ulong cs_base,
1057 int flags, int cflags)
1058{
648f034c 1059 CPUArchState *env = cpu->env_ptr;
5b6dd868 1060 TranslationBlock *tb;
5b6dd868
BS
1061 tb_page_addr_t phys_pc, phys_page2;
1062 target_ulong virt_page2;
fec88f64 1063 tcg_insn_unit *gen_code_buf;
fca8a500 1064 int gen_code_size, search_size;
fec88f64
RH
1065#ifdef CONFIG_PROFILER
1066 int64_t ti;
1067#endif
5b6dd868
BS
1068
1069 phys_pc = get_page_addr_code(env, pc);
0266359e
PB
1070 if (use_icount) {
1071 cflags |= CF_USE_ICOUNT;
1072 }
b125f9dc 1073
5b6dd868 1074 tb = tb_alloc(pc);
b125f9dc
RH
1075 if (unlikely(!tb)) {
1076 buffer_overflow:
5b6dd868 1077 /* flush must be done */
bbd77c18 1078 tb_flush(cpu);
5b6dd868
BS
1079 /* cannot fail at this point */
1080 tb = tb_alloc(pc);
b125f9dc 1081 assert(tb != NULL);
5b6dd868 1082 /* Don't forget to invalidate previous TB info. */
5e5f07e0 1083 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 1084 }
fec88f64
RH
1085
1086 gen_code_buf = tcg_ctx.code_gen_ptr;
1087 tb->tc_ptr = gen_code_buf;
5b6dd868
BS
1088 tb->cs_base = cs_base;
1089 tb->flags = flags;
1090 tb->cflags = cflags;
fec88f64
RH
1091
1092#ifdef CONFIG_PROFILER
1093 tcg_ctx.tb_count1++; /* includes aborted translations because of
1094 exceptions */
1095 ti = profile_getclock();
1096#endif
1097
1098 tcg_func_start(&tcg_ctx);
1099
1100 gen_intermediate_code(env, tb);
1101
1102 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1103
1104 /* generate machine code */
1105 tb->tb_next_offset[0] = 0xffff;
1106 tb->tb_next_offset[1] = 0xffff;
1107 tcg_ctx.tb_next_offset = tb->tb_next_offset;
1108#ifdef USE_DIRECT_JUMP
1109 tcg_ctx.tb_jmp_offset = tb->tb_jmp_offset;
1110 tcg_ctx.tb_next = NULL;
1111#else
1112 tcg_ctx.tb_jmp_offset = NULL;
1113 tcg_ctx.tb_next = tb->tb_next;
1114#endif
1115
1116#ifdef CONFIG_PROFILER
1117 tcg_ctx.tb_count++;
1118 tcg_ctx.interm_time += profile_getclock() - ti;
1119 tcg_ctx.code_time -= profile_getclock();
1120#endif
1121
b125f9dc
RH
1122 /* ??? Overflow could be handled better here. In particular, we
1123 don't need to re-do gen_intermediate_code, nor should we re-do
1124 the tcg optimization currently hidden inside tcg_gen_code. All
1125 that should be required is to flush the TBs, allocate a new TB,
1126 re-initialize it per above, and re-do the actual code generation. */
fec88f64 1127 gen_code_size = tcg_gen_code(&tcg_ctx, gen_code_buf);
b125f9dc
RH
1128 if (unlikely(gen_code_size < 0)) {
1129 goto buffer_overflow;
1130 }
fca8a500 1131 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
b125f9dc
RH
1132 if (unlikely(search_size < 0)) {
1133 goto buffer_overflow;
1134 }
fec88f64
RH
1135
1136#ifdef CONFIG_PROFILER
1137 tcg_ctx.code_time += profile_getclock();
1138 tcg_ctx.code_in_len += tb->size;
1139 tcg_ctx.code_out_len += gen_code_size;
fca8a500 1140 tcg_ctx.search_out_len += search_size;
fec88f64
RH
1141#endif
1142
1143#ifdef DEBUG_DISAS
1144 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1145 qemu_log("OUT: [size=%d]\n", gen_code_size);
1146 log_disas(tb->tc_ptr, gen_code_size);
1147 qemu_log("\n");
1148 qemu_log_flush();
1149 }
1150#endif
1151
fca8a500
RH
1152 tcg_ctx.code_gen_ptr = (void *)
1153 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1154 CODE_GEN_ALIGN);
5b6dd868
BS
1155
1156 /* check next page if needed */
1157 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1158 phys_page2 = -1;
1159 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1160 phys_page2 = get_page_addr_code(env, virt_page2);
1161 }
1162 tb_link_page(tb, phys_pc, phys_page2);
1163 return tb;
1164}
1165
1166/*
1167 * Invalidate all TBs which intersect with the target physical address range
1168 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1169 * 'is_cpu_write_access' should be true if called from a real cpu write
1170 * access: the virtual CPU will exit the current TB if code is modified inside
1171 * this TB.
75692087
PB
1172 *
1173 * Called with mmap_lock held for user-mode emulation
5b6dd868 1174 */
35865339 1175void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868
BS
1176{
1177 while (start < end) {
35865339 1178 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1179 start &= TARGET_PAGE_MASK;
1180 start += TARGET_PAGE_SIZE;
1181 }
1182}
1183
1184/*
1185 * Invalidate all TBs which intersect with the target physical address range
1186 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1187 * 'is_cpu_write_access' should be true if called from a real cpu write
1188 * access: the virtual CPU will exit the current TB if code is modified inside
1189 * this TB.
75692087
PB
1190 *
1191 * Called with mmap_lock held for user-mode emulation
5b6dd868
BS
1192 */
1193void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1194 int is_cpu_write_access)
1195{
1196 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1197 CPUState *cpu = current_cpu;
baea4fae 1198#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1199 CPUArchState *env = NULL;
1200#endif
5b6dd868
BS
1201 tb_page_addr_t tb_start, tb_end;
1202 PageDesc *p;
1203 int n;
1204#ifdef TARGET_HAS_PRECISE_SMC
1205 int current_tb_not_found = is_cpu_write_access;
1206 TranslationBlock *current_tb = NULL;
1207 int current_tb_modified = 0;
1208 target_ulong current_pc = 0;
1209 target_ulong current_cs_base = 0;
1210 int current_flags = 0;
1211#endif /* TARGET_HAS_PRECISE_SMC */
1212
1213 p = page_find(start >> TARGET_PAGE_BITS);
1214 if (!p) {
1215 return;
1216 }
baea4fae 1217#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1218 if (cpu != NULL) {
1219 env = cpu->env_ptr;
d77953b9 1220 }
4917cf44 1221#endif
5b6dd868
BS
1222
1223 /* we remove all the TBs in the range [start, end[ */
1224 /* XXX: see if in some cases it could be faster to invalidate all
1225 the code */
1226 tb = p->first_tb;
1227 while (tb != NULL) {
1228 n = (uintptr_t)tb & 3;
1229 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1230 tb_next = tb->page_next[n];
1231 /* NOTE: this is subtle as a TB may span two physical pages */
1232 if (n == 0) {
1233 /* NOTE: tb_end may be after the end of the page, but
1234 it is not a problem */
1235 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1236 tb_end = tb_start + tb->size;
1237 } else {
1238 tb_start = tb->page_addr[1];
1239 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1240 }
1241 if (!(tb_end <= start || tb_start >= end)) {
1242#ifdef TARGET_HAS_PRECISE_SMC
1243 if (current_tb_not_found) {
1244 current_tb_not_found = 0;
1245 current_tb = NULL;
93afeade 1246 if (cpu->mem_io_pc) {
5b6dd868 1247 /* now we have a real cpu fault */
93afeade 1248 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1249 }
1250 }
1251 if (current_tb == tb &&
1252 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1253 /* If we are modifying the current TB, we must stop
1254 its execution. We could be more precise by checking
1255 that the modification is after the current PC, but it
1256 would require a specialized function to partially
1257 restore the CPU state */
1258
1259 current_tb_modified = 1;
74f10515 1260 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1261 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1262 &current_flags);
1263 }
1264#endif /* TARGET_HAS_PRECISE_SMC */
1265 /* we need to do that to handle the case where a signal
1266 occurs while doing tb_phys_invalidate() */
1267 saved_tb = NULL;
d77953b9
AF
1268 if (cpu != NULL) {
1269 saved_tb = cpu->current_tb;
1270 cpu->current_tb = NULL;
5b6dd868
BS
1271 }
1272 tb_phys_invalidate(tb, -1);
d77953b9
AF
1273 if (cpu != NULL) {
1274 cpu->current_tb = saved_tb;
c3affe56
AF
1275 if (cpu->interrupt_request && cpu->current_tb) {
1276 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1277 }
1278 }
1279 }
1280 tb = tb_next;
1281 }
1282#if !defined(CONFIG_USER_ONLY)
1283 /* if no code remaining, no need to continue to use slow writes */
1284 if (!p->first_tb) {
1285 invalidate_page_bitmap(p);
fc377bcf 1286 tlb_unprotect_code(start);
5b6dd868
BS
1287 }
1288#endif
1289#ifdef TARGET_HAS_PRECISE_SMC
1290 if (current_tb_modified) {
1291 /* we generate a block containing just the instruction
1292 modifying the memory. It will ensure that it cannot modify
1293 itself */
d77953b9 1294 cpu->current_tb = NULL;
648f034c 1295 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1296 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1297 }
1298#endif
1299}
1300
1301/* len must be <= 8 and start must be a multiple of len */
1302void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1303{
1304 PageDesc *p;
5b6dd868
BS
1305
1306#if 0
1307 if (1) {
1308 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1309 cpu_single_env->mem_io_vaddr, len,
1310 cpu_single_env->eip,
1311 cpu_single_env->eip +
1312 (intptr_t)cpu_single_env->segs[R_CS].base);
1313 }
1314#endif
1315 p = page_find(start >> TARGET_PAGE_BITS);
1316 if (!p) {
1317 return;
1318 }
fc377bcf
PB
1319 if (!p->code_bitmap &&
1320 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1321 /* build code bitmap */
1322 build_page_bitmap(p);
1323 }
5b6dd868 1324 if (p->code_bitmap) {
510a647f
EC
1325 unsigned int nr;
1326 unsigned long b;
1327
1328 nr = start & ~TARGET_PAGE_MASK;
1329 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1330 if (b & ((1 << len) - 1)) {
1331 goto do_invalidate;
1332 }
1333 } else {
1334 do_invalidate:
1335 tb_invalidate_phys_page_range(start, start + len, 1);
1336 }
1337}
1338
1339#if !defined(CONFIG_SOFTMMU)
75692087 1340/* Called with mmap_lock held. */
5b6dd868 1341static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1342 uintptr_t pc, void *puc,
1343 bool locked)
5b6dd868
BS
1344{
1345 TranslationBlock *tb;
1346 PageDesc *p;
1347 int n;
1348#ifdef TARGET_HAS_PRECISE_SMC
1349 TranslationBlock *current_tb = NULL;
4917cf44
AF
1350 CPUState *cpu = current_cpu;
1351 CPUArchState *env = NULL;
5b6dd868
BS
1352 int current_tb_modified = 0;
1353 target_ulong current_pc = 0;
1354 target_ulong current_cs_base = 0;
1355 int current_flags = 0;
1356#endif
1357
1358 addr &= TARGET_PAGE_MASK;
1359 p = page_find(addr >> TARGET_PAGE_BITS);
1360 if (!p) {
1361 return;
1362 }
1363 tb = p->first_tb;
1364#ifdef TARGET_HAS_PRECISE_SMC
1365 if (tb && pc != 0) {
1366 current_tb = tb_find_pc(pc);
1367 }
4917cf44
AF
1368 if (cpu != NULL) {
1369 env = cpu->env_ptr;
d77953b9 1370 }
5b6dd868
BS
1371#endif
1372 while (tb != NULL) {
1373 n = (uintptr_t)tb & 3;
1374 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1375#ifdef TARGET_HAS_PRECISE_SMC
1376 if (current_tb == tb &&
1377 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1378 /* If we are modifying the current TB, we must stop
1379 its execution. We could be more precise by checking
1380 that the modification is after the current PC, but it
1381 would require a specialized function to partially
1382 restore the CPU state */
1383
1384 current_tb_modified = 1;
74f10515 1385 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1386 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1387 &current_flags);
1388 }
1389#endif /* TARGET_HAS_PRECISE_SMC */
1390 tb_phys_invalidate(tb, addr);
1391 tb = tb->page_next[n];
1392 }
1393 p->first_tb = NULL;
1394#ifdef TARGET_HAS_PRECISE_SMC
1395 if (current_tb_modified) {
1396 /* we generate a block containing just the instruction
1397 modifying the memory. It will ensure that it cannot modify
1398 itself */
d77953b9 1399 cpu->current_tb = NULL;
648f034c 1400 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1401 if (locked) {
1402 mmap_unlock();
1403 }
0ea8cb88 1404 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1405 }
1406#endif
1407}
1408#endif
1409
75692087
PB
1410/* add the tb in the target page and protect it if necessary
1411 *
1412 * Called with mmap_lock held for user-mode emulation.
1413 */
5b6dd868
BS
1414static inline void tb_alloc_page(TranslationBlock *tb,
1415 unsigned int n, tb_page_addr_t page_addr)
1416{
1417 PageDesc *p;
1418#ifndef CONFIG_USER_ONLY
1419 bool page_already_protected;
1420#endif
1421
1422 tb->page_addr[n] = page_addr;
1423 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1424 tb->page_next[n] = p->first_tb;
1425#ifndef CONFIG_USER_ONLY
1426 page_already_protected = p->first_tb != NULL;
1427#endif
1428 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1429 invalidate_page_bitmap(p);
1430
5b6dd868
BS
1431#if defined(CONFIG_USER_ONLY)
1432 if (p->flags & PAGE_WRITE) {
1433 target_ulong addr;
1434 PageDesc *p2;
1435 int prot;
1436
1437 /* force the host page as non writable (writes will have a
1438 page fault + mprotect overhead) */
1439 page_addr &= qemu_host_page_mask;
1440 prot = 0;
1441 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1442 addr += TARGET_PAGE_SIZE) {
1443
1444 p2 = page_find(addr >> TARGET_PAGE_BITS);
1445 if (!p2) {
1446 continue;
1447 }
1448 prot |= p2->flags;
1449 p2->flags &= ~PAGE_WRITE;
1450 }
1451 mprotect(g2h(page_addr), qemu_host_page_size,
1452 (prot & PAGE_BITS) & ~PAGE_WRITE);
1453#ifdef DEBUG_TB_INVALIDATE
1454 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1455 page_addr);
1456#endif
1457 }
1458#else
1459 /* if some code is already present, then the pages are already
1460 protected. So we handle the case where only the first TB is
1461 allocated in a physical page */
1462 if (!page_already_protected) {
1463 tlb_protect_code(page_addr);
1464 }
1465#endif
5b6dd868
BS
1466}
1467
1468/* add a new TB and link it to the physical page tables. phys_page2 is
75692087 1469 * (-1) to indicate that only one page contains the TB.
9fd1a948
PB
1470 *
1471 * Called with mmap_lock held for user-mode emulation.
75692087 1472 */
5b6dd868
BS
1473static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1474 tb_page_addr_t phys_page2)
1475{
1476 unsigned int h;
1477 TranslationBlock **ptb;
1478
5b6dd868
BS
1479 /* add in the physical hash table */
1480 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1481 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1482 tb->phys_hash_next = *ptb;
1483 *ptb = tb;
1484
1485 /* add in the page list */
1486 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1487 if (phys_page2 != -1) {
1488 tb_alloc_page(tb, 1, phys_page2);
1489 } else {
1490 tb->page_addr[1] = -1;
1491 }
1492
1493 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1494 tb->jmp_next[0] = NULL;
1495 tb->jmp_next[1] = NULL;
1496
1497 /* init original jump addresses */
1498 if (tb->tb_next_offset[0] != 0xffff) {
1499 tb_reset_jump(tb, 0);
1500 }
1501 if (tb->tb_next_offset[1] != 0xffff) {
1502 tb_reset_jump(tb, 1);
1503 }
1504
1505#ifdef DEBUG_TB_CHECK
1506 tb_page_check();
1507#endif
5b6dd868
BS
1508}
1509
5b6dd868
BS
1510/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1511 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1512static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1513{
1514 int m_min, m_max, m;
1515 uintptr_t v;
1516 TranslationBlock *tb;
1517
5e5f07e0 1518 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1519 return NULL;
1520 }
0b0d3320
EV
1521 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1522 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1523 return NULL;
1524 }
1525 /* binary search (cf Knuth) */
1526 m_min = 0;
5e5f07e0 1527 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1528 while (m_min <= m_max) {
1529 m = (m_min + m_max) >> 1;
5e5f07e0 1530 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1531 v = (uintptr_t)tb->tc_ptr;
1532 if (v == tc_ptr) {
1533 return tb;
1534 } else if (tc_ptr < v) {
1535 m_max = m - 1;
1536 } else {
1537 m_min = m + 1;
1538 }
1539 }
5e5f07e0 1540 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1541}
1542
ec53b45b 1543#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1544void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1545{
1546 ram_addr_t ram_addr;
5c8a00ce 1547 MemoryRegion *mr;
149f54b5 1548 hwaddr l = 1;
5b6dd868 1549
41063e1e 1550 rcu_read_lock();
29d8ec7b 1551 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1552 if (!(memory_region_is_ram(mr)
1553 || memory_region_is_romd(mr))) {
41063e1e 1554 rcu_read_unlock();
5b6dd868
BS
1555 return;
1556 }
5c8a00ce 1557 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1558 + addr;
5b6dd868 1559 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1560 rcu_read_unlock();
5b6dd868 1561}
ec53b45b 1562#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1563
239c51a5 1564void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1565{
1566 TranslationBlock *tb;
1567
93afeade 1568 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1569 if (tb) {
1570 /* We can use retranslation to find the PC. */
1571 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1572 tb_phys_invalidate(tb, -1);
1573 } else {
1574 /* The exception probably happened in a helper. The CPU state should
1575 have been saved before calling it. Fetch the PC from there. */
1576 CPUArchState *env = cpu->env_ptr;
1577 target_ulong pc, cs_base;
1578 tb_page_addr_t addr;
1579 int flags;
1580
1581 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1582 addr = get_page_addr_code(env, pc);
1583 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1584 }
5b6dd868
BS
1585}
1586
1587#ifndef CONFIG_USER_ONLY
5b6dd868
BS
1588/* in deterministic execution mode, instructions doing device I/Os
1589 must be at the end of the TB */
90b40a69 1590void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1591{
a47dddd7 1592#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1593 CPUArchState *env = cpu->env_ptr;
a47dddd7 1594#endif
5b6dd868
BS
1595 TranslationBlock *tb;
1596 uint32_t n, cflags;
1597 target_ulong pc, cs_base;
1598 uint64_t flags;
1599
1600 tb = tb_find_pc(retaddr);
1601 if (!tb) {
a47dddd7 1602 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1603 (void *)retaddr);
1604 }
28ecfd7a 1605 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1606 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1607 /* Calculate how many instructions had been executed before the fault
1608 occurred. */
28ecfd7a 1609 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1610 /* Generate a new TB ending on the I/O insn. */
1611 n++;
1612 /* On MIPS and SH, delay slot instructions can only be restarted if
1613 they were already the first instruction in the TB. If this is not
1614 the first instruction in a TB then re-execute the preceding
1615 branch. */
1616#if defined(TARGET_MIPS)
1617 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1618 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1619 cpu->icount_decr.u16.low++;
5b6dd868
BS
1620 env->hflags &= ~MIPS_HFLAG_BMASK;
1621 }
1622#elif defined(TARGET_SH4)
1623 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1624 && n > 1) {
1625 env->pc -= 2;
28ecfd7a 1626 cpu->icount_decr.u16.low++;
5b6dd868
BS
1627 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1628 }
1629#endif
1630 /* This should never happen. */
1631 if (n > CF_COUNT_MASK) {
a47dddd7 1632 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1633 }
1634
1635 cflags = n | CF_LAST_IO;
1636 pc = tb->pc;
1637 cs_base = tb->cs_base;
1638 flags = tb->flags;
1639 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1640 if (tb->cflags & CF_NOCACHE) {
1641 if (tb->orig_tb) {
1642 /* Invalidate original TB if this TB was generated in
1643 * cpu_exec_nocache() */
1644 tb_phys_invalidate(tb->orig_tb, -1);
1645 }
1646 tb_free(tb);
1647 }
5b6dd868
BS
1648 /* FIXME: In theory this could raise an exception. In practice
1649 we have already translated the block once so it's probably ok. */
648f034c 1650 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1651 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1652 the first in the TB) then we end up generating a whole new TB and
1653 repeating the fault, which is horribly inefficient.
1654 Better would be to execute just this insn uncached, or generate a
1655 second new TB. */
0ea8cb88 1656 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1657}
1658
611d4f99 1659void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1660{
1661 unsigned int i;
1662
1663 /* Discard jump cache entries for any tb which might potentially
1664 overlap the flushed page. */
1665 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1666 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1667 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1668
1669 i = tb_jmp_cache_hash_page(addr);
8cd70437 1670 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1671 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1672}
1673
1674void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1675{
1676 int i, target_code_size, max_target_code_size;
1677 int direct_jmp_count, direct_jmp2_count, cross_page;
1678 TranslationBlock *tb;
1679
1680 target_code_size = 0;
1681 max_target_code_size = 0;
1682 cross_page = 0;
1683 direct_jmp_count = 0;
1684 direct_jmp2_count = 0;
5e5f07e0
EV
1685 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1686 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1687 target_code_size += tb->size;
1688 if (tb->size > max_target_code_size) {
1689 max_target_code_size = tb->size;
1690 }
1691 if (tb->page_addr[1] != -1) {
1692 cross_page++;
1693 }
1694 if (tb->tb_next_offset[0] != 0xffff) {
1695 direct_jmp_count++;
1696 if (tb->tb_next_offset[1] != 0xffff) {
1697 direct_jmp2_count++;
1698 }
1699 }
1700 }
1701 /* XXX: avoid using doubles ? */
1702 cpu_fprintf(f, "Translation buffer state:\n");
1703 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320 1704 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
b125f9dc 1705 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
5b6dd868 1706 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1707 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1708 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1709 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1710 tcg_ctx.tb_ctx.nb_tbs : 0,
1711 max_target_code_size);
5b6dd868 1712 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1713 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1714 tcg_ctx.code_gen_buffer) /
1715 tcg_ctx.tb_ctx.nb_tbs : 0,
1716 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1717 tcg_ctx.code_gen_buffer) /
1718 target_code_size : 0);
1719 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1720 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1721 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1722 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1723 direct_jmp_count,
5e5f07e0
EV
1724 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1725 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1726 direct_jmp2_count,
5e5f07e0
EV
1727 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1728 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1729 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1730 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1731 cpu_fprintf(f, "TB invalidate count %d\n",
1732 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1733 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1734 tcg_dump_info(f, cpu_fprintf);
1735}
1736
246ae24d
MF
1737void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1738{
1739 tcg_dump_op_count(f, cpu_fprintf);
1740}
1741
5b6dd868
BS
1742#else /* CONFIG_USER_ONLY */
1743
c3affe56 1744void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1745{
259186a7 1746 cpu->interrupt_request |= mask;
378df4b2 1747 cpu->tcg_exit_req = 1;
5b6dd868
BS
1748}
1749
1750/*
1751 * Walks guest process memory "regions" one by one
1752 * and calls callback function 'fn' for each region.
1753 */
1754struct walk_memory_regions_data {
1755 walk_memory_regions_fn fn;
1756 void *priv;
1a1c4db9 1757 target_ulong start;
5b6dd868
BS
1758 int prot;
1759};
1760
1761static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1762 target_ulong end, int new_prot)
5b6dd868 1763{
1a1c4db9 1764 if (data->start != -1u) {
5b6dd868
BS
1765 int rc = data->fn(data->priv, data->start, end, data->prot);
1766 if (rc != 0) {
1767 return rc;
1768 }
1769 }
1770
1a1c4db9 1771 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1772 data->prot = new_prot;
1773
1774 return 0;
1775}
1776
1777static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1778 target_ulong base, int level, void **lp)
5b6dd868 1779{
1a1c4db9 1780 target_ulong pa;
5b6dd868
BS
1781 int i, rc;
1782
1783 if (*lp == NULL) {
1784 return walk_memory_regions_end(data, base, 0);
1785 }
1786
1787 if (level == 0) {
1788 PageDesc *pd = *lp;
1789
03f49957 1790 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1791 int prot = pd[i].flags;
1792
1793 pa = base | (i << TARGET_PAGE_BITS);
1794 if (prot != data->prot) {
1795 rc = walk_memory_regions_end(data, pa, prot);
1796 if (rc != 0) {
1797 return rc;
1798 }
1799 }
1800 }
1801 } else {
1802 void **pp = *lp;
1803
03f49957 1804 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1805 pa = base | ((target_ulong)i <<
03f49957 1806 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1807 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1808 if (rc != 0) {
1809 return rc;
1810 }
1811 }
1812 }
1813
1814 return 0;
1815}
1816
1817int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1818{
1819 struct walk_memory_regions_data data;
1820 uintptr_t i;
1821
1822 data.fn = fn;
1823 data.priv = priv;
1a1c4db9 1824 data.start = -1u;
5b6dd868
BS
1825 data.prot = 0;
1826
1827 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1828 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1829 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1830 if (rc != 0) {
1831 return rc;
1832 }
1833 }
1834
1835 return walk_memory_regions_end(&data, 0, 0);
1836}
1837
1a1c4db9
MI
1838static int dump_region(void *priv, target_ulong start,
1839 target_ulong end, unsigned long prot)
5b6dd868
BS
1840{
1841 FILE *f = (FILE *)priv;
1842
1a1c4db9
MI
1843 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1844 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1845 start, end, end - start,
1846 ((prot & PAGE_READ) ? 'r' : '-'),
1847 ((prot & PAGE_WRITE) ? 'w' : '-'),
1848 ((prot & PAGE_EXEC) ? 'x' : '-'));
1849
1850 return 0;
1851}
1852
1853/* dump memory mappings */
1854void page_dump(FILE *f)
1855{
1a1c4db9 1856 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1857 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1858 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1859 walk_memory_regions(f, dump_region);
1860}
1861
1862int page_get_flags(target_ulong address)
1863{
1864 PageDesc *p;
1865
1866 p = page_find(address >> TARGET_PAGE_BITS);
1867 if (!p) {
1868 return 0;
1869 }
1870 return p->flags;
1871}
1872
1873/* Modify the flags of a page and invalidate the code if necessary.
1874 The flag PAGE_WRITE_ORG is positioned automatically depending
1875 on PAGE_WRITE. The mmap_lock should already be held. */
1876void page_set_flags(target_ulong start, target_ulong end, int flags)
1877{
1878 target_ulong addr, len;
1879
1880 /* This function should never be called with addresses outside the
1881 guest address space. If this assert fires, it probably indicates
1882 a missing call to h2g_valid. */
1883#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1884 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1885#endif
1886 assert(start < end);
1887
1888 start = start & TARGET_PAGE_MASK;
1889 end = TARGET_PAGE_ALIGN(end);
1890
1891 if (flags & PAGE_WRITE) {
1892 flags |= PAGE_WRITE_ORG;
1893 }
1894
1895 for (addr = start, len = end - start;
1896 len != 0;
1897 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1898 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1899
1900 /* If the write protection bit is set, then we invalidate
1901 the code inside. */
1902 if (!(p->flags & PAGE_WRITE) &&
1903 (flags & PAGE_WRITE) &&
1904 p->first_tb) {
d02532f0 1905 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1906 }
1907 p->flags = flags;
1908 }
1909}
1910
1911int page_check_range(target_ulong start, target_ulong len, int flags)
1912{
1913 PageDesc *p;
1914 target_ulong end;
1915 target_ulong addr;
1916
1917 /* This function should never be called with addresses outside the
1918 guest address space. If this assert fires, it probably indicates
1919 a missing call to h2g_valid. */
1920#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1921 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1922#endif
1923
1924 if (len == 0) {
1925 return 0;
1926 }
1927 if (start + len - 1 < start) {
1928 /* We've wrapped around. */
1929 return -1;
1930 }
1931
1932 /* must do before we loose bits in the next step */
1933 end = TARGET_PAGE_ALIGN(start + len);
1934 start = start & TARGET_PAGE_MASK;
1935
1936 for (addr = start, len = end - start;
1937 len != 0;
1938 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1939 p = page_find(addr >> TARGET_PAGE_BITS);
1940 if (!p) {
1941 return -1;
1942 }
1943 if (!(p->flags & PAGE_VALID)) {
1944 return -1;
1945 }
1946
1947 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1948 return -1;
1949 }
1950 if (flags & PAGE_WRITE) {
1951 if (!(p->flags & PAGE_WRITE_ORG)) {
1952 return -1;
1953 }
1954 /* unprotect the page if it was put read-only because it
1955 contains translated code */
1956 if (!(p->flags & PAGE_WRITE)) {
1957 if (!page_unprotect(addr, 0, NULL)) {
1958 return -1;
1959 }
1960 }
5b6dd868
BS
1961 }
1962 }
1963 return 0;
1964}
1965
1966/* called from signal handler: invalidate the code and unprotect the
1967 page. Return TRUE if the fault was successfully handled. */
1968int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1969{
1970 unsigned int prot;
1971 PageDesc *p;
1972 target_ulong host_start, host_end, addr;
1973
1974 /* Technically this isn't safe inside a signal handler. However we
1975 know this only ever happens in a synchronous SEGV handler, so in
1976 practice it seems to be ok. */
1977 mmap_lock();
1978
1979 p = page_find(address >> TARGET_PAGE_BITS);
1980 if (!p) {
1981 mmap_unlock();
1982 return 0;
1983 }
1984
1985 /* if the page was really writable, then we change its
1986 protection back to writable */
1987 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1988 host_start = address & qemu_host_page_mask;
1989 host_end = host_start + qemu_host_page_size;
1990
1991 prot = 0;
1992 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1993 p = page_find(addr >> TARGET_PAGE_BITS);
1994 p->flags |= PAGE_WRITE;
1995 prot |= p->flags;
1996
1997 /* and since the content will be modified, we must invalidate
1998 the corresponding translated code. */
d02532f0 1999 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
2000#ifdef DEBUG_TB_CHECK
2001 tb_invalidate_check(addr);
2002#endif
2003 }
2004 mprotect((void *)g2h(host_start), qemu_host_page_size,
2005 prot & PAGE_BITS);
2006
2007 mmap_unlock();
2008 return 1;
2009 }
2010 mmap_unlock();
2011 return 0;
2012}
2013#endif /* CONFIG_USER_ONLY */