]> git.proxmox.com Git - mirror_qemu.git/blame - translate-all.c
apic_common: improve readability of apic_reset_common
[mirror_qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
21#else
22#include <sys/types.h>
23#include <sys/mman.h>
24#endif
d19893da
FB
25#include <stdarg.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <inttypes.h>
30
31#include "config.h"
2054396a 32
5b6dd868 33#include "qemu-common.h"
af5ad107 34#define NO_CPU_IO_DEFS
d3eead2e 35#include "cpu.h"
6db8b538 36#include "trace.h"
76cad711 37#include "disas/disas.h"
57fec1fe 38#include "tcg.h"
5b6dd868
BS
39#if defined(CONFIG_USER_ONLY)
40#include "qemu.h"
41#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42#include <sys/param.h>
43#if __FreeBSD_version >= 700104
44#define HAVE_KINFO_GETVMMAP
45#define sigqueue sigqueue_freebsd /* avoid redefinition */
46#include <sys/time.h>
47#include <sys/proc.h>
48#include <machine/profile.h>
49#define _KERNEL
50#include <sys/user.h>
51#undef _KERNEL
52#undef sigqueue
53#include <libutil.h>
54#endif
55#endif
0bc3cd62
PB
56#else
57#include "exec/address-spaces.h"
5b6dd868
BS
58#endif
59
022c62cb 60#include "exec/cputlb.h"
5b6dd868 61#include "translate-all.h"
510a647f 62#include "qemu/bitmap.h"
0aa09897 63#include "qemu/timer.h"
5b6dd868
BS
64
65//#define DEBUG_TB_INVALIDATE
66//#define DEBUG_FLUSH
67/* make various TB consistency checks */
68//#define DEBUG_TB_CHECK
69
70#if !defined(CONFIG_USER_ONLY)
71/* TB consistency checks only implemented for usermode emulation. */
72#undef DEBUG_TB_CHECK
73#endif
74
75#define SMC_BITMAP_USE_THRESHOLD 10
76
5b6dd868
BS
77typedef struct PageDesc {
78 /* list of TBs intersecting this ram page */
79 TranslationBlock *first_tb;
80 /* in order to optimize self modifying code, we count the number
81 of lookups we do to a given page to use a bitmap */
82 unsigned int code_write_count;
510a647f 83 unsigned long *code_bitmap;
5b6dd868
BS
84#if defined(CONFIG_USER_ONLY)
85 unsigned long flags;
86#endif
87} PageDesc;
88
89/* In system mode we want L1_MAP to be based on ram offsets,
90 while in user mode we want it to be based on virtual addresses. */
91#if !defined(CONFIG_USER_ONLY)
92#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
93# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
94#else
95# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
96#endif
97#else
98# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
99#endif
100
03f49957
PB
101/* Size of the L2 (and L3, etc) page tables. */
102#define V_L2_BITS 10
103#define V_L2_SIZE (1 << V_L2_BITS)
104
5b6dd868
BS
105/* The bits remaining after N lower levels of page tables. */
106#define V_L1_BITS_REM \
03f49957 107 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
5b6dd868
BS
108
109#if V_L1_BITS_REM < 4
03f49957 110#define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
5b6dd868
BS
111#else
112#define V_L1_BITS V_L1_BITS_REM
113#endif
114
115#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
116
117#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
118
119uintptr_t qemu_real_host_page_size;
120uintptr_t qemu_host_page_size;
121uintptr_t qemu_host_page_mask;
122
123/* This is a multi-level map on the virtual address space.
124 The bottom level has pointers to PageDesc. */
125static void *l1_map[V_L1_SIZE];
126
57fec1fe
FB
127/* code generation context */
128TCGContext tcg_ctx;
d19893da 129
5b6dd868
BS
130static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
131 tb_page_addr_t phys_page2);
a8a826a3 132static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 133
57fec1fe
FB
134void cpu_gen_init(void)
135{
136 tcg_context_init(&tcg_ctx);
57fec1fe
FB
137}
138
d19893da 139/* return non zero if the very first instruction is invalid so that
5fafdf24 140 the virtual CPU can trigger an exception.
d19893da
FB
141
142 '*gen_code_size_ptr' contains the size of the generated code (host
143 code).
144*/
9349b4f9 145int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
d19893da 146{
57fec1fe 147 TCGContext *s = &tcg_ctx;
1813e175 148 tcg_insn_unit *gen_code_buf;
d19893da 149 int gen_code_size;
57fec1fe
FB
150#ifdef CONFIG_PROFILER
151 int64_t ti;
152#endif
153
154#ifdef CONFIG_PROFILER
b67d9a52
FB
155 s->tb_count1++; /* includes aborted translations because of
156 exceptions */
57fec1fe
FB
157 ti = profile_getclock();
158#endif
159 tcg_func_start(s);
d19893da 160
2cfc5f17
TS
161 gen_intermediate_code(env, tb);
162
6db8b538
AB
163 trace_translate_block(tb, tb->pc, tb->tc_ptr);
164
ec6338ba 165 /* generate machine code */
57fec1fe 166 gen_code_buf = tb->tc_ptr;
ec6338ba
FB
167 tb->tb_next_offset[0] = 0xffff;
168 tb->tb_next_offset[1] = 0xffff;
57fec1fe 169 s->tb_next_offset = tb->tb_next_offset;
4cbb86e1 170#ifdef USE_DIRECT_JUMP
57fec1fe
FB
171 s->tb_jmp_offset = tb->tb_jmp_offset;
172 s->tb_next = NULL;
d19893da 173#else
57fec1fe
FB
174 s->tb_jmp_offset = NULL;
175 s->tb_next = tb->tb_next;
d19893da 176#endif
57fec1fe
FB
177
178#ifdef CONFIG_PROFILER
b67d9a52
FB
179 s->tb_count++;
180 s->interm_time += profile_getclock() - ti;
181 s->code_time -= profile_getclock();
57fec1fe 182#endif
54604f74 183 gen_code_size = tcg_gen_code(s, gen_code_buf);
d19893da 184 *gen_code_size_ptr = gen_code_size;
57fec1fe 185#ifdef CONFIG_PROFILER
b67d9a52
FB
186 s->code_time += profile_getclock();
187 s->code_in_len += tb->size;
188 s->code_out_len += gen_code_size;
57fec1fe
FB
189#endif
190
d19893da 191#ifdef DEBUG_DISAS
8fec2b8c 192 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1813e175
RH
193 qemu_log("OUT: [size=%d]\n", gen_code_size);
194 log_disas(tb->tc_ptr, gen_code_size);
93fcfe39 195 qemu_log("\n");
31b1a7b4 196 qemu_log_flush();
d19893da
FB
197 }
198#endif
199 return 0;
200}
201
5fafdf24 202/* The cpu state corresponding to 'searched_pc' is restored.
d19893da 203 */
74f10515 204static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 205 uintptr_t searched_pc)
d19893da 206{
74f10515 207 CPUArchState *env = cpu->env_ptr;
57fec1fe
FB
208 TCGContext *s = &tcg_ctx;
209 int j;
6375e09e 210 uintptr_t tc_ptr;
57fec1fe
FB
211#ifdef CONFIG_PROFILER
212 int64_t ti;
213#endif
214
215#ifdef CONFIG_PROFILER
216 ti = profile_getclock();
217#endif
218 tcg_func_start(s);
d19893da 219
2cfc5f17 220 gen_intermediate_code_pc(env, tb);
3b46e624 221
bd79255d 222 if (tb->cflags & CF_USE_ICOUNT) {
2e70f6ef 223 /* Reset the cycle counter to the start of the block. */
28ecfd7a 224 cpu->icount_decr.u16.low += tb->icount;
2e70f6ef 225 /* Clear the IO flag. */
99df7dce 226 cpu->can_do_io = 0;
2e70f6ef
PB
227 }
228
d19893da 229 /* find opc index corresponding to search_pc */
6375e09e 230 tc_ptr = (uintptr_t)tb->tc_ptr;
d19893da
FB
231 if (searched_pc < tc_ptr)
232 return -1;
57fec1fe
FB
233
234 s->tb_next_offset = tb->tb_next_offset;
235#ifdef USE_DIRECT_JUMP
236 s->tb_jmp_offset = tb->tb_jmp_offset;
237 s->tb_next = NULL;
238#else
239 s->tb_jmp_offset = NULL;
240 s->tb_next = tb->tb_next;
241#endif
1813e175
RH
242 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
243 searched_pc - tc_ptr);
57fec1fe
FB
244 if (j < 0)
245 return -1;
d19893da 246 /* now find start of instruction before */
ab1103de 247 while (s->gen_opc_instr_start[j] == 0) {
d19893da 248 j--;
ab1103de 249 }
28ecfd7a 250 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
3b46e624 251
e87b7cb0 252 restore_state_to_opc(env, tb, j);
57fec1fe
FB
253
254#ifdef CONFIG_PROFILER
b67d9a52
FB
255 s->restore_time += profile_getclock() - ti;
256 s->restore_count++;
57fec1fe 257#endif
d19893da
FB
258 return 0;
259}
5b6dd868 260
3f38f309 261bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
262{
263 TranslationBlock *tb;
264
265 tb = tb_find_pc(retaddr);
266 if (tb) {
74f10515 267 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
268 if (tb->cflags & CF_NOCACHE) {
269 /* one-shot translation, invalidate it immediately */
270 cpu->current_tb = NULL;
271 tb_phys_invalidate(tb, -1);
272 tb_free(tb);
273 }
a8a826a3
BS
274 return true;
275 }
276 return false;
277}
278
5b6dd868 279#ifdef _WIN32
2d8ac5eb 280static __attribute__((unused)) void map_exec(void *addr, long size)
5b6dd868
BS
281{
282 DWORD old_protect;
283 VirtualProtect(addr, size,
284 PAGE_EXECUTE_READWRITE, &old_protect);
285}
286#else
2d8ac5eb 287static __attribute__((unused)) void map_exec(void *addr, long size)
5b6dd868
BS
288{
289 unsigned long start, end, page_size;
290
291 page_size = getpagesize();
292 start = (unsigned long)addr;
293 start &= ~(page_size - 1);
294
295 end = (unsigned long)addr + size;
296 end += page_size - 1;
297 end &= ~(page_size - 1);
298
299 mprotect((void *)start, end - start,
300 PROT_READ | PROT_WRITE | PROT_EXEC);
301}
302#endif
303
47c16ed5 304void page_size_init(void)
5b6dd868
BS
305{
306 /* NOTE: we can always suppose that qemu_host_page_size >=
307 TARGET_PAGE_SIZE */
5b6dd868 308 qemu_real_host_page_size = getpagesize();
5b6dd868
BS
309 if (qemu_host_page_size == 0) {
310 qemu_host_page_size = qemu_real_host_page_size;
311 }
312 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
313 qemu_host_page_size = TARGET_PAGE_SIZE;
314 }
315 qemu_host_page_mask = ~(qemu_host_page_size - 1);
47c16ed5 316}
5b6dd868 317
47c16ed5
AK
318static void page_init(void)
319{
320 page_size_init();
5b6dd868
BS
321#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
322 {
323#ifdef HAVE_KINFO_GETVMMAP
324 struct kinfo_vmentry *freep;
325 int i, cnt;
326
327 freep = kinfo_getvmmap(getpid(), &cnt);
328 if (freep) {
329 mmap_lock();
330 for (i = 0; i < cnt; i++) {
331 unsigned long startaddr, endaddr;
332
333 startaddr = freep[i].kve_start;
334 endaddr = freep[i].kve_end;
335 if (h2g_valid(startaddr)) {
336 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
337
338 if (h2g_valid(endaddr)) {
339 endaddr = h2g(endaddr);
340 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
341 } else {
342#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
343 endaddr = ~0ul;
344 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
345#endif
346 }
347 }
348 }
349 free(freep);
350 mmap_unlock();
351 }
352#else
353 FILE *f;
354
355 last_brk = (unsigned long)sbrk(0);
356
357 f = fopen("/compat/linux/proc/self/maps", "r");
358 if (f) {
359 mmap_lock();
360
361 do {
362 unsigned long startaddr, endaddr;
363 int n;
364
365 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
366
367 if (n == 2 && h2g_valid(startaddr)) {
368 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
369
370 if (h2g_valid(endaddr)) {
371 endaddr = h2g(endaddr);
372 } else {
373 endaddr = ~0ul;
374 }
375 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
376 }
377 } while (!feof(f));
378
379 fclose(f);
380 mmap_unlock();
381 }
382#endif
383 }
384#endif
385}
386
387static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
388{
389 PageDesc *pd;
390 void **lp;
391 int i;
392
5b6dd868
BS
393 /* Level 1. Always allocated. */
394 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
395
396 /* Level 2..N-1. */
03f49957 397 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
5b6dd868
BS
398 void **p = *lp;
399
400 if (p == NULL) {
401 if (!alloc) {
402 return NULL;
403 }
e3a0abfd 404 p = g_new0(void *, V_L2_SIZE);
5b6dd868
BS
405 *lp = p;
406 }
407
03f49957 408 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
409 }
410
411 pd = *lp;
412 if (pd == NULL) {
413 if (!alloc) {
414 return NULL;
415 }
e3a0abfd 416 pd = g_new0(PageDesc, V_L2_SIZE);
5b6dd868
BS
417 *lp = pd;
418 }
419
03f49957 420 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
421}
422
423static inline PageDesc *page_find(tb_page_addr_t index)
424{
425 return page_find_alloc(index, 0);
426}
427
428#if !defined(CONFIG_USER_ONLY)
429#define mmap_lock() do { } while (0)
430#define mmap_unlock() do { } while (0)
431#endif
432
433#if defined(CONFIG_USER_ONLY)
434/* Currently it is not recommended to allocate big chunks of data in
435 user mode. It will change when a dedicated libc will be used. */
436/* ??? 64-bit hosts ought to have no problem mmaping data outside the
437 region in which the guest needs to run. Revisit this. */
438#define USE_STATIC_CODE_GEN_BUFFER
439#endif
440
441/* ??? Should configure for this, not list operating systems here. */
442#if (defined(__linux__) \
443 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
444 || defined(__DragonFly__) || defined(__OpenBSD__) \
445 || defined(__NetBSD__))
446# define USE_MMAP
447#endif
448
449/* Minimum size of the code gen buffer. This number is randomly chosen,
450 but not so small that we can't have a fair number of TB's live. */
451#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
452
453/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
454 indicated, this is constrained by the range of direct branches on the
455 host cpu, as used by the TCG implementation of goto_tb. */
456#if defined(__x86_64__)
457# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
458#elif defined(__sparc__)
459# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
4a136e0a
CF
460#elif defined(__aarch64__)
461# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
462#elif defined(__arm__)
463# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
464#elif defined(__s390x__)
465 /* We have a +- 4GB range on the branches; leave some slop. */
466# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
467#elif defined(__mips__)
468 /* We have a 256MB branch region, but leave room to make sure the
469 main executable is also within that region. */
470# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
471#else
472# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
473#endif
474
475#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
476
477#define DEFAULT_CODE_GEN_BUFFER_SIZE \
478 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
479 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
480
481static inline size_t size_code_gen_buffer(size_t tb_size)
482{
483 /* Size the buffer. */
484 if (tb_size == 0) {
485#ifdef USE_STATIC_CODE_GEN_BUFFER
486 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
487#else
488 /* ??? Needs adjustments. */
489 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
490 static buffer, we could size this on RESERVED_VA, on the text
491 segment size of the executable, or continue to use the default. */
492 tb_size = (unsigned long)(ram_size / 4);
493#endif
494 }
495 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
496 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
497 }
498 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
499 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
500 }
0b0d3320 501 tcg_ctx.code_gen_buffer_size = tb_size;
5b6dd868
BS
502 return tb_size;
503}
504
483c76e1
RH
505#ifdef __mips__
506/* In order to use J and JAL within the code_gen_buffer, we require
507 that the buffer not cross a 256MB boundary. */
508static inline bool cross_256mb(void *addr, size_t size)
509{
510 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
511}
512
513/* We weren't able to allocate a buffer without crossing that boundary,
514 so make do with the larger portion of the buffer that doesn't cross.
515 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
516static inline void *split_cross_256mb(void *buf1, size_t size1)
517{
518 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
519 size_t size2 = buf1 + size1 - buf2;
520
521 size1 = buf2 - buf1;
522 if (size1 < size2) {
523 size1 = size2;
524 buf1 = buf2;
525 }
526
527 tcg_ctx.code_gen_buffer_size = size1;
528 return buf1;
529}
530#endif
531
5b6dd868
BS
532#ifdef USE_STATIC_CODE_GEN_BUFFER
533static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
534 __attribute__((aligned(CODE_GEN_ALIGN)));
535
536static inline void *alloc_code_gen_buffer(void)
537{
483c76e1
RH
538 void *buf = static_code_gen_buffer;
539#ifdef __mips__
540 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
541 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
542 }
543#endif
544 map_exec(buf, tcg_ctx.code_gen_buffer_size);
545 return buf;
5b6dd868
BS
546}
547#elif defined(USE_MMAP)
548static inline void *alloc_code_gen_buffer(void)
549{
550 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
551 uintptr_t start = 0;
552 void *buf;
553
554 /* Constrain the position of the buffer based on the host cpu.
555 Note that these addresses are chosen in concert with the
556 addresses assigned in the relevant linker script file. */
557# if defined(__PIE__) || defined(__PIC__)
558 /* Don't bother setting a preferred location if we're building
559 a position-independent executable. We're more likely to get
560 an address near the main executable if we let the kernel
561 choose the address. */
562# elif defined(__x86_64__) && defined(MAP_32BIT)
563 /* Force the memory down into low memory with the executable.
564 Leave the choice of exact location with the kernel. */
565 flags |= MAP_32BIT;
566 /* Cannot expect to map more than 800MB in low memory. */
0b0d3320
EV
567 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
568 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
5b6dd868
BS
569 }
570# elif defined(__sparc__)
571 start = 0x40000000ul;
572# elif defined(__s390x__)
573 start = 0x90000000ul;
479eb121
RH
574# elif defined(__mips__)
575 /* ??? We ought to more explicitly manage layout for softmmu too. */
576# ifdef CONFIG_USER_ONLY
577 start = 0x68000000ul;
578# elif _MIPS_SIM == _ABI64
579 start = 0x128000000ul;
580# else
581 start = 0x08000000ul;
582# endif
5b6dd868
BS
583# endif
584
0b0d3320 585 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
5b6dd868 586 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
483c76e1
RH
587 if (buf == MAP_FAILED) {
588 return NULL;
589 }
590
591#ifdef __mips__
592 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
5d831be2 593 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1
RH
594 that 256mb crossing. This time don't specify an address. */
595 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
596 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
597 flags, -1, 0);
598 if (buf2 != MAP_FAILED) {
599 if (!cross_256mb(buf2, size1)) {
600 /* Success! Use the new buffer. */
601 munmap(buf, size1);
602 return buf2;
603 }
604 /* Failure. Work with what we had. */
605 munmap(buf2, size1);
606 }
607
608 /* Split the original buffer. Free the smaller half. */
609 buf2 = split_cross_256mb(buf, size1);
610 size2 = tcg_ctx.code_gen_buffer_size;
611 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
612 return buf2;
613 }
614#endif
615
616 return buf;
5b6dd868
BS
617}
618#else
619static inline void *alloc_code_gen_buffer(void)
620{
8b98ade3 621 void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
5b6dd868 622
483c76e1
RH
623 if (buf == NULL) {
624 return NULL;
625 }
626
627#ifdef __mips__
628 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
629 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
630 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
631 /* Success! Use the new buffer. */
632 free(buf);
633 buf = buf2;
634 } else {
635 /* Failure. Work with what we had. Since this is malloc
636 and not mmap, we can't free the other half. */
637 free(buf2);
638 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
639 }
5b6dd868 640 }
483c76e1
RH
641#endif
642
643 map_exec(buf, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
644 return buf;
645}
646#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
647
648static inline void code_gen_alloc(size_t tb_size)
649{
0b0d3320
EV
650 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
651 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
652 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
653 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
654 exit(1);
655 }
656
0b0d3320
EV
657 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
658 QEMU_MADV_HUGEPAGE);
5b6dd868
BS
659
660 /* Steal room for the prologue at the end of the buffer. This ensures
661 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
662 from TB's to the prologue are going to be in range. It also means
663 that we don't need to mark (additional) portions of the data segment
664 as executable. */
0b0d3320
EV
665 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
666 tcg_ctx.code_gen_buffer_size - 1024;
667 tcg_ctx.code_gen_buffer_size -= 1024;
5b6dd868 668
0b0d3320 669 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
5b6dd868 670 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
0b0d3320
EV
671 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
672 CODE_GEN_AVG_BLOCK_SIZE;
5e5f07e0
EV
673 tcg_ctx.tb_ctx.tbs =
674 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
5b6dd868
BS
675}
676
677/* Must be called before using the QEMU cpus. 'tb_size' is the size
678 (in bytes) allocated to the translation buffer. Zero means default
679 size. */
680void tcg_exec_init(unsigned long tb_size)
681{
682 cpu_gen_init();
683 code_gen_alloc(tb_size);
0b0d3320
EV
684 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
685 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
5b6dd868
BS
686 page_init();
687#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
688 /* There's no guest base to take into account, so go ahead and
689 initialize the prologue now. */
690 tcg_prologue_init(&tcg_ctx);
691#endif
692}
693
694bool tcg_enabled(void)
695{
0b0d3320 696 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
697}
698
699/* Allocate a new translation block. Flush the translation buffer if
700 too many translation blocks or too much generated code. */
701static TranslationBlock *tb_alloc(target_ulong pc)
702{
703 TranslationBlock *tb;
704
5e5f07e0 705 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
0b0d3320
EV
706 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
707 tcg_ctx.code_gen_buffer_max_size) {
5b6dd868
BS
708 return NULL;
709 }
5e5f07e0 710 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
711 tb->pc = pc;
712 tb->cflags = 0;
713 return tb;
714}
715
716void tb_free(TranslationBlock *tb)
717{
718 /* In practice this is mostly used for single use temporary TB
719 Ignore the hard cases and just back up if this TB happens to
720 be the last one generated. */
5e5f07e0
EV
721 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
722 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 723 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 724 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
725 }
726}
727
728static inline void invalidate_page_bitmap(PageDesc *p)
729{
730 if (p->code_bitmap) {
731 g_free(p->code_bitmap);
732 p->code_bitmap = NULL;
733 }
734 p->code_write_count = 0;
735}
736
737/* Set to NULL all the 'first_tb' fields in all PageDescs. */
738static void page_flush_tb_1(int level, void **lp)
739{
740 int i;
741
742 if (*lp == NULL) {
743 return;
744 }
745 if (level == 0) {
746 PageDesc *pd = *lp;
747
03f49957 748 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
749 pd[i].first_tb = NULL;
750 invalidate_page_bitmap(pd + i);
751 }
752 } else {
753 void **pp = *lp;
754
03f49957 755 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
756 page_flush_tb_1(level - 1, pp + i);
757 }
758 }
759}
760
761static void page_flush_tb(void)
762{
763 int i;
764
765 for (i = 0; i < V_L1_SIZE; i++) {
03f49957 766 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
767 }
768}
769
770/* flush all the translation blocks */
771/* XXX: tb_flush is currently not thread safe */
772void tb_flush(CPUArchState *env1)
773{
a47dddd7 774 CPUState *cpu = ENV_GET_CPU(env1);
5b6dd868
BS
775
776#if defined(DEBUG_FLUSH)
777 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 778 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 779 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 780 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 781 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 782#endif
0b0d3320
EV
783 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
784 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 785 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 786 }
5e5f07e0 787 tcg_ctx.tb_ctx.nb_tbs = 0;
5b6dd868 788
bdc44640 789 CPU_FOREACH(cpu) {
8cd70437 790 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
5b6dd868
BS
791 }
792
eb2535f4 793 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
5b6dd868
BS
794 page_flush_tb();
795
0b0d3320 796 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
797 /* XXX: flush processor icache at this point if cache flush is
798 expensive */
5e5f07e0 799 tcg_ctx.tb_ctx.tb_flush_count++;
5b6dd868
BS
800}
801
802#ifdef DEBUG_TB_CHECK
803
804static void tb_invalidate_check(target_ulong address)
805{
806 TranslationBlock *tb;
807 int i;
808
809 address &= TARGET_PAGE_MASK;
810 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0 811 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
5b6dd868
BS
812 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
813 address >= tb->pc + tb->size)) {
814 printf("ERROR invalidate: address=" TARGET_FMT_lx
815 " PC=%08lx size=%04x\n",
816 address, (long)tb->pc, tb->size);
817 }
818 }
819 }
820}
821
822/* verify that all the pages have correct rights for code */
823static void tb_page_check(void)
824{
825 TranslationBlock *tb;
826 int i, flags1, flags2;
827
828 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
5e5f07e0
EV
829 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
830 tb = tb->phys_hash_next) {
5b6dd868
BS
831 flags1 = page_get_flags(tb->pc);
832 flags2 = page_get_flags(tb->pc + tb->size - 1);
833 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
834 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
835 (long)tb->pc, tb->size, flags1, flags2);
836 }
837 }
838 }
839}
840
841#endif
842
0c884d16 843static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
5b6dd868
BS
844{
845 TranslationBlock *tb1;
846
847 for (;;) {
848 tb1 = *ptb;
849 if (tb1 == tb) {
0c884d16 850 *ptb = tb1->phys_hash_next;
5b6dd868
BS
851 break;
852 }
0c884d16 853 ptb = &tb1->phys_hash_next;
5b6dd868
BS
854 }
855}
856
857static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
858{
859 TranslationBlock *tb1;
860 unsigned int n1;
861
862 for (;;) {
863 tb1 = *ptb;
864 n1 = (uintptr_t)tb1 & 3;
865 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
866 if (tb1 == tb) {
867 *ptb = tb1->page_next[n1];
868 break;
869 }
870 ptb = &tb1->page_next[n1];
871 }
872}
873
874static inline void tb_jmp_remove(TranslationBlock *tb, int n)
875{
876 TranslationBlock *tb1, **ptb;
877 unsigned int n1;
878
879 ptb = &tb->jmp_next[n];
880 tb1 = *ptb;
881 if (tb1) {
882 /* find tb(n) in circular list */
883 for (;;) {
884 tb1 = *ptb;
885 n1 = (uintptr_t)tb1 & 3;
886 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
887 if (n1 == n && tb1 == tb) {
888 break;
889 }
890 if (n1 == 2) {
891 ptb = &tb1->jmp_first;
892 } else {
893 ptb = &tb1->jmp_next[n1];
894 }
895 }
896 /* now we can suppress tb(n) from the list */
897 *ptb = tb->jmp_next[n];
898
899 tb->jmp_next[n] = NULL;
900 }
901}
902
903/* reset the jump entry 'n' of a TB so that it is not chained to
904 another TB */
905static inline void tb_reset_jump(TranslationBlock *tb, int n)
906{
907 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
908}
909
0c884d16 910/* invalidate one TB */
5b6dd868
BS
911void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
912{
182735ef 913 CPUState *cpu;
5b6dd868
BS
914 PageDesc *p;
915 unsigned int h, n1;
916 tb_page_addr_t phys_pc;
917 TranslationBlock *tb1, *tb2;
918
919 /* remove the TB from the hash list */
920 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
921 h = tb_phys_hash_func(phys_pc);
5e5f07e0 922 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
5b6dd868
BS
923
924 /* remove the TB from the page list */
925 if (tb->page_addr[0] != page_addr) {
926 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
927 tb_page_remove(&p->first_tb, tb);
928 invalidate_page_bitmap(p);
929 }
930 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
931 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
932 tb_page_remove(&p->first_tb, tb);
933 invalidate_page_bitmap(p);
934 }
935
5e5f07e0 936 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868
BS
937
938 /* remove the TB from the hash list */
939 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 940 CPU_FOREACH(cpu) {
8cd70437
AF
941 if (cpu->tb_jmp_cache[h] == tb) {
942 cpu->tb_jmp_cache[h] = NULL;
5b6dd868
BS
943 }
944 }
945
946 /* suppress this TB from the two jump lists */
947 tb_jmp_remove(tb, 0);
948 tb_jmp_remove(tb, 1);
949
950 /* suppress any remaining jumps to this TB */
951 tb1 = tb->jmp_first;
952 for (;;) {
953 n1 = (uintptr_t)tb1 & 3;
954 if (n1 == 2) {
955 break;
956 }
957 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
958 tb2 = tb1->jmp_next[n1];
959 tb_reset_jump(tb1, n1);
960 tb1->jmp_next[n1] = NULL;
961 tb1 = tb2;
962 }
963 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
964
5e5f07e0 965 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
966}
967
5b6dd868
BS
968static void build_page_bitmap(PageDesc *p)
969{
970 int n, tb_start, tb_end;
971 TranslationBlock *tb;
972
510a647f 973 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
974
975 tb = p->first_tb;
976 while (tb != NULL) {
977 n = (uintptr_t)tb & 3;
978 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
979 /* NOTE: this is subtle as a TB may span two physical pages */
980 if (n == 0) {
981 /* NOTE: tb_end may be after the end of the page, but
982 it is not a problem */
983 tb_start = tb->pc & ~TARGET_PAGE_MASK;
984 tb_end = tb_start + tb->size;
985 if (tb_end > TARGET_PAGE_SIZE) {
986 tb_end = TARGET_PAGE_SIZE;
987 }
988 } else {
989 tb_start = 0;
990 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
991 }
510a647f 992 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
993 tb = tb->page_next[n];
994 }
995}
996
648f034c 997TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868
BS
998 target_ulong pc, target_ulong cs_base,
999 int flags, int cflags)
1000{
648f034c 1001 CPUArchState *env = cpu->env_ptr;
5b6dd868 1002 TranslationBlock *tb;
5b6dd868
BS
1003 tb_page_addr_t phys_pc, phys_page2;
1004 target_ulong virt_page2;
1005 int code_gen_size;
1006
1007 phys_pc = get_page_addr_code(env, pc);
0266359e
PB
1008 if (use_icount) {
1009 cflags |= CF_USE_ICOUNT;
1010 }
5b6dd868
BS
1011 tb = tb_alloc(pc);
1012 if (!tb) {
1013 /* flush must be done */
1014 tb_flush(env);
1015 /* cannot fail at this point */
1016 tb = tb_alloc(pc);
1017 /* Don't forget to invalidate previous TB info. */
5e5f07e0 1018 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
5b6dd868 1019 }
1813e175 1020 tb->tc_ptr = tcg_ctx.code_gen_ptr;
5b6dd868
BS
1021 tb->cs_base = cs_base;
1022 tb->flags = flags;
1023 tb->cflags = cflags;
1024 cpu_gen_code(env, tb, &code_gen_size);
0b0d3320
EV
1025 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1026 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
5b6dd868
BS
1027
1028 /* check next page if needed */
1029 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1030 phys_page2 = -1;
1031 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1032 phys_page2 = get_page_addr_code(env, virt_page2);
1033 }
1034 tb_link_page(tb, phys_pc, phys_page2);
1035 return tb;
1036}
1037
1038/*
1039 * Invalidate all TBs which intersect with the target physical address range
1040 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1041 * 'is_cpu_write_access' should be true if called from a real cpu write
1042 * access: the virtual CPU will exit the current TB if code is modified inside
1043 * this TB.
1044 */
1045void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1046 int is_cpu_write_access)
1047{
1048 while (start < end) {
1049 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1050 start &= TARGET_PAGE_MASK;
1051 start += TARGET_PAGE_SIZE;
1052 }
1053}
1054
1055/*
1056 * Invalidate all TBs which intersect with the target physical address range
1057 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1058 * 'is_cpu_write_access' should be true if called from a real cpu write
1059 * access: the virtual CPU will exit the current TB if code is modified inside
1060 * this TB.
1061 */
1062void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1063 int is_cpu_write_access)
1064{
1065 TranslationBlock *tb, *tb_next, *saved_tb;
4917cf44 1066 CPUState *cpu = current_cpu;
baea4fae 1067#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1068 CPUArchState *env = NULL;
1069#endif
5b6dd868
BS
1070 tb_page_addr_t tb_start, tb_end;
1071 PageDesc *p;
1072 int n;
1073#ifdef TARGET_HAS_PRECISE_SMC
1074 int current_tb_not_found = is_cpu_write_access;
1075 TranslationBlock *current_tb = NULL;
1076 int current_tb_modified = 0;
1077 target_ulong current_pc = 0;
1078 target_ulong current_cs_base = 0;
1079 int current_flags = 0;
1080#endif /* TARGET_HAS_PRECISE_SMC */
1081
1082 p = page_find(start >> TARGET_PAGE_BITS);
1083 if (!p) {
1084 return;
1085 }
1086 if (!p->code_bitmap &&
1087 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1088 is_cpu_write_access) {
1089 /* build code bitmap */
1090 build_page_bitmap(p);
1091 }
baea4fae 1092#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1093 if (cpu != NULL) {
1094 env = cpu->env_ptr;
d77953b9 1095 }
4917cf44 1096#endif
5b6dd868
BS
1097
1098 /* we remove all the TBs in the range [start, end[ */
1099 /* XXX: see if in some cases it could be faster to invalidate all
1100 the code */
1101 tb = p->first_tb;
1102 while (tb != NULL) {
1103 n = (uintptr_t)tb & 3;
1104 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1105 tb_next = tb->page_next[n];
1106 /* NOTE: this is subtle as a TB may span two physical pages */
1107 if (n == 0) {
1108 /* NOTE: tb_end may be after the end of the page, but
1109 it is not a problem */
1110 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1111 tb_end = tb_start + tb->size;
1112 } else {
1113 tb_start = tb->page_addr[1];
1114 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1115 }
1116 if (!(tb_end <= start || tb_start >= end)) {
1117#ifdef TARGET_HAS_PRECISE_SMC
1118 if (current_tb_not_found) {
1119 current_tb_not_found = 0;
1120 current_tb = NULL;
93afeade 1121 if (cpu->mem_io_pc) {
5b6dd868 1122 /* now we have a real cpu fault */
93afeade 1123 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1124 }
1125 }
1126 if (current_tb == tb &&
1127 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1128 /* If we are modifying the current TB, we must stop
1129 its execution. We could be more precise by checking
1130 that the modification is after the current PC, but it
1131 would require a specialized function to partially
1132 restore the CPU state */
1133
1134 current_tb_modified = 1;
74f10515 1135 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1136 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1137 &current_flags);
1138 }
1139#endif /* TARGET_HAS_PRECISE_SMC */
1140 /* we need to do that to handle the case where a signal
1141 occurs while doing tb_phys_invalidate() */
1142 saved_tb = NULL;
d77953b9
AF
1143 if (cpu != NULL) {
1144 saved_tb = cpu->current_tb;
1145 cpu->current_tb = NULL;
5b6dd868
BS
1146 }
1147 tb_phys_invalidate(tb, -1);
d77953b9
AF
1148 if (cpu != NULL) {
1149 cpu->current_tb = saved_tb;
c3affe56
AF
1150 if (cpu->interrupt_request && cpu->current_tb) {
1151 cpu_interrupt(cpu, cpu->interrupt_request);
5b6dd868
BS
1152 }
1153 }
1154 }
1155 tb = tb_next;
1156 }
1157#if !defined(CONFIG_USER_ONLY)
1158 /* if no code remaining, no need to continue to use slow writes */
1159 if (!p->first_tb) {
1160 invalidate_page_bitmap(p);
1161 if (is_cpu_write_access) {
baea4fae 1162 tlb_unprotect_code_phys(cpu, start, cpu->mem_io_vaddr);
5b6dd868
BS
1163 }
1164 }
1165#endif
1166#ifdef TARGET_HAS_PRECISE_SMC
1167 if (current_tb_modified) {
1168 /* we generate a block containing just the instruction
1169 modifying the memory. It will ensure that it cannot modify
1170 itself */
d77953b9 1171 cpu->current_tb = NULL;
648f034c 1172 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
0ea8cb88 1173 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1174 }
1175#endif
1176}
1177
1178/* len must be <= 8 and start must be a multiple of len */
1179void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1180{
1181 PageDesc *p;
5b6dd868
BS
1182
1183#if 0
1184 if (1) {
1185 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1186 cpu_single_env->mem_io_vaddr, len,
1187 cpu_single_env->eip,
1188 cpu_single_env->eip +
1189 (intptr_t)cpu_single_env->segs[R_CS].base);
1190 }
1191#endif
1192 p = page_find(start >> TARGET_PAGE_BITS);
1193 if (!p) {
1194 return;
1195 }
1196 if (p->code_bitmap) {
510a647f
EC
1197 unsigned int nr;
1198 unsigned long b;
1199
1200 nr = start & ~TARGET_PAGE_MASK;
1201 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1202 if (b & ((1 << len) - 1)) {
1203 goto do_invalidate;
1204 }
1205 } else {
1206 do_invalidate:
1207 tb_invalidate_phys_page_range(start, start + len, 1);
1208 }
1209}
1210
1211#if !defined(CONFIG_SOFTMMU)
1212static void tb_invalidate_phys_page(tb_page_addr_t addr,
d02532f0
AG
1213 uintptr_t pc, void *puc,
1214 bool locked)
5b6dd868
BS
1215{
1216 TranslationBlock *tb;
1217 PageDesc *p;
1218 int n;
1219#ifdef TARGET_HAS_PRECISE_SMC
1220 TranslationBlock *current_tb = NULL;
4917cf44
AF
1221 CPUState *cpu = current_cpu;
1222 CPUArchState *env = NULL;
5b6dd868
BS
1223 int current_tb_modified = 0;
1224 target_ulong current_pc = 0;
1225 target_ulong current_cs_base = 0;
1226 int current_flags = 0;
1227#endif
1228
1229 addr &= TARGET_PAGE_MASK;
1230 p = page_find(addr >> TARGET_PAGE_BITS);
1231 if (!p) {
1232 return;
1233 }
1234 tb = p->first_tb;
1235#ifdef TARGET_HAS_PRECISE_SMC
1236 if (tb && pc != 0) {
1237 current_tb = tb_find_pc(pc);
1238 }
4917cf44
AF
1239 if (cpu != NULL) {
1240 env = cpu->env_ptr;
d77953b9 1241 }
5b6dd868
BS
1242#endif
1243 while (tb != NULL) {
1244 n = (uintptr_t)tb & 3;
1245 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1246#ifdef TARGET_HAS_PRECISE_SMC
1247 if (current_tb == tb &&
1248 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1249 /* If we are modifying the current TB, we must stop
1250 its execution. We could be more precise by checking
1251 that the modification is after the current PC, but it
1252 would require a specialized function to partially
1253 restore the CPU state */
1254
1255 current_tb_modified = 1;
74f10515 1256 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1257 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1258 &current_flags);
1259 }
1260#endif /* TARGET_HAS_PRECISE_SMC */
1261 tb_phys_invalidate(tb, addr);
1262 tb = tb->page_next[n];
1263 }
1264 p->first_tb = NULL;
1265#ifdef TARGET_HAS_PRECISE_SMC
1266 if (current_tb_modified) {
1267 /* we generate a block containing just the instruction
1268 modifying the memory. It will ensure that it cannot modify
1269 itself */
d77953b9 1270 cpu->current_tb = NULL;
648f034c 1271 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
d02532f0
AG
1272 if (locked) {
1273 mmap_unlock();
1274 }
0ea8cb88 1275 cpu_resume_from_signal(cpu, puc);
5b6dd868
BS
1276 }
1277#endif
1278}
1279#endif
1280
1281/* add the tb in the target page and protect it if necessary */
1282static inline void tb_alloc_page(TranslationBlock *tb,
1283 unsigned int n, tb_page_addr_t page_addr)
1284{
1285 PageDesc *p;
1286#ifndef CONFIG_USER_ONLY
1287 bool page_already_protected;
1288#endif
1289
1290 tb->page_addr[n] = page_addr;
1291 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1292 tb->page_next[n] = p->first_tb;
1293#ifndef CONFIG_USER_ONLY
1294 page_already_protected = p->first_tb != NULL;
1295#endif
1296 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1297 invalidate_page_bitmap(p);
1298
5b6dd868
BS
1299#if defined(CONFIG_USER_ONLY)
1300 if (p->flags & PAGE_WRITE) {
1301 target_ulong addr;
1302 PageDesc *p2;
1303 int prot;
1304
1305 /* force the host page as non writable (writes will have a
1306 page fault + mprotect overhead) */
1307 page_addr &= qemu_host_page_mask;
1308 prot = 0;
1309 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1310 addr += TARGET_PAGE_SIZE) {
1311
1312 p2 = page_find(addr >> TARGET_PAGE_BITS);
1313 if (!p2) {
1314 continue;
1315 }
1316 prot |= p2->flags;
1317 p2->flags &= ~PAGE_WRITE;
1318 }
1319 mprotect(g2h(page_addr), qemu_host_page_size,
1320 (prot & PAGE_BITS) & ~PAGE_WRITE);
1321#ifdef DEBUG_TB_INVALIDATE
1322 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1323 page_addr);
1324#endif
1325 }
1326#else
1327 /* if some code is already present, then the pages are already
1328 protected. So we handle the case where only the first TB is
1329 allocated in a physical page */
1330 if (!page_already_protected) {
1331 tlb_protect_code(page_addr);
1332 }
1333#endif
5b6dd868
BS
1334}
1335
1336/* add a new TB and link it to the physical page tables. phys_page2 is
1337 (-1) to indicate that only one page contains the TB. */
1338static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1339 tb_page_addr_t phys_page2)
1340{
1341 unsigned int h;
1342 TranslationBlock **ptb;
1343
1344 /* Grab the mmap lock to stop another thread invalidating this TB
1345 before we are done. */
1346 mmap_lock();
1347 /* add in the physical hash table */
1348 h = tb_phys_hash_func(phys_pc);
5e5f07e0 1349 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
5b6dd868
BS
1350 tb->phys_hash_next = *ptb;
1351 *ptb = tb;
1352
1353 /* add in the page list */
1354 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1355 if (phys_page2 != -1) {
1356 tb_alloc_page(tb, 1, phys_page2);
1357 } else {
1358 tb->page_addr[1] = -1;
1359 }
1360
1361 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1362 tb->jmp_next[0] = NULL;
1363 tb->jmp_next[1] = NULL;
1364
1365 /* init original jump addresses */
1366 if (tb->tb_next_offset[0] != 0xffff) {
1367 tb_reset_jump(tb, 0);
1368 }
1369 if (tb->tb_next_offset[1] != 0xffff) {
1370 tb_reset_jump(tb, 1);
1371 }
1372
1373#ifdef DEBUG_TB_CHECK
1374 tb_page_check();
1375#endif
1376 mmap_unlock();
1377}
1378
5b6dd868
BS
1379/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1380 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1381static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1382{
1383 int m_min, m_max, m;
1384 uintptr_t v;
1385 TranslationBlock *tb;
1386
5e5f07e0 1387 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1388 return NULL;
1389 }
0b0d3320
EV
1390 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1391 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1392 return NULL;
1393 }
1394 /* binary search (cf Knuth) */
1395 m_min = 0;
5e5f07e0 1396 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1397 while (m_min <= m_max) {
1398 m = (m_min + m_max) >> 1;
5e5f07e0 1399 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1400 v = (uintptr_t)tb->tc_ptr;
1401 if (v == tc_ptr) {
1402 return tb;
1403 } else if (tc_ptr < v) {
1404 m_max = m - 1;
1405 } else {
1406 m_min = m + 1;
1407 }
1408 }
5e5f07e0 1409 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1410}
1411
ec53b45b 1412#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1413void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1414{
1415 ram_addr_t ram_addr;
5c8a00ce 1416 MemoryRegion *mr;
149f54b5 1417 hwaddr l = 1;
5b6dd868 1418
29d8ec7b 1419 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1420 if (!(memory_region_is_ram(mr)
1421 || memory_region_is_romd(mr))) {
5b6dd868
BS
1422 return;
1423 }
5c8a00ce 1424 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
149f54b5 1425 + addr;
5b6dd868
BS
1426 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1427}
ec53b45b 1428#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1429
239c51a5 1430void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1431{
1432 TranslationBlock *tb;
1433
93afeade 1434 tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868 1435 if (!tb) {
a47dddd7 1436 cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p",
93afeade 1437 (void *)cpu->mem_io_pc);
5b6dd868 1438 }
74f10515 1439 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
5b6dd868
BS
1440 tb_phys_invalidate(tb, -1);
1441}
1442
1443#ifndef CONFIG_USER_ONLY
1444/* mask must never be zero, except for A20 change call */
c3affe56 1445static void tcg_handle_interrupt(CPUState *cpu, int mask)
5b6dd868 1446{
5b6dd868
BS
1447 int old_mask;
1448
259186a7
AF
1449 old_mask = cpu->interrupt_request;
1450 cpu->interrupt_request |= mask;
5b6dd868
BS
1451
1452 /*
1453 * If called from iothread context, wake the target cpu in
1454 * case its halted.
1455 */
1456 if (!qemu_cpu_is_self(cpu)) {
1457 qemu_cpu_kick(cpu);
1458 return;
1459 }
1460
1461 if (use_icount) {
28ecfd7a 1462 cpu->icount_decr.u16.high = 0xffff;
99df7dce 1463 if (!cpu_can_do_io(cpu)
5b6dd868 1464 && (mask & ~old_mask) != 0) {
a47dddd7 1465 cpu_abort(cpu, "Raised interrupt while not in I/O function");
5b6dd868
BS
1466 }
1467 } else {
378df4b2 1468 cpu->tcg_exit_req = 1;
5b6dd868
BS
1469 }
1470}
1471
1472CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1473
1474/* in deterministic execution mode, instructions doing device I/Os
1475 must be at the end of the TB */
90b40a69 1476void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1477{
a47dddd7 1478#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1479 CPUArchState *env = cpu->env_ptr;
a47dddd7 1480#endif
5b6dd868
BS
1481 TranslationBlock *tb;
1482 uint32_t n, cflags;
1483 target_ulong pc, cs_base;
1484 uint64_t flags;
1485
1486 tb = tb_find_pc(retaddr);
1487 if (!tb) {
a47dddd7 1488 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1489 (void *)retaddr);
1490 }
28ecfd7a 1491 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1492 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1493 /* Calculate how many instructions had been executed before the fault
1494 occurred. */
28ecfd7a 1495 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1496 /* Generate a new TB ending on the I/O insn. */
1497 n++;
1498 /* On MIPS and SH, delay slot instructions can only be restarted if
1499 they were already the first instruction in the TB. If this is not
1500 the first instruction in a TB then re-execute the preceding
1501 branch. */
1502#if defined(TARGET_MIPS)
1503 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1504 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1505 cpu->icount_decr.u16.low++;
5b6dd868
BS
1506 env->hflags &= ~MIPS_HFLAG_BMASK;
1507 }
1508#elif defined(TARGET_SH4)
1509 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1510 && n > 1) {
1511 env->pc -= 2;
28ecfd7a 1512 cpu->icount_decr.u16.low++;
5b6dd868
BS
1513 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1514 }
1515#endif
1516 /* This should never happen. */
1517 if (n > CF_COUNT_MASK) {
a47dddd7 1518 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1519 }
1520
1521 cflags = n | CF_LAST_IO;
1522 pc = tb->pc;
1523 cs_base = tb->cs_base;
1524 flags = tb->flags;
1525 tb_phys_invalidate(tb, -1);
1526 /* FIXME: In theory this could raise an exception. In practice
1527 we have already translated the block once so it's probably ok. */
648f034c 1528 tb_gen_code(cpu, pc, cs_base, flags, cflags);
5b6dd868
BS
1529 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1530 the first in the TB) then we end up generating a whole new TB and
1531 repeating the fault, which is horribly inefficient.
1532 Better would be to execute just this insn uncached, or generate a
1533 second new TB. */
0ea8cb88 1534 cpu_resume_from_signal(cpu, NULL);
5b6dd868
BS
1535}
1536
611d4f99 1537void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1538{
1539 unsigned int i;
1540
1541 /* Discard jump cache entries for any tb which might potentially
1542 overlap the flushed page. */
1543 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1544 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1545 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1546
1547 i = tb_jmp_cache_hash_page(addr);
8cd70437 1548 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1549 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1550}
1551
1552void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1553{
1554 int i, target_code_size, max_target_code_size;
1555 int direct_jmp_count, direct_jmp2_count, cross_page;
1556 TranslationBlock *tb;
1557
1558 target_code_size = 0;
1559 max_target_code_size = 0;
1560 cross_page = 0;
1561 direct_jmp_count = 0;
1562 direct_jmp2_count = 0;
5e5f07e0
EV
1563 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1564 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1565 target_code_size += tb->size;
1566 if (tb->size > max_target_code_size) {
1567 max_target_code_size = tb->size;
1568 }
1569 if (tb->page_addr[1] != -1) {
1570 cross_page++;
1571 }
1572 if (tb->tb_next_offset[0] != 0xffff) {
1573 direct_jmp_count++;
1574 if (tb->tb_next_offset[1] != 0xffff) {
1575 direct_jmp2_count++;
1576 }
1577 }
1578 }
1579 /* XXX: avoid using doubles ? */
1580 cpu_fprintf(f, "Translation buffer state:\n");
1581 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320
EV
1582 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1583 tcg_ctx.code_gen_buffer_max_size);
5b6dd868 1584 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1585 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1586 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1587 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1588 tcg_ctx.tb_ctx.nb_tbs : 0,
1589 max_target_code_size);
5b6dd868 1590 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1591 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1592 tcg_ctx.code_gen_buffer) /
1593 tcg_ctx.tb_ctx.nb_tbs : 0,
1594 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1595 tcg_ctx.code_gen_buffer) /
1596 target_code_size : 0);
1597 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1598 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1599 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1600 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1601 direct_jmp_count,
5e5f07e0
EV
1602 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1603 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1604 direct_jmp2_count,
5e5f07e0
EV
1605 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1606 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 1607 cpu_fprintf(f, "\nStatistics:\n");
5e5f07e0
EV
1608 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1609 cpu_fprintf(f, "TB invalidate count %d\n",
1610 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1611 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1612 tcg_dump_info(f, cpu_fprintf);
1613}
1614
246ae24d
MF
1615void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1616{
1617 tcg_dump_op_count(f, cpu_fprintf);
1618}
1619
5b6dd868
BS
1620#else /* CONFIG_USER_ONLY */
1621
c3affe56 1622void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1623{
259186a7 1624 cpu->interrupt_request |= mask;
378df4b2 1625 cpu->tcg_exit_req = 1;
5b6dd868
BS
1626}
1627
1628/*
1629 * Walks guest process memory "regions" one by one
1630 * and calls callback function 'fn' for each region.
1631 */
1632struct walk_memory_regions_data {
1633 walk_memory_regions_fn fn;
1634 void *priv;
1a1c4db9 1635 target_ulong start;
5b6dd868
BS
1636 int prot;
1637};
1638
1639static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1640 target_ulong end, int new_prot)
5b6dd868 1641{
1a1c4db9 1642 if (data->start != -1u) {
5b6dd868
BS
1643 int rc = data->fn(data->priv, data->start, end, data->prot);
1644 if (rc != 0) {
1645 return rc;
1646 }
1647 }
1648
1a1c4db9 1649 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1650 data->prot = new_prot;
1651
1652 return 0;
1653}
1654
1655static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1656 target_ulong base, int level, void **lp)
5b6dd868 1657{
1a1c4db9 1658 target_ulong pa;
5b6dd868
BS
1659 int i, rc;
1660
1661 if (*lp == NULL) {
1662 return walk_memory_regions_end(data, base, 0);
1663 }
1664
1665 if (level == 0) {
1666 PageDesc *pd = *lp;
1667
03f49957 1668 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1669 int prot = pd[i].flags;
1670
1671 pa = base | (i << TARGET_PAGE_BITS);
1672 if (prot != data->prot) {
1673 rc = walk_memory_regions_end(data, pa, prot);
1674 if (rc != 0) {
1675 return rc;
1676 }
1677 }
1678 }
1679 } else {
1680 void **pp = *lp;
1681
03f49957 1682 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1683 pa = base | ((target_ulong)i <<
03f49957 1684 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1685 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1686 if (rc != 0) {
1687 return rc;
1688 }
1689 }
1690 }
1691
1692 return 0;
1693}
1694
1695int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1696{
1697 struct walk_memory_regions_data data;
1698 uintptr_t i;
1699
1700 data.fn = fn;
1701 data.priv = priv;
1a1c4db9 1702 data.start = -1u;
5b6dd868
BS
1703 data.prot = 0;
1704
1705 for (i = 0; i < V_L1_SIZE; i++) {
1a1c4db9 1706 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
03f49957 1707 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
5b6dd868
BS
1708 if (rc != 0) {
1709 return rc;
1710 }
1711 }
1712
1713 return walk_memory_regions_end(&data, 0, 0);
1714}
1715
1a1c4db9
MI
1716static int dump_region(void *priv, target_ulong start,
1717 target_ulong end, unsigned long prot)
5b6dd868
BS
1718{
1719 FILE *f = (FILE *)priv;
1720
1a1c4db9
MI
1721 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1722 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
1723 start, end, end - start,
1724 ((prot & PAGE_READ) ? 'r' : '-'),
1725 ((prot & PAGE_WRITE) ? 'w' : '-'),
1726 ((prot & PAGE_EXEC) ? 'x' : '-'));
1727
1728 return 0;
1729}
1730
1731/* dump memory mappings */
1732void page_dump(FILE *f)
1733{
1a1c4db9 1734 const int length = sizeof(target_ulong) * 2;
227b8175
SW
1735 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1736 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
1737 walk_memory_regions(f, dump_region);
1738}
1739
1740int page_get_flags(target_ulong address)
1741{
1742 PageDesc *p;
1743
1744 p = page_find(address >> TARGET_PAGE_BITS);
1745 if (!p) {
1746 return 0;
1747 }
1748 return p->flags;
1749}
1750
1751/* Modify the flags of a page and invalidate the code if necessary.
1752 The flag PAGE_WRITE_ORG is positioned automatically depending
1753 on PAGE_WRITE. The mmap_lock should already be held. */
1754void page_set_flags(target_ulong start, target_ulong end, int flags)
1755{
1756 target_ulong addr, len;
1757
1758 /* This function should never be called with addresses outside the
1759 guest address space. If this assert fires, it probably indicates
1760 a missing call to h2g_valid. */
1761#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1762 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1763#endif
1764 assert(start < end);
1765
1766 start = start & TARGET_PAGE_MASK;
1767 end = TARGET_PAGE_ALIGN(end);
1768
1769 if (flags & PAGE_WRITE) {
1770 flags |= PAGE_WRITE_ORG;
1771 }
1772
1773 for (addr = start, len = end - start;
1774 len != 0;
1775 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1776 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1777
1778 /* If the write protection bit is set, then we invalidate
1779 the code inside. */
1780 if (!(p->flags & PAGE_WRITE) &&
1781 (flags & PAGE_WRITE) &&
1782 p->first_tb) {
d02532f0 1783 tb_invalidate_phys_page(addr, 0, NULL, false);
5b6dd868
BS
1784 }
1785 p->flags = flags;
1786 }
1787}
1788
1789int page_check_range(target_ulong start, target_ulong len, int flags)
1790{
1791 PageDesc *p;
1792 target_ulong end;
1793 target_ulong addr;
1794
1795 /* This function should never be called with addresses outside the
1796 guest address space. If this assert fires, it probably indicates
1797 a missing call to h2g_valid. */
1798#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 1799 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
1800#endif
1801
1802 if (len == 0) {
1803 return 0;
1804 }
1805 if (start + len - 1 < start) {
1806 /* We've wrapped around. */
1807 return -1;
1808 }
1809
1810 /* must do before we loose bits in the next step */
1811 end = TARGET_PAGE_ALIGN(start + len);
1812 start = start & TARGET_PAGE_MASK;
1813
1814 for (addr = start, len = end - start;
1815 len != 0;
1816 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1817 p = page_find(addr >> TARGET_PAGE_BITS);
1818 if (!p) {
1819 return -1;
1820 }
1821 if (!(p->flags & PAGE_VALID)) {
1822 return -1;
1823 }
1824
1825 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1826 return -1;
1827 }
1828 if (flags & PAGE_WRITE) {
1829 if (!(p->flags & PAGE_WRITE_ORG)) {
1830 return -1;
1831 }
1832 /* unprotect the page if it was put read-only because it
1833 contains translated code */
1834 if (!(p->flags & PAGE_WRITE)) {
1835 if (!page_unprotect(addr, 0, NULL)) {
1836 return -1;
1837 }
1838 }
5b6dd868
BS
1839 }
1840 }
1841 return 0;
1842}
1843
1844/* called from signal handler: invalidate the code and unprotect the
1845 page. Return TRUE if the fault was successfully handled. */
1846int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1847{
1848 unsigned int prot;
1849 PageDesc *p;
1850 target_ulong host_start, host_end, addr;
1851
1852 /* Technically this isn't safe inside a signal handler. However we
1853 know this only ever happens in a synchronous SEGV handler, so in
1854 practice it seems to be ok. */
1855 mmap_lock();
1856
1857 p = page_find(address >> TARGET_PAGE_BITS);
1858 if (!p) {
1859 mmap_unlock();
1860 return 0;
1861 }
1862
1863 /* if the page was really writable, then we change its
1864 protection back to writable */
1865 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1866 host_start = address & qemu_host_page_mask;
1867 host_end = host_start + qemu_host_page_size;
1868
1869 prot = 0;
1870 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1871 p = page_find(addr >> TARGET_PAGE_BITS);
1872 p->flags |= PAGE_WRITE;
1873 prot |= p->flags;
1874
1875 /* and since the content will be modified, we must invalidate
1876 the corresponding translated code. */
d02532f0 1877 tb_invalidate_phys_page(addr, pc, puc, true);
5b6dd868
BS
1878#ifdef DEBUG_TB_CHECK
1879 tb_invalidate_check(addr);
1880#endif
1881 }
1882 mprotect((void *)g2h(host_start), qemu_host_page_size,
1883 prot & PAGE_BITS);
1884
1885 mmap_unlock();
1886 return 1;
1887 }
1888 mmap_unlock();
1889 return 0;
1890}
1891#endif /* CONFIG_USER_ONLY */