]>
Commit | Line | Data |
---|---|---|
d19893da FB |
1 | /* |
2 | * Host code generation | |
5fafdf24 | 3 | * |
d19893da FB |
4 | * Copyright (c) 2003 Fabrice Bellard |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
d19893da | 18 | */ |
5b6dd868 BS |
19 | #ifdef _WIN32 |
20 | #include <windows.h> | |
21 | #else | |
22 | #include <sys/types.h> | |
23 | #include <sys/mman.h> | |
24 | #endif | |
d19893da FB |
25 | #include <stdarg.h> |
26 | #include <stdlib.h> | |
27 | #include <stdio.h> | |
28 | #include <string.h> | |
29 | #include <inttypes.h> | |
30 | ||
31 | #include "config.h" | |
2054396a | 32 | |
5b6dd868 | 33 | #include "qemu-common.h" |
af5ad107 | 34 | #define NO_CPU_IO_DEFS |
d3eead2e | 35 | #include "cpu.h" |
76cad711 | 36 | #include "disas/disas.h" |
57fec1fe | 37 | #include "tcg.h" |
5b6dd868 BS |
38 | #if defined(CONFIG_USER_ONLY) |
39 | #include "qemu.h" | |
40 | #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) | |
41 | #include <sys/param.h> | |
42 | #if __FreeBSD_version >= 700104 | |
43 | #define HAVE_KINFO_GETVMMAP | |
44 | #define sigqueue sigqueue_freebsd /* avoid redefinition */ | |
45 | #include <sys/time.h> | |
46 | #include <sys/proc.h> | |
47 | #include <machine/profile.h> | |
48 | #define _KERNEL | |
49 | #include <sys/user.h> | |
50 | #undef _KERNEL | |
51 | #undef sigqueue | |
52 | #include <libutil.h> | |
53 | #endif | |
54 | #endif | |
0bc3cd62 PB |
55 | #else |
56 | #include "exec/address-spaces.h" | |
5b6dd868 BS |
57 | #endif |
58 | ||
022c62cb | 59 | #include "exec/cputlb.h" |
5b6dd868 | 60 | #include "translate-all.h" |
0aa09897 | 61 | #include "qemu/timer.h" |
5b6dd868 BS |
62 | |
63 | //#define DEBUG_TB_INVALIDATE | |
64 | //#define DEBUG_FLUSH | |
65 | /* make various TB consistency checks */ | |
66 | //#define DEBUG_TB_CHECK | |
67 | ||
68 | #if !defined(CONFIG_USER_ONLY) | |
69 | /* TB consistency checks only implemented for usermode emulation. */ | |
70 | #undef DEBUG_TB_CHECK | |
71 | #endif | |
72 | ||
73 | #define SMC_BITMAP_USE_THRESHOLD 10 | |
74 | ||
5b6dd868 BS |
75 | typedef struct PageDesc { |
76 | /* list of TBs intersecting this ram page */ | |
77 | TranslationBlock *first_tb; | |
78 | /* in order to optimize self modifying code, we count the number | |
79 | of lookups we do to a given page to use a bitmap */ | |
80 | unsigned int code_write_count; | |
81 | uint8_t *code_bitmap; | |
82 | #if defined(CONFIG_USER_ONLY) | |
83 | unsigned long flags; | |
84 | #endif | |
85 | } PageDesc; | |
86 | ||
87 | /* In system mode we want L1_MAP to be based on ram offsets, | |
88 | while in user mode we want it to be based on virtual addresses. */ | |
89 | #if !defined(CONFIG_USER_ONLY) | |
90 | #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS | |
91 | # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS | |
92 | #else | |
93 | # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS | |
94 | #endif | |
95 | #else | |
96 | # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS | |
97 | #endif | |
98 | ||
03f49957 PB |
99 | /* Size of the L2 (and L3, etc) page tables. */ |
100 | #define V_L2_BITS 10 | |
101 | #define V_L2_SIZE (1 << V_L2_BITS) | |
102 | ||
5b6dd868 BS |
103 | /* The bits remaining after N lower levels of page tables. */ |
104 | #define V_L1_BITS_REM \ | |
03f49957 | 105 | ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS) |
5b6dd868 BS |
106 | |
107 | #if V_L1_BITS_REM < 4 | |
03f49957 | 108 | #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS) |
5b6dd868 BS |
109 | #else |
110 | #define V_L1_BITS V_L1_BITS_REM | |
111 | #endif | |
112 | ||
113 | #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS) | |
114 | ||
115 | #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS) | |
116 | ||
117 | uintptr_t qemu_real_host_page_size; | |
118 | uintptr_t qemu_host_page_size; | |
119 | uintptr_t qemu_host_page_mask; | |
120 | ||
121 | /* This is a multi-level map on the virtual address space. | |
122 | The bottom level has pointers to PageDesc. */ | |
123 | static void *l1_map[V_L1_SIZE]; | |
124 | ||
57fec1fe FB |
125 | /* code generation context */ |
126 | TCGContext tcg_ctx; | |
d19893da | 127 | |
5b6dd868 BS |
128 | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, |
129 | tb_page_addr_t phys_page2); | |
a8a826a3 | 130 | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr); |
5b6dd868 | 131 | |
57fec1fe FB |
132 | void cpu_gen_init(void) |
133 | { | |
134 | tcg_context_init(&tcg_ctx); | |
57fec1fe FB |
135 | } |
136 | ||
d19893da | 137 | /* return non zero if the very first instruction is invalid so that |
5fafdf24 | 138 | the virtual CPU can trigger an exception. |
d19893da FB |
139 | |
140 | '*gen_code_size_ptr' contains the size of the generated code (host | |
141 | code). | |
142 | */ | |
9349b4f9 | 143 | int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr) |
d19893da | 144 | { |
57fec1fe | 145 | TCGContext *s = &tcg_ctx; |
1813e175 | 146 | tcg_insn_unit *gen_code_buf; |
d19893da | 147 | int gen_code_size; |
57fec1fe FB |
148 | #ifdef CONFIG_PROFILER |
149 | int64_t ti; | |
150 | #endif | |
151 | ||
152 | #ifdef CONFIG_PROFILER | |
b67d9a52 FB |
153 | s->tb_count1++; /* includes aborted translations because of |
154 | exceptions */ | |
57fec1fe FB |
155 | ti = profile_getclock(); |
156 | #endif | |
157 | tcg_func_start(s); | |
d19893da | 158 | |
2cfc5f17 TS |
159 | gen_intermediate_code(env, tb); |
160 | ||
ec6338ba | 161 | /* generate machine code */ |
57fec1fe | 162 | gen_code_buf = tb->tc_ptr; |
ec6338ba FB |
163 | tb->tb_next_offset[0] = 0xffff; |
164 | tb->tb_next_offset[1] = 0xffff; | |
57fec1fe | 165 | s->tb_next_offset = tb->tb_next_offset; |
4cbb86e1 | 166 | #ifdef USE_DIRECT_JUMP |
57fec1fe FB |
167 | s->tb_jmp_offset = tb->tb_jmp_offset; |
168 | s->tb_next = NULL; | |
d19893da | 169 | #else |
57fec1fe FB |
170 | s->tb_jmp_offset = NULL; |
171 | s->tb_next = tb->tb_next; | |
d19893da | 172 | #endif |
57fec1fe FB |
173 | |
174 | #ifdef CONFIG_PROFILER | |
b67d9a52 FB |
175 | s->tb_count++; |
176 | s->interm_time += profile_getclock() - ti; | |
177 | s->code_time -= profile_getclock(); | |
57fec1fe | 178 | #endif |
54604f74 | 179 | gen_code_size = tcg_gen_code(s, gen_code_buf); |
d19893da | 180 | *gen_code_size_ptr = gen_code_size; |
57fec1fe | 181 | #ifdef CONFIG_PROFILER |
b67d9a52 FB |
182 | s->code_time += profile_getclock(); |
183 | s->code_in_len += tb->size; | |
184 | s->code_out_len += gen_code_size; | |
57fec1fe FB |
185 | #endif |
186 | ||
d19893da | 187 | #ifdef DEBUG_DISAS |
8fec2b8c | 188 | if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) { |
1813e175 RH |
189 | qemu_log("OUT: [size=%d]\n", gen_code_size); |
190 | log_disas(tb->tc_ptr, gen_code_size); | |
93fcfe39 | 191 | qemu_log("\n"); |
31b1a7b4 | 192 | qemu_log_flush(); |
d19893da FB |
193 | } |
194 | #endif | |
195 | return 0; | |
196 | } | |
197 | ||
5fafdf24 | 198 | /* The cpu state corresponding to 'searched_pc' is restored. |
d19893da | 199 | */ |
74f10515 | 200 | static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb, |
a8a826a3 | 201 | uintptr_t searched_pc) |
d19893da | 202 | { |
74f10515 | 203 | CPUArchState *env = cpu->env_ptr; |
57fec1fe FB |
204 | TCGContext *s = &tcg_ctx; |
205 | int j; | |
6375e09e | 206 | uintptr_t tc_ptr; |
57fec1fe FB |
207 | #ifdef CONFIG_PROFILER |
208 | int64_t ti; | |
209 | #endif | |
210 | ||
211 | #ifdef CONFIG_PROFILER | |
212 | ti = profile_getclock(); | |
213 | #endif | |
214 | tcg_func_start(s); | |
d19893da | 215 | |
2cfc5f17 | 216 | gen_intermediate_code_pc(env, tb); |
3b46e624 | 217 | |
2e70f6ef PB |
218 | if (use_icount) { |
219 | /* Reset the cycle counter to the start of the block. */ | |
28ecfd7a | 220 | cpu->icount_decr.u16.low += tb->icount; |
2e70f6ef | 221 | /* Clear the IO flag. */ |
99df7dce | 222 | cpu->can_do_io = 0; |
2e70f6ef PB |
223 | } |
224 | ||
d19893da | 225 | /* find opc index corresponding to search_pc */ |
6375e09e | 226 | tc_ptr = (uintptr_t)tb->tc_ptr; |
d19893da FB |
227 | if (searched_pc < tc_ptr) |
228 | return -1; | |
57fec1fe FB |
229 | |
230 | s->tb_next_offset = tb->tb_next_offset; | |
231 | #ifdef USE_DIRECT_JUMP | |
232 | s->tb_jmp_offset = tb->tb_jmp_offset; | |
233 | s->tb_next = NULL; | |
234 | #else | |
235 | s->tb_jmp_offset = NULL; | |
236 | s->tb_next = tb->tb_next; | |
237 | #endif | |
1813e175 RH |
238 | j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr, |
239 | searched_pc - tc_ptr); | |
57fec1fe FB |
240 | if (j < 0) |
241 | return -1; | |
d19893da | 242 | /* now find start of instruction before */ |
ab1103de | 243 | while (s->gen_opc_instr_start[j] == 0) { |
d19893da | 244 | j--; |
ab1103de | 245 | } |
28ecfd7a | 246 | cpu->icount_decr.u16.low -= s->gen_opc_icount[j]; |
3b46e624 | 247 | |
e87b7cb0 | 248 | restore_state_to_opc(env, tb, j); |
57fec1fe FB |
249 | |
250 | #ifdef CONFIG_PROFILER | |
b67d9a52 FB |
251 | s->restore_time += profile_getclock() - ti; |
252 | s->restore_count++; | |
57fec1fe | 253 | #endif |
d19893da FB |
254 | return 0; |
255 | } | |
5b6dd868 | 256 | |
3f38f309 | 257 | bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr) |
a8a826a3 BS |
258 | { |
259 | TranslationBlock *tb; | |
260 | ||
261 | tb = tb_find_pc(retaddr); | |
262 | if (tb) { | |
74f10515 | 263 | cpu_restore_state_from_tb(cpu, tb, retaddr); |
a8a826a3 BS |
264 | return true; |
265 | } | |
266 | return false; | |
267 | } | |
268 | ||
5b6dd868 BS |
269 | #ifdef _WIN32 |
270 | static inline void map_exec(void *addr, long size) | |
271 | { | |
272 | DWORD old_protect; | |
273 | VirtualProtect(addr, size, | |
274 | PAGE_EXECUTE_READWRITE, &old_protect); | |
275 | } | |
276 | #else | |
277 | static inline void map_exec(void *addr, long size) | |
278 | { | |
279 | unsigned long start, end, page_size; | |
280 | ||
281 | page_size = getpagesize(); | |
282 | start = (unsigned long)addr; | |
283 | start &= ~(page_size - 1); | |
284 | ||
285 | end = (unsigned long)addr + size; | |
286 | end += page_size - 1; | |
287 | end &= ~(page_size - 1); | |
288 | ||
289 | mprotect((void *)start, end - start, | |
290 | PROT_READ | PROT_WRITE | PROT_EXEC); | |
291 | } | |
292 | #endif | |
293 | ||
47c16ed5 | 294 | void page_size_init(void) |
5b6dd868 BS |
295 | { |
296 | /* NOTE: we can always suppose that qemu_host_page_size >= | |
297 | TARGET_PAGE_SIZE */ | |
298 | #ifdef _WIN32 | |
47c16ed5 | 299 | SYSTEM_INFO system_info; |
5b6dd868 | 300 | |
47c16ed5 AK |
301 | GetSystemInfo(&system_info); |
302 | qemu_real_host_page_size = system_info.dwPageSize; | |
5b6dd868 BS |
303 | #else |
304 | qemu_real_host_page_size = getpagesize(); | |
305 | #endif | |
306 | if (qemu_host_page_size == 0) { | |
307 | qemu_host_page_size = qemu_real_host_page_size; | |
308 | } | |
309 | if (qemu_host_page_size < TARGET_PAGE_SIZE) { | |
310 | qemu_host_page_size = TARGET_PAGE_SIZE; | |
311 | } | |
312 | qemu_host_page_mask = ~(qemu_host_page_size - 1); | |
47c16ed5 | 313 | } |
5b6dd868 | 314 | |
47c16ed5 AK |
315 | static void page_init(void) |
316 | { | |
317 | page_size_init(); | |
5b6dd868 BS |
318 | #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) |
319 | { | |
320 | #ifdef HAVE_KINFO_GETVMMAP | |
321 | struct kinfo_vmentry *freep; | |
322 | int i, cnt; | |
323 | ||
324 | freep = kinfo_getvmmap(getpid(), &cnt); | |
325 | if (freep) { | |
326 | mmap_lock(); | |
327 | for (i = 0; i < cnt; i++) { | |
328 | unsigned long startaddr, endaddr; | |
329 | ||
330 | startaddr = freep[i].kve_start; | |
331 | endaddr = freep[i].kve_end; | |
332 | if (h2g_valid(startaddr)) { | |
333 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | |
334 | ||
335 | if (h2g_valid(endaddr)) { | |
336 | endaddr = h2g(endaddr); | |
337 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
338 | } else { | |
339 | #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS | |
340 | endaddr = ~0ul; | |
341 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
342 | #endif | |
343 | } | |
344 | } | |
345 | } | |
346 | free(freep); | |
347 | mmap_unlock(); | |
348 | } | |
349 | #else | |
350 | FILE *f; | |
351 | ||
352 | last_brk = (unsigned long)sbrk(0); | |
353 | ||
354 | f = fopen("/compat/linux/proc/self/maps", "r"); | |
355 | if (f) { | |
356 | mmap_lock(); | |
357 | ||
358 | do { | |
359 | unsigned long startaddr, endaddr; | |
360 | int n; | |
361 | ||
362 | n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr); | |
363 | ||
364 | if (n == 2 && h2g_valid(startaddr)) { | |
365 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK; | |
366 | ||
367 | if (h2g_valid(endaddr)) { | |
368 | endaddr = h2g(endaddr); | |
369 | } else { | |
370 | endaddr = ~0ul; | |
371 | } | |
372 | page_set_flags(startaddr, endaddr, PAGE_RESERVED); | |
373 | } | |
374 | } while (!feof(f)); | |
375 | ||
376 | fclose(f); | |
377 | mmap_unlock(); | |
378 | } | |
379 | #endif | |
380 | } | |
381 | #endif | |
382 | } | |
383 | ||
384 | static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc) | |
385 | { | |
386 | PageDesc *pd; | |
387 | void **lp; | |
388 | int i; | |
389 | ||
390 | #if defined(CONFIG_USER_ONLY) | |
391 | /* We can't use g_malloc because it may recurse into a locked mutex. */ | |
392 | # define ALLOC(P, SIZE) \ | |
393 | do { \ | |
394 | P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \ | |
395 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \ | |
396 | } while (0) | |
397 | #else | |
398 | # define ALLOC(P, SIZE) \ | |
399 | do { P = g_malloc0(SIZE); } while (0) | |
400 | #endif | |
401 | ||
402 | /* Level 1. Always allocated. */ | |
403 | lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1)); | |
404 | ||
405 | /* Level 2..N-1. */ | |
03f49957 | 406 | for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) { |
5b6dd868 BS |
407 | void **p = *lp; |
408 | ||
409 | if (p == NULL) { | |
410 | if (!alloc) { | |
411 | return NULL; | |
412 | } | |
03f49957 | 413 | ALLOC(p, sizeof(void *) * V_L2_SIZE); |
5b6dd868 BS |
414 | *lp = p; |
415 | } | |
416 | ||
03f49957 | 417 | lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1)); |
5b6dd868 BS |
418 | } |
419 | ||
420 | pd = *lp; | |
421 | if (pd == NULL) { | |
422 | if (!alloc) { | |
423 | return NULL; | |
424 | } | |
03f49957 | 425 | ALLOC(pd, sizeof(PageDesc) * V_L2_SIZE); |
5b6dd868 BS |
426 | *lp = pd; |
427 | } | |
428 | ||
429 | #undef ALLOC | |
430 | ||
03f49957 | 431 | return pd + (index & (V_L2_SIZE - 1)); |
5b6dd868 BS |
432 | } |
433 | ||
434 | static inline PageDesc *page_find(tb_page_addr_t index) | |
435 | { | |
436 | return page_find_alloc(index, 0); | |
437 | } | |
438 | ||
439 | #if !defined(CONFIG_USER_ONLY) | |
440 | #define mmap_lock() do { } while (0) | |
441 | #define mmap_unlock() do { } while (0) | |
442 | #endif | |
443 | ||
444 | #if defined(CONFIG_USER_ONLY) | |
445 | /* Currently it is not recommended to allocate big chunks of data in | |
446 | user mode. It will change when a dedicated libc will be used. */ | |
447 | /* ??? 64-bit hosts ought to have no problem mmaping data outside the | |
448 | region in which the guest needs to run. Revisit this. */ | |
449 | #define USE_STATIC_CODE_GEN_BUFFER | |
450 | #endif | |
451 | ||
452 | /* ??? Should configure for this, not list operating systems here. */ | |
453 | #if (defined(__linux__) \ | |
454 | || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \ | |
455 | || defined(__DragonFly__) || defined(__OpenBSD__) \ | |
456 | || defined(__NetBSD__)) | |
457 | # define USE_MMAP | |
458 | #endif | |
459 | ||
460 | /* Minimum size of the code gen buffer. This number is randomly chosen, | |
461 | but not so small that we can't have a fair number of TB's live. */ | |
462 | #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024) | |
463 | ||
464 | /* Maximum size of the code gen buffer we'd like to use. Unless otherwise | |
465 | indicated, this is constrained by the range of direct branches on the | |
466 | host cpu, as used by the TCG implementation of goto_tb. */ | |
467 | #if defined(__x86_64__) | |
468 | # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) | |
469 | #elif defined(__sparc__) | |
470 | # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024) | |
4a136e0a CF |
471 | #elif defined(__aarch64__) |
472 | # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) | |
5b6dd868 BS |
473 | #elif defined(__arm__) |
474 | # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024) | |
475 | #elif defined(__s390x__) | |
476 | /* We have a +- 4GB range on the branches; leave some slop. */ | |
477 | # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024) | |
479eb121 RH |
478 | #elif defined(__mips__) |
479 | /* We have a 256MB branch region, but leave room to make sure the | |
480 | main executable is also within that region. */ | |
481 | # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024) | |
5b6dd868 BS |
482 | #else |
483 | # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1) | |
484 | #endif | |
485 | ||
486 | #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024) | |
487 | ||
488 | #define DEFAULT_CODE_GEN_BUFFER_SIZE \ | |
489 | (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ | |
490 | ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) | |
491 | ||
492 | static inline size_t size_code_gen_buffer(size_t tb_size) | |
493 | { | |
494 | /* Size the buffer. */ | |
495 | if (tb_size == 0) { | |
496 | #ifdef USE_STATIC_CODE_GEN_BUFFER | |
497 | tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; | |
498 | #else | |
499 | /* ??? Needs adjustments. */ | |
500 | /* ??? If we relax the requirement that CONFIG_USER_ONLY use the | |
501 | static buffer, we could size this on RESERVED_VA, on the text | |
502 | segment size of the executable, or continue to use the default. */ | |
503 | tb_size = (unsigned long)(ram_size / 4); | |
504 | #endif | |
505 | } | |
506 | if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { | |
507 | tb_size = MIN_CODE_GEN_BUFFER_SIZE; | |
508 | } | |
509 | if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { | |
510 | tb_size = MAX_CODE_GEN_BUFFER_SIZE; | |
511 | } | |
0b0d3320 | 512 | tcg_ctx.code_gen_buffer_size = tb_size; |
5b6dd868 BS |
513 | return tb_size; |
514 | } | |
515 | ||
483c76e1 RH |
516 | #ifdef __mips__ |
517 | /* In order to use J and JAL within the code_gen_buffer, we require | |
518 | that the buffer not cross a 256MB boundary. */ | |
519 | static inline bool cross_256mb(void *addr, size_t size) | |
520 | { | |
521 | return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000; | |
522 | } | |
523 | ||
524 | /* We weren't able to allocate a buffer without crossing that boundary, | |
525 | so make do with the larger portion of the buffer that doesn't cross. | |
526 | Returns the new base of the buffer, and adjusts code_gen_buffer_size. */ | |
527 | static inline void *split_cross_256mb(void *buf1, size_t size1) | |
528 | { | |
529 | void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000); | |
530 | size_t size2 = buf1 + size1 - buf2; | |
531 | ||
532 | size1 = buf2 - buf1; | |
533 | if (size1 < size2) { | |
534 | size1 = size2; | |
535 | buf1 = buf2; | |
536 | } | |
537 | ||
538 | tcg_ctx.code_gen_buffer_size = size1; | |
539 | return buf1; | |
540 | } | |
541 | #endif | |
542 | ||
5b6dd868 BS |
543 | #ifdef USE_STATIC_CODE_GEN_BUFFER |
544 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] | |
545 | __attribute__((aligned(CODE_GEN_ALIGN))); | |
546 | ||
547 | static inline void *alloc_code_gen_buffer(void) | |
548 | { | |
483c76e1 RH |
549 | void *buf = static_code_gen_buffer; |
550 | #ifdef __mips__ | |
551 | if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) { | |
552 | buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size); | |
553 | } | |
554 | #endif | |
555 | map_exec(buf, tcg_ctx.code_gen_buffer_size); | |
556 | return buf; | |
5b6dd868 BS |
557 | } |
558 | #elif defined(USE_MMAP) | |
559 | static inline void *alloc_code_gen_buffer(void) | |
560 | { | |
561 | int flags = MAP_PRIVATE | MAP_ANONYMOUS; | |
562 | uintptr_t start = 0; | |
563 | void *buf; | |
564 | ||
565 | /* Constrain the position of the buffer based on the host cpu. | |
566 | Note that these addresses are chosen in concert with the | |
567 | addresses assigned in the relevant linker script file. */ | |
568 | # if defined(__PIE__) || defined(__PIC__) | |
569 | /* Don't bother setting a preferred location if we're building | |
570 | a position-independent executable. We're more likely to get | |
571 | an address near the main executable if we let the kernel | |
572 | choose the address. */ | |
573 | # elif defined(__x86_64__) && defined(MAP_32BIT) | |
574 | /* Force the memory down into low memory with the executable. | |
575 | Leave the choice of exact location with the kernel. */ | |
576 | flags |= MAP_32BIT; | |
577 | /* Cannot expect to map more than 800MB in low memory. */ | |
0b0d3320 EV |
578 | if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) { |
579 | tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024; | |
5b6dd868 BS |
580 | } |
581 | # elif defined(__sparc__) | |
582 | start = 0x40000000ul; | |
583 | # elif defined(__s390x__) | |
584 | start = 0x90000000ul; | |
479eb121 RH |
585 | # elif defined(__mips__) |
586 | /* ??? We ought to more explicitly manage layout for softmmu too. */ | |
587 | # ifdef CONFIG_USER_ONLY | |
588 | start = 0x68000000ul; | |
589 | # elif _MIPS_SIM == _ABI64 | |
590 | start = 0x128000000ul; | |
591 | # else | |
592 | start = 0x08000000ul; | |
593 | # endif | |
5b6dd868 BS |
594 | # endif |
595 | ||
0b0d3320 | 596 | buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size, |
5b6dd868 | 597 | PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0); |
483c76e1 RH |
598 | if (buf == MAP_FAILED) { |
599 | return NULL; | |
600 | } | |
601 | ||
602 | #ifdef __mips__ | |
603 | if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) { | |
604 | /* Try again, with the original still mapped, to avoid re-aquiring | |
605 | that 256mb crossing. This time don't specify an address. */ | |
606 | size_t size2, size1 = tcg_ctx.code_gen_buffer_size; | |
607 | void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC, | |
608 | flags, -1, 0); | |
609 | if (buf2 != MAP_FAILED) { | |
610 | if (!cross_256mb(buf2, size1)) { | |
611 | /* Success! Use the new buffer. */ | |
612 | munmap(buf, size1); | |
613 | return buf2; | |
614 | } | |
615 | /* Failure. Work with what we had. */ | |
616 | munmap(buf2, size1); | |
617 | } | |
618 | ||
619 | /* Split the original buffer. Free the smaller half. */ | |
620 | buf2 = split_cross_256mb(buf, size1); | |
621 | size2 = tcg_ctx.code_gen_buffer_size; | |
622 | munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2); | |
623 | return buf2; | |
624 | } | |
625 | #endif | |
626 | ||
627 | return buf; | |
5b6dd868 BS |
628 | } |
629 | #else | |
630 | static inline void *alloc_code_gen_buffer(void) | |
631 | { | |
0b0d3320 | 632 | void *buf = g_malloc(tcg_ctx.code_gen_buffer_size); |
5b6dd868 | 633 | |
483c76e1 RH |
634 | if (buf == NULL) { |
635 | return NULL; | |
636 | } | |
637 | ||
638 | #ifdef __mips__ | |
639 | if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) { | |
640 | void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size); | |
641 | if (buf2 != NULL && !cross_256mb(buf2, size1)) { | |
642 | /* Success! Use the new buffer. */ | |
643 | free(buf); | |
644 | buf = buf2; | |
645 | } else { | |
646 | /* Failure. Work with what we had. Since this is malloc | |
647 | and not mmap, we can't free the other half. */ | |
648 | free(buf2); | |
649 | buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size); | |
650 | } | |
5b6dd868 | 651 | } |
483c76e1 RH |
652 | #endif |
653 | ||
654 | map_exec(buf, tcg_ctx.code_gen_buffer_size); | |
5b6dd868 BS |
655 | return buf; |
656 | } | |
657 | #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */ | |
658 | ||
659 | static inline void code_gen_alloc(size_t tb_size) | |
660 | { | |
0b0d3320 EV |
661 | tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size); |
662 | tcg_ctx.code_gen_buffer = alloc_code_gen_buffer(); | |
663 | if (tcg_ctx.code_gen_buffer == NULL) { | |
5b6dd868 BS |
664 | fprintf(stderr, "Could not allocate dynamic translator buffer\n"); |
665 | exit(1); | |
666 | } | |
667 | ||
0b0d3320 EV |
668 | qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size, |
669 | QEMU_MADV_HUGEPAGE); | |
5b6dd868 BS |
670 | |
671 | /* Steal room for the prologue at the end of the buffer. This ensures | |
672 | (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches | |
673 | from TB's to the prologue are going to be in range. It also means | |
674 | that we don't need to mark (additional) portions of the data segment | |
675 | as executable. */ | |
0b0d3320 EV |
676 | tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer + |
677 | tcg_ctx.code_gen_buffer_size - 1024; | |
678 | tcg_ctx.code_gen_buffer_size -= 1024; | |
5b6dd868 | 679 | |
0b0d3320 | 680 | tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size - |
5b6dd868 | 681 | (TCG_MAX_OP_SIZE * OPC_BUF_SIZE); |
0b0d3320 EV |
682 | tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size / |
683 | CODE_GEN_AVG_BLOCK_SIZE; | |
5e5f07e0 EV |
684 | tcg_ctx.tb_ctx.tbs = |
685 | g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock)); | |
5b6dd868 BS |
686 | } |
687 | ||
688 | /* Must be called before using the QEMU cpus. 'tb_size' is the size | |
689 | (in bytes) allocated to the translation buffer. Zero means default | |
690 | size. */ | |
691 | void tcg_exec_init(unsigned long tb_size) | |
692 | { | |
693 | cpu_gen_init(); | |
694 | code_gen_alloc(tb_size); | |
0b0d3320 EV |
695 | tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; |
696 | tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size); | |
5b6dd868 BS |
697 | page_init(); |
698 | #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE) | |
699 | /* There's no guest base to take into account, so go ahead and | |
700 | initialize the prologue now. */ | |
701 | tcg_prologue_init(&tcg_ctx); | |
702 | #endif | |
703 | } | |
704 | ||
705 | bool tcg_enabled(void) | |
706 | { | |
0b0d3320 | 707 | return tcg_ctx.code_gen_buffer != NULL; |
5b6dd868 BS |
708 | } |
709 | ||
710 | /* Allocate a new translation block. Flush the translation buffer if | |
711 | too many translation blocks or too much generated code. */ | |
712 | static TranslationBlock *tb_alloc(target_ulong pc) | |
713 | { | |
714 | TranslationBlock *tb; | |
715 | ||
5e5f07e0 | 716 | if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks || |
0b0d3320 EV |
717 | (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >= |
718 | tcg_ctx.code_gen_buffer_max_size) { | |
5b6dd868 BS |
719 | return NULL; |
720 | } | |
5e5f07e0 | 721 | tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++]; |
5b6dd868 BS |
722 | tb->pc = pc; |
723 | tb->cflags = 0; | |
724 | return tb; | |
725 | } | |
726 | ||
727 | void tb_free(TranslationBlock *tb) | |
728 | { | |
729 | /* In practice this is mostly used for single use temporary TB | |
730 | Ignore the hard cases and just back up if this TB happens to | |
731 | be the last one generated. */ | |
5e5f07e0 EV |
732 | if (tcg_ctx.tb_ctx.nb_tbs > 0 && |
733 | tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) { | |
0b0d3320 | 734 | tcg_ctx.code_gen_ptr = tb->tc_ptr; |
5e5f07e0 | 735 | tcg_ctx.tb_ctx.nb_tbs--; |
5b6dd868 BS |
736 | } |
737 | } | |
738 | ||
739 | static inline void invalidate_page_bitmap(PageDesc *p) | |
740 | { | |
741 | if (p->code_bitmap) { | |
742 | g_free(p->code_bitmap); | |
743 | p->code_bitmap = NULL; | |
744 | } | |
745 | p->code_write_count = 0; | |
746 | } | |
747 | ||
748 | /* Set to NULL all the 'first_tb' fields in all PageDescs. */ | |
749 | static void page_flush_tb_1(int level, void **lp) | |
750 | { | |
751 | int i; | |
752 | ||
753 | if (*lp == NULL) { | |
754 | return; | |
755 | } | |
756 | if (level == 0) { | |
757 | PageDesc *pd = *lp; | |
758 | ||
03f49957 | 759 | for (i = 0; i < V_L2_SIZE; ++i) { |
5b6dd868 BS |
760 | pd[i].first_tb = NULL; |
761 | invalidate_page_bitmap(pd + i); | |
762 | } | |
763 | } else { | |
764 | void **pp = *lp; | |
765 | ||
03f49957 | 766 | for (i = 0; i < V_L2_SIZE; ++i) { |
5b6dd868 BS |
767 | page_flush_tb_1(level - 1, pp + i); |
768 | } | |
769 | } | |
770 | } | |
771 | ||
772 | static void page_flush_tb(void) | |
773 | { | |
774 | int i; | |
775 | ||
776 | for (i = 0; i < V_L1_SIZE; i++) { | |
03f49957 | 777 | page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i); |
5b6dd868 BS |
778 | } |
779 | } | |
780 | ||
781 | /* flush all the translation blocks */ | |
782 | /* XXX: tb_flush is currently not thread safe */ | |
783 | void tb_flush(CPUArchState *env1) | |
784 | { | |
a47dddd7 | 785 | CPUState *cpu = ENV_GET_CPU(env1); |
5b6dd868 BS |
786 | |
787 | #if defined(DEBUG_FLUSH) | |
788 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n", | |
0b0d3320 | 789 | (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer), |
5e5f07e0 | 790 | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ? |
0b0d3320 | 791 | ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) / |
5e5f07e0 | 792 | tcg_ctx.tb_ctx.nb_tbs : 0); |
5b6dd868 | 793 | #endif |
0b0d3320 EV |
794 | if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) |
795 | > tcg_ctx.code_gen_buffer_size) { | |
a47dddd7 | 796 | cpu_abort(cpu, "Internal error: code buffer overflow\n"); |
5b6dd868 | 797 | } |
5e5f07e0 | 798 | tcg_ctx.tb_ctx.nb_tbs = 0; |
5b6dd868 | 799 | |
bdc44640 | 800 | CPU_FOREACH(cpu) { |
8cd70437 | 801 | memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); |
5b6dd868 BS |
802 | } |
803 | ||
eb2535f4 | 804 | memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash)); |
5b6dd868 BS |
805 | page_flush_tb(); |
806 | ||
0b0d3320 | 807 | tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer; |
5b6dd868 BS |
808 | /* XXX: flush processor icache at this point if cache flush is |
809 | expensive */ | |
5e5f07e0 | 810 | tcg_ctx.tb_ctx.tb_flush_count++; |
5b6dd868 BS |
811 | } |
812 | ||
813 | #ifdef DEBUG_TB_CHECK | |
814 | ||
815 | static void tb_invalidate_check(target_ulong address) | |
816 | { | |
817 | TranslationBlock *tb; | |
818 | int i; | |
819 | ||
820 | address &= TARGET_PAGE_MASK; | |
821 | for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) { | |
5e5f07e0 | 822 | for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) { |
5b6dd868 BS |
823 | if (!(address + TARGET_PAGE_SIZE <= tb->pc || |
824 | address >= tb->pc + tb->size)) { | |
825 | printf("ERROR invalidate: address=" TARGET_FMT_lx | |
826 | " PC=%08lx size=%04x\n", | |
827 | address, (long)tb->pc, tb->size); | |
828 | } | |
829 | } | |
830 | } | |
831 | } | |
832 | ||
833 | /* verify that all the pages have correct rights for code */ | |
834 | static void tb_page_check(void) | |
835 | { | |
836 | TranslationBlock *tb; | |
837 | int i, flags1, flags2; | |
838 | ||
839 | for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) { | |
5e5f07e0 EV |
840 | for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL; |
841 | tb = tb->phys_hash_next) { | |
5b6dd868 BS |
842 | flags1 = page_get_flags(tb->pc); |
843 | flags2 = page_get_flags(tb->pc + tb->size - 1); | |
844 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) { | |
845 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n", | |
846 | (long)tb->pc, tb->size, flags1, flags2); | |
847 | } | |
848 | } | |
849 | } | |
850 | } | |
851 | ||
852 | #endif | |
853 | ||
0c884d16 | 854 | static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb) |
5b6dd868 BS |
855 | { |
856 | TranslationBlock *tb1; | |
857 | ||
858 | for (;;) { | |
859 | tb1 = *ptb; | |
860 | if (tb1 == tb) { | |
0c884d16 | 861 | *ptb = tb1->phys_hash_next; |
5b6dd868 BS |
862 | break; |
863 | } | |
0c884d16 | 864 | ptb = &tb1->phys_hash_next; |
5b6dd868 BS |
865 | } |
866 | } | |
867 | ||
868 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb) | |
869 | { | |
870 | TranslationBlock *tb1; | |
871 | unsigned int n1; | |
872 | ||
873 | for (;;) { | |
874 | tb1 = *ptb; | |
875 | n1 = (uintptr_t)tb1 & 3; | |
876 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
877 | if (tb1 == tb) { | |
878 | *ptb = tb1->page_next[n1]; | |
879 | break; | |
880 | } | |
881 | ptb = &tb1->page_next[n1]; | |
882 | } | |
883 | } | |
884 | ||
885 | static inline void tb_jmp_remove(TranslationBlock *tb, int n) | |
886 | { | |
887 | TranslationBlock *tb1, **ptb; | |
888 | unsigned int n1; | |
889 | ||
890 | ptb = &tb->jmp_next[n]; | |
891 | tb1 = *ptb; | |
892 | if (tb1) { | |
893 | /* find tb(n) in circular list */ | |
894 | for (;;) { | |
895 | tb1 = *ptb; | |
896 | n1 = (uintptr_t)tb1 & 3; | |
897 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
898 | if (n1 == n && tb1 == tb) { | |
899 | break; | |
900 | } | |
901 | if (n1 == 2) { | |
902 | ptb = &tb1->jmp_first; | |
903 | } else { | |
904 | ptb = &tb1->jmp_next[n1]; | |
905 | } | |
906 | } | |
907 | /* now we can suppress tb(n) from the list */ | |
908 | *ptb = tb->jmp_next[n]; | |
909 | ||
910 | tb->jmp_next[n] = NULL; | |
911 | } | |
912 | } | |
913 | ||
914 | /* reset the jump entry 'n' of a TB so that it is not chained to | |
915 | another TB */ | |
916 | static inline void tb_reset_jump(TranslationBlock *tb, int n) | |
917 | { | |
918 | tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n])); | |
919 | } | |
920 | ||
0c884d16 | 921 | /* invalidate one TB */ |
5b6dd868 BS |
922 | void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) |
923 | { | |
182735ef | 924 | CPUState *cpu; |
5b6dd868 BS |
925 | PageDesc *p; |
926 | unsigned int h, n1; | |
927 | tb_page_addr_t phys_pc; | |
928 | TranslationBlock *tb1, *tb2; | |
929 | ||
930 | /* remove the TB from the hash list */ | |
931 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
932 | h = tb_phys_hash_func(phys_pc); | |
5e5f07e0 | 933 | tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb); |
5b6dd868 BS |
934 | |
935 | /* remove the TB from the page list */ | |
936 | if (tb->page_addr[0] != page_addr) { | |
937 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS); | |
938 | tb_page_remove(&p->first_tb, tb); | |
939 | invalidate_page_bitmap(p); | |
940 | } | |
941 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) { | |
942 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS); | |
943 | tb_page_remove(&p->first_tb, tb); | |
944 | invalidate_page_bitmap(p); | |
945 | } | |
946 | ||
5e5f07e0 | 947 | tcg_ctx.tb_ctx.tb_invalidated_flag = 1; |
5b6dd868 BS |
948 | |
949 | /* remove the TB from the hash list */ | |
950 | h = tb_jmp_cache_hash_func(tb->pc); | |
bdc44640 | 951 | CPU_FOREACH(cpu) { |
8cd70437 AF |
952 | if (cpu->tb_jmp_cache[h] == tb) { |
953 | cpu->tb_jmp_cache[h] = NULL; | |
5b6dd868 BS |
954 | } |
955 | } | |
956 | ||
957 | /* suppress this TB from the two jump lists */ | |
958 | tb_jmp_remove(tb, 0); | |
959 | tb_jmp_remove(tb, 1); | |
960 | ||
961 | /* suppress any remaining jumps to this TB */ | |
962 | tb1 = tb->jmp_first; | |
963 | for (;;) { | |
964 | n1 = (uintptr_t)tb1 & 3; | |
965 | if (n1 == 2) { | |
966 | break; | |
967 | } | |
968 | tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3); | |
969 | tb2 = tb1->jmp_next[n1]; | |
970 | tb_reset_jump(tb1, n1); | |
971 | tb1->jmp_next[n1] = NULL; | |
972 | tb1 = tb2; | |
973 | } | |
974 | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */ | |
975 | ||
5e5f07e0 | 976 | tcg_ctx.tb_ctx.tb_phys_invalidate_count++; |
5b6dd868 BS |
977 | } |
978 | ||
979 | static inline void set_bits(uint8_t *tab, int start, int len) | |
980 | { | |
981 | int end, mask, end1; | |
982 | ||
983 | end = start + len; | |
984 | tab += start >> 3; | |
985 | mask = 0xff << (start & 7); | |
986 | if ((start & ~7) == (end & ~7)) { | |
987 | if (start < end) { | |
988 | mask &= ~(0xff << (end & 7)); | |
989 | *tab |= mask; | |
990 | } | |
991 | } else { | |
992 | *tab++ |= mask; | |
993 | start = (start + 8) & ~7; | |
994 | end1 = end & ~7; | |
995 | while (start < end1) { | |
996 | *tab++ = 0xff; | |
997 | start += 8; | |
998 | } | |
999 | if (start < end) { | |
1000 | mask = ~(0xff << (end & 7)); | |
1001 | *tab |= mask; | |
1002 | } | |
1003 | } | |
1004 | } | |
1005 | ||
1006 | static void build_page_bitmap(PageDesc *p) | |
1007 | { | |
1008 | int n, tb_start, tb_end; | |
1009 | TranslationBlock *tb; | |
1010 | ||
1011 | p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8); | |
1012 | ||
1013 | tb = p->first_tb; | |
1014 | while (tb != NULL) { | |
1015 | n = (uintptr_t)tb & 3; | |
1016 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1017 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
1018 | if (n == 0) { | |
1019 | /* NOTE: tb_end may be after the end of the page, but | |
1020 | it is not a problem */ | |
1021 | tb_start = tb->pc & ~TARGET_PAGE_MASK; | |
1022 | tb_end = tb_start + tb->size; | |
1023 | if (tb_end > TARGET_PAGE_SIZE) { | |
1024 | tb_end = TARGET_PAGE_SIZE; | |
1025 | } | |
1026 | } else { | |
1027 | tb_start = 0; | |
1028 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
1029 | } | |
1030 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start); | |
1031 | tb = tb->page_next[n]; | |
1032 | } | |
1033 | } | |
1034 | ||
648f034c | 1035 | TranslationBlock *tb_gen_code(CPUState *cpu, |
5b6dd868 BS |
1036 | target_ulong pc, target_ulong cs_base, |
1037 | int flags, int cflags) | |
1038 | { | |
648f034c | 1039 | CPUArchState *env = cpu->env_ptr; |
5b6dd868 | 1040 | TranslationBlock *tb; |
5b6dd868 BS |
1041 | tb_page_addr_t phys_pc, phys_page2; |
1042 | target_ulong virt_page2; | |
1043 | int code_gen_size; | |
1044 | ||
1045 | phys_pc = get_page_addr_code(env, pc); | |
1046 | tb = tb_alloc(pc); | |
1047 | if (!tb) { | |
1048 | /* flush must be done */ | |
1049 | tb_flush(env); | |
1050 | /* cannot fail at this point */ | |
1051 | tb = tb_alloc(pc); | |
1052 | /* Don't forget to invalidate previous TB info. */ | |
5e5f07e0 | 1053 | tcg_ctx.tb_ctx.tb_invalidated_flag = 1; |
5b6dd868 | 1054 | } |
1813e175 | 1055 | tb->tc_ptr = tcg_ctx.code_gen_ptr; |
5b6dd868 BS |
1056 | tb->cs_base = cs_base; |
1057 | tb->flags = flags; | |
1058 | tb->cflags = cflags; | |
1059 | cpu_gen_code(env, tb, &code_gen_size); | |
0b0d3320 EV |
1060 | tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr + |
1061 | code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); | |
5b6dd868 BS |
1062 | |
1063 | /* check next page if needed */ | |
1064 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; | |
1065 | phys_page2 = -1; | |
1066 | if ((pc & TARGET_PAGE_MASK) != virt_page2) { | |
1067 | phys_page2 = get_page_addr_code(env, virt_page2); | |
1068 | } | |
1069 | tb_link_page(tb, phys_pc, phys_page2); | |
1070 | return tb; | |
1071 | } | |
1072 | ||
1073 | /* | |
1074 | * Invalidate all TBs which intersect with the target physical address range | |
1075 | * [start;end[. NOTE: start and end may refer to *different* physical pages. | |
1076 | * 'is_cpu_write_access' should be true if called from a real cpu write | |
1077 | * access: the virtual CPU will exit the current TB if code is modified inside | |
1078 | * this TB. | |
1079 | */ | |
1080 | void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end, | |
1081 | int is_cpu_write_access) | |
1082 | { | |
1083 | while (start < end) { | |
1084 | tb_invalidate_phys_page_range(start, end, is_cpu_write_access); | |
1085 | start &= TARGET_PAGE_MASK; | |
1086 | start += TARGET_PAGE_SIZE; | |
1087 | } | |
1088 | } | |
1089 | ||
1090 | /* | |
1091 | * Invalidate all TBs which intersect with the target physical address range | |
1092 | * [start;end[. NOTE: start and end must refer to the *same* physical page. | |
1093 | * 'is_cpu_write_access' should be true if called from a real cpu write | |
1094 | * access: the virtual CPU will exit the current TB if code is modified inside | |
1095 | * this TB. | |
1096 | */ | |
1097 | void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, | |
1098 | int is_cpu_write_access) | |
1099 | { | |
1100 | TranslationBlock *tb, *tb_next, *saved_tb; | |
4917cf44 | 1101 | CPUState *cpu = current_cpu; |
baea4fae | 1102 | #if defined(TARGET_HAS_PRECISE_SMC) |
4917cf44 AF |
1103 | CPUArchState *env = NULL; |
1104 | #endif | |
5b6dd868 BS |
1105 | tb_page_addr_t tb_start, tb_end; |
1106 | PageDesc *p; | |
1107 | int n; | |
1108 | #ifdef TARGET_HAS_PRECISE_SMC | |
1109 | int current_tb_not_found = is_cpu_write_access; | |
1110 | TranslationBlock *current_tb = NULL; | |
1111 | int current_tb_modified = 0; | |
1112 | target_ulong current_pc = 0; | |
1113 | target_ulong current_cs_base = 0; | |
1114 | int current_flags = 0; | |
1115 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1116 | ||
1117 | p = page_find(start >> TARGET_PAGE_BITS); | |
1118 | if (!p) { | |
1119 | return; | |
1120 | } | |
1121 | if (!p->code_bitmap && | |
1122 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD && | |
1123 | is_cpu_write_access) { | |
1124 | /* build code bitmap */ | |
1125 | build_page_bitmap(p); | |
1126 | } | |
baea4fae | 1127 | #if defined(TARGET_HAS_PRECISE_SMC) |
4917cf44 AF |
1128 | if (cpu != NULL) { |
1129 | env = cpu->env_ptr; | |
d77953b9 | 1130 | } |
4917cf44 | 1131 | #endif |
5b6dd868 BS |
1132 | |
1133 | /* we remove all the TBs in the range [start, end[ */ | |
1134 | /* XXX: see if in some cases it could be faster to invalidate all | |
1135 | the code */ | |
1136 | tb = p->first_tb; | |
1137 | while (tb != NULL) { | |
1138 | n = (uintptr_t)tb & 3; | |
1139 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1140 | tb_next = tb->page_next[n]; | |
1141 | /* NOTE: this is subtle as a TB may span two physical pages */ | |
1142 | if (n == 0) { | |
1143 | /* NOTE: tb_end may be after the end of the page, but | |
1144 | it is not a problem */ | |
1145 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK); | |
1146 | tb_end = tb_start + tb->size; | |
1147 | } else { | |
1148 | tb_start = tb->page_addr[1]; | |
1149 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK); | |
1150 | } | |
1151 | if (!(tb_end <= start || tb_start >= end)) { | |
1152 | #ifdef TARGET_HAS_PRECISE_SMC | |
1153 | if (current_tb_not_found) { | |
1154 | current_tb_not_found = 0; | |
1155 | current_tb = NULL; | |
93afeade | 1156 | if (cpu->mem_io_pc) { |
5b6dd868 | 1157 | /* now we have a real cpu fault */ |
93afeade | 1158 | current_tb = tb_find_pc(cpu->mem_io_pc); |
5b6dd868 BS |
1159 | } |
1160 | } | |
1161 | if (current_tb == tb && | |
1162 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
1163 | /* If we are modifying the current TB, we must stop | |
1164 | its execution. We could be more precise by checking | |
1165 | that the modification is after the current PC, but it | |
1166 | would require a specialized function to partially | |
1167 | restore the CPU state */ | |
1168 | ||
1169 | current_tb_modified = 1; | |
74f10515 | 1170 | cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc); |
5b6dd868 BS |
1171 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1172 | ¤t_flags); | |
1173 | } | |
1174 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1175 | /* we need to do that to handle the case where a signal | |
1176 | occurs while doing tb_phys_invalidate() */ | |
1177 | saved_tb = NULL; | |
d77953b9 AF |
1178 | if (cpu != NULL) { |
1179 | saved_tb = cpu->current_tb; | |
1180 | cpu->current_tb = NULL; | |
5b6dd868 BS |
1181 | } |
1182 | tb_phys_invalidate(tb, -1); | |
d77953b9 AF |
1183 | if (cpu != NULL) { |
1184 | cpu->current_tb = saved_tb; | |
c3affe56 AF |
1185 | if (cpu->interrupt_request && cpu->current_tb) { |
1186 | cpu_interrupt(cpu, cpu->interrupt_request); | |
5b6dd868 BS |
1187 | } |
1188 | } | |
1189 | } | |
1190 | tb = tb_next; | |
1191 | } | |
1192 | #if !defined(CONFIG_USER_ONLY) | |
1193 | /* if no code remaining, no need to continue to use slow writes */ | |
1194 | if (!p->first_tb) { | |
1195 | invalidate_page_bitmap(p); | |
1196 | if (is_cpu_write_access) { | |
baea4fae | 1197 | tlb_unprotect_code_phys(cpu, start, cpu->mem_io_vaddr); |
5b6dd868 BS |
1198 | } |
1199 | } | |
1200 | #endif | |
1201 | #ifdef TARGET_HAS_PRECISE_SMC | |
1202 | if (current_tb_modified) { | |
1203 | /* we generate a block containing just the instruction | |
1204 | modifying the memory. It will ensure that it cannot modify | |
1205 | itself */ | |
d77953b9 | 1206 | cpu->current_tb = NULL; |
648f034c | 1207 | tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1); |
0ea8cb88 | 1208 | cpu_resume_from_signal(cpu, NULL); |
5b6dd868 BS |
1209 | } |
1210 | #endif | |
1211 | } | |
1212 | ||
1213 | /* len must be <= 8 and start must be a multiple of len */ | |
1214 | void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len) | |
1215 | { | |
1216 | PageDesc *p; | |
1217 | int offset, b; | |
1218 | ||
1219 | #if 0 | |
1220 | if (1) { | |
1221 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n", | |
1222 | cpu_single_env->mem_io_vaddr, len, | |
1223 | cpu_single_env->eip, | |
1224 | cpu_single_env->eip + | |
1225 | (intptr_t)cpu_single_env->segs[R_CS].base); | |
1226 | } | |
1227 | #endif | |
1228 | p = page_find(start >> TARGET_PAGE_BITS); | |
1229 | if (!p) { | |
1230 | return; | |
1231 | } | |
1232 | if (p->code_bitmap) { | |
1233 | offset = start & ~TARGET_PAGE_MASK; | |
1234 | b = p->code_bitmap[offset >> 3] >> (offset & 7); | |
1235 | if (b & ((1 << len) - 1)) { | |
1236 | goto do_invalidate; | |
1237 | } | |
1238 | } else { | |
1239 | do_invalidate: | |
1240 | tb_invalidate_phys_page_range(start, start + len, 1); | |
1241 | } | |
1242 | } | |
1243 | ||
1244 | #if !defined(CONFIG_SOFTMMU) | |
1245 | static void tb_invalidate_phys_page(tb_page_addr_t addr, | |
d02532f0 AG |
1246 | uintptr_t pc, void *puc, |
1247 | bool locked) | |
5b6dd868 BS |
1248 | { |
1249 | TranslationBlock *tb; | |
1250 | PageDesc *p; | |
1251 | int n; | |
1252 | #ifdef TARGET_HAS_PRECISE_SMC | |
1253 | TranslationBlock *current_tb = NULL; | |
4917cf44 AF |
1254 | CPUState *cpu = current_cpu; |
1255 | CPUArchState *env = NULL; | |
5b6dd868 BS |
1256 | int current_tb_modified = 0; |
1257 | target_ulong current_pc = 0; | |
1258 | target_ulong current_cs_base = 0; | |
1259 | int current_flags = 0; | |
1260 | #endif | |
1261 | ||
1262 | addr &= TARGET_PAGE_MASK; | |
1263 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1264 | if (!p) { | |
1265 | return; | |
1266 | } | |
1267 | tb = p->first_tb; | |
1268 | #ifdef TARGET_HAS_PRECISE_SMC | |
1269 | if (tb && pc != 0) { | |
1270 | current_tb = tb_find_pc(pc); | |
1271 | } | |
4917cf44 AF |
1272 | if (cpu != NULL) { |
1273 | env = cpu->env_ptr; | |
d77953b9 | 1274 | } |
5b6dd868 BS |
1275 | #endif |
1276 | while (tb != NULL) { | |
1277 | n = (uintptr_t)tb & 3; | |
1278 | tb = (TranslationBlock *)((uintptr_t)tb & ~3); | |
1279 | #ifdef TARGET_HAS_PRECISE_SMC | |
1280 | if (current_tb == tb && | |
1281 | (current_tb->cflags & CF_COUNT_MASK) != 1) { | |
1282 | /* If we are modifying the current TB, we must stop | |
1283 | its execution. We could be more precise by checking | |
1284 | that the modification is after the current PC, but it | |
1285 | would require a specialized function to partially | |
1286 | restore the CPU state */ | |
1287 | ||
1288 | current_tb_modified = 1; | |
74f10515 | 1289 | cpu_restore_state_from_tb(cpu, current_tb, pc); |
5b6dd868 BS |
1290 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base, |
1291 | ¤t_flags); | |
1292 | } | |
1293 | #endif /* TARGET_HAS_PRECISE_SMC */ | |
1294 | tb_phys_invalidate(tb, addr); | |
1295 | tb = tb->page_next[n]; | |
1296 | } | |
1297 | p->first_tb = NULL; | |
1298 | #ifdef TARGET_HAS_PRECISE_SMC | |
1299 | if (current_tb_modified) { | |
1300 | /* we generate a block containing just the instruction | |
1301 | modifying the memory. It will ensure that it cannot modify | |
1302 | itself */ | |
d77953b9 | 1303 | cpu->current_tb = NULL; |
648f034c | 1304 | tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1); |
d02532f0 AG |
1305 | if (locked) { |
1306 | mmap_unlock(); | |
1307 | } | |
0ea8cb88 | 1308 | cpu_resume_from_signal(cpu, puc); |
5b6dd868 BS |
1309 | } |
1310 | #endif | |
1311 | } | |
1312 | #endif | |
1313 | ||
1314 | /* add the tb in the target page and protect it if necessary */ | |
1315 | static inline void tb_alloc_page(TranslationBlock *tb, | |
1316 | unsigned int n, tb_page_addr_t page_addr) | |
1317 | { | |
1318 | PageDesc *p; | |
1319 | #ifndef CONFIG_USER_ONLY | |
1320 | bool page_already_protected; | |
1321 | #endif | |
1322 | ||
1323 | tb->page_addr[n] = page_addr; | |
1324 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1); | |
1325 | tb->page_next[n] = p->first_tb; | |
1326 | #ifndef CONFIG_USER_ONLY | |
1327 | page_already_protected = p->first_tb != NULL; | |
1328 | #endif | |
1329 | p->first_tb = (TranslationBlock *)((uintptr_t)tb | n); | |
1330 | invalidate_page_bitmap(p); | |
1331 | ||
1332 | #if defined(TARGET_HAS_SMC) || 1 | |
1333 | ||
1334 | #if defined(CONFIG_USER_ONLY) | |
1335 | if (p->flags & PAGE_WRITE) { | |
1336 | target_ulong addr; | |
1337 | PageDesc *p2; | |
1338 | int prot; | |
1339 | ||
1340 | /* force the host page as non writable (writes will have a | |
1341 | page fault + mprotect overhead) */ | |
1342 | page_addr &= qemu_host_page_mask; | |
1343 | prot = 0; | |
1344 | for (addr = page_addr; addr < page_addr + qemu_host_page_size; | |
1345 | addr += TARGET_PAGE_SIZE) { | |
1346 | ||
1347 | p2 = page_find(addr >> TARGET_PAGE_BITS); | |
1348 | if (!p2) { | |
1349 | continue; | |
1350 | } | |
1351 | prot |= p2->flags; | |
1352 | p2->flags &= ~PAGE_WRITE; | |
1353 | } | |
1354 | mprotect(g2h(page_addr), qemu_host_page_size, | |
1355 | (prot & PAGE_BITS) & ~PAGE_WRITE); | |
1356 | #ifdef DEBUG_TB_INVALIDATE | |
1357 | printf("protecting code page: 0x" TARGET_FMT_lx "\n", | |
1358 | page_addr); | |
1359 | #endif | |
1360 | } | |
1361 | #else | |
1362 | /* if some code is already present, then the pages are already | |
1363 | protected. So we handle the case where only the first TB is | |
1364 | allocated in a physical page */ | |
1365 | if (!page_already_protected) { | |
1366 | tlb_protect_code(page_addr); | |
1367 | } | |
1368 | #endif | |
1369 | ||
1370 | #endif /* TARGET_HAS_SMC */ | |
1371 | } | |
1372 | ||
1373 | /* add a new TB and link it to the physical page tables. phys_page2 is | |
1374 | (-1) to indicate that only one page contains the TB. */ | |
1375 | static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc, | |
1376 | tb_page_addr_t phys_page2) | |
1377 | { | |
1378 | unsigned int h; | |
1379 | TranslationBlock **ptb; | |
1380 | ||
1381 | /* Grab the mmap lock to stop another thread invalidating this TB | |
1382 | before we are done. */ | |
1383 | mmap_lock(); | |
1384 | /* add in the physical hash table */ | |
1385 | h = tb_phys_hash_func(phys_pc); | |
5e5f07e0 | 1386 | ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h]; |
5b6dd868 BS |
1387 | tb->phys_hash_next = *ptb; |
1388 | *ptb = tb; | |
1389 | ||
1390 | /* add in the page list */ | |
1391 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK); | |
1392 | if (phys_page2 != -1) { | |
1393 | tb_alloc_page(tb, 1, phys_page2); | |
1394 | } else { | |
1395 | tb->page_addr[1] = -1; | |
1396 | } | |
1397 | ||
1398 | tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); | |
1399 | tb->jmp_next[0] = NULL; | |
1400 | tb->jmp_next[1] = NULL; | |
1401 | ||
1402 | /* init original jump addresses */ | |
1403 | if (tb->tb_next_offset[0] != 0xffff) { | |
1404 | tb_reset_jump(tb, 0); | |
1405 | } | |
1406 | if (tb->tb_next_offset[1] != 0xffff) { | |
1407 | tb_reset_jump(tb, 1); | |
1408 | } | |
1409 | ||
1410 | #ifdef DEBUG_TB_CHECK | |
1411 | tb_page_check(); | |
1412 | #endif | |
1413 | mmap_unlock(); | |
1414 | } | |
1415 | ||
5b6dd868 BS |
1416 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr < |
1417 | tb[1].tc_ptr. Return NULL if not found */ | |
a8a826a3 | 1418 | static TranslationBlock *tb_find_pc(uintptr_t tc_ptr) |
5b6dd868 BS |
1419 | { |
1420 | int m_min, m_max, m; | |
1421 | uintptr_t v; | |
1422 | TranslationBlock *tb; | |
1423 | ||
5e5f07e0 | 1424 | if (tcg_ctx.tb_ctx.nb_tbs <= 0) { |
5b6dd868 BS |
1425 | return NULL; |
1426 | } | |
0b0d3320 EV |
1427 | if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer || |
1428 | tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) { | |
5b6dd868 BS |
1429 | return NULL; |
1430 | } | |
1431 | /* binary search (cf Knuth) */ | |
1432 | m_min = 0; | |
5e5f07e0 | 1433 | m_max = tcg_ctx.tb_ctx.nb_tbs - 1; |
5b6dd868 BS |
1434 | while (m_min <= m_max) { |
1435 | m = (m_min + m_max) >> 1; | |
5e5f07e0 | 1436 | tb = &tcg_ctx.tb_ctx.tbs[m]; |
5b6dd868 BS |
1437 | v = (uintptr_t)tb->tc_ptr; |
1438 | if (v == tc_ptr) { | |
1439 | return tb; | |
1440 | } else if (tc_ptr < v) { | |
1441 | m_max = m - 1; | |
1442 | } else { | |
1443 | m_min = m + 1; | |
1444 | } | |
1445 | } | |
5e5f07e0 | 1446 | return &tcg_ctx.tb_ctx.tbs[m_max]; |
5b6dd868 BS |
1447 | } |
1448 | ||
5b6dd868 | 1449 | #if defined(TARGET_HAS_ICE) && !defined(CONFIG_USER_ONLY) |
29d8ec7b | 1450 | void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr) |
5b6dd868 BS |
1451 | { |
1452 | ram_addr_t ram_addr; | |
5c8a00ce | 1453 | MemoryRegion *mr; |
149f54b5 | 1454 | hwaddr l = 1; |
5b6dd868 | 1455 | |
29d8ec7b | 1456 | mr = address_space_translate(as, addr, &addr, &l, false); |
5c8a00ce PB |
1457 | if (!(memory_region_is_ram(mr) |
1458 | || memory_region_is_romd(mr))) { | |
5b6dd868 BS |
1459 | return; |
1460 | } | |
5c8a00ce | 1461 | ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK) |
149f54b5 | 1462 | + addr; |
5b6dd868 BS |
1463 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
1464 | } | |
1465 | #endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */ | |
1466 | ||
239c51a5 | 1467 | void tb_check_watchpoint(CPUState *cpu) |
5b6dd868 BS |
1468 | { |
1469 | TranslationBlock *tb; | |
1470 | ||
93afeade | 1471 | tb = tb_find_pc(cpu->mem_io_pc); |
5b6dd868 | 1472 | if (!tb) { |
a47dddd7 | 1473 | cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p", |
93afeade | 1474 | (void *)cpu->mem_io_pc); |
5b6dd868 | 1475 | } |
74f10515 | 1476 | cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc); |
5b6dd868 BS |
1477 | tb_phys_invalidate(tb, -1); |
1478 | } | |
1479 | ||
1480 | #ifndef CONFIG_USER_ONLY | |
1481 | /* mask must never be zero, except for A20 change call */ | |
c3affe56 | 1482 | static void tcg_handle_interrupt(CPUState *cpu, int mask) |
5b6dd868 | 1483 | { |
5b6dd868 BS |
1484 | int old_mask; |
1485 | ||
259186a7 AF |
1486 | old_mask = cpu->interrupt_request; |
1487 | cpu->interrupt_request |= mask; | |
5b6dd868 BS |
1488 | |
1489 | /* | |
1490 | * If called from iothread context, wake the target cpu in | |
1491 | * case its halted. | |
1492 | */ | |
1493 | if (!qemu_cpu_is_self(cpu)) { | |
1494 | qemu_cpu_kick(cpu); | |
1495 | return; | |
1496 | } | |
1497 | ||
1498 | if (use_icount) { | |
28ecfd7a | 1499 | cpu->icount_decr.u16.high = 0xffff; |
99df7dce | 1500 | if (!cpu_can_do_io(cpu) |
5b6dd868 | 1501 | && (mask & ~old_mask) != 0) { |
a47dddd7 | 1502 | cpu_abort(cpu, "Raised interrupt while not in I/O function"); |
5b6dd868 BS |
1503 | } |
1504 | } else { | |
378df4b2 | 1505 | cpu->tcg_exit_req = 1; |
5b6dd868 BS |
1506 | } |
1507 | } | |
1508 | ||
1509 | CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt; | |
1510 | ||
1511 | /* in deterministic execution mode, instructions doing device I/Os | |
1512 | must be at the end of the TB */ | |
90b40a69 | 1513 | void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr) |
5b6dd868 | 1514 | { |
a47dddd7 | 1515 | #if defined(TARGET_MIPS) || defined(TARGET_SH4) |
90b40a69 | 1516 | CPUArchState *env = cpu->env_ptr; |
a47dddd7 | 1517 | #endif |
5b6dd868 BS |
1518 | TranslationBlock *tb; |
1519 | uint32_t n, cflags; | |
1520 | target_ulong pc, cs_base; | |
1521 | uint64_t flags; | |
1522 | ||
1523 | tb = tb_find_pc(retaddr); | |
1524 | if (!tb) { | |
a47dddd7 | 1525 | cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p", |
5b6dd868 BS |
1526 | (void *)retaddr); |
1527 | } | |
28ecfd7a | 1528 | n = cpu->icount_decr.u16.low + tb->icount; |
74f10515 | 1529 | cpu_restore_state_from_tb(cpu, tb, retaddr); |
5b6dd868 BS |
1530 | /* Calculate how many instructions had been executed before the fault |
1531 | occurred. */ | |
28ecfd7a | 1532 | n = n - cpu->icount_decr.u16.low; |
5b6dd868 BS |
1533 | /* Generate a new TB ending on the I/O insn. */ |
1534 | n++; | |
1535 | /* On MIPS and SH, delay slot instructions can only be restarted if | |
1536 | they were already the first instruction in the TB. If this is not | |
1537 | the first instruction in a TB then re-execute the preceding | |
1538 | branch. */ | |
1539 | #if defined(TARGET_MIPS) | |
1540 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) { | |
1541 | env->active_tc.PC -= 4; | |
28ecfd7a | 1542 | cpu->icount_decr.u16.low++; |
5b6dd868 BS |
1543 | env->hflags &= ~MIPS_HFLAG_BMASK; |
1544 | } | |
1545 | #elif defined(TARGET_SH4) | |
1546 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0 | |
1547 | && n > 1) { | |
1548 | env->pc -= 2; | |
28ecfd7a | 1549 | cpu->icount_decr.u16.low++; |
5b6dd868 BS |
1550 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL); |
1551 | } | |
1552 | #endif | |
1553 | /* This should never happen. */ | |
1554 | if (n > CF_COUNT_MASK) { | |
a47dddd7 | 1555 | cpu_abort(cpu, "TB too big during recompile"); |
5b6dd868 BS |
1556 | } |
1557 | ||
1558 | cflags = n | CF_LAST_IO; | |
1559 | pc = tb->pc; | |
1560 | cs_base = tb->cs_base; | |
1561 | flags = tb->flags; | |
1562 | tb_phys_invalidate(tb, -1); | |
1563 | /* FIXME: In theory this could raise an exception. In practice | |
1564 | we have already translated the block once so it's probably ok. */ | |
648f034c | 1565 | tb_gen_code(cpu, pc, cs_base, flags, cflags); |
5b6dd868 BS |
1566 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not |
1567 | the first in the TB) then we end up generating a whole new TB and | |
1568 | repeating the fault, which is horribly inefficient. | |
1569 | Better would be to execute just this insn uncached, or generate a | |
1570 | second new TB. */ | |
0ea8cb88 | 1571 | cpu_resume_from_signal(cpu, NULL); |
5b6dd868 BS |
1572 | } |
1573 | ||
611d4f99 | 1574 | void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) |
5b6dd868 BS |
1575 | { |
1576 | unsigned int i; | |
1577 | ||
1578 | /* Discard jump cache entries for any tb which might potentially | |
1579 | overlap the flushed page. */ | |
1580 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE); | |
8cd70437 | 1581 | memset(&cpu->tb_jmp_cache[i], 0, |
5b6dd868 BS |
1582 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); |
1583 | ||
1584 | i = tb_jmp_cache_hash_page(addr); | |
8cd70437 | 1585 | memset(&cpu->tb_jmp_cache[i], 0, |
5b6dd868 BS |
1586 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); |
1587 | } | |
1588 | ||
1589 | void dump_exec_info(FILE *f, fprintf_function cpu_fprintf) | |
1590 | { | |
1591 | int i, target_code_size, max_target_code_size; | |
1592 | int direct_jmp_count, direct_jmp2_count, cross_page; | |
1593 | TranslationBlock *tb; | |
1594 | ||
1595 | target_code_size = 0; | |
1596 | max_target_code_size = 0; | |
1597 | cross_page = 0; | |
1598 | direct_jmp_count = 0; | |
1599 | direct_jmp2_count = 0; | |
5e5f07e0 EV |
1600 | for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) { |
1601 | tb = &tcg_ctx.tb_ctx.tbs[i]; | |
5b6dd868 BS |
1602 | target_code_size += tb->size; |
1603 | if (tb->size > max_target_code_size) { | |
1604 | max_target_code_size = tb->size; | |
1605 | } | |
1606 | if (tb->page_addr[1] != -1) { | |
1607 | cross_page++; | |
1608 | } | |
1609 | if (tb->tb_next_offset[0] != 0xffff) { | |
1610 | direct_jmp_count++; | |
1611 | if (tb->tb_next_offset[1] != 0xffff) { | |
1612 | direct_jmp2_count++; | |
1613 | } | |
1614 | } | |
1615 | } | |
1616 | /* XXX: avoid using doubles ? */ | |
1617 | cpu_fprintf(f, "Translation buffer state:\n"); | |
1618 | cpu_fprintf(f, "gen code size %td/%zd\n", | |
0b0d3320 EV |
1619 | tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer, |
1620 | tcg_ctx.code_gen_buffer_max_size); | |
5b6dd868 | 1621 | cpu_fprintf(f, "TB count %d/%d\n", |
5e5f07e0 | 1622 | tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks); |
5b6dd868 | 1623 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n", |
5e5f07e0 EV |
1624 | tcg_ctx.tb_ctx.nb_tbs ? target_code_size / |
1625 | tcg_ctx.tb_ctx.nb_tbs : 0, | |
1626 | max_target_code_size); | |
5b6dd868 | 1627 | cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n", |
5e5f07e0 EV |
1628 | tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr - |
1629 | tcg_ctx.code_gen_buffer) / | |
1630 | tcg_ctx.tb_ctx.nb_tbs : 0, | |
1631 | target_code_size ? (double) (tcg_ctx.code_gen_ptr - | |
1632 | tcg_ctx.code_gen_buffer) / | |
1633 | target_code_size : 0); | |
1634 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page, | |
1635 | tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) / | |
1636 | tcg_ctx.tb_ctx.nb_tbs : 0); | |
5b6dd868 BS |
1637 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n", |
1638 | direct_jmp_count, | |
5e5f07e0 EV |
1639 | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) / |
1640 | tcg_ctx.tb_ctx.nb_tbs : 0, | |
5b6dd868 | 1641 | direct_jmp2_count, |
5e5f07e0 EV |
1642 | tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) / |
1643 | tcg_ctx.tb_ctx.nb_tbs : 0); | |
5b6dd868 | 1644 | cpu_fprintf(f, "\nStatistics:\n"); |
5e5f07e0 EV |
1645 | cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count); |
1646 | cpu_fprintf(f, "TB invalidate count %d\n", | |
1647 | tcg_ctx.tb_ctx.tb_phys_invalidate_count); | |
5b6dd868 BS |
1648 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count); |
1649 | tcg_dump_info(f, cpu_fprintf); | |
1650 | } | |
1651 | ||
1652 | #else /* CONFIG_USER_ONLY */ | |
1653 | ||
c3affe56 | 1654 | void cpu_interrupt(CPUState *cpu, int mask) |
5b6dd868 | 1655 | { |
259186a7 | 1656 | cpu->interrupt_request |= mask; |
378df4b2 | 1657 | cpu->tcg_exit_req = 1; |
5b6dd868 BS |
1658 | } |
1659 | ||
1660 | /* | |
1661 | * Walks guest process memory "regions" one by one | |
1662 | * and calls callback function 'fn' for each region. | |
1663 | */ | |
1664 | struct walk_memory_regions_data { | |
1665 | walk_memory_regions_fn fn; | |
1666 | void *priv; | |
1667 | uintptr_t start; | |
1668 | int prot; | |
1669 | }; | |
1670 | ||
1671 | static int walk_memory_regions_end(struct walk_memory_regions_data *data, | |
1672 | abi_ulong end, int new_prot) | |
1673 | { | |
1674 | if (data->start != -1ul) { | |
1675 | int rc = data->fn(data->priv, data->start, end, data->prot); | |
1676 | if (rc != 0) { | |
1677 | return rc; | |
1678 | } | |
1679 | } | |
1680 | ||
1681 | data->start = (new_prot ? end : -1ul); | |
1682 | data->prot = new_prot; | |
1683 | ||
1684 | return 0; | |
1685 | } | |
1686 | ||
1687 | static int walk_memory_regions_1(struct walk_memory_regions_data *data, | |
1688 | abi_ulong base, int level, void **lp) | |
1689 | { | |
1690 | abi_ulong pa; | |
1691 | int i, rc; | |
1692 | ||
1693 | if (*lp == NULL) { | |
1694 | return walk_memory_regions_end(data, base, 0); | |
1695 | } | |
1696 | ||
1697 | if (level == 0) { | |
1698 | PageDesc *pd = *lp; | |
1699 | ||
03f49957 | 1700 | for (i = 0; i < V_L2_SIZE; ++i) { |
5b6dd868 BS |
1701 | int prot = pd[i].flags; |
1702 | ||
1703 | pa = base | (i << TARGET_PAGE_BITS); | |
1704 | if (prot != data->prot) { | |
1705 | rc = walk_memory_regions_end(data, pa, prot); | |
1706 | if (rc != 0) { | |
1707 | return rc; | |
1708 | } | |
1709 | } | |
1710 | } | |
1711 | } else { | |
1712 | void **pp = *lp; | |
1713 | ||
03f49957 | 1714 | for (i = 0; i < V_L2_SIZE; ++i) { |
5b6dd868 | 1715 | pa = base | ((abi_ulong)i << |
03f49957 | 1716 | (TARGET_PAGE_BITS + V_L2_BITS * level)); |
5b6dd868 BS |
1717 | rc = walk_memory_regions_1(data, pa, level - 1, pp + i); |
1718 | if (rc != 0) { | |
1719 | return rc; | |
1720 | } | |
1721 | } | |
1722 | } | |
1723 | ||
1724 | return 0; | |
1725 | } | |
1726 | ||
1727 | int walk_memory_regions(void *priv, walk_memory_regions_fn fn) | |
1728 | { | |
1729 | struct walk_memory_regions_data data; | |
1730 | uintptr_t i; | |
1731 | ||
1732 | data.fn = fn; | |
1733 | data.priv = priv; | |
1734 | data.start = -1ul; | |
1735 | data.prot = 0; | |
1736 | ||
1737 | for (i = 0; i < V_L1_SIZE; i++) { | |
1738 | int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT, | |
03f49957 | 1739 | V_L1_SHIFT / V_L2_BITS - 1, l1_map + i); |
5b6dd868 BS |
1740 | |
1741 | if (rc != 0) { | |
1742 | return rc; | |
1743 | } | |
1744 | } | |
1745 | ||
1746 | return walk_memory_regions_end(&data, 0, 0); | |
1747 | } | |
1748 | ||
1749 | static int dump_region(void *priv, abi_ulong start, | |
1750 | abi_ulong end, unsigned long prot) | |
1751 | { | |
1752 | FILE *f = (FILE *)priv; | |
1753 | ||
1754 | (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx | |
1755 | " "TARGET_ABI_FMT_lx" %c%c%c\n", | |
1756 | start, end, end - start, | |
1757 | ((prot & PAGE_READ) ? 'r' : '-'), | |
1758 | ((prot & PAGE_WRITE) ? 'w' : '-'), | |
1759 | ((prot & PAGE_EXEC) ? 'x' : '-')); | |
1760 | ||
1761 | return 0; | |
1762 | } | |
1763 | ||
1764 | /* dump memory mappings */ | |
1765 | void page_dump(FILE *f) | |
1766 | { | |
227b8175 SW |
1767 | const int length = sizeof(abi_ulong) * 2; |
1768 | (void) fprintf(f, "%-*s %-*s %-*s %s\n", | |
1769 | length, "start", length, "end", length, "size", "prot"); | |
5b6dd868 BS |
1770 | walk_memory_regions(f, dump_region); |
1771 | } | |
1772 | ||
1773 | int page_get_flags(target_ulong address) | |
1774 | { | |
1775 | PageDesc *p; | |
1776 | ||
1777 | p = page_find(address >> TARGET_PAGE_BITS); | |
1778 | if (!p) { | |
1779 | return 0; | |
1780 | } | |
1781 | return p->flags; | |
1782 | } | |
1783 | ||
1784 | /* Modify the flags of a page and invalidate the code if necessary. | |
1785 | The flag PAGE_WRITE_ORG is positioned automatically depending | |
1786 | on PAGE_WRITE. The mmap_lock should already be held. */ | |
1787 | void page_set_flags(target_ulong start, target_ulong end, int flags) | |
1788 | { | |
1789 | target_ulong addr, len; | |
1790 | ||
1791 | /* This function should never be called with addresses outside the | |
1792 | guest address space. If this assert fires, it probably indicates | |
1793 | a missing call to h2g_valid. */ | |
1794 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | |
1795 | assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | |
1796 | #endif | |
1797 | assert(start < end); | |
1798 | ||
1799 | start = start & TARGET_PAGE_MASK; | |
1800 | end = TARGET_PAGE_ALIGN(end); | |
1801 | ||
1802 | if (flags & PAGE_WRITE) { | |
1803 | flags |= PAGE_WRITE_ORG; | |
1804 | } | |
1805 | ||
1806 | for (addr = start, len = end - start; | |
1807 | len != 0; | |
1808 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
1809 | PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1); | |
1810 | ||
1811 | /* If the write protection bit is set, then we invalidate | |
1812 | the code inside. */ | |
1813 | if (!(p->flags & PAGE_WRITE) && | |
1814 | (flags & PAGE_WRITE) && | |
1815 | p->first_tb) { | |
d02532f0 | 1816 | tb_invalidate_phys_page(addr, 0, NULL, false); |
5b6dd868 BS |
1817 | } |
1818 | p->flags = flags; | |
1819 | } | |
1820 | } | |
1821 | ||
1822 | int page_check_range(target_ulong start, target_ulong len, int flags) | |
1823 | { | |
1824 | PageDesc *p; | |
1825 | target_ulong end; | |
1826 | target_ulong addr; | |
1827 | ||
1828 | /* This function should never be called with addresses outside the | |
1829 | guest address space. If this assert fires, it probably indicates | |
1830 | a missing call to h2g_valid. */ | |
1831 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS | |
1832 | assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS)); | |
1833 | #endif | |
1834 | ||
1835 | if (len == 0) { | |
1836 | return 0; | |
1837 | } | |
1838 | if (start + len - 1 < start) { | |
1839 | /* We've wrapped around. */ | |
1840 | return -1; | |
1841 | } | |
1842 | ||
1843 | /* must do before we loose bits in the next step */ | |
1844 | end = TARGET_PAGE_ALIGN(start + len); | |
1845 | start = start & TARGET_PAGE_MASK; | |
1846 | ||
1847 | for (addr = start, len = end - start; | |
1848 | len != 0; | |
1849 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { | |
1850 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1851 | if (!p) { | |
1852 | return -1; | |
1853 | } | |
1854 | if (!(p->flags & PAGE_VALID)) { | |
1855 | return -1; | |
1856 | } | |
1857 | ||
1858 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) { | |
1859 | return -1; | |
1860 | } | |
1861 | if (flags & PAGE_WRITE) { | |
1862 | if (!(p->flags & PAGE_WRITE_ORG)) { | |
1863 | return -1; | |
1864 | } | |
1865 | /* unprotect the page if it was put read-only because it | |
1866 | contains translated code */ | |
1867 | if (!(p->flags & PAGE_WRITE)) { | |
1868 | if (!page_unprotect(addr, 0, NULL)) { | |
1869 | return -1; | |
1870 | } | |
1871 | } | |
5b6dd868 BS |
1872 | } |
1873 | } | |
1874 | return 0; | |
1875 | } | |
1876 | ||
1877 | /* called from signal handler: invalidate the code and unprotect the | |
1878 | page. Return TRUE if the fault was successfully handled. */ | |
1879 | int page_unprotect(target_ulong address, uintptr_t pc, void *puc) | |
1880 | { | |
1881 | unsigned int prot; | |
1882 | PageDesc *p; | |
1883 | target_ulong host_start, host_end, addr; | |
1884 | ||
1885 | /* Technically this isn't safe inside a signal handler. However we | |
1886 | know this only ever happens in a synchronous SEGV handler, so in | |
1887 | practice it seems to be ok. */ | |
1888 | mmap_lock(); | |
1889 | ||
1890 | p = page_find(address >> TARGET_PAGE_BITS); | |
1891 | if (!p) { | |
1892 | mmap_unlock(); | |
1893 | return 0; | |
1894 | } | |
1895 | ||
1896 | /* if the page was really writable, then we change its | |
1897 | protection back to writable */ | |
1898 | if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) { | |
1899 | host_start = address & qemu_host_page_mask; | |
1900 | host_end = host_start + qemu_host_page_size; | |
1901 | ||
1902 | prot = 0; | |
1903 | for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) { | |
1904 | p = page_find(addr >> TARGET_PAGE_BITS); | |
1905 | p->flags |= PAGE_WRITE; | |
1906 | prot |= p->flags; | |
1907 | ||
1908 | /* and since the content will be modified, we must invalidate | |
1909 | the corresponding translated code. */ | |
d02532f0 | 1910 | tb_invalidate_phys_page(addr, pc, puc, true); |
5b6dd868 BS |
1911 | #ifdef DEBUG_TB_CHECK |
1912 | tb_invalidate_check(addr); | |
1913 | #endif | |
1914 | } | |
1915 | mprotect((void *)g2h(host_start), qemu_host_page_size, | |
1916 | prot & PAGE_BITS); | |
1917 | ||
1918 | mmap_unlock(); | |
1919 | return 1; | |
1920 | } | |
1921 | mmap_unlock(); | |
1922 | return 0; | |
1923 | } | |
1924 | #endif /* CONFIG_USER_ONLY */ |